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Bergen, April 3, 1998
Modeling Panels of

Intercorrelated Autoregressive Time Series

by

Vidar Hjellvik and Dag Tjgstheim
Department of Mathematics
University of Bergen
5007 Bergen
NORWAY

Summary

We propose a method of modeling panel time series data with both inter- and intra-
individual correlation, and of fitting an autoregressive model to such data. Estimates
are obtained by a conditional likelihood argument. If there are few observations in
each series, the estimates can be dramatically improved by Burg-type estimates tak-
ing edge effects into account. The consequences of ignoring the intercorrelation term
are analysed. Partial lack of consistency is demonstrated in this situation. Moreover,
a break-even point is found for the strength of the intercorrelation, beyond which a
conventional estimate, ignoring correlation, will become increasingly inferior. Asymp-
totic normality of estimators is established, and our results are illustrated on a real
data example, where it is seen that choosing the right type of estimate is of crucial

importance.

Some key words: Autoregressive; Burg-type estimates; Intercorrelated; Panel data;

Time series.






1 Introduction

A quite general linear dynamic model for a panel of time series observations { X, ¢ =

L,...,n; t=1,...,T} is given by

P
Xiye = D0 @i X(ye—j + e+ A+ 87 Wy + € (1.1)
7=1

(see e.g. Hsiao 1986, p. 71). Here t denotes time and ¢ the individual series of the panel.
Moreover, {W(} is a (possibly) vector series of explanatory variables, 1, represents
effects over time influencing all of the series, and similarly A; stands for individual
effects not taken care of by the explanatory variables. Finally, {¢¢)} are the error

terms assumed to be independent identically distributed (iid ) in all of the following.

For some reason there seems to be a tradition for removing 7;, thus ignoring the com-
mon effects over time and hence effectively the contribution of this term to the in-
tercorrelation across the panel. For example, Diggle, Liang and Zeger (1994) do not
include this term. In Baltagi (1995), which contains a recent survey of panel data
techniques, inter-individual correlation is only considered briefly for regression models,
not for dynamic models. The same is the case in Matyas and Sevestre (1992). Hsiao
(1986), whose chapter 4 is a primary source on dynamic models, in the last sentence
of the introduction to this topic writes that “For ease of exposition, we assume that
the time specific effects, n;, do not appear”. Similarly, a variable corresponding to n;

is pointedly ignored in the basic paper by Holz-Eatkin et al (1998, p. 1376).

We maintain that the neglect of intercorrelation implied by omitting »; can in many
instances not be justified and may have severe consequences for panels originating,
in say, econometrics and biology. We also believe that including 7; is not a trivial
extension at the cost of somewhat more burdensome notation. Some of the difficulties
are indicated in the scarce literature on the subject. We refer to Diggle and al Wasel
(1997, p. 39), who briefly mention this point in a recent discussion on spectral analysis
of a panel of time series, and to the earlier papers by Brillinger (1973, 1980) and

Bloomfield et al (1983), where common time effects are included.



To focus more sharply at the intercorrelation effect, in this paper we look at the sim-

plified model
P
Xy = 2 a; X(iye—j + 0+ €y (1.2)
j=1
It is important to understand this relatively simple situation before embarking on
models such as (1.1). The variables {n;} are generally not assumed to be iid and can be
thought of as containing a common mean and also the influence of possible explanatory

variables. Of course (1.2) is the panel analogue of a univariate autoregressive time

series, whereas (1.1) represents the time series — regression situation.

An illustrative example which can be modeled by (1.2), is depicted in Figure 1, which
shows the logarithms of the yearly catches of grey-sided voles over a period of 31 years at
41 different locations of the island of Hokkaido. Clearly the series are intercorrelated,
and the geographical area has been chosen so as to minimize individual variations

(measured by A; in (1.1)) from one catch site to another.

Our primary concern in the present article lies in estimating the part of the dynamic
mechanism represented by the autoregressive parameters aq, ..., a,. We are interested
in finding good estimates both as n — oo with T' fixed, and as T' — oo with n fixed.
A related problem with T small (7" > 3) has been treated briefly by Cox and Solomon
(1988).

We start with the first order case, where a simple and robust estimate based on a
conditional likelihood argument is introduced in Section 2. The main thrust of the
paper is to be found in Sections 3 — 6: In section 3 it is shown that the conditional
maximum likelihood estimate can be dramatically improved by a Burg-type estimate
if T'is small and n is large. To our knowledge this type of estimate has not been used
before in a panel situation. The consequences of ignoring the intercorrelation term 7; is
analysed in Section 4, where a threshold is established for the intercorrelation, beyond
which a conventional estimate, ignoring 7;, will be increasingly inferior. Asymptotic

normality and an extension to the p-th order autoregressive case are given in Sections



5 and 6. Finally, our results are briefly illustrated on the biological catch data in

Section 7.

2 A conditional maximum likelihood estimate

For clarity we first restrict ourselves to p = 1 in (1.2). Extensions to an arbitrary p

can be found in Section 6. For p = 1 the model (1.2) is
Xy = aXy—1 +0e + €ye (2.1)

We assume that observations {X(;;} are available for ¢+ = 1,...,n and t = 1,..., 7T,
that the {¢)} are iid with a density function f., and that |a| < 1 to guarantee stability.
At the moment we make no assumptions about the sequence {1;} other than it being

independent of {e()}. A deterministic sequence {1,} would also be allowed.

With the lack of assumptions on {5;} unconditional likelihood methods cannot be
employed. Even if {5} were to consist of iid random variables, ordinary maximum
likelihood arguments cannot in general be used, since it T" is small, the intercorrelation
introduced by {n;} would not be consistently estimated. Conditional on 7;, however,
Xy and X(jy¢ are independent for ¢ # j, ¢,j = 1,...,n. Moreover, denoting by F/
the o-algebra generated by {7,, s < t}, by X; the vector given by [Xqy, ..., X(uy,s
and by using a standard Markov argument, the likelihood conditional on F7 and the

starting value X is given by

T n
L(Xa..., Xp| Xy, Fp) = [T IT £e(Xiye — aXiiyems = o). (2.2)
t=2¢=1

It should be noted that the conditional density of f(X;|F) is difficult to evaluate,

since, under our general assumptions, { X(;)¢} is not a stationary process for a fixed 1.

If f. is assumed to be Gaussian with zero mean and variance o2, then

1 n T
L(Xy,. ... X7| X1, F}) = (2r02)~T=D/2 exp {—@ SOS (X — aX o — mﬁ} :
€ ¢=11t=2
We can now obtain a consistent estimate of a by letting either n or T', but not necessarily

both, tend to infinity. In fact, considering {11,...,n7} to be nuisance parameters, and



maximising I with respect to a yields the estimator

n T-1
()41 — X )Xy — At
> (X Xoar) (X — Xot)
~ =1 t=1
a@= n T-1
> > (X — Xo)?
=1 t=1

(2.3)

where X, = n7t 30, Xy, t=1,...,T, for T"> 2 and n > 2. Alternatively, if one

wants to avoid the Gaussian assumption, this can be looked at as a conditional least

squares estimate. Much of the analysis in the sequel goes through if {¢),} is an array

of iid random variables satistying some weak moment conditions.

By (2.1),

Xy — X,;= G(X(i)t—l — X))+ €yt — €t

with e, =n71Y; €@y, and it follows that

1 n T-1
- - \ :
N - n(T _ 1) ; ; () tU @)1
a@—a= 1 n T-1
- - y?
T-T) & O

where we have used the notation

and

It is noted that a is robust in that it does not depend on 7;.

(2.5) and the independence of the {e;y, ¢ = 1,...

and

1
0'3(1——), 1 =7,t=35

n

E(ugus) =1 _152, itjt=s

0, otherwise.

Uiyt = €@ —

,ny t =1

(2.4)

€. (2.5)

Moreover, it is seen from

s, '} that E(ugy) =0

(2.6)

Since |a| < 1, {Yi)+} is a stationary process for ¢ (and n) fixed and

Yioe = 2 a ugper.
k=0



Using the properties of {uy}, we have that E (Y{;;) = 0 and

o (1-3)

B (Y ) = 2 , (28)
1
—s i
nl—a?

whereas for ¢t > s we have E (Y(i):Y{(j)s) = a'°E (Yiy¢Y{j):). This means that {¥;} =

{[Yye - - -, Yiuye) } constitutes a first order vector autoregressive process when n is fixed.

Assuming E (e?i)t) < oo and using the above formulae, some trivial but tedious calcu-

lations yield

2

n T-1
E (7 T L 0}2/) 0 (2.9
as nT — oo. Thus, using Chebyshev’s inequality for the denominator of (2.4),
nH T -1y, et Y(?)t — o3 — 0 in probability as nT" — oo. Similar but simpler
calculations yield
n T—-1 2 2 2 -1 2 2

(B g ) = (-0) = () e
where 02 = ¢?/(1 — a*) is independent of n. Consistency of a follows from (2.4).
Moreover, from (2.4), (2.9) and (2.10) it is seen that as nT — oo,

1 —a?

(n—1)(T —1)

var (@) ~

(2.11)

It we let n — oo, by the same argument the estimator

DXy — X o)

5
=
|

>

> (Xiyee1 — Xam1)?

=1

would be a consistent estimator of a; in an autoregressive system
Xyt = @ Xye—1 +m + €yt

with a time-dependent autoregressive coefficient a;. But for the model (2.1), a =

(T — 1)~' L, @; would in general be inferior to @, since the latter would work well



also for n small (but nT big). Finally, if T'— oo, with some slight abuse of notation,

the estimator

T-1
> (X — X)) (X — Xy
~ t=1
@i = T—1
~ 2
> (X — X))
t=1

would be a consistent estimator of a; in an autoregressive system
Xeiye = @i Xiye—1 + ne + €y

with autoregressive coefficients varying from one series to another and with 7(2').4_1 =

(T — )PS5 Xy and Xy = (T — 1)V S5 Xy

3 An improved estimator for small T’

For the data example mentioned in the introduction, 7" and n are of about the same
size. However, quite often in a panel situation there are many short series. Cox and
Solomon, for example, discuss panels of time series each consisting of 3 observations. In
such situations it is possible to find a radical improvement of the conditional maximum

likelihood estimator a.

For ease of computation, in this section the array of variables {¢():} will be assumed to
be Gaussian, but it will become clear from the derivations that this assumption can be
replaced by some appropriate moment conditions. All of the simulations in this paper

have been carried out with a Gaussian random number generator.

The reason that @ can be improved for T small and n large, is that it is slightly
unbalanced at the ends of the data sample. Looking at the expression (2.3) for a, it is
seen that in the sum in the numerator X;); and X ;7 appear once, whilst X;),, 2 < s <
T —1 appear twice. On the other hand in the denominator X;,, 1 < s < T —1 appear
twice, whereas X(;)7 does not appear. This effect is present also for the corresponding
conditional likelihood (given Xj) estimator in the single time series case, and it is

sometimes corrected for by using a so-called Burg-type estimator (cf. Robinson and



Treitel 1980, appendix 16-2), where -7 21X, — X)? is replaced by X = X)2+
HXr — X)?+ 2[5 (X, — X)% The panel analogue would be given by

1 n T-1 L L
T 1y 2 2 X = X)) (X = Xo)

CNLB = ! ~ - =1 t=1 . 1 (31)
b Ny — ) — S(Xy = Xa)? = S(Xyr — Xop)?
n(T—l);{;( @ = Xe)” = 5(Xan )" = 5 (Xar = X1) }

Re-introducing the Y{;)- and wu;)y-notation, corresponding to (2.4) we have
n 1 n T-1
Yin — Y¢ — Yiyeu . .
N n — 1) ; ( (2)1 (Z)T) —I_ n(T _ 1) ZZ_; ; ( )tu( )t‘l'l ‘ Al _I_ A2
ap—a = _1 — — = = 5 (3.2)

1 1
- - Y2, — YA, — Y73
W= 1) Z{Z e gon gt
In univariate time series analysis only the term corresponding to A, contributes to

the asymptotic analysis as 7' — oo. In the panel case, as n — oo, both Ay and A,

contribute. First, as for a it is not difficult to prove that as n — oo, B — o2 =

a?/(1 — a?) and A; = 0,7 = 1,2 in probability. Using a Taylor expansion argument it

follows that

E(A2?) + E(A2) + 2E (A, A,)

var (apg) ~ por (3.3)
Here, using (2.10), E (121%) ~n YT —1)"'o%0? as n — oo, and it remains to evaluate
E (121%) and E (12111212) In the derivation we utilize the relationship

t
1/(2')15 = at_sif(i)s + Z at_ku“)k, t > s. (34)
k=s+1
Note that
E(AD) = fmr = 21 21 {EOEYE) 2B e + EVE G }-(3.5)
i=1j
Using the Gaussian assumption on {e)},
E(Yin) = E(Vr) =30y, (3.6)
Moreover, for ¢ # j, using (3.4) with t =2 and s =1,
2 y2
B (Yh10)
= B { (Y8 + 20V0we + ufi) (a0 + 20¥Gnun + ufy)
4 2 da? 2 2
= a'E (Y(l) Y( )1 ) + 2a*0y0 + ot + (= 1)20Y0u. (3.7)



Using (2.7), it follows that E (Y(?)QY(?)Q) = E(Y(?)IY(?)I) =K (Y(?)TY(?)T), and by (2.6),
(2.8) and (3.7)
2a*0t 0% 4+ o _ _
E(Y(Y() = =5 +0(n?) = oy +O(n7?). (3.8)

1 —at
Similarly, with ¢ = T and s = 1 in (3.4), and using (3.6), (3.8) and the independence

of {ugk, & > 2} from Y{;); we obtain

T 2
E (Y@)IY(?)T) = E {Y(?)l (“T_ly(j)l + ZQT_ku(J)k) }
k=2
T
= kb {Y@n (“ TR aZ(T_M“@)k)}
k=2
T
{3@2(T_1) +(1—d?) > QQ(T_k)} oy, 1=
k=2
{a“‘” +(1=a®) 3 a“"“)} oy +0(n7), i)
k=2

: (3.9)
oy +0(n™?), 1]
It follows from (3.8) and (3.9) that for ¢ # j the terms of (3.5) cancel up to order
O(n™?), and for i = j, by inserting (3.6) and (3.9) in (3.5),

. o (1 _ a2(T—1)) ol o (1 _ a2(T—1)) o

Bd) = —Sg—p 00~ gy

(3.10)

as n — 0.

Finally, for the covariance term E (1211 2) of (3.3) we have

PN a n n T-1
Wde) = g o {0 = YEe) Yoo}
n n T-1
- 2n2(T ZZZ E ( TY yeU(s )t-l—l)-
=1 j=1 t=1

Using (2.6), (2.7), (2.8) and (3.4) with t =T and s = ¢,

T 2
E (Y3 Yiugm) =E {(GMYW + > aT"“U(i)k) Y(z‘)tumm}

k=t+1



= E (QaT_tY(i)tY(j)taT_t_lu(i)t+1u(y‘)t+1)

2a*T=07Y1 — ¢, i1=7
B 2 a2(T—t)—1(1 _ a2)0_4 i %]
(n . 1)2 Y>»
so that, as n — oo,
o g2 (1 _ a2(T—1)) o
E(A;Ay) ~ (3.11)

n(T —1)?
Inserting (3.10), (3.11) and E(A%) ~n YT —1)7'(1 — a?)o* into (3.3), we obtain

e (1-@T)  p g gy g
var (apg) ~ W(T =17 = W(T =17 ) (3.12)

Table 1 shows, for various combinations of T, n and a, the simulated value

n(T — 1)var (ag) and the ratio var (ag)/var (ag), where var (ag) is given by (3.12). It
is seen that (3.12) results in a slight under-estimation for n = 128, but this effect has
all but disappeared for n = 1024.

By (2.11) and (3.12), as n — oo,

| — a2 o (1 _ a2(T—1))

var (a)

S e Ty
and hence
var (ag) a? (1 — QQ(T—l))
var (a) ~1= (T —1)(1 —a?)’ (3.13)

If T is allowed to increase, var (dg)/var (@) — 1, whereas for T" small and |a| large, ap

is much better than a. For T' = 2, for example,

var (ap)
var (a)

~1—a?

as n — oo. The asymptotic relationship (3.13) stands in startling contrast to tra-
ditional univariate time series analysis, where T' typically is so large that the Burg
estimator and the conditional likelihood estimator very nearly have the same variance.
In Figure 2, ap and a are compared for T' = 2 and n = 128. The simulated mean

square error is given in Table 2, where we also see that the ratio MSE (ELB)/M/S\E (a)



is close to the ratio var (ap)/var (@) given by (3.13). The simulated bias squared is
typically of order 107°, so the mean square error is practically equal to the variance
here. It is seen that a can be accurately estimated with only 2 observations for each of
the series of the panel. We also note from Figure 2 that for |a| = 0.9, |a| > 1 in some
cases. On the other hand, an application of the Schwarz inequality in (3.1) and some

simple algebra show that ag < 1 always.

4 Ignoring intercorrelation: consequences and a break-
even point

If it is assumed that the time series { Xy}, ¢ = 1,2,... are independent, so that (2.1)

simplifies to
Xy = aX(iy—1 + b+ €y, (4.1)

where b is a constant into which a possible non-zero mean has been absorbed, then the
need to condition on F7 in (2.2) disappears, and the conditional likelihood given X7 is
T n
L(Xy, ..., Xr|X0) = [T I fo(X(iye — aX(iyemr — 0).
t=21=1

The corresponding conditional maximum likelihood estimator of a is given by

n T-1
Z Z (X(i)t-l—l - X 71)()((2)15 - X..p)
o==t=— (4.2)
Z Z(X(z)t —X.0)"
=1 t=1

with X..; = n™Y(T — 1) 2, S5 X(yegjs 7 = 0,1, Arguing as in Section 2, @ is
consistent under the model (4.1) as nT — oo and

1—a?

)Nn(T—l)'

var (@

(4.3)

For a small T" it can be improved at the edges as in Section 3, resulting in an estimator
ap analogous to ap. Note that under (4.1) an alternative way of proceeding would be
to replace a by the unconditional maximum likelihood estimate obtained by including

the marginal distribution of Xj in the likelihood maximization.

10



Whereas @ and ap are consistent under (4.1) and the more general model (2.1) including

intercorrelation, this is not so for @ and ap. Indeed, assuming that (2.1) is true, from

(4.2) we obtain

7n(T Y Z Z(X(i)t — X..70)(6(i)t-|—1 —€.1)+ 71 Z(Xt — X 0) (Nt
& = a+ 1=1 t=1 =1
1 n T-1 L
T 1y (Xz - X~~,0)2
n(T —1) ; ; @2

where €.; = n (T — 1) S S5 €y and .y = (T — 1)~ /5! ey For a fixed
T, the term (T'—1)7' 3" (X s — X..0) (7441 —77.1) will not converge to zero in probability
as n — oo, and even if T' tends to infinity, it is not unproblematic to analyse (4.4)

unless further assumptions are made about {7} to obtain stationarity of {X;}.

One may argue that the situations represented by (2.1) and (4.1) are too simple, and
that the inconsistency of @ under (2.1) is of minor practical importance, as typically
more complicated models tend to be used. However, for the entirely general model (1.1),
if n¢ 1s omitted — as it usually is — the estimates of a4, . .., &, conventionally employed
(see e.g. Hsiao 1986, Ch. 4) would generally not be consistent unless 1, = constant.
For example, the much used differencing technique yields a p-th order autoregressive

model for the differences 7, = X3y — Xiye—1,
p
Ly = Z a; Zyi—1 e — N1 + €6y — €ye—1 + BT Wiy — Wiiye—1)-
j=1

Estimators of aq,...,a, analogous to those defined in Hsiao (1986, Ch. 4) would not
be consistent as n — oo for T fixed if intercorrelation is present, whereas estimators

analogous to @ in Section 3, based on conditional likelihood arguments, would.

Coming back to the simpler picture presented by (2.1) and (4.1), we will introduce
assumptions on {n;} so that @ is consistent under (2.1) as T'— oo. One reason this is
of interest, is that as T — oo for n fixed, according to (4.3), var (a) ~

n~HT —1)7'(1 — a?) under model (4.1), whereas from (2.11), as T" — oo for n fixed,
var(a) ~ (n — 1)™"(T — 1)~'(1 — a*) which holds both under (4.1) and (2.1). Thus if
the series { Xy}, ¢ = 1,2,... are independent, as 1" — oo,

var(a) n—1

~

var (a) n

11



and for small n, @ would be distinctly preferable to a. (Of course var (ag) ~ var(a)
and var (ag) ~ var (@) in this case). A natural question is: can @ be better than @ also

when intercorrelation is present, and if so, when?

The needed assumptions on 7; to obtain consistency of @ as T' — oo under (2.1) are
quite restrictive; in fact the n;-variables should be iid . It is not sufficient that {n;}
is stationary, because if {n;} is autocorrelated, @ would be a consistent estimator of
COrT (X(i)t,X(i)t_l) but not of a. Depending on one’s point of view the restriction
to iid variables may be quite serious. A recent development within multiple time
series modeling concerns so-called factor models (Forni and Reichlin 1997), where much
emphasis is put on a stationary analogue of {n;} describing common dynamics due to

external economic factors.

Assuming in addition that the variables {n;} has a finite second moment and iterating

in (2.1), we obtain corresponding to (2.7),

Xy =D " (imy + €iye—r)- (4.5)
k=0

Using that {n;} and {euy} .2 = 1,2,..., are independent sequences of iid variables, it

follows at once that
E (Xye) = (1 —a)™"E (), (4.6)

var (X)) = (1 — az)_l(az + %),  cov (X, X(jye) = (1 = a®)rel i # g, (4.7)

n?

and consequently

0.2

cort (Xiye, X(jye) = p = —5— (4.8)

2 2"
0'77—|-0'E

Moreover, for t > s, cov (X, X(jy5) = a'"*cov (X, X(j)e).

Using the above formulae and (4.4), it is not difficult to show that & is consistent under
(2.1) as T" — oo under the added assumption that 4-th moments exist. Furthermore,
we are in a position to address the question of the relative efficiency of @ and a as

T — oo. Defining

Ci = — Z (X(z)t — 7..70)(77154_1 - ﬁ~,1 + €)t+1 — E",l)v

12



we can write (4.4) as

and using a Taylor expansion argument, as 1" — oo,

] (_Zc) B+ (- DE(GC)

var (a) ~ ot ey (4.9)
By (4.5)-(4.8)
E(éf) (T _1 1)? ; B [(X(l)t —X.0) {(Ut+1 —7.1)" + (€ —€.1) H
ok(02 +02) _ (1= d)ol
T—-1 T—-1
and
B(GC) ~ ! 7 z B {(Xay = Xoo) (X = Xoo) (i1 = 7.0)°)}

T—1 T T—1 T
Inserting in (4.9), it follows that

(1 —a®){l +(n—1)p*}
n(T —1)

var (@) ~ var (ag) ~

(4.10)

and comparing to (2.11), which is valid irrespective of whether intercorrelation is

present or not,

var (@) _ var (ap) N {14+ (n—=1p*}Hn—-1)

var(a)  var(ag) n

(4.11)

as T — oo. It is seen that p = 1/(n — 1) marks a threshold such that asymptotically
as ' — oo,

1

var(a) <var(a) ifandonlyif p< T
n —_

(4.12)

Since p can be estimated consistently as T" — oo, this gives a simple rule for choosing
between a and @ when T' is large. When T' is small, @, or rather apg, should always be

preferred due to the lack of consistency of @ and ap in this case.
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In Figure 3 and Table 3, ag and ap are compared for n = 2, for which (4.12) is always
fulfilled, and n = 4. For nT = 20000 the simulated bias squared is of order 1077,
so the simulated mean square errors are practically equal to the simulated variances,
and they are very close to the theoretical values given by (2.11) and (4.10), which for

nT = 20000 are given in parentheses in Table 3.

At the break-even point p = 1/(n—1) the simulated variance of both ag and ap should
be close to var (ag) given by (2.11). Table 4 shows that this is indeed the case. In
the table simulated results are compared to (2.11) for n = 2,3 and 4, nT = 20000
and a = 0.5. Even though these are asymptotic results, they seem to hold for T" quite
small, as can be seen from Table 5. However, the bias of ap is typically about three
times that of ag. For T' large the bias squared is small compared to the variance, but

for T small it is substantial for ag.

For T large and n = 2, a and ap should always be used. However, from (4.11) and
(4.12) it is clear that as n is increasing, there is almost nothing to gain by using a and
ap, but there is a lot to lose in the intercorrelated case. In Figure 4 and Table 6, ap
is compared to ap for n = 128 and p = 0.5, which gives var (ag)/var (ag) ~ 32.5 in
(4.11). From Figure 4 we also see that ap is biased, and for T' small the bias is severe.
This is not surprising in view of the inconsistency of a for T small. Similar results
can be expected for the more general model (1.1) for estimates that do not take the

intercorrelation effect into account.

5 Asymptotic distribution

It T is allowed to tend to infinity, strong mixing arguments can be used to prove
asymptotic normality for both @ and @, with no assumptions on {n;} in the case of a.
If T is fixed, and n tends to infinity, the problem can be reduced to the central limit

theorem for iid random variables, as will now be shown.

We shall start with the estimator a. Since the denominator of (2.4) converges to a* in

14



probability as n — oo, it is enough to consider the numerator

R 1 n T-1
Ay = — N1 Yioyee
2 n(T _ 1) ; tZ:: Uy X (i)t
Inserting w41 = €41 — €41 We have
R 1 n T-1 n T-1
Ay = — E(iye+1 Y (i)t €. t-|—1Y
n(T—l);;() o ;tl
1 n T-1
= LT 2 & oY
1=1 t=1

Ziye = aZy—1 + €@y
so that
Ziye = > a"e(iyir
k=0

Comparing with (2.7), it is seen that Y{;; = Ziy — Z 4 and hence

R 1 n T-1
Ay = ——— 6it-|—1Yz't
n(T_l);tZ_;U (0
L_sy Ly
= €)1 2 (i)t — €414
n(T_l)z—ltzl © © -1

Here

_ — 9 n n n n B
E(e?t+1Z~t) = 4E (Z Z Z Z 6(2'1)f+16(2’2)t+1Z(iz)tZ(u)t) =0O(n 2)

due to the independence assumption on the array {ec;y}. On the other hand, by

standard arguments,

(s B -

and it follows that it is sufficient to consider

LS s S i = 23 Dir

n
where the random variables { Dy 7, Dy 7, ...} are independent, and the asymptotic nor-

mality of @ then follows by an application of the ordinary central limit theorem on

(Dir, i=1,2,...}.
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A similar reduction to iid random variables can be achieved for the estimator ag. By

(3.2) and the above, it is sufficient to look at the term

n

- a
A= (T —1) 2 (Y(?)l - Y(?)T)

=1

Here
n

2 1 i3 i3 i3
E {(Z21 — ZQT) } = EE{Z S (ZiinZiiny Zion Ziign

1 =1 i2 =1 ig:l 24:1

—  Zan Z(in Ziiayr ZinT — 20T Z(i)T Zian Ziian + Z(za>TZ<2'2>TZ<2'3>TZ<¢4>T)} =0(n™)

by the independence and zero-mean properties of the array {Z;);}. On the other hand

{% > (2 - Ziyr) }2]

=1

E

1 n n
= —EB {Z D (Zen 28 — Zin Ziyr — Zir Zim + Z@)TZ@)T)}

= S{B(Z) — B2, 2h)} = 0™,

and hence the dominating term of the numerator Ai 4+ A, of (3.2) is given by

1 n a 1 T-1 ‘ 1 n
n ; {m (Z(Qi)l - Z(zi)T) Yy ; e(i)t-l-lZ(i)t} = — ;FLT

n = n “
and the asymptotic normality of apg follows from an application of the ordinary central
limit theorem to the sequence of independent random variables {F; 7, ¢ = 1,2,...}. A
simulation experiment, illustrating the distributional results for T' = 2, is presented in

Figure 5.

6 The autoregressive model of order p
We start by writing (1.2) in vector notation:

Xy = a’@gy—1 + e + €y (6.1)
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where ¢” = [ay,...,a,] and Ty = [ Xy X(iye=15 - - s X(iyt—pt1)- The conditional likeli-
hood argument of Section 2 can now be repeated to obtain

1 n T-1

al = — Z Z (X(iyep1 — 7~t+1)(x(i)t —T4)

n(T - p) =1 t=p

x {ﬁ S (e — T oy — T.t)T} . (6.2)

i=1 t=p
Introducing Y(;); and u), as before and letting Y0y = Yy, Yiiyt—1s - - - » Y(i)t—pt1), cor-
responding to (2.4),

Ly L S B
o —ad =— U t-|-1y:' — N Y6 tyTi : 6.3
n(T —p) = P (D150 n(T —p) = t=p O

To obtain an expression for the covariance matrix I'y = E (y(i)ty(:»)t) of y(y note that

Yy = AYye-1 + viyelo, (6.4)

where A is the p x p matrix defined by

a1 Gy ... Gp_1 dp
10 ... 0 0

A=1. . . . .| (6.5)
0o 0 ... 1 0

and 1, is a p—dimensional vector having 1 as its first entry and zeros otherwise. As-
suming that the characteristic polynomial 2? — 3°%_; a;2P~* has its zeros inside the unit

circle, it follows by (6.4) that

vy = 3 AL ugyier,
k=0

and hence corresponding to (2.8),

E (v = . ) (6.6)
n

where I' = 02332, A*1,,(A%)", and where 1,, is a p X p matrix with 1 in the upper left

corner and zeros elsewhere. Moreover, for ¢ > s, E (y(i)ty(Tj)s) = A"°E (?J(i)ty(T]‘)t)-

17



By (6.3), (2.6), (6.6) and a reasoning analogous to that of Section 2 we have

cov(a)~E {(a—a)(a—a)}

- (1‘1)_1“1; )3 T_IT_IE(u» UG Y] )(1_3)‘1F_1
n (T -pP S o= o (Ot+1U(G)s+1Y ()t (5)s "
ot

T DT )

as n1' — oo.

It T is small, again it is advantageous to use Burg-type estimates. In the univariate time
series case the Burg-type estimates are built up recursively (cf. Robinson and Treitel

1980, appendix 16-2). The analogy in the panel case is given by a5 = [dB 1, -, AB .y

with
n T—p .
2Y > bo(iyibpye
~ =1 t=1
aB7p7p = n T_p (6 8)
Z Z (622?(2)15 + bpz(z)t)
=1 t=1
where
Y p=1
b . _ (3)t» . , 6.9
p(i)t { bp_m)t - aB,p—l,p—lbp_l(i)w p>1 ( )
! YZ 5 - 1
by = 3 4000 P (6.10)
P bp—l(i)t-l—l - aB,p—l,p—lbp—l(i)t-I—lv p> 1
and with
ABpk = ABp-1k + ABppiBp1p-ky k=1,....p—1, p>1 (6.11)

As T — oo, ag and a have the same properties. For a small T', when ap is of most
interest, it is difficult to compute the covariance matrix cov (ag) in analogy to (3.12)
directly from the above recursive formulae. The Burg-type estimate can be derived
nonrecursively as the conditional least squares estimate resulting from minimizing a
combined forecast and hindsight error, and from this representation it is at least in
principle possible to find an asymptotic expression for cov (ag). Here we will satisfy

ourselves by presenting some simulations at the end of the section.

18



Next we introduce the estimate a” = [d4, ..., d,] corresponding to a of (4.2). We define

1 n T-1 .

g = — Z Z (X(i)t—l—l — X71)($(2)t — f..p)T

n(T - p) =1 t=p

< {ﬁ S (e — Foo) e — z..,o)f} (6.12)

i=1 t=p

with 7..71 =n YT -p)tyr, tT:_pl Xyt and T..p = nH T —p)tyr, ZtT:_pl T ()¢

Inserting from (6.1),

1 n T-1

a—a = — (77t-|-1 — .o T €E)+1 — 6,0)(1’ it — Tn,O)T
MT—MEQZ; o T € (i

X {ﬁ Zn: Z_: (x(i)t — f~~,0)($(i)t — T..70)T} .

i=1 t=p
Assuming that the {n;} are iid , we have as T' — oo,
Ly = cov(zay) ~ E(2zuy — Too)(2iy — Tup)” ~ (02 + o?) Z AR, (AR
k=0

so that I'y = (02 + 02)['/o?. Moreover, using the same reasoning as in Section 4, for
LF 7
E{ (20 = Too) 2y — Tup) ) ~ 02 D AL (AR = pl,
k=0

and hence as T' — oo,

1

-1 2 2 2 -1
mfx {(0'77 + O-E)Fac + (n — 1)0'77/)F$} Fx

cov(a) ~

o+ o)L+ (n = 1)p*t 2T {1+ (n — 1)p*}
- n(T —p) N n(T - p) ' (6-13)

Comparing (6.7) and (6.13), we get the same cross-over point at p = 1/(n — 1) as for

p = 1 in Section 4. This holds both for Burg and non-Burg estimates as the asymptotics
are the same as T' — oo. For a finite T it is checked for the non-Burg estimates by

simulation experiments in Table 7, which is based on 5000 realizations of the model
Xy = Xiy—1 — 0.6 X (5y0—2 + 0.2X(5y0-5 — 0.2X(ys—a + 0.4 X (5)16 + 10 + €3 (6.14)

with T = 1000 and 7" = 100.
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As in the first order autoregressive case, the Burg-type estimators ag and ap have less
mean square error when 7' is small. Figure 6 shows the empirical distribution function
for ap sy, dps2 and ap 33 defined in analogy with (6.8) - (6.11), with Y{;); and Y{;);44
replaced by X;; —7..70 and Xi)i41 —7..70, respectively, for different values of p and the
corresponding non-Burg estimators 1, a; and as given by (6.12) (lines with bullets) in

the uncorrelated case. The model used is
Xyt = —0.5X -1 + 0.5 X 5ye—3 + 1 + €y (6.15)

with 7" = 4 and n = 128. The poor behavior for p > 0 is of course due to the

inconsistency of the a-estimates in this situation.

7 A real data example

We end by taking a closer look at the grey-sided vole data depicted in Figure 1, which
contains n = 41 series, each consisting of T" = 31 observations. There are indications
of a weak nonlinearity in the data, so that our results, using linear models, are approx-
imate. Looking at the plots of Figure 1, there are clear signs of intercorrelation. We

have estimated the intercorrelation p by

T

ni: Zn: > (X = X ) (Xjye —

=1 j=14+1 t=1

n—1 n T . T 1/
> 2 {Z;(Xa)t — X)) Z;(th - <j>~)2}
t= t=

=1 j=14+1

>

()-)

p= - = 0.437 (7.1)

>

where Y(i). =715, X(iye- Another alternative is to take the average of the ordinary
correlation between all possible pairs of series. This average correlation was computed
to 0.433. In any case the estimated value of p is very much larger than the threshold
value of p = 1/(n — 1) = 1/40 = 0.025, which means that we put considerable more
trust in the estimates @ and ag developed in Section 3 than in the estimates ¢ and ap

described in Section 4.

We have assumed that the order of the autoregressive model is known in this paper.
For a real data set the order must be determined, but we will postpone the systematic

investigation of an order determination procedure to a later publication. If we assume
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that the observations follow a first, second or third order model, respectively, the
corresponding coeffisient estimates are given in Table 8. In the first order case the
95 % estimated confidence intervals are given as well. These are obtained by using
(2.11) and (4.10) with a and p replaced by estimated values. For the variance of a
and a we get 0.00082 and 0.00701, respectively. The confidence interval for a@ is more
reliable than that of @, because the latter is based on (4.10) which requires T' to be large
and {n;} to consist of iid variables. Since T' is not very small, we cannot expect Burg
type estimators ag and ap to be very different from @ and @, and this is comfirmed by
Table 8. But whether we use a or a very definitely makes a difference, which suggests
that care should be exercised in the choice of autoregressive coefficient estimates in a

panel situation.

We have estimated the common effect process n; by

= X.t — CllX.t_l — CLQX.t_Q — G3X.t_3.

There are only 31 — 3 = 28 observations available to judge the properties of n;, but
computing the autocorrelation of 7; does suggest that this process may be autocorre-
lated, which gives one more reason for prefering @ to @, as the former is not sensitive
to the properties of {1;}, whereas the latter requires {n;} to be iid in order for it to be

consistent.
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Figure captions

Figure 1. The figure shows log(X;); + 1) where { X7 = 1,...,41,t = 1,...,31}
is the number of grey-sided voles trapped each year from 1962 to 1992 in 41 different

locations in Hokkaido, Japan.

Figure 2. The figure is based on 5000 realisations of model (2.1) with n = 128, T' = 2,
n: = 0 and o2 = 1. It shows the empirical distribution function of ég and a for different

values of the coefficient a.

Figure 3. The figure is based on 5000 realisations of model (2.1) with ¢ = 0.5 and
different combinations of n and T'. It shows the empirical distribution function of ap

and of ap for p = 0.0, 0.5 and 0.9. The simulated means are drawn in as vertical bars.

Figure 4. The figure is based on 5000 realisations of model (2.1) with n = 128, a = 0.5
and p = 0.5. It shows for different values of T the empirical distribution function of

ap and ag. The simulated means are drawn in as vertical bars.

Figure 5. The figure is based on N = 5000 realisations of model (2.1) with T" = 2,
a = 0.5 and p = 0.5. It shows for different values of n a density estimate of a and of ap
(thick lines), compared to the N (fi, 5%)-density, where i and 62 is the simulated mean
1/5

and variance of @ and ag, respectively. A kernel estimator with bandwidth h = 6 N~

is used.

Figure 6. The figure is based on 5000 realisations of model (6.15) with n = 128 and
T = 4. It shows for ¢« = 1,2,3 the empirical distribution function of ags; for p = 0

(thick lines), p = 0.2 and p = 0.5, and of &, (lines with bullets) for p = 0.

Table captions

Table 1. The table is based on 5000 realisations of model (2.1) with 5, = 0 and o2 = 1.
It shows for different values of a, n and T the simulated value n(7T — 1)var (@) and,

in parentheses, the ratio var (ag)/var (ag) where var (ag) is given by (3.12).
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Table 2. The table is based on the same simulations as Figure 2. It shows the simu-
lated mean square errors of ag and of a, the ratio between them, and the asymptotic

ratio between the variances of ag and @ given by (3.13).

Table 3. The table is based on the same simulations as Figure 3. It shows the
simulated mean square errors of ag and ag. For n1T'" = 20000 the last decimals of
the asymptotic variance of ap given by (4.10), and of ap given by (2.11) are given in

parentheses.

Table 4. The table is based on 5000 realisations of model (2.1) with ¢ = 0.5 and
nT = 20000. It shows the simulated variance of ag and ap compared to the asymptotic

variance of ap for different values of p and n. For the three first columns, p = 1/(n—1).
Table 5. The table is based on 5000 realisations of model (2.1) with a« = 0.5.
Table 6. The table is based on the same simulations as Figure 4.

Table 7. The table is based on 5000 realisations of model (6.14). For the three first
rows of each part of the table, p = 1/(n —1).

Table 8. The table shows different estimates of the coefficients in an AR(p) approxi-
mation (p = 1,2, 3) to the log-transformed grey-sided vole data of Figure 1. For p =1

the estimated 95 % confidence limits are shown.
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Figure 3:
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