~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Jacobsen, Hans-Arno; Weissman, Boris

Working Paper
Towards high-performance multithreaded CORBA servers

SFB 373 Discussion Paper, No. 1998,111

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Jacobsen, Hans-Arno; Weissman, Boris (1998) : Towards high-performance
multithreaded CORBA servers, SFB 373 Discussion Paper, No. 1998,111, Humboldt University of

Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes,
Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10060819

This Version is available at:
https://hdl.handle.net/10419/61279

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10060819%0A
https://hdl.handle.net/10419/61279
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Towards High—Performance Multithreaded CORBA Servers *

Hans - Arno Jacobsen®
Humboldt—Universitaet zu Berlin
Institut fuer Wirtschaftsinformatik
D-10178 Berlin

jacobsen@wiwi.hu-berlin.de

Abstract Parallel platforms have become widely avatlable.
Moderately priced commodity SMPs are now manufactured
by most major hardware vendors. Platform independent soft-
ware environments, emphasizing a transparent programming
model for building distributed applications, are rapidly emerg-
ing.

In this paper we demonstrate how to combine the trans-
parency characteristics of these environments with the high—
performance features of the affordable server technology.
We integrate the thread—per—request concurrency model into
CORBA servers while providing high—performance. We
demonstrate that thread creation overhead can be minimal
and is merely attribute to the thread package used. We in-
troduce and evaluate optimization techniques for increasing
overall server performance. These techniques are based on
increasing locality of reference for the client—server interac-
tion.

Keywords: High—performance object request brokers,
CORBA, mutlithreaded servers.

1 Introduction

With advances in microprocessor technology, parallel
platforms have become widely available. Moderately
priced commodity SMPs are now manufactured by most
major hardware vendors.

At the same time platform independent software envi-
ronments, such as CORBA [1], DCOM [2], and DCE [3],
are rapidly emerging. These platforms aim at providing
a transparent programming model for the development
of portable and interoperable distributed applications
while enabling efficient client—server computing.

The increase in affordable processing power, due to
the availability of cheap SMPs on the one hand, and
the growing need for high—performance computational

*In: Proceedings of The International Conference on Par-
allel and Distributed Processing Techniques and Applications
(PDPTA'98),

t This research was supported by the German Research Society
(DFG), SFB 373/A3.

Boris Weissman

International Computer Science Institute

1947 Center Street
Berkeley, CA 94703

borisv@icsi.berkeley.edu

servers in distributed environments on the other hand,
make SMPs the platform of choice for distributed appli-
cation servers.

However, to benefit from the increased processing
power, an adequate programming model must be ex-
posed to the application designer, so that the high—
performance features and the available parallelism can
be exploited by the application.

Little work has been done within the interoper-
ability platforms specifying bodies, such as the OMG
(CORBA) to integrate parallel programming models
into the standards. It is therefore difficult to exploit
the high—performance features of current server tech-
nology. CORBA offers language bindings for C, C++,
SmallTalk, Java, Ada, and Eiffel, but does not leave
room to integrate parallel extensions into the language
binding in a non—proprietary and portable manner.

Some work has emerged [4, 5] that surveys implemen-
tation techniques for designing multithreaded servers
based on the features CORBA provides. Proprietary
extensions to support multithreaded CORBA servers
have also been implemented for several commercial
ORBs [6, 7]. An engineering solution for multithread-
ing CORBA clients has been proposed by Hellemans et
al. [8]. Attempts at extending the CORBA object model
to handle data parallel computations have been intro-
duced by Keahey and Gannon [9].

Despite this growing interest, no attempt, has so far,
been made to explicitly quantify the performance im-
provements obtained from different server implemen-
tation techniques. No optimizations have been inves-
tigated to combine the transparency characteristics of
CORBA with the high—performance features of SMPs
to enable high-performance computational servers for
distributed environments.

In this work we demonstrate how to integrate the
thread—per-request concurrency model into CORBA
servers while providing high—performance. In this model
each incoming request is associated with a separate
thread. The implementation is based on CORBA in-
terceptors and is therefore fully portable. We have ex-

tended the MICO CORBA ORB [10] implementation to
concurrently process client requests.

We demonstrate that thread creation overhead can be
minimal and is merely attribute to the thread package
used. Thus user—exposed thread—pooling techniques,
proposed by Schmidt and Vinoski [4] need not be ap-
plied. We feel that such exposure does not support an
intuitive parallel programming model and is not neces-
sary at this level of abstraction. As our performance
study shows, a thread—per—-request style of invocation 1s
fully satisfactory. This latter point is often neglected
which led to the proposal of using pre-spawned thread-
pools to reduce thread creation overhead (cf. [4, 11]).

Furthermore, we propose and investigate techniques
for increasing multithreaded server performance. These
techniques are based on increasing locality of reference
for the client—server interaction. By rearranging the
server—side arriving request stream, such that requests
from the same client are executed in a maximally long
non—interspersed sequence on the same processor, we
can achieve substantial performance improvements, over
the execution of requests in the order of arrival. We mea-
sure server throughput and monitor the cache miss rate
for a set of benchmarks to illustrate our findings. The
benchmarks have been developed to correspond to dif-
ferent client—server interaction scenarios, inspired from
emerging distributed applications, such as distributed
transaction processing systems (e.g., ATM (automated
teller machine) and loan—granting applications, online
trading etc.).

The rest of the paper is organized as follows. Section 2
reviews the features of the CORBA standard relevant
to our work, outlines the benefits of multithreading for
computational server design, and introduces the thread
package used. Section 3 presents techniques for preserv-
ing locality of reference and motivates our microbench-
mark suite. In Section 4 we experimentally validate the
techniques discussed.

2 Multithreaded CORBA servers

2.1 Multithreaded server programming

Threads are a programming abstraction to identify and
utilize potential parallelisms in programs. A thread
serves as the unit of execution. It constitutes a sequence
of processing steps together with a program pointer, a
stack pointer, and processor registers. A thread executes
within the context of a process address space which it
shares, as well as other process resources, with a poten-
tially unlimited number of other threads.

This multithreaded programming model is well suited
for implementing CORBA servers for two key reasons:

1. It provides a simple methodological model that allows
the association of threads with user transactions (sin-
gle requests, group of requests, a session, and a ser-
vice), thereby providing a clean abstraction, resulting
in a simpler program design.

2. It exploits the parallelism and high—performance fea-

tures of SMPs.

Several alternative client—server interaction schemes
have been proposed in the literature, e.g., [12, 4], for
multithreading servers, such as:

e thread—per-request: a thread is associated with each
incoming request

e thread—per—session: a thread is associated with each
connecting client

e thread—per—transaction: a thread is associated with

each individual transaction

e thread—per—object: a thread is associated with each ob-
ject on the server—side

e thread—per—service: a thread is associated with each ser-
vice provided on the server—side

Advantages and disadvantages of a number of these
alternative interaction schemes is discussed in [12, 4].
As we will show later the thread—per-request scheme
provides sufficient performance, and, at the same time,
a clean programming abstraction.

2.2 The CORBA specification

The Common Object Request Broker Architecture
(CORBA) is a standard for distributed computing which
has been developed by the Object Management Group
(OMG) [1], a consortium of independent companies.
CORBA aims at providing a uniform communication
infrastructure for building distributed applications. It
supplies a unifying framework for interoperating soft-
ware components, operating on various hardware plat-
forms, running different operating systems. Further-
more, CORBA aims at providing programming language
transparency.

The CORBA standard does not foresee explicit sup-
port for concurrent method invocation in its design.
Client—server communication is based either on syn-
chronous RPC-style invocation, or on deferred asyn-
chronous invocation. Deferred invocation allow a client
to send off multiple requests in sequence, and subse-
quently poll for results. A oneway invocation scheme
is additionally provided. It allows a client to send off
a request and continue processing. No knowledge about
the successful completion of the request is communicated
back to the client. Transfer semantic of such invocations
is best effort.

2.3 Active Threads

Active Threads [14] is an extensible and portable
high—performance thread system. It is based on an
event driven architecture capable of supporting differ-
ent scheduling policies. Active Threads supports user—
extensible scheduling that exploits temporal and spa-
tial locality. Active Threads hide hardware dependen-
cies such as the number of CPUs. Instead, the user is
provided with a virtual processor abstraction. At the
application level, threads can be scheduled to run on
virtual processors. Active Thread clients are encour-
aged to schedule threads that are likely to share data to
run on the same virtual processor. Such data dependent
scheduling annotations are likely to produce substantial
performance benefits. No precise knowledge of the mem-
ory hierarchy is necessary, although some information
may be beneficial. Virtual processors are multiplexed
over the available cpus. The application can change the
mapping by supplying customized schedulers. A library
of schedulers is provided and can be extended by the
application.

The Active Threads runtime provides basic thread
services: thread initialization, start-up and context
switch, thread stack management. A variety of extensi-
ble synchronization objects including spinning and two-
phase locks, semaphores, barriers, and condition vari-
ables are supported. Much of the runtime is machine
independent. Hardware dependent services are captured
in the Machine-Dependent Layer.

3 Increasing server throughput

CORBA aims at providing a highly transparent pro-
gramming environment for developing distributed ap-
plications (cf. Section 2). Remote method invocations
appear just like local invocations, i.e., a proxy object
acts on behalf of the remote object in the client’s ad-
dress space. To process a remote invocation at the server
side, data and instructions of the receiving object have
to be loaded into the cache possibly replacing objects
from previous and concurrent invocations. Abstractly
speaking, a working set is built up in the server—side
cache reflecting the activity of the client—server interac-
tion. To increase performance, i.e., decrease the cache
miss rate, it would be desirable to maintain the working
sets in the cache as long as possible.

In general, request streams from independent clients
will arrive at the server in a random order, i.e., alternate
client requests arrive randomly interspersed. Processing
of request in a first—come—first—serve (FCFS) fashion has
negative effects on the cache hit rate. By rearranging
requests such that sequences of ‘related’ requests are ex-
ecuted in a non-—interspersed fashion, possibly on the

same processor, would reduce the cache miss rate and
hence improve performance.

One crucial aspect of this scheme is the scheduling of
requests, 1.e., which requests should be serviced next and
how long should an idle processor wait before executing
a request. One simple heuristic is to pick a request from
the largest, yet unserviced, group of requests. This is to
maximize the locality of reference potentially obtainable
for the selected group by executing all its requests on
the same processor. A group of such requests is usually
associated with an interacting client or transaction.

As the number of clients increases, server processors
are likely to often switch among request streams. To
lower the number of such switches, a processor that be-
comes idle may switch to a stream with the largest num-
ber of available requests only when this number is above
a threshold. It may even be beneficial for an idle pro-
cessor to wait for a certain interval before switching to
a different request stream. One possibility is to wait for
the same time that it takes to reload a request’s working
set in cache before switching to a different stream (the
price of such reload is unavoidable for a switch). Many
variations of these policies are possible. In this work we
study the case outlined above and defer the investigation
and evaluation of alternative policies.

Many distributed applications benefit from cache
Take, for example, any application that in-
volves multistep transaction processing, like ATM (au-
tomated teller machine systems), loan granting systems,
distributed database query processing, database servers,
online trading, and the like. In all these cases, multiple
independent clients will asynchronously initiate requests
to a server. Due to the inherent asynchronity, will the
arrival order of requests be random and a priori unpre-
dictable at the server side. On the other hand, network
services, such as directory and naming services, that in-
volve a simple one—step transaction would not benefit
considerably, since such lookups do not exhibit locality.

We use the simple thread—per-request concurrency
model to implement the parallel server. The key benefits
of this model include the following:

reuse.

1. simplicity of the model,

2. good semantics match — logically separate requests are
handled by physically different threads,

3. simplicity of the implementation — no need to maintain
thread pools or any other queuing and load—balancing
data structures. This functionality is usually already
handled by the thread system and should not be dupli-
cated.

Our implementation is based on the MICO CORBA
ORB [10] and its implementation of request level inter-
ceptors [1, 15]. MICO is adopting interceptors as they
are specified in [15].

Interceptors are application objects whose operations
are invoked by the ORB in a pre—defined order. Thus
they may be used to invoke operations at different stages
of the processing of a remote method invocation. This
feature can for example be used for logging, authen-
tication, and message transformation, among others.
We have used it to associate incoming requests with
threads, to implement the thread—per-request concur-
rency model.

4 Performance evaluation

4.1 Microbenchmarks

To investigate the performance effects of the server
thread locality management, we have designed a series of
microbenchmarks. Our goal was to keep the benchmarks
simple and yet to be able to vary the memory reference
patterns in order to observe the effects of thread locality
in different contexts.

In our base benchmark, a series of clients send streams
of requests to the server. Each request results in a num-
ber of memory accesses with a stride that can be varied.
We consider the cases of read and update operations.
Update involves reading and modifying a word. All re-
quests from the same stream access the same memory
locations. The working sets of different streams on the
server do not overlap. The server executes on the SMP,
and the client processes run on single processing work-
stations connected by Ethernet.

The experimental parameters involved are: p — the
number of processors used by the server to handle the
incoming client requests; ¢ — the number of clients; s
— the stride size in bytes; n — the number of memory
accesses.

In all experiments, the server is using a thread—per—
request concurrency model — a separate server thread
is created for each incoming request [4]. In the base
case, the server threads are scheduled over the processors
on the server SMP in the first-comefirst—serve (FCFS)
order. We then examine the performance implications of
scheduling the requests from the same stream to execute
on the same server processor, if possible. We are mostly
interested in the overall server throughput in terms of
the number of requests per second. We also examine the
contributing factors such as the number of cache misses
on the server machine.

4.2 Hardware Platforms

We use several platforms in our experiments. The server
of our main platform is a 4-way SPARCStation-10. The

client machines are UltraSPARC-1 workstations con-
nected to the server by Ethernet.

To measure different server cache statistics, we use
an 8cpu Sun Enterprise 5000 server (the UltraSPARC
cpus have the necessary performance monitoring hard-
ware unavailable on the HyperSPARC cpus).

Table 4 summarizes the relevant characteristics of the
hardware platforms. The UltraSPARC cpus have 2 level
caches: separate on—chip instruction and data caches (I-
cache and D-cache), and a unified secondary cache (E-
cache). For Enterprise 5000, the E-cache miss penalty
1s 50 cycles if the line in question is not cached by any
other processors and 80 cycles otherwise.

4.3 Experiments

4.3.1 Concurrency model

We use the simple thread—per-request concurrency
model to implement a parallel server (cf. Section 3).
Many sources dismiss this model based on performance
and resource utilization considerations [4]. We, however,
argue that the poor thread creation, synchronization,
and scalability properties are merely artifacts of the par-
ticular implementations rather than the features inher-
ent in the model. For instance, with Active Threads [14],
it is possible to achieve thread creation and synchroniza-
tion latencies of a few microseconds on a variety of dif-
ferent architectures. This is usually only a fraction of a
percent of the TCP/IP protocol handling cost. There-
fore, thread overheads may have virtually no impact on
the CORBA servers based on TCP/IP and the associ-
ated OS kernel trap overheads. Active Threads can also
be configured to allocate thread stacks lazily as needed.
For sufficiently independent requests, this results in sim-
ilar memory consumption as that demonstrated by the
other more complex server concurrency models (thread
pools, etc.).

Figure 1 shows throughputs for a CORBA server
running on the 4-way SS10 SMP relative to a single—
processor server (p=4,c=4,5=16,n=8192). The server
employs a simple FCFS policy for thread scheduling.
The left side of the figure deals with the standard invoca-
tions and the right—hand side characterizes the ”oneway”
invocations. Both figures demonstrate fairly good scala-
bility and thus substantiate our claim that a thread—per—
request model 1s not inherently expensive, Furthermore,
we show 1n the following sections that the throughputs
are constrained by the thread locality scheduling proper-
ties rather than the high thread management overheads.
We will also show how taking the locality properties
into account can substantially improve the throughputs
within the basic framework of the thread—per—request
concurrency model.

Figure 1:

System Level Size Block/ Line Associativity | Miss penalty
page size | count (to next level)

SS10 SMP,

4 50 Mhz cpus, | L2 256Kb | 32 8K direct 50

HyperSPARC DRAM 128M 1K 32K full -

Sun E5000, [-cache 16Kb 32 512 2-way 3 cycles

8 167 Mhz cpus | D—cache | 16Kb 32 512 direct 3 cycles

UltraSPARC-1 | E—cache | 512Kb | 64 8K direct 50/80
DRAM 512Mb | 8K 64K full -

client Ultra-1, I-cache 16Kb 32 512 2-way 3 cycles

167 Mhz D-cache | 16Kb 32 512 direct 3 cycles
E-cache | 512Kb | 64 8K direct 42 cycles
DRAM 128Mb | 8K 16K full -

Relative Throughputs on SMPs. FCFS

Table 1: Hardware platform characteristics.

4
oo Read e——o Read
3.5f |=—= Update 3.5} |=—= Update A
_~
% 3 - % 3 -
o _— o -
o — o S
£ — £ s —
525 -] 525 //
< d < e
3 2 A 1 g 2 7
= o = yg
= y = Py
,,/)
15 ,, 15 _
> Y
F S
1 1

-

Throughput for server

(p=4,c=4,s=16,n=8192).

Figure 2:

processo

Relative Throughputs on SMPs

rs

Relative Throughput, "Oneway" Invocations, FCFS

= N w
aoN o W o

=
@

running on 4-way SS10 SMP

SMP Throughputs for "oneway"

processors

relative to a single-processor

[N

processors

4
3.5
@ 2
a «
o 3 <
2 £
5 =]
§ 2.5 2
(o)) [=2)
g 2 8
= Z £
15 7
1™
1 2 3 4
processors
G—8 Read, FCFS
[G—© Read, locality
O—0O Update, FCFS
©—0O Update, locality

Throughput

for server

running on 4-way SS10 SMP

=t Read, FCFS
IG—© Read, locality
O—0O Update, FCFS
©—0O Update, locality

(p=4,c=4,s=16,n1=8192), comparing FCFS policy with locality policy.

relative to a single-processor

server

server

Server Throughput, Update

300

Server Throughput
N N
o a
o o

[
13
o

100 —

Locality
FCFS

Server Throughput, Read

300

Server Throughput
N N
o a
o o

i
13
o

100 —

Locality
FCFS

Figure 3: Absolute throughputs for 4 cpu servers for different access strides.

4.3.2 Thread locality and throughputs

To illustrate the importance of the thread locality man-
agement, we have replaced the server’s default FCFS
policy with a policy that respects the locality of requests
within the streams. Active Threads permits annotations
to tag the threads that belong to the same logical group
at the creation time. Active Threads attempts to exe-
cute threads within the same group on the same proces-
sor, 1f possible. However, when a processor becomes idle
and no threads from a previous group is available, the
processor switches to a group with the largest number
of threads.

The ORB dispatch code has been modified to an-
notate threads that handle requests from the same
stream with unique identical tags. The resulting server
speedups for the benchmark from the previous section
are shown in Figure 2.

Figure 2 also repeats the original SMP speedup curves
corresponding to the FCFS policy. Taking thread lo-
cality into account results in significant performance
gains and demonstrates that a thread—per-request con-
currency model does not necessarily have negative per-
formance implications.

Figures 3 and 4 provide further quantitative insights
into the importance of locality management. The fig-
ures show absolute throughputs for 4 cpu servers for dif-
ferent access strides. As the stride increases, the cache
reload cost is amortized over a fewer number of accesses.
Therefore, the relative importance of preferentially ser-
vicing requests whose working sets are already in cache
(even partially) increases. The figures also indicate that
“oneway” invocations are relatively more sensitive to lo-
cality management. For instance, for updates with stride
s=16, the locality policy results in 21% improvement for
”oneway” invocations and only 9% gain for the regular
calls. This is due to a smaller absolute communications

cost and hence the server ”computation” makes up a
larger portion of the request lifetime.

To study the effects of the number of clients, we have
fixed the stride at 32, and varied the number of client
processes (for more than 16 clients, we have multiplexed
a number of client processes over the same set of work-
stations). Figure 5 demonstrates the effects of the local-
ity policies as the number of clients increases. We have
also modified our base locality policy. For a large num-
ber of clients, server processor are likely to often switch
among request streams. To lower the number of such
switches, a processor that becomes idle switches to a
stream with a largest number of available requests, but
only when this number is above a threshold. In a more
practical setting, in the absence of threads from the pre-
viously serviced stream, it may be beneficial for an idle
processor to wait for a certain interval before switching
to a different stream. One possible heuristics is to wait
for the same time as it takes to reload a request working
set in cache before switching to a different stream (the
price of such reload is unavoidable for a switch).

4.3.3 Locality and Secondary Caches

The lower throughputs of the FCFS policy is mostly
explained by the greater number of the secondary
cache misses when processors often switch between re-
quest streams. Many modern processors such as Pen-
tiumPro [16], UltraSPARC [17], RS6000 [18] have per-
formance monitoring hardware that enables user—level
access to the external cache miss counters.

We have instrumented our server code to read the
performance instrumentation counters (PICs) of the Ul-
traSPARC processor [17]. We then repeated our experi-
ments on the Sun Enterprise 5000 server with 8 167TMhz
UltraSPARC-1 cpus. Figure 6 corresponds to the fol-
lowing configuration p=8, c=64, s=64. We varied the

Throughput, "oneway" Invocations, Update

350

Server Throughput
N
a1
o

Locality
FCFS

Throughput, "oneway" Invocations, Read

400

w
a
o

w
o
o

Server Throughput
N N
o (o))
o o

i
o
o

=
o
o

Locality
FCFS

Figure 4: Absolute throughputs for 4 cpu servers for different access strides.

Server Locality Management vs. Number of Clients
30 T T - . .

% improvement
= = N N
o o o o

ol

16 32 64 128 256
Number of clients

Figure 5: Effects of the locality policies as the number
of clients increases.

size of the footprint each request leaves on the server
from 512 lines to 16384 lines (each E-cache line is 64
bytes). Figure 6 presents the total number of E-cache
misses (a sum of E—cache misses across all server proces-
sors). For a large range of footprints (up to 8192 lines),
the total number of E—cache misses for the locality pol-
icy remains unaffected by the increased footprint size.
In contrast, the number of misses for the FCFS policy
is proportional to the footprint size. For very large re-
quests that do not fit in the secondary caches, the num-
ber of E—cache misses is affected by the footprint size
for the locality policy as well. However, since the sec-
ondary caches of the modern servers tend to be fairly
large, locality scheduling is likely to be a significant fac-
tor for many applications. For instance, the E—cache of
Sun Enterprise server can be up to 4Mb [19], B—cache
of DEC AlphaServer 4100 is also up to 4Mb [20], the
external cache of HP Exemplar is 1Mb [21].

Ecache misses, 8CPU Sun Enterprise 5000

L FCFS
Locality

w
o

w
o

Ecache misses, millions
= = N N
o (%, o (%))

(%l

512 1024 2048 4096 8192 16384
Task footprint, lines

Figure 6: Total number of E—cache misses.

5 Conclusion

We have quantified the performance gains exploiting re-
quest locality in a distributed system. The distributed
applications that may benefit the most from this scheme
are transaction processing systems, where many clients
interact with a server through heavy weight transac-
tions. The developed optimizations aim at exploiting
locality of reference between the client—transaction and
the server.

We aim at the further development of policies to
schedule threads from different groups of waiting re-
quests. The developed optimization techniques trade off
fairness for performance, i.e., a particular earlier arriving
request may have to wait for the benefit of increasing the
overall server throughput. We aim at analytically quan-
tifying this problem. This will allow us to formulate poli-
cies that take fairness considerations into account while
keeping performance within a specified bound, i.e., in-
troduce the notion of quality of service in the threaded

execution model.

References

(1]

(2]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

OMG. The Common Object Request Broker Architec-
ture and Specification. Revision 2.1. Technical Report,
Object Management Group, 1997.

Microsoft and Digital Equipment Corporatio. Dis-
tributed Component Object Model Specification. Tech-
nical Report, Microsoft, October 1996. Draft version
1.0 edition.

Open Software Foundation. OSF Distributed Comput-
ing Environment Rationale. Cambridge, MA, 1990.

D. C. Schmidt and S Vinoski. Object intercon-
nections. comparing alternative programming tech-
niques for multi-threaded servers. SIGS C++ Report,
February-August 1996. Columns 5, 6, 7.

R. Orfalli, D. Harkey, and J. Edwards. Client Server
programming with Java and CORBA. John Wiley &
Sons, INC., 1997.

lona Technologies. Orbix/orbixweb.
http://www.iona.com/Orbix /index.html.

OO0OC. Omnibroker. http://www.ooc.com/ob.html.

P. Hellemans, F. Steegmans, H. Vanderstraeten, and
H. Zuidweg. Implementation of hidden concurrency in
CORBA clients. In O. Spaniol, C. Linnhoff-Popien,
and B. Meyer, editors, Trends in Distributed Systems:
CORBA and Beyond, pages 30-42. Springer Verlag, Oc-
tober 1996.

K. Keahey and D. Gannon. Pardis: A parallel approach
to corba. In International Symposium on High Perfor-
mance Distributed Computing, pages 31-9, Los Alami-
tos, CA, USA, Aug 1997. IEEE Comput. Soc.

A. Puder and K. Romer. MICO is CORBA — A

CORBA 2.0 compliant implementation. dpunkt.verlag,
Heidelberg, 1998.

S. Baker. Corba Distributed Objects : Using Orbiz. Ad-
dison Wesley, 1997.

Jr. H. W. Lockhart. OSF DCE. Guide to developing
distributed applications. McGraw—Hill Inc., 1994.

S. Vinoski. CORBA Integrating Diverse Applications
Within Distributed heterogeneous Environments. /EFE
Communications Magazine, 14(2), Feb 1997.

Active Threads:
portable light-weight thread system. Technical Report,
ICSI TR-97-036, Nov 1997.

Alcatel, Hewlett-Packarad Company, Lucent technology
Inc., et al. Realtime corba. Technical Report, Object
Managment Group, January 19 1998. OMG document
number orbos/98-01-08.

Intel Corporation. Pentium Pro Family Developer’s
Manual. Intel Corporation, December 1995.
3: Operating System Writer’s Guide.

UltraSPARC-1 User’s Manual,

B. Weissman. An extensible and

Volume

Sun Microsystems.
1996.

[18]

[19]

[20]

[21]

E. H. Welbon, C. C. Chan-Nui, D. J. Shippy, and D. A.
Hicks. The power2 performance monitor. IBM internal
paper.

Sun Microsystems. The ultra enterprise 1 and 2 server
architecture. Technical Report, Sun Microsystems,
April 1996. Technical White Paper.

M. B. Steinman, G. J. Harris, A. Kocev, V. C. Lamere,
and R. D. Pannell. The alphaserver 4100 cached proces-
sor module architecture and design. Digital Technical
Journal, April 1997.

Hewlett Packard. Hp exemplar technical servers. Tech-
nical report, Hewlett Packard, 1998. Technical Spec-
ifica-

tion. Available at http://www.hp.com/wsg/products/
servers/servhome.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

