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ON ESTIMATING A DYNAMIC FUNCTION OF A STOCHASTIC
SYSTEM WITH AVERAGING

LIPTSER, R. AND SPOKOINY, V.

Dept. Electrical Engineering-Systems,
Tel Aviv University,

69978 Tel Aviv, Israel

and

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin, Germany

Abstract. We consider a two-scaled diffusion system, when drift and diffusion
parameters of the “slow” component are contaminated by the “ fast” unobserved
component. The goal is to estimate the dynamic function which is defined by
averaging the drift coefficient of the “slow” component w.r.t. the stationary
distribution of the “fast” one. We apply a locally linear smoother with a data-
driven bandwidth choice. The procedure is fully adaptive and nearly optimal up
to a log log factor.

1. Introduction
In this paper, we propose a procedure for adaptive estimation of “averaged” char-
acteristics of a two-scaled diffusion system described by the Itô equations (w.r.t.
independent Wiener processes wt, Wt) with a small parameter ε:

dXε
t = f(Xε

t , Y
ε
t ) dt+ g(Xε

t , Y
ε
t ) dwt, Xε

0 = x0,(1.1)

ε dY ε
t = F (Y ε

t ) +
√
εG(Y ε

t ) dWt, Y ε
0 = y0.(1.2)

Hereafter, Xε
t and Y ε

t are referred to as the “slow” and “fast” components respec-
tively. All the functions f, g, F,G, entering in (1.1) and (1.2), are unknown and
only the slow component Xε is observed. The goal is to recover from the observa-
tions Xε

t , 0 ≤ t ≤ T , some characteristics of the process Xε which can be used
for a further statistical analysis of this process or forecasting.

Examples of such problems meet, for instance, in satellite imaging, where Xε
t

describes the observed signal and Y ε
t is used to describe rotation and vibration of
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2 LIPTSER, R. AND SPOKOINY, V.

the satellite. Similar reasoning applies for every measurement device installed on
a moving object like plane, train, satellite, car etc. One more reasonable example
is connected to asset price processes in financial markets. A weekly (or monthly)
observed asset price process Xε can be interpreted as the “slow” component. If
we are interested in some “global” (macro) characteristics of this process, then the
influence of other components of the market can be modeled via the “fast” process
Y ε
t . Some other applications of such approach to the control theory can be found

in Kushner (1990) or Liptser, Runggaldier, Taksar (1996).
Equations of the form dXt = f(Xt + Yt) dt + dwt are often used to model

regression problems with errors in regressors. It is well known, see e.g. Carrol and
Hall (1988), Fan and Truong (1993) that the presence of the “error” component Yt
in the regressor variable makes the problem of estimating the regression function
f much more difficult. Even if the distribution of Yt is known, the optimal rate
of estimating the function f is only logarithmic in the observation time. We do
not assume special additive structure for the arguments of the drift function f
and no information about the distribution of the noisy component Y is available.
Instead we only assume that Y ε is a fast oscillating process. We shall see that
this qualitative assumption allows for a reasonable quality of estimation of the
“averaged” drift function f which describes the “macro” characteristics of the
process Xε .

It is well known from Khasminskii (1966) (see also Freidlin and Wentzell (1984),
Veretennikov (1991)) that, under some regularity conditions on the functions F
and G from (1.2), Y ε is a fast oscillating ergodic process while the slow process
Xε obeys, so called, Bogolubov’s averaging principle. This roughly means that
the distribution of the slow component is close to the distribution of the diffusion
process (Xt)t≥0 defined by the Itô equation

dXt = f(Xt) dt+ g(Xt) dwt,(1.3)

where w is some Wiener process and the drift and diffusion coefficients f, g are
defined by averaging the original coefficients with respect to the stationary density
p of the fast process:

f(x) =

∫
f(x, y) p(y) dy and g(x) =

(∫
g2(x, y) p(y) dy

)1/2

.

In other words, the “macro” behavior of the process Xε is determined only by the
averaged functions f and g . This naturally leads to the problem of statistical
estimation of these functions from observations Xε

t , 0 ≤ t ≤ T , where T is the
observation time.

In this paper, we focus on estimating the dynamic function f(x) . We do not
discuss here the problem of estimating the diffusion coefficient g since in the case of
continuous observations, the function g can be estimated at an essentially better
rate (of order ε2 ) than the drift f . We also restrict ourselves to the problem
of pointwise estimation, that is, given a point x , we estimate the value f(x) .
We refer to Lepski, Mammen and Spokoiny (1997) for a discussion of the relation
between pointwise and global estimation. Note that the problem of the pointwise
estimation of the drift function f is closely connected to the problem of forecasting
the process Xε . Indeed, if we observe the process (Xε

t ) until the time-point T ,
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and if we are interested in a behavior of the process in the nearest future after T ,
then we have to estimate f(x) for x = Xε

t .
The estimation theory for diffusion type processes is well developed under the

parametric modeling when underlying functions (drift and diffusion) are specified
up to a value of a finite dimensional parameter (cf. Kutoyants, 1984b). In contrast,
nonparametric estimation is not studied in details. The known results concern only
with statistical inference for ergodic diffusion models with a small noise or for a large
observation time T . Kutoyants (1984a) evaluated the minimax rate of estimation
of the drift coefficient using a kernel type estimator. Genon-Catalot, Laredo and
Picard (1992) applied wavelets. Locally polynomial estimators are described in
Fan and Gijbels (1996). Milstein and Nussbaum (1994), Grama and Nussbaum
(1998) established the LeCam equivalence between the diffusion model and the
“white noise model”. Some pertinent results for autoregressive models in discrete
time can be found in Doukhan and Ghindes (1980), Collomb and Doukhan (1983),
Doukhan and Tsybakov (1993), Delyon and Juditsky (1997).

In this paper, we assume neither ergodic properties of the slow component nor
the large observation time T . This makes the problem more complicated. Addi-
tional difficulties come from the fact that the coefficients of the slow process are
contaminated by the unobserved fast one. To our knowledge, nonparametric sta-
tistical inference for diffusion models (1.1), (1.2) with averaging has not yet been
considered.

We propose a locally linear estimator of f(x) with a data-driven bandwidth
choice and show that this method provides a nearly optimal rate of estimation up
to a log log factor.

The paper is organized as follows. The next section contains the description
of the locally linear estimator. Its properties are discussed in Section 3. The
data-driven bandwidth choice is presented in Section 4. All proofs are gathered in
Sections 5.

2. A locally linear estimator

For fixed x, to estimate the value f(x) we apply the locally linear smoother (cf.
Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996)).

We begin with some heuristic explanations of the method. Imagine for a moment
that the observed process Xt, 0 ≤ t ≤ T satisfies the Itô equation with respect to
Wiener process wt :

dXt = f(Xt) dt+ g(Xt) dwt(2.1)

with the linear function f : f(u) = θ0 + θ1
u− x
h

, depending on two parameters

θ0, θ1, where x and h > 0 are fixed. These parameters can be estimated by the
least squares method:

(θ̃0, θ̃1) = argmax
θ0,θ1

{∫ T

0

(
θ0 + θ1

Xt − x
h

)
dXt −

1

2

∫ T

0

(
θ0 + θ1

Xt − x
h

)2

dt

}
,
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that is, with µk =
∫ T

0

(
Xt−x
h

)k
dt, k = 0, 1, 2, we get

θ̃0 =

µ2

T∫
0

dXt − µ1

T∫
0

Xt−x
h

dXt

µ0µ2 − µ2
1

,

θ̃1 =

−µ1

T∫
0

dXt + µ0

T∫
0

Xt−x
h

dXt

µ0µ2 − µ2
1

.

Since clearly f(x) = θ0 , the value θ̃0 can be taken as the estimate of f(x).
The locally linear smoother is defined in a similar way. The only difference is

that the function f is not assumed to be linear but it is approximated by a linear

function θ0 + θ1
u− x
h

in a small neighborhood [x−h, x+h] of the point x . Then

the coefficients θ0, θ1 of this function can be estimated from the observations Xt

falling into the interval [x−h, x+h] , 0 ≤ t ≤ T . For the formal description, let us
introduce the kernel function Q(u) which is assumed to be smooth, non-negative,
bounded by 1, and vanishing outside of [−1, 1] . Then the locally linear estimate
with the kernel Q and a bandwidth h is defined as:

f̃h(x) =

µ2,h

T∫
0

Q
(
Xt−x
h

)
dXt − µ1,h

T∫
0

Xt−x
h

Q
(
Xt−x
h

)
dXt

µ0,hµ2,h − µ2
1,h

,(2.2)

where

µk,h =

∫ T

0

(
Xt − x
h

)k
Q

(
Xt − x
h

)
dt, k = 0, 1, 2.

Now we come back to the more complicated two-scaled model (1.1), (1.2). Here,
due to the averaging principle, the observed process Xε

t is closed in the distribution
sense to the “limit” process Xt described by equation (1.3). Therefore, to define

our estimate f̃h(x) of f(x) , we simply replace in expression (2.2) the “limit”
process Xt by our observations Xε

t :

f̃h(x) =

µ2,h

T∫
0

Q
(
Xε
t−x
h

)
dXε

t − µ1,h

T∫
0

Xε
t−x
h

Q
(
Xε
t−x
h

)
dXε

t

µ0,hµ2,h − µ2
1,h

,(2.3)

where now

µk,h =

∫ T

0

(
Xε
t − x
h

)k
Q

(
Xε
t − x
h

)
dt, k = 0, 1, 2.(2.4)

The quality of estimate (2.3) essentially depends on the bandwidth h . Some

useful properties of f̃h(x) for the fixed h are described in Section 3. We discuss
the adaptive choice of the bandwidth h in Section 4.
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3. Accuracy of the locally linear estimate

In this section we study some properties of the locally linear estimate f̃h(x) from
(2.3). We first formulate the required conditions on the coefficients of the two-scaled
system (1.1), (1.2). Then we present the result and discuss some its corollaries.

3.1. Conditions

In the sequel we suppose that the functions f, g and F,G from (1.1) and (1.2) obey
the following conditions:

(As) Functions f(x, y) and g(x, y) are Lipschitz continuous in x, y and f(x, y)
is three times continuously differentiable in x . For some positive constants
gmin ≤ gmax

gmin ≤ |g(x, y)| ≤ gmax.

(Af ) 1. Functions F (y) and G(y) are Lipschitz continuous in y and continuously
differentiable (F once, G twice) and their derivatives are continuous and
bounded.
2. There exist constants κ > 0 and C > 1 such that for |y| > C

yF (y) ≤ −κ|y|2,

3. Function G is bounded and strongly positive, i.e. for any y

0 < Gmin ≤ |G(y)| ≤ Gmax.

Condition (Af ) guarantees the required ergodicity of the fast process Y ε
t and,

moreover, this condition can be viewed as the mathematical formulation of the
ergodic property of the fast process 1. Under (Af ) the invariant density of the fast
process can be explicitly described (Khasminskii, 1966) and it does not depend on
ε:

p(y) = Const.

exp

{
2
y∫
0

F (u)
G2(u)

du

}
G2(y)

.(3.1)

It is worth to mention that neither the constants C, κ,Gmin, Gmax , nor the invariant
density p are not assumed to be known and they do not enter into the description
of the procedure and into the formulation of the main results.

1see Veretennikov (1991) for more detailed analysis of (Af )
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3.2. Accuracy of the locally linear estimate

To state the result, we introduce some additional notations. With µk,h defined in
(2.4), set Dh = µ0,hµ2,h − µ2

1,h , and

σ2
h(x) =

1

D2
h

∫ T

0

(
µ2,h − µ1,h

Xε
t − x
h

)2

Q2

(
Xε
t − x
h

)
g2(Xε

t , Y
ε
t ) dt(3.2)

= v2
2,hV0,h − 2v1,hv2,hV1,h + v2

1,hV2,h

where, with k = 0, 1, 2 ,

vk,h =
µk,h
Dh

=
µk,h

µ0,hµ2,h − µ2
1,h

,(3.3)

Vk,h =

∫ T

0

(
Xε
t − x
h

)k
Q2

(
Xε
t − x
h

)
g2(Xε

t , Y
ε
t ) dt.(3.4)

Although the expressions for Vk,h , k = 0, 1, 2 , use the unknown diffusion coefficient
g(Xε

t , Y
ε
t ) and moreover, one of its arguments Y ε

t is not observed, these values can
be computed on the base of our observations (Xε

t , 0 ≤ t ≤ T ) only, see Section 3.4.

The value σ2
h(x) is called the conditional variance of the estimate f̃h(x) . We use

this terminology by analogy with the regression case, where Xε
t is a deterministic

design process and σ2
h(x) is really the variance of the least squares estimate f̃h(x) .

Note that for the regression setup, some design regularity is required to ensure that
σ2
h(x) is not too large.
In our case, the observed process (Xε

t )t≥0 is described by the autoregressive
type equation and it can be viewed at the same time as the design process. We
therefore impose some conditions on the trajectories of the process Xε

t which are
similar to that of used to describe the design regularity in the regression setting.
Our results are also similar to that of usually obtained in the regression estimation.
In particular, we show that under the conditions imposed, the conditional variance

σ2
h(x) helps to control the stochastic component of the estimate f̃h(x) .
For some ρ ≥ 0 , r > 0 , b > 0 and B ≥ 1 , we introduce the set

Ah =


b ≤ Th v2,h ≤ bB , b ≤ Thσ2

h(x) ≤ bB ,

µ0,h ≤ rµ2,h , V0,h ≤ rV2,h

µ2
1,h ≤ ρµ0,hµ2,h , V 2

1,h ≤ ρV0,hV2,h

 .

Since (Xε
t )t≥0 is the random process, the set Ah is random as well. In the sequel

we study the properties of f̃h(x) restricted to the set Ah , see Remark 3.1 and 3.2
for further discussion.

The quality of the approximation of f(u, y) by a linear in u function in the
neighborhood u ∈ [x− h, x+ h] is characterized by the following quantity

∆h(x) = sup
|u−x|≤h,y∈R

|f(u, y)− f(x, y)− (u− x)fx(x, y)|.(3.5)

The next theorem describes some useful properties of estimate (2.3).
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Theorem 3.1. Let (As) and (Af ) be fulfilled, and let the values ε and εT be

sufficiently small and Th ≥ 1 . Then for every λ ≥
√

2

P
(∣∣∣f̃h(x)− f(x)

∣∣∣ > c∆h(x) + λσh(x), Ah
)

(3.6)

≤ 4e log(4B3)

(
1 + 4r

√
1 + r

1− ρ
λ2

)
λe−

λ2

2 ,

where c = (1− ρ)−1/2 .

Remark 3.1. As we mentioned previously, the quality of the estimate f̃h(x) is
examined on the set Ah only. This allows to eliminate irregular cases when, for
instance, the trajectory Xε

[0,T ] does not pass through the interval [x − h, x + h]
and hence µ0,h = µ1,h = µ2,h = Dh = 0. Note that for typical applications to

forecasting, when we have to estimate f(x) with x = Xε
t , the trajectory Xε

[0,T ]

obviously passes through x .
Note also that the event Ah is completely determined by the known values µk,h

and Vk,h , k = 0, 1, 2 . We therefore always know whether the observed trajectory
Xε

[0,T ] belongs to Ah or not. If the trajectory Xε
[0,T ] does not belong to Ah, we

are not able to guarantee a reasonable quality of estimation for f̃h(x) .
The conditions 0 ≤ Q(u) ≤ 1 and Q(u) = 0 for |u| ≥ 1 imply µ2,h ≤ µ0,h and

V2,h ≤ V0,h . Further, by the Cauchy-Schwarz inequality, it holds µ2
1,h ≤ µ0,hµ2,h

and V 2
1,h ≤ V0,hV2,h . The conditions µ0,h ≤ rµ2,h , V0,h ≤ rV2,h , µ2

1,h ≤ ρµ0,hµ2,h

and V 2
1,h ≤ ρV0,hV2,h with ρ < 1 and r ≥ 1 ensure that the local linear estimate

is well defined. Note that these conditions are not completely independent. In
particular, if g(x, y) is a constant function and if Q(u) = 1(|u| ≤ 1) , then µk,h =
Vk,h , k = 0, 1, 2 and σ2

h(x) = v2,h = µ2,h/(µ0,hµ2,h − µ2
1,h) .

The choice of constants ρ , b , B , r , entering in the definition of the set Ah , is
optional and they even may depend on ε and T . Note that the upper bound (3.6)
from Theorem 3.1 does not depends on b and it depends on B (which determines
the variability of the conditional variance σ2

h(x) ) only via the log-factor log(4B3) .

Remark 3.2. If the coefficients f and g of the slow component obey conditions
similar to (Af ) , then (Xε

t )t≥0 is also the ergodic process and its transition prob-
abilities converge to some stationary distribution as the observation time tends to
infinity, see e.g. Veretennikov (1991). This particularly means that the normalized
integrals (Th)−1µk,h and (Th)−1Vk,h ( k = 0, 1, 2 ) converge to some fixed values
which depend only on the stationary distribution of (Xε

t ) . Therefore we can select
fixed constants b, B and ρ, r in such a way that 1 − P (Ah) converges to zero
exponentially fast as T →∞. Since obviously

P
(∣∣∣f̃h(x)− f(x)

∣∣∣ > c∆h(x) + λσh(x)
)

≤ P
(∣∣∣f̃h(x)− f(x)

∣∣∣ > c∆h(x) + λσh(x), Ah
)

+ P (Ah)

we obtain in this situation an unconditional asymptotic bound for the risk of the

estimate f̃h(x) .
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Remark 3.3. The result of the theorem claims that the losses |f̃h(x)−f(x)| of the

estimate f̃h(x) , being restricted to Ah , are bounded by the sum of two terms:
c∆h(x) and λσh(x) . The first one mimics the accuracy of approximating the
function f(u, y) by a linear in u function in the small vicinity [x − h, x + h] of
x . The second term is in proportion to the “stochastic standard deviation” σh(x) .
Note also that the definition of the set Ah provides σh(x) � (Th)−1/2 , where the
symbol “� ” means equivalence in order.

3.3. Quality of estimation under smoothness assumptions

Due to the assumptions (As) from Section 3, the function f is twice continuously
differentiable with respect to the first argument. Assume also that for every u from
a small vicinity of x and any fixed y∣∣∣∣∂2f(u, y)

∂u2

∣∣∣∣ ≤ L.(3.7)

Then the value ∆h(x) defined in (3.5), is bounded above by Lh2/2. On the other
hand, on the set Ah the stochastic variance σ2

h(x) is of order (Th)−1 . Therefore,
following to the standard approach in nonparametric estimation, the bandwidth
h can be chosen by balancing the accuracy of approximation and the stochastic
error:

Lh2 � 1√
T h

.

This leads to the choice h � (T L2)−1/5 and hence to the rate of the estimation
L1/5T−2/5 which is optimal in the minimax sense under the smoothness assump-
tions (3.7), see e.g. Ibragimov and Khasmiskii (1981). Unfortunately this approach
hardly applies in practice, since the constant L in (3.7) is typically unknown. An
adaptive (data-driven) choice of the bandwidth is discussed in the next section.

3.4. Computation of σ2
h(x)

Recall that with fixed h, the value σ2
h(x) is defined by the formulas (3.2) through

(3.4) where the expressions for Vk,h , k = 0, 1, 2 , use the unknown diffusion coeffi-
cient g2(Xε

t , Y
ε
t ) and the unobserved process Y ε

t as one of its arguments. We now
show that despite of this fact, the value σ2

h(x) can be computed via the trajectory
Xε

[0,T ] only.
Let us introduce two random processes

Z ′t =

∫ t

0

Q

(
Xε
s − x
h

)
dXε

s and Z ′′t =

∫ t

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

dXε
s
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which are completely determined on the time interval [0, T ] by the observation
Xε

[0,T ]. Applying the Itô formula we get

(Z ′T )2 = 2

∫ T

0

Z ′t dZ ′t + V0,h

(Z ′′T )2 = 2

∫ T

0

Z ′′t dZ ′′t + V2,h

Z ′TZ
′′
T =

∫ T

0

Z ′t dZ ′′t +

∫ T

0

Z ′′t dZ ′t + V1,h.

Hence V0,h = (Z ′T )2− 2
T∫
0

Z ′t dZ ′t , so that V0,h is completely determined by Xε
[0,T ].

Similar arguments apply for V1,h and V2,h and hence for σ2
h(x) as required.

4. Data-driven bandwidth selection
In this section we consider the problem of bandwidth selection for the locally linear
estimator described in Section 2. It is assumed here that the method of estimation,
that is the locally linear smoother with the kernel Q , is fixed and only the band-
width h has to be chosen. The adaptive procedure originates from Lepski (1990),
see also Lepski, Mammen and Spokoiny (1997) and Lepski and Spokoiny (1997).

4.1. An “ideal” bandwidth

First we introduce the notion of an “ideal” bandwidth. Let a set H , of all ad-
missible bandwidths h , be fixed. For technical reasons, we assume that this set
is finite and denote by #H the number of its elements. Usually H is taken as a
geometric grid of the form

H = {h = hmina
k, k = 0, 1, 2, . . . : h ≤ hmax},

where hmin ≤ hmax and a > 1 are some prescribed constants. As in Section 3, we
restrict ourselves only to those h from H for which the observed trajectory Xε

[0,T ]

belongs to Ah . Our goal is to select h from H providing the minimal in some

sense error of estimation for the corresponding estimate f̃h(x) .
We begin with some heuristic explanations. Recall first, that the values σh(x)

can be exactly computed on the base of observations Xε
[0,T ] , see Subsection 3.4.

Note also that σh(x) typically decreases in h. Indeed, an increase of h makes
the estimation window [x − h, x + h] larger and hence more observations can be
used for estimating the underlying function f at the point x . This results in a
smaller variance of the estimate. To simplify the exposition, we suppose that σh(x)
strongly decreases in h ∈ H. (If this assumption is not fulfilled for the original set
H , i.e. if there is h′ < h ∈ H with the property σh(x) ≥ σh′(x) , then we simply
exclude h from H.)

The behavior of the bias term ∆h(x) is just opposite. Namely, for a regular
function f , the value ∆h(x) is small when h is small, and it typically increases
in h . Therefore, the minimization of the sum of the form c∆h(x) + λσh(x) with
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some constants c, λ leads to the balance relation ∆h(x) � σh(x) and we define
a “good” bandwidth h∗ as the largest h from H such that c∆h(x) is still not
larger than Dσh(x) with some prescribed constant D :

h∗ = max{h ∈ H : c∆h(x) ≤ Dσh(x)}.(4.1)

Since ∆h(x) is unknown, the bandwidth h∗ is unknown as well. In the sequel,
following to Donoho and Johnstone (1995), h∗ is referred to as the “ideal” band-

width or “oracle”. Due to Theorem 3.1, the losses of the “ideal” estimate f̃h∗ are
bounded (with probability closed to one) by (D + λ)σh∗(x) provided that λ is
sufficiently large.

4.2. An adaptive bandwidth choice

Now we present our adaptive procedure and show that the corresponding accuracy
of the estimation is essentially the same as if the “ideal” bandwidth applies. The
procedure involves two positive parameters λ1 and D . The last one is already
mentioned in the definition of the “ideal” bandwidth. We discuss the choice of λ1

and D at the end of this section.
The data-driven bandwidth ĥ is defined by the following rule:

ĥ = max
{
h ∈ H :

∣∣f̃h(x)− f̃η(x)
∣∣ ≤ λ1

(
σh(x) + ση(x)

)
+ 2Dσh(x),(4.2)

∀η ∈ H, η < h
}
.

In words, the rule prescribes to take the largest value h ∈ H for which the cor-

responding estimate f̃h(x) does not differ essentially from every estimate f̃η(x)
with a smaller bandwidth value η ∈ H . The arguments for this choice are quite
simple: if both η and h are not larger than h∗ , then the “bias” terms ∆η(x) and

∆h(x) in the difference
∣∣f̃h(x)− f̃η(x)

∣∣ are bounded by 2Dσh∗(x) ≤ 2Dσh(x) and
therefore, the probability of the event{∣∣f̃h(x)− f̃η(x)

∣∣ > λ1

(
σh(x) + ση(x)

)
+ 2Dσh(x)

}
is small provided that λ1 is large enough (see Theorem 3.1). Hence, if we meet
the opposite inequality for some η < h , this means that the bias ∆h(x) is already
too large and the bandwidth h is not a good one.

Finally, to define our adaptive estimate, we plug the data-driven bandwidth ĥ

in the estimate f̃h(x) :

f̂(x) ≡ f̃bh(x).

In the next theorem we describe some properties of the adaptive estimate f̂(x)
restricted to the set

A∗ =
⋂
h∈H

Ah.

Theorem 4.1. Let the values ε and εT be sufficiently small. Let also h∗ be de-

fined in (4.1) with λ1 ≥
√

2 . Then the estimate f̂(x) fulfills the following property:
for any λ with

√
2 ≤ λ ≤ λ1
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P
(∣∣∣f̂(x)− f(x)

∣∣∣ > (λ+ 2λ1 + 3D)σh∗(x),A∗
)

(4.3)

≤ 4e log(4B3)

(
1 + 4r

√
1 + r

1− ρ
λ2

1

)
λ1

{
(#H)2e−

λ2
1
2 + e−

λ2

2

}
.

Remark 4.1. The choice of parameters λ1 , D , entering in (4.2), plays the impor-

tant role. The bound in (4.3) shows that the probability for
∣∣∣f̂(x)− f(x)

∣∣∣ of being

large is small, provided that the value (#H)2λ2
1e
−λ2

1/2 is sufficiently small. This
leads to the choice

λ1 ≈
√

4 log(#H) + λ2

so that

(#H)2λ1e
−λ2

1/2 ≈ e−λ
2/2.

If H is taken in the form of the geometric grid, then we get #H ≈ loga(hmax/hmin).
Therefore, taking hmax ≈ T and hmin ≈ 1 , we arrive at

λ1 ≈
√

4 log log T + λ2.

There is much more degree of freedom in the choice of D . This parameter controls
the balance between the accuracy of approximating the function f by a linear one
and the stochastic error (see the definition (4.1) of the “ideal” bandwidth h∗ ).
The results from Lepski and Spokoiny (1997) lead to the choice D = Constλ1 (see
also the next subsection). At the same time, Lepski and Levit (1997) argued that
for a smooth function f , the relevant choice is D = 0 . Simulation results show a
reasonable performance of the presented procedure with λ1 ≈ 3 and D = 0 .

4.3. The rate of adaptive estimation

We now compare the accuracy of the adaptive procedure (4.2) with the “optimal”
one designed for the case of known smoothness properties of the underlying function
f (see Subsection 3.3).

Assume (3.7). Then ∆h(x) ≤ Lh2/2 and the constraints c∆h(x) ≤ Dσh(x) and
b(hT )−1 ≤ σ2

h(x) ≤ bB(hT )−1 provide (4.1) with

h∗ � (TL2D2)−1/5.

Hence, for the above-mentioned choice λ1 �
√

log log T and D � λ1 , we obtain,
due to Theorem 4.1, the following rate of the adaptive estimation

(λ+ 2λ1 + 3D)σh∗(x) � L1/5

(
log log T

T

)2/5

.

At the same time, the “ideal” choice of the bandwidth leads to the rate L1/5T−2/5,
see Section 3.3. Thus, the adaptive rate is worse than the “ideal” one within a
log log -factor only.

The origin of the log log -factor in the rate of adaptive estimation can be easily
explained. The total number #H of considered estimates is logarithmic in the
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observation time T and the adaptive choice of the bandwidth leads to a worse
accuracy by factor log(#H) at some power.

The notion of “payment for adaptation” is now well understood in nonparametric
estimation: if we have too many estimates to select between, we have to “pay” for
the adaptive choice some additional factor in the risk of estimation. In particular, it
is shown in Lepski (1990) and Brown and Low (1996) (see also Lepski and Spokoiny
(1997)) that for the problem of pointwise adaptive estimation, the optimal adaptive
rate has to be worse than the optimal one by a log-factor.

In our results a log log -factor appears. This fact is not in the contradiction with
earlier issues, since the above-mentioned results correspond to the case of the power
loss function l(x) = |x|p, p > 0 , whereas we consider the bounded loss function. It
can be also shown that the rate achieved by our estimate is optimal for pointwise
adaptive estimation with the bounded loss function (see Spokoiny (1997) for similar
results in the adaptive testing problem).

5. Proofs

In this section we prove Theorems 3.1 and 4.1. For a generic positive constant the
notation ‘`’ will be used hereafter.

5.1. Decomposition of f̃h(x)

We use two obvious identities characterizing the local linear smoother: for v1,h =
µ1,h

Dh
and v2,h =

µ2,h

Dh

∫ T

0

Q

(
Xε
s − x
h

)(
v2,h − v1,h

Xε
s − x
h

)
ds = 1∫ T

0

Q

(
Xε
s − x
h

)(
v2,h

Xε
s − x
h

− v1,h
(Xε

s − x)2

h2

)
ds = 0

and hence

∫ T

0

Q

(
Xε
s − x
h

)(
v2,h − v1,h

Xε
s − x
h

)
f(x) ds = f(x)(5.1) ∫ T

0

Q

(
Xε
s − x
h

)(
v2,h

Xε
s − x
h

− v1,h
(Xε

s − x)2

h2

)
fx(x) ds = 0.(5.2)

Due to (2.3) and (1.1), the estimate f̃h(x) can be represented as follows:
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f̃h(x) = v2,h

∫ T

0

Q

(
Xε
s − x
h

)
dXε

s − v1,h

∫ T

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

dXε
s

=

∫ T

0

Q

(
Xε
s − x
h

)(
v2,h − v1,h

Xε
s − x
h

)
f(Xε

s , Y
ε
s ) ds

+ v2,h

∫ T

0

Q

(
Xε
s − x
h

)
g(Xε

s , Y
ε
s ) dws

− v1,h

∫ T

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

g(Xε
s , Y

ε
s ) dws.

Now (5.1) and (5.2) imply the following decomposition

f̃h(x) = f(x) + ξh + rh + ζ
(1)
h + ζ

(2)
h(5.3)

where, with δ(Xε
s , Y

ε
s , x) = f(Xε

s , Y
ε
s )− f(x, Y ε

s )− Xε
s − x
h

fx(x, Y
ε
s ) ,

rh =

∫ T

0

Q

(
Xε
s − x
h

) (
v2,h − v1,h

Xε
s − x
h

)
δ(Xε

s , Y
ε
s , x) ds,

ξh = v2,h

∫ T

0

Q

(
Xε
s − x
h

)
g(Xε

s , Y
ε
s ) dws

− v1,h

∫ T

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

g(Xε
s , Y

ε
s ) dws,

ζ
(1)
h = v2,h

∫ T

0

Q

(
Xε
s − x
h

)[
f(x, Y ε

s )− f(x)
]

ds

− v1,h

∫ T

0

Q

(
Xε
s − x
h

)[
f(x, Y ε

s )− f(x)
] Xε

s − x
h

ds,

ζ
(2)
h = v2,h

∫ T

0

Q

(
Xε
s − x
h

)
[fx(x, Y

ε
s )− fx(x)]

Xε
s − x
h

ds

− v1,h

∫ T

0

Q

(
Xε
s − x
h

)
[fx(x, Y

ε
s )− fx(x)]

(Xε
s − x)2

h2
ds.

Below we evaluate separately each term in this decomposition.

5.2. An upper bound for |rh|
Since Q

(
u−x
h

)
vanishes for any u 6∈ [x− h, x + h] and |δ(Xε

s , Y
ε
s , x)| ≤ ∆h(x) for

|Xε
s − x| ≤ h , we get

|rh| ≤
∫ T

0

Q

(
Xε
s − x
h

) ∣∣∣∣v2,h − v1,h
Xε
s − x
h

∣∣∣∣ |δ(Xε
s , Y

ε
s , x)| ds(5.4)

≤ ∆h(x)

∫ T

0

Q

(
Xε
s − x
h

) ∣∣∣∣v2,h − v1,h
Xε
s − x
h

∣∣∣∣ ds.
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The properties |Q(u)| ≤ 1 and Q(u) = 0, |u| ≥ 1 imply the inequality µ2,h ≤ µ0,h .
In addition we know that it holds on Ah

µ2
1,h ≤ ρµ0,hµ2,h.(5.5)

We now show that

|rh| ≤ (1− ρ)−1/2∆h(x) on Ah.(5.6)

The Cauchy-Schwarz inequality applied to (5.4) gives

|rh| ≤ ∆h(x)

{∫ T

0

Q

(
Xε
s − x
h

)
ds

∫ T

0

Q

(
Xε
s − x
h

)(
v2,h − v1,h

Xε
s − x
h

)2

ds

}1/2

.

Next, ∫ T

0

Q

(
Xε
s − x
h

)
ds = µ0,h,

and using vk,h = µk,h/Dh , with Dh = µ2,hµ0,h − µ2
1,h , k = 0, 1, 2 , we get∫ T

0

Q

(
Xε
s − x
h

)(
v2,h − v1,h

Xε
s − x
h

)2

ds

=
1

D2
h

∫ T

0

Q

(
Xε
s − x
h

)(
µ2,h − µ1,h

Xε
s − x
h

)2

ds

=
µ2

2,h

D2
h

∫ T

0

Q

(
Xε
s − x
h

)
ds+

µ2
1,h

D2
h

∫ T

0

Q

(
Xε
s − x
h

)
(Xε

s − x)2

h2
ds

− 2µ1,hµ2,h

D2
h

∫ T

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

ds

=
µ2

2,hµ0,h − µ2,hµ
2
1,h

D2
h

= µ2,h/Dh.

Hence, in view of (5.5),

|rh| ≤ ∆h(x)

(
µ0,h µ2,h

Dh

)1/2

= ∆h(x)

(
µ0,h µ2,h

µ0,hµ2,h − µ2
1,h

)1/2

≤ ∆h(x)

(
1

1− ρ

)1/2

as required.

5.3. An upper bound for ξh

We study here some properties of the “stochastic term”

ξh = v2,h

∫ T

0

Q

(
Xε
s − x
h

)
g(Xε

s , Y
ε
s ) dws

− v1,h

∫ T

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

g(Xε
s , Y

ε
s ) dws.

Namely, we intend to show that the probability of the event {ξh > λσh(x)} with
σh(x) from (3.2) is small provided that λ is large enough. Set for t ≤ T
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M0,t =

∫ t

0

Q

(
Xε
s − x
h

)
g(Xε

s , Y
ε
t ) dws,

M1,t =

∫ t

0

Q

(
Xε
s − x
h

)
Xε
s − x
h

g(Xε
s , Y

ε
t ) dws.

The Itô integrals M0,t and M1,t are continuous local martingales with the pre-
dictable quadratic variations (see e.g. Liptser and Shiryayev (1989))

〈M0〉t =

∫ t

0

Q2

(
Xε
s − x
h

)
g2(Xε

s , Y
ε
s ) ds,

〈M0,M1〉t =

∫ t

0

Q2

(
Xε
s − x
h

)
Xε
s − x
h

g2(Xε
s , Y

ε
s ) ds,

〈M1〉t =

∫ t

0

Q2

(
Xε
s − x
h

) (
Xε
s − x
h

)2

g2(Xε
s , Y

ε
s ) ds,

so that 〈M0〉T = V0,h , 〈M0,M1〉T = V1,h and 〈M1〉T = V2,h . This yields

ξh(x) = v2,hM0,T − v1,hM1,T ,

σ2
h(x) = v2

2,h〈M0〉T − 2v1,hv2,h〈M0,M1〉T + v2
1,h〈M1〉T .

Denote

uh =
v1,h

v2,h

=
µ1,h

µ2,h

.

Obviously

P (|ξh| > λσh(x),Ah)

= P

(
|M0,T − uhM1,T | > λ

√
〈M0〉T − 2uh〈M0,M1〉T + u2

h〈M1〉T , Ah
)
.

To evaluate the latter probability, we apply the general result from Proposition 6.2,
see Appendix. First we check the required conditions. The value uh, being re-
stricted to Ah , can be bounded as:

|uh| ≤
∣∣∣∣√ρµ0,hµ2,h

µ2,h

∣∣∣∣ ≤ √ρr.
Note now that

〈M1〉T
〈M0〉T − 2uh〈M0,M1〉T + u2

h〈M1〉T
=

V2,h

V0,h − 2uhV1,h + u2
hV2,h

=
V 2

2,h

V0,hV2,h − V 2
1,h + (V1,h − uhV2,h)2

,

and it holds on Ah in view of V2,h ≤ V0,h

〈M1〉T
〈M0〉T − 2uh〈M0,M1〉T + u2

h〈M1〉T
≤

V 2
2,h

(1− ρ)V0,hV2,h

≤ 1

1− ρ
.
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In addition, the definition of Ah provides the following bounds for σ2
h(x) on this

set

σ2
h(x)

Th v2
2,h

=
Thσ2

h(x)

(Th v2,h)2
≤ bB

b2
=
B

b
,

σ2
h(x)

Th v2
2,h

=
Thσ2

h(x)

(Th v2,h)2
≥ b

(bB)2
=

1

bB2
.

Applying now Proposition 6.2 we get

P (|ξh| > λσh(x),Ah) ≤ 4e log(4B3)

(
1 + 4r

√
1 + r

1− ρ
λ2

)
λe−

λ2

2 .(5.7)

5.4. An upper bounds for ζ
(1)
h and ζ

(2)
h

Note that both ζ
(1)
h , ζ

(2)
h are linear combinations of elements of the form

vh

∫ T

0

Ψ(Xε
s )[a(Y ε

s )− a] ds,

where

- vh is any of v1,h, v2,h;

- Ψ(Xε
s ) is any of (Xε

s−x)k
hk

Q
(
Xε
s−x
h

)
, k = 0, 1, 2;

- a(Y ε
s ) is any of f(x, Y ε

s ), fx(x, Y
ε
s ), and a =

∫
a(y) p(y) dy, with p(·) being

the invariant density of the fast process.

Under the assumptions made, the function Ψ(u) is bounded by 1 and twice con-
tinuously differentiable: there exists a constant C1 such that

|Ψ(u)| ≤ 1 and |Ψ̇(u)|+ |Ψ̈(u)| ≤ C1 ∀u.
Next, on the set Ah it holds v2

1,h ≤ ρv0,hv2,h ≤ ρrv2
2,h and v2,h ≤ bB(Th)−1 , so

that, taking into account Th ≥ 1 , it suffices to bound only

U ε
T =

∫ T

0

Ψ(Xε
s )[a(Y ε

s )− a] ds.

We apply a large deviation type estimate for the two-scaled diffusion model (1.1),
(1.2) from Liptser and Spokoiny (1997) adapted to the case considered.

Proposition 5.1. Suppose (As) and (Af ). If T = Tε and lim
ε→0

εTε = 0, then for

every positive z > 0 and 0 < κ < 1/2

lim
ε→0

(εTε)
1−2κ logP

(
(εTε)

−κ|U ε
Tε | > z

)
≤ − z

2

2γ
,

where

γ =

∫
R

ϑ2(y)G2(y) p(y) dy,

ϑ(y) =
2

G2(y) p(y)

y∫
∞

[a(u)− a] p(u) du.
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Corollary 5.1. For ε small enough and κ1 < 1− 2κ

P (|U ε
T ε | > (εT ε)κ) < exp

(
− 1

(εT ε)κ1

)
.

Applying this corollary with κ < 1/2 and κ1 < 1 − 2κ, we obtain for εT small
enough

P
(
|ζ(i)
h | > 2(εT )κ

)
< 2 exp

(
− 1

(εT )κ1

)
, i = 1, 2.(5.8)

5.5. Proof of Theorem 3.1

Summing up the decomposition (5.3) and the bounds (5.6), (5.7), (5.8), we get

P
(∣∣∣f̃h(x)− f(x)

∣∣∣ > c∆h(x) + λσh(x) + 2(εT ε)κ, Ah
)

≤ 4e log(4B3)

(
1 + 4r

√
1 + r

1− ρ
λ2

)
λe−

λ2

2 + 4 exp

(
− 1

(εT )κ1

)
.

This leads to the required bound from Theorem 3.1 for sufficiently small εT .

5.6. Proof of Theorem 4.1

Let h∗ be shown in the theorem. Recall that A∗ =
⋂
h∈H
Ah. We use an obvious

inequality

P
(∣∣∣f̂(x)− f(x)

∣∣∣ > (λ+ 2λ1 + 3D)σh∗(x), A∗
)

≤ P
(∣∣∣f̂(x)− f(x)

∣∣∣ > (λ+ 2λ1 + 3D)σh∗(x), ĥ ≥ h∗, A∗
)

+ P
(
ĥ < h∗, A∗

)
.

Since σh(x) decreases in h, we have on the set {ĥ ≥ h∗} ∩ A∗ in view of the

definition of ĥ

|f̃bh(x)− f̃h∗(x)| ≤ λ1

(
σbh(x) + σh∗(x)

)
+ 2Dσbh(x) ≤ 2(λ1 +D)σh∗(x).

Further, using the inequality c∆h∗(x) ≤ Dσh∗(x) and Theorem 3.1, we get

P
(
|f̃h∗(x)− f(x)| > (D + λ)σh∗(x),A∗

)
≤ P

(
|f̃h∗(x)− f(x)| > λσh∗(x) + c∆h∗(x) , A∗

)
≤
(
C1λ+ C2λ

3
)
e−

λ2

2 ,

where

C1 = 4e log(4B3),

C2 = 4e log(4B3) 4r

√
1 + r

1− ρ
.
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Hence

P
(
|f̂(x)− f(x)| > (λ+ 2λ1 + 3D)σh∗(x), A∗, ĥ ≥ h∗

)
(5.9)

≤
(
C1λ+ C2λ

3
)
e−

λ2

2

and it only remains to evaluate P (ĥ < h∗, A∗). Due to the definition of ĥ , we
have

{ĥ < h∗, A∗}

⊆
⋃

h∈H :h<h∗

⋃
η∈H : η<h

{
|f̂h(x)− f̂η(x)| > λ1

(
σh(x) + ση(x)

)
+ 2Dσh(x), A∗

}
.

We now use that for every η, h ∈ H with η < h < h∗

c∆h(x) ≤ c∆h∗(x) ≤ Dσh∗(x) ≤ Dσh(x),

c∆η(x) ≤ c∆h∗(x) ≤ Dσh∗(x) ≤ Dσh(x).

Therefore by Theorem 3.1

P
(
|f̃h(x)− f̃η(x)| > λ1

(
σh(x) + ση(x)

)
+ 2Dσh(x) , A∗

)
≤ P

(
|f̃h(x)− f(x)| > λ1σh(x) + c∆h(x) , Ah

)
+P

(
|f̃η(x)− f(x)| > λ1ση(x) + c∆η(x) , Aη

)
≤ 2

(
C1λ1 + C2λ

3
1

)
e−

λ2
1
2 .

Clearly the total number of pairs η, h ∈ H , satisfying η < h < h∗ , is at most
(#H)2/2 . Therefore

P
(
ĥ < h∗

)
≤ (#H)2

(
C1λ1 + C2λ

3
1

)
e−

λ2
1
2 .

This bound coupled with (5.9) implies the desired assertion.

6. Appendix. Deviation probabilities for
martingales

In the Appendix we present two general results for continuous martingales. The
first result describes some properties of real-valued martingales, while the second
one deals with martingales valued in R

2 .

6.1. The scalar case

Let Mt be a continuous martingale with M0 = 0 and with the predictable quadratic
variation 〈M〉t .

Proposition 6.1. For every T > 0, ϑ > 0 , S ≥ 1 and λ ≥ 1

P
(
|MT | > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
≤ 4λ

√
e (1 + log S) e−

λ2

2 .
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Proof. We use

P
(
|MT | > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
≤ P

(
MT > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
+P

(
MT < −λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
.

We estimate separately each term in the right side of this inequality.
Given a > 1 , introduce the geometric series ϑk = ϑak and define the sequence

of random events Ck = {ϑk ≤
√
〈M〉T < ϑk+1} , k = 0, 1, . . . . Then clearly

P
(
MT > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
(6.1)

≤
K∑
k≥0

P
(
MT > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS, Ck

)
.

where K is the integer part of loga S . We now bound each term in this sum. Let,
with γ ∈ R,

Zt(γ) = exp
(
γMt −

γ2

2
〈M〉t

)
.

The random process Zt(γ) is the continuous local martingale and, being positive,
it is the supermartingale (see Problem 1.4.4 in Liptser and Shiryayev (1986)).
Therefore for every T > 0,

EZT (γ) ≤ 1.(6.2)

For fixed k, we pick γk = λ
ϑk

and use (6.2) for the inequality

1 ≥ EZT (γk)I
(
MT > λ

√
〈M〉T , Ck

)
which implies

1 ≥ E exp

(
λ

ϑk
MT −

λ2

2ϑk
〈M〉T

)
I
(
MT > λ

√
〈M〉T , Ck

)
≥ E exp

(
λ2

ϑk

√
〈M〉T −

λ2

2ϑk
〈M〉T

)
I
(
MT > λ

√
〈M〉T , Ck

)
≥ E exp

{
inf

ϑk≤v≤ϑk+1

(
λ2v

ϑk
− λ2v2

2ϑ2
k

)}
I
(
MT > λ

√
〈M〉T , Ck

)
.

It is easy to check that “infϑk≤v≤ϑk+1
” is attained at the point v = ϑk+1 = aϑk so

that

P
(
MT > λ

√
〈M〉T , Ck

)
≤ exp

{
−λ2

(
a− a2

2

)}
.

Combining this bound with (6.1) and using K ≤ loga S, we obtain

P
(
MT > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
≤ (1 + loga S) exp

{
−λ2

(
a− a2

2

)}
.
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Since the left hand side of this inequality does not depend on a, we may optimize the

choice of a to minimize its right side. This leads to a = 1+1/λ and λ2
(
a− a2

2

)
=

λ2
{

1 + 1
λ
− 1

2

(
1 + 1

λ

)2}
= 1

2
(λ2−1) . Since also log(1 + 1/λ) ≥ 1/(2λ) for λ ≥ 1 ,

and hence loga S ≤ 2λ log S , we have

P
(
MT > λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
≤ 2
√
eλ (1 + log S) e−

λ2

2 .

In the similar way we obtain

P
(
MT < −λ

√
〈M〉T , ϑ ≤

√
〈M〉T ≤ ϑS

)
≤ 2
√
eλ (1 + log S) e−

λ2

2

and the assertion follows.

6.2. The vector case

Here, we consider continuous vector martingale Mt valued in R2 with components
M0,t and M1,t, t ≥ 0 . We denote

V0,t = 〈M0〉t ,
V1,t = 〈M0,M1〉t ,
V2,t = 〈M1〉t .

Let u be a random variable and

σ2
t = V0,t − 2uV1,t + u2V2,t.

For a fixed time moment T and constants ϑ > 0 , S ≥ 1 , β ≥ 0 and ρ ∈ (0, 1) ,
introduce the event

AT =

 ϑ ≤ σ2
T ≤ ϑS

V 2
1,T ≤ ρV0,TV2,T

|u| ≤ β

 .(6.3)

Proposition 6.2. Let Mt be a martingale with values in R
2 such that V0,T ≥

V2,T . Then, with AT from (6.3), it holds for every λ ≥
√

2,

P (|M0,T − uM1,T | > λσT , AT ) ≤ 4e log(4S)

(
1 + 4β

√
1 + β

1− ρ
λ2

)
λe−

λ2

2 .

Proof. For fixed β, ρ, and λ define δ such that

2δ(1 + β)

1− ρ
= λ−2(6.4)

and denote by Dδ = {αk = kδ : k ∈ N, |α| ≤ β} the discrete grid with the step δ
in the interval [−β, β] .

Let ν+ (respectively ν− ) be random variable valued in Dδ which is closest to
u from above (respectively from below). Then clearly

|ν± − u| ≤ δ.(6.5)

|M0,T − uM1,T | ≤ max {|M0,T − ν−M1,T | , |M0,T − ν+M1,T |} .(6.6)
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Let now ν be one of ν− and ν+ . Then by construction |ν − u| ≤ δ . Next we
show that on the set AT it holds

1− λ−2 ≤ V0,T − 2νV1,T + ν2V2,T

σ2
T

≤ 1 + λ−2(6.7)

Indeed

σ2
T = V0,T − 2uV1,T + u2V2,T

= V0,T −
V 2

1,T

V2,T

+ V2,T

(
u− V1,T

V2,T

)2

≥
V0,TV2,T − V 2

1,T

V2,T

≥ (1− ρ)V0,T

and using V2,T ≤ V0,T , we get

|V1,T |
σ2
T

≤
√
ρV0,TV2,T

(1− ρ)V0,T

≤
√
ρ

1− ρ
≤ (1− ρ)−1,

V2,T

σ2
T

≤ V2,T

(1− ρ)V0,T

≤ (1− ρ)−1.

Since on the set A it holds |u| ≤ β and by construction |ν| ≤ β , we obtain, using
definition (6.4) of δ ,∣∣V0,T − 2uV1,T + u2V2,T − (V0,T − 2νV1,T + ν2V2,T )

∣∣
≤ 2|V1,T ||u− ν|+ V2,T

∣∣u2 − ν2
∣∣

≤ 2δ(1− ρ)−1σ2
T + 2βδ(1− ρ)−1σ2

T

= σ2
Tλ
−2

and (6.7) follows.
Since on the set AT the value σ2

T is between ϑ and ϑS , we also get for ν = ν±

(1− λ−2)ϑ ≤ V0,T − 2νV1,T + ν2V2,T ≤ (1 + λ−2)ϑS.(6.8)

We now derive from (6.6), (6.7) and (6.8)

{M0,T − uM1,T | > λσT , AT}

⊆
{
M0,T − ν−M1,T | >

λ√
1 + λ2

√
V0,T − 2ν−V1,T + ν2

−V2,T , AT
}

∪
{
M0,T − ν+M1,T | >

λ√
1 + λ2

√
V0,T − 2ν+V1,T + ν2

+V2,T , AT
}

⊆
⋃
α∈Dδ

{
|M0,T − αM1,T | >

λ√
1 + λ2

√
V0,T − 2αV1,T + α2V2,T , Aα,T

}
,

where

Aα,T =
{

(1− λ−2)ϑ ≤ V0,T − 2αV1,T + α2V2,T ≤ (1 + λ−2)ϑS
}
.
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Now, for every α ∈ Dδ , the process M0,t−αM1,t is the continuous local martingale
with 〈M0 − αM1〉T = V0,T − 2αV1,T + α2V2,T . Applying Proposition 6.1 and using

the inequalities λ2 ≥ 2 and λ2

1+λ−2 ≥ λ2(1− λ−2) = λ2 − 1, we obtain

P

(
|M0,T − αM1,T | >

λ√
1 + λ2

√
V0,T − 2αV1,T + α2V2,T , Aα,T

)
≤ 4

λ√
1 + λ−2

(
1 + log

(1 + λ−2)ϑS

(1− λ−2)ϑ

)
exp

(
− λ2

2(1 + λ−2)
+

1

2

)
≤ 4λ

(
1 + log

3S

2

)
exp

(
−λ

2

2
+ 1

)
.

Since the number of different elements in Dδ is at most 1 + 2βδ−1 and since δ

from (6.4) fulfills δ−1 = 2λ2(1+β)
1−ρ we get

P (|M0,T − uM1,T | > λσT , AT ) ≤ 4e

(
1 + log

3S

2

)(
1 + 2βδ−1

)
λe−

λ2

2

≤ 4e log(4S)

(
1 + 4β

√
1 + β

1− ρ
λ2

)
λe−

λ2

2

as required.
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