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PROPERTIES OF THE NONPARAMETRIC AUTOREGRESSIVE
BOOTSTRAP

J. FRANKE, J.-P. KREISS, E. MAMMEN AND M. H. NEUMANN

ABSTRACT. We prove geometric ergodicity and absolute regularity of the nonpara-
metric autoregressive bootstrap process. To this end, we revisit this problem for
nonparametric autoregressive processes and give some quantitative conditions (i.e.,
with explicit constants) under which the mixing coefficients of such processes can
be bounded by some exponentially decaying sequence. This is achieved by using
well-established coupling techniques. Then we apply the result to the bootstrap
process and propose some particular estimators of the autoregression function and
of the density of the innovations for which the bootstrap process has the desired
properties. Moreover, by using some “decoupling” argument, we show that the sta-
tionary density of the bootstrap process converges to that of the original process.
As an illustration, we use the proposed bootstrap method to construct simultane-
ous confidence bands and supremum-type tests for the autoregression function as
well as to approximate the distribution of the least squares estimator in a certain
parametric model.
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1. INTRODUCTION

Since the seminal paper of Efron (1979), bootstrap methods have become a widely
accepted and powerful tool to estimate the distribution as well as related quantities
of certain statistics of interest. Typical fields of application are the construction
of confidence sets for parameters or the closely related problem of determining the
critical region for tests. The basic idea of the bootstrap in its original form is to
mimic, on the basis of a single sample at hand, the whole structure of the data
generating process. In the context of time series, this leads to the additional challenge
of estimating the dependence structure of the process.

We assume throughout the present paper that data are generated by a nonparamet-
ric autoregressive process. Franke, Kreiss and Mammen (1997) discussed different
bootstrap methods in this context. Besides two regression-type approaches includ-
ing the wild bootstrap, they investigated the nonparametric autoregressive bootstrap
which was first proposed by Franke and Wendel (1992) and Kreutzberger (1993),
and proved its consistency for the pointwise behaviour of nonparametric estimators
of the mean and the variance function. In subsequent papers, Neumann and Kreiss
(1997) and Kreiss, Neumann and Yao (1998) showed the validity of the wild boot-
strap beyond the pointwise distribution. The ultimate goal of the present paper is
to open such a wide field of applications for the autoregressive bootstrap scheme.
For this purpose, we first prove important basic properties of the bootstrap process
such as absolute regularity and the convergence of the stationary distribution to that
of the original process. Since the autoregressive bootstrap process is in particular a
Markov chain, we can partially apply well-established techniques to prove the desired
results. However, in contrast to many qualitative results in this field which simply
state a certain rate for the decay of the mixing coefficients, we need here uniformity
w.r.t. some parameters of the process varying within certain limits. This is because
the properties of the bootstrap process depend on the original sample which is itself
random. Hence, we will restate some well-known results with an explicit descrip-
tion of how constants depend on certain features of the process. To make the paper
understandable for statisticians who are not specialists in Markov chain theory, we
present self-contained versions of all major proofs.

These results can be used to prove consistency of the autoregressive bootstrap in
several instances. We illustrate this by constructing simultaneous confidence bands
and supremum-type tests for the autoregression function as well as by approximating
the distribution of a least squares estimator in a certain parametric model.

2. MIXING OF MARKOV CHAINS REVISITED: A SET OF SUFFICIENT CONDITIONS
FOR GEOMETRIC ERGODICITY

Throughout the present paper, our minimal assumption on the data generating pro-
cess is that {X;} forms a Markov chain. Properties like ergodicity and mixing are
usually derived under two main assumptions: First, the existence of some “drift”
towards a certain compact set KA, and second, some condition on the conditional
distribution of future states, given that X;_; falls into K. The latter condition en-
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sures that information about previous states will be forgotten sufficiently fast by the
Markov chain. Here is the first of our main conditions on the Markov chain:

(A1) There exists a compact set A such that
(i) there exist p > 1 and ¢ >0 with

E(|X:| X1 =2) < p7la| —e forall ¢ K,
(ii) there exists A < oo with
sup { I (| X¢f [ X = 7)) < A

rEK

The drift criterion already ensures that the set A is reached from every point with
probability 1. However, it is not clear so far, which particular point in K is the first
one visited by the Markov chain. If, for example, K" contains more than one absorbing
set, then it is a priori not clear to which of these sets the Markov chain will converge.
Moreover, it might also happen that the Markov chain is periodic, that is, it moves
periodically through a finite cycle of disjoint sets. There are well-known techniques
to handle such cases, however, in order to facilitate the technical part of this paper,
we will impose a condition that excludes them.

(A2) (i) K is a small set, that is,
there exist ng € N, v > 0 and a probability measure ¢ such that
inf {P(2, B)} = 10(B)
EASH LN
holds for all measurable sets B . P"(x,-) denotes the n-step transition
probability of the Markov chain started in « .
(ii) There exists k > 0 such that
. S g
;gjf({P(:z;,[&)} > kK
Remark 1.
(i) Classical properties like irreducibility, aperiodicity and the existence of a unique
stationary density follow readily from (A1) and (A2); see the proof of Theorem 2.1.
(ii) To ensure aperiodicity and irreducibility, one often assumes instead of (A2) that
the innovations, e; = X; — m(X;_1) , are i.i.d. with an everywhere positive den-
sity. However, as noted by Meyn and Tweedie (1993, page 99), such a condition is
unnecessarily restrictive. A possible condition which immediately implies (A2) and
does not require an everywhere positive density of the innovations is the following one:

(A2’) The conditional distribution £(X; | X;—1 = x) has a density p(y|z) which
fulfills, for some ¢, > 0,

plylr) > ¢ > 0 forall v,y € K with |2 —y| <e.
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(iii) Assumption (A2) allows the distribution of the innovations e; = X; — m(X;—1)
to depend on X;_1, which in particular allows for conditional heteroscedasticity. We
prove our results in this section in this general context, whereas we restrict them
when dealing with the autoregressive bootstrap in the next section.

(iv) If {Xi} can be written as X; = m(Xi-1) + &, where the innovations ¢; are
1.i.d. with mean 0 and E|e;| < oo, then (Al) follows from

lim sup{|m(x)/z|} < 1.

|l’|—>OO

The following lemma provides an important result about exponential moments of
return times to KA. The return time is defined as 7 = inf{t > 1 | X; € K} .
Moreover, we denote by K, the conditional expectation under the condition that

X():l'.

Lemma 2.1. Suppose that (A1) is fulfilled. Then
(i)  E.p™ < e Ya| foral z ¢ K,
(i)  Ep™™ < p(l +e7tA) forall z € K.

Lemma 2.1 is the main tool to prove, in conjunction with assumption (A2), geometric
ergodicity of the Markov chain, that is

(2.1) JIP G, = wllvar uld) < Cpy”

for some p, > 1, where || - ||vq,r stands for the total variation norm and p stands for
7 if {X;} is started with the stationary distribution 7, or for the Dirac measure 4,,
if {X,} is started at some nonrandom point zg.

Exponential ergodicity will be proved via coupling of two Markov chains, one started
at some nonrandom point x, and the other one started with initial distribution .
We pair both chains in such a way that they are completely identical to each other
after they arrived at any state simultaneously. The coupling of {X;} and {X/} is
actually organized in two steps. Both chains are run independently until they reach
the set K simultaneously, perhaps still at different points x and 2’. By (A2), the
set K is an appropriate place for an attempt to initiate an exact pairing which may
occur after ng further steps with a probability of at least v. Lemma 2.1 guarantees, in
conjunction with (A2)(ii), that a simultaneous entry in the set K occurs sufficiently
often. This leads to the following theorem:

Theorem 2.1. Suppose that (A1) and (A2) are fulfilled. Then (2.1) holds true with
some p, > 1 and C, < oo which only depend on K, p,e, A,ng, v, K.

Having proved geometric ergodicity, we obtain the desired geometric absolute regu-
larity immediately from Proposition 1 of Davydov (1973). The coefficient of absolute
regularity is defined as follows.
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Let (2, A, P) be a probability space and let & and V be two o-subfields of A. The

coefficient of absolute regularity (8-mixing coefficient) is defined as

HUY) = B g (P [4) — POV

— %h]ﬂm?%)—ﬂﬁﬂw@,

Uielt, VeV

where the supremum in the last expression is taken over all finite partitions (U;);er
and (V;);eg of Q with U; € Y and V; € V.

In our particular case of a possibly nonstationary process {X;}i=01,., we adopt the
definition of Davydov (1973), namely

where M? = o(X,,...,X,). [Note that Davydov had an additional factor of 2 in
comparison with our definition of 3(s).]

The following lemma shows the close connection of ergodicity and absolute regularity
for Markov chains.

Lemma 2.2. (adapted from Davydov (1973))
Let {X;} be a Markov chain with marginal distributions Xy ~ vy. Then

1
B(s) = 5sup [ w(da)|[P(e,) = venallvar:

Now we obtain, in conjunction with Theorem 2.1, the desired mixing property of
the Markov chain. Recall that g is used to denote the initial distribution, that is
XO ~ .

Corollary 2.1. Suppose that (A1) and (A2) are fulfilled. Then
Bn) < Cup;n-

So far we have derived sufficient conditions for geometric ergodicity in the general
context of a Markov chain {X;}. The nonparametric autoregressive bootstrap, which
we study in the next section, is taylored for the special case that {X;} can be written
in the form of a nonparametric autoregressive model,

(22) Xt = m(Xt_l) —|— 5257
where the innovations ¢; are independent, identically distributed random variables

with mean 0. It can be easily seen that the following condition implies (A1) and (A2):

(A3) {X.} obeys (2.2), where
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(i)  |m(x)] < C1+ Cyle|  for all  and some €7 < oo, Cy <1,

(i) Bl < o,

(i) pe(z) > C3 > 0 for all 2 € [—Cy — sup,cp{m(z) — «},Cs —
infoeg{m(z) — «}] and some C4y > 0 , where K = [-C5C5] ,
05 > (Cl + E|€t|)/(1 — 02) .

3. THE NONPARAMETRIC AUTOREGRESSIVE BOOTSTRAP

In this section we will investigate important basic properties of the autoregressive
bootstrap and therefore we restrict the quite general structure of the data generating
process as considered in the previous section to the special case (2.2), where ¢; are
i.i.d. with mean 0 and variance 0. To ensure mixing properties to hold for {X;}, we
assume that the ¢; have a density p..

The nonparametric autoregressive bootstrap is a generalization of an idea of Efron and
Tibshirani (1986) and Holbert and Son (1986) for the case of linear autoregression,
and has been first proposed by Franke and Wendel (1992) and Kreutzberger (1993).
It was proved in Franke et al. (1997) that this method is asymptotically consistent
for the pointwise properties of kernel estimators of m. We continue this investigation
and derive some important properties of this bootstrap method which will allow to
apply this technique also for other problems such as the construction of simultaneous
confidence bands and supremum-type tests for the autoregression function as well as
for approximating the distribution of a least squares estimator in a certain parametric
model.

3.1. Some basic properties of the autoregressive bootstrap. The implemen-
tation of the nonparametric autoregressive bootstrap requires explicit estimates m
and p. of m and p., respectively. Before we propose some particular estimators, we
formulate quite general conditions that ensure ergodicity and absolute regularity of
the bootstrap process as well as some consistency properties. The bootstrap process
is generated according to the equation

(3.1) Xf = m(X) + e, t=1,....T,

where the ¢} are i1.i.d. with density p.. Under the conditions given below, there exists
a stationary distribution 7*. For simplicity we assume that { X} is stationary, that
is, X5 ~m".

To prove ergodicity and absolute regularity of { X}, we need only some analog to
(A3) for m and p. in place of m and p., respectively. On the other hand, such a result
alone would be of little use because one applies bootstrap methods to imitate some
features of the original process. One of the minimal requirements is certainly that
the stationary distribution of { X/} approximates that of {X;} in some appropriate
sense. This will be ensured by suitable conditions on the consistency of the estimates
m and p.. We make throughout this paper the convention that § > 0 denotes an
arbitrarily small and A < oo an arbitrarily large constant. Moreover, we use the
letter & > 0 to denote some appropriately chosen positive constant. Besides (A3),
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we will assume

(A4) There exists an appropriate sequence of sets Q7 C RT*! with P((Xo,...,Xr) &
Qr) = o(l) , such that for (Xo,...,X7) € Qr the following properties are
fulfilled:

(i) |m(a)/z| < C1 + Cylz| , for some €7 < oo and Cy < 1. [W.lo.g we
assume that C7 and C3 coincide with the constants in (A3).]
(ii) sup,ey, {|m(x) —m(z)|} = O(T™") for an appropriate sequence of sets
Xr € R with P(X, ¢ Xr) = O(T~) ,
(i) . — pell < OT7
(iv) J () — pele)l do < €T
(v) for all M there exists some Cj < oo such that

/|5|M]35(5) de < Chr.

We propose in the next subsection particular estimators m and p. that satisfy (A4)
under suitable conditions. Under (A3) and (A4), m and p. fulfil the conditions
of (A3) (possibly with different constants) with high probability. Hence, according
to Theorem 2.1, {X} is geometrically ergodic, which implies geometric absolute
regularity. This is formalized in the following theorem:

Theorem 3.1. Suppose that the data generating process obeys (2.2) and that (A3)
and (A4) are fulfilled. Let 5%(n) be the coefficient of absolute regularity of the process
{X/}. Then there exists some p, > 1 such that

B(n) < Cypy"
holds if (Xo,...,Xr) € Qrp .

In the proofs of the previous theorems, we use coupling of Markov chains to get
geometric ergodicity. To prove closeness of the stationary distributions of {X;} and
{X/}, we use the opposite approach which we call decoupling: We start both chains at
a common point, X = X§ = x9, and analyze the decoupling of appropriately paired
versions of them. Since, according to (A4), the transition probabilities are similar,
we can couple both chains in such a way that P(X, # X) increases slowly. On the
other hand, both chains are geometrically ergodic. Therefore, P"(x0, ) and P*"(x, -)
converge quite fast to m and 7*, respectively. This idea leads to the following theorem
which characterizes the closeness of the respective stationary distributions 7 and 7.

Theorem 3.2. Suppose that the data generating process obeys (2.2) and that (A3)
and (A4) are fulfilled. Then

sup {(A(B)T—ﬁ + 7)) m(B) - w*(B)|} <c

B measurable

holds if (Xo,...,X7) € Qr , where A(.) denotes the Lebesque measure.
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3.2. Particular estimators of m and p.. The consistency of the autoregressive
bootstrap follows from suitable consistency properties of m and p.. Franke et al.
(1997) proved an appropriate kind of uniform consistency of m on a sequence of sets
[—v7,77], 71 — oo , under the additional assumption that the stationary density
7 is not less than ey ( ¢ — 0 with a suitable rate) on [—yr,vyr]. Here we try to
avoid this condition and impose regularity conditions solely on m and p.. To be able
to estimate m with a sufficient accuracy, we assume that

(A5) m is Lipschitz continuous.

To facilitate our proofs, in particular that of the consistency of a certain estimator
of m, we assume that

(A6)  All moments of ¢, are finite.

In contrast to regression-type methods such as the wild bootstrap, it is also important
to estimate the distribution of the innovations &; consistently. We will assume that

(A7)  p. is Lipschitz and of bounded total variation.

In view of the different size of the stationary density in different regions, it seems
natural to use a nearest neighbor estimator of m, which is defined as

(3.2) minz) = N7US X,

t: Xeo1 E/\A/N(ac)

The (random) neighborhoods ﬁ]\f(l‘) =[x — nn(x),x + nn(x)] are chosen such that
#{t < T | Xy € ﬁN(l‘)} = N, where N = N(T) = o0 as T — oo . Instead
of my one could also use other nonparametric estimators such as kernel or local
polynomial estimators with appropriate adjustments of the bandwidths in regions of
a low stationary density.

Since many assertions in this article are of the type that a certain random variable is
below some threshold with a high probability, we introduce the following notation.

Definition 3.1. Let {Z7} be a sequence of random variables and let {ar} and
{71} be sequences of positive reals. We write
Zr = Olag,yr),
if
P(|Zr| > Car) < Cyr
holds for T'> 1 and some C < co.

This definition is obviously stronger than the usual Op and it is well suited for our
particular purposes of constructing confidence bands and nonparametric tests; see its
application in Section 4.
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The following lemma provides a useful result about the uniform convergence proper-
ties of my.

Lemma 3.1. Suppose that the data generating process obeys (2.2) and that (A3),
(A5) and (A6) are fulfilled. Then there exists a sequence of sets Xp € R with
P(X; & Xr)=0(T7") and

sup {[mn(z) — m(z)[} = O (T°N/T + N7 log(1'),17") .

l’EXT

Define

where & = X; — my(Xi—1) are the residuals.

Lemma 3.2. Suppose that the data generating process obeys (2.2) and that (A3)
and (A5) to (A7) are fulfilled. Furthermore, let h and N be chosen such that h =
O(T=?"y, A=t = O(N'2T=%") and N = O(T'=?") for some ' > 0. Then there
exists some ) >0 such that

(i) 5 = pelleo = O(T77,77),

(i) JIp-(x) = p(w)|de = O (T, 7).

4. APPLICATION TO PARAMETRIC AND NONPARAMETRIC ESTIMATES OF THE
AUTOREGRESSION FUNCTION

In the first part of this section we use the proposed bootstrap method to construct
simultaneous confidence bands and supremum-type tests for the autoregression func-
tion. Similar results for a regression-type bootstrap, the so-called wild bootstrap,
can be found in Neumann and Kreiss (1997). The validity of the wild bootstrap
in context with nonparametric estimation in autoregression relies on the fact that
the underlying statistic forms a sum of martingale differences. Moreover, bootstrap
methods based on the (fictive) assumption of independent random variables are con-
sistent for many statistics based on nonparametric estimators in the context of general
processes since the effect of weak dependence vanishes asymptotically; see, e.g., Neu-
mann (1996, 1997). Usually, this is not true for parametric estimation. In such a
situation a process bootstrap as proposed in this paper is really necessary for con-
sistency, since the whole dependence structure of the underlying process has to be
mimicked. One may argue that this may motivate the use of process bootstrap even
for nonparametric estimation. However, for nonparametric estimation, a rigorous
comparison of process bootstrap with other resampling schemes would require higher
order methods.
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4.1. Application to supremum-type statistics: confidence bands and goodness-
of-fit tests. We suppose that the data generating process obeys (2.1). A simulta-
neous confidence band for m is usually based on and centered around some non-
parametric estimator my(x). For simplicity, one can take a Nadaraya-Watson kernel
estimator,

T (2= Xiq X,
(4.1) Fin(z) = ( )

men

The difference of my(x) and m(x) can be decomposed into a stochastic term,

12 (SR X)) S (- XM = o)

and a bias-type term,

(4.3)
(Zt: K (¢ — Xoe1) /h)) SOK((x — X)Wy m(Xem)  —  mlx).

t
[We call the latter expression “bias-type term” rather than “bias term” since it is
only asymptotically nonrandom.]

For the construction of confidence intervals or bands, one may account for the bias-
type term by separate adjustments, i.e., it is not necessary to imitate it by the
bootstrap. Usual techniques are undersmoothing or explicit bias correction; see,
e.g., Neumann and Kreiss (1997) for a discussion in the context of nonparametric
autoregression. In order to find an appropriate width of the confidence band, it
remains to get knowledge about the stochastic term. This term can be approximated
by [(p* K(./R))(x)]""1/T) > K((x — X,—1)/h)e; , where p denotes the density of 7.

Hence, we have to approximate the distribution of

(4.4) St = sup {[(p* K(./h))( Z[x (&) e,

r€[a,b]
For a parametric hypothesis Hy: m € M = {my | § € O} we can use the test
statistic

X _
(4.5) Wr = sup { YK (7“) X, — m(xt_l)]‘},
wER
where 1 is any estimator that satisfies on the hypothesis m € M
(4.6)
X = _
sup { (7“) (X)) — m(Xt_l)]‘} — op ((Th)"*(log T)™/2) .
r€

For the determination of critical values we have to approximate the distribution
of Wr. A sufficient condition for (4.6) to be fulfilled is obviously that m itself
converges on the hypothesis in the supremum norm to m with a faster rate than
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(Th)='%(log T)~"/2. If (4.6) is actually satisfied, it suffices to find a consistent ap-
proximation to the distribution of the statistic
wER } 7

( - 1)
—_— | &
which is closely related to Sy in (4.4).

The distributions of S7 and Ur can be approximated by those of appropriate boot-
strap statistics. We discuss only the approximation of Ur by
(4.8) = sup{

()l
wER

more closely. Whereas a purely analytic approach of showing consistency is pre-
sumably quite cumbersome for such supremum-type functionals, a proof via strong
approximations is much more convenient.

(4.7) - sup{

Lemma 4.1. Suppose that the data generating process obeys (2.2) and that (A3) and
(A4) are fulfilled. Then there exists on a sufficiently large probability space a pairing
of (Xo,€1,...,er) and (X3, e5,... %) such that

X — X7
sup{ <7t1)5t _ ZI ( t— 1)515
wER
holds uniformly over all bootstrap distributions L((Xg,e5,... . €5) | Xoy..., X7) for
(Xo,...,X7) € Qr , where Qg is an appropriate set with P(Q%) = o(1) .

} = op ((Th)"*(log T)71/?)

This strong approximation result basically says that the stochastic behaviour of the
process {32; K((x — X;_1)/h)e}, g is well approximated by that of the bootstrap
counterpart {3, K((x — X;_;)/h)ei} . This implies in particular that the dis-
tribution of Ur is consistently approximated by that of U7. As can be seen from
Lemma 3.2 in Neumann and Kreiss (1997), the rate of op((Th)"/?(log T))~'/?) for the
approximation error is just sufficient for the validity of the bootstrap in the context of
supremum-type functionals. Hence, we may apply the nonparametric autoregressive
bootstrap to determine the critical value for a supremum-type test based on Wr. For
the same reason it can also be used for the construction of simultaneous confidence

bands.

4.2. Application to a problem of parametric inference. As an illustration for a
situation where the nonparametric autoregressive bootstrap procedure (cf. Section 3)
is really necessary, we consider the following example. Suppose that we intend to fit
a parametric model,

X = mg(Xeq) + &4y

to the time series. For the sake of simplicity, let us deal with the simplest case, i.e.,
me(u) = 0 - my(u) for some known function m, and the least squares estimator 6,
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which satisfies

N LT Zt (Xt - emo(Xt—l)) mo(Xt—l)
\/T (0 - 0) N - %Zt mo(Xt—1)2 '

Recall that we do not assume that the parametric model coincides with the underlying
model. If we assume (A1), (A2), (A3)(i) for m, and E|X;|” < oo for some v > 4, then
we obtain from a CLT for strongly mixing processes, cf. Bosq (1996, Theorem 1.7),

asymptotic normality for the least squares estimator #, namely
VT (0= 0) = N (0.72/(Em,(X0)*)?) .
In the case of model inadequacy, the parameter 6 is defined in the sense of the best

approximation, that is

. ~ 2 Eleo(Xo)
0 = {E X1 — Om,(X } = -
{5 (3 — '} - Em

The term
2 = E(Xy —0m,(Xo))  mo(Xp)?

+2- f: Cov [(X1 — 0m,(Xo)) mo(Xo), (Xgg1 — O0mo(Xi)) mo(Xy)]

= B2’ Emo(Xo)2 + B (m(Xo) — 0mu(Xo))? mo(Xo)?

2037 Cov[(X, = 0my(Xo)) mol(Xo), (Xagr — Omo(Xe)) (X))
k=1
depends on the whole dependence structure of the process. The application of the wild
bootstrap will lead in any case to an asymptotic normal distribution with variance
Fe}/Em,(Xo)? which is in general not equal to 72/(FEm,(X()?)* . In contrast, the
process bootstrap described in Section 3 leads to consistency. This is the content of
the following result.

Lemma 4.2. Suppose that the data generating process obeys (2.2) and that (A3),
(A4) and (A7) are fullfilled. Then

2 Ximo(X7y) * 2 242
holds if (Xo,...,Xr) € Qr . 6% denotes the value of the optimal fit (in the Ly-sense)
of a parametric model in the bootstrap world, i.e., 0* = E*Xim (X)) E*m,(X;)? —
EXimy(Xo)/Em,(Xo)* =0 as T — o .
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5. PROOFS

Proof of Lemma 2.1. A condensed proof of this lemma has already been given in
Nummelin and Tuominen (1982).

(i) Let © ¢ K. We get immediately from (A1)(i)

(5.1) 2] = pE(X| | Xo = 2) > pe.

Analogously we have

Iy € K)[lyl = pE(1Xa| | X1 = y)] = pel(y € K°).

Multiplying both sides with p and taking the expectation over X; under the condition
Xo = &, we obtain

(5.2) B,1(Xy € K9) [p|Xi| — p2|Xal] > pPePu(Xy € K°).
By analogous considerations, we get

(5.3)
B I(Xy, . X € K) [p8|Xk| = oM X ]] = pMH1ePu(Xa,. .. Xy € K°).

Now we obtain from (5.1) to (5.3) that

|$| > €Z,Ok+lpgg (Xl,... ,Xk - [XT) = 52Pk+1Px (TK > k) > 5Ex,OTK-

(ii) For € K, we obtain that
Ex,OTK = ,0/]7 P(x,dy) + ,O/Irc P(l’,dy)EypTK

< plrc=1 4 [ Pledylyl].

[Notice that the term “P.(7x = 1)” was missing in Theorem 3.1 of Nummelin and
Tuominen (1982) as well as on page 90 in Doukhan (1994).] O

Proof of Theorem 2.1. (i) Some preliminaries: Irreducibility, recurrence and the
existence of ™

First we check irreducibility of {X;} since this simplifies the analysis by excluding
the case of more than one absorbing set. By Lemma 2.1, ¢ = A(. N K) is obviously
an irreducibility measure. According to Proposition 4.2.2 from Meyn and Tweedie
(1993, p. 88), there also exists a maximal irreducibility measure .

Since K is a small set with P,(7x < co) =1 for all , we obtain from Theorem 8.3.6
in Meyn and Tweedie (1993, p. 187) that {X,} is recurrent. ({X;} is called recurrent
if it is ¢-irreducible and Y77, P"(x, A) = oo for each € R and every measurable
set A with ¢(A) > 0.)

Since {X;} is recurrent, we conclude from Theorem 10.4.4 of Meyn and Tweedie
(1993, p. 242) that there exists a unique invariant measure which we denote by 7.
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(ii) Coupling

Our proof of geometric ergodicity is mainly based on an appropriate coupling of one
Markov chain started in some state & with another chain having an initial distribution
equal to m. This is one of the classical approaches to prove ergodicity of Markov
chains; see, for example, Lindvall (1992) and Meyn and Tweedie (1993). The most
substantial novelty of our proof is that we focus on explicit constants which are
necessary in view of the randomness of the parameters of the bootstrap process.
Coupling consists of establishing an appropriate pairing of two Markov chains,

Xo,Xl,... with X()El'

and

X5, X1, with XJ ~m,
on a joint probability space. Let 7 be the first time that both chains reach any state
simultaneously. By the Markov property, we can pair these chains in such a way that
X; = X for all ¢ > 7. We call the time 7 the coupling time of the two processes. It
is easy to see that

1P (e.) = wll, = sup {| [ P ) — [ ey i)}

ff1<1
(5.4) < 2P.(X, £ X)) = 2P.(7 > n).

For Markov chains with an accessible atom o (A set « is called an atom if there exists
a probability measure v such that P(x, B) = v(B) for all « € a.) the construction of
such a pairing is not difficult: One simply lets run both chains independently until
they reach a simultaneously, and from that time both chains are identical.

In our context, which includes the case of purely continuous distributions of the
innovations &, the existence of an accessible atom is not guaranteed. However, under
assumption (A2)(i), we may use the splitting device of Nummelin (1978) and Athreya
and Ney (1978) to introduce an appropriate substitute, which we also denote by «,
and which is an atom for the ng-skeleton for the chain, that is

P™(x,B) = v(B) forall € o, B measurable.

Hence, we can couple {X;} and { X/} in such a way that X; = X/ for all t > 7,4 + no,
where 7., 1s the time of the first common visit to the state a.

To define a suitable substitute for the atom «, we apply the idea of Athreya and
Ney (1978) and use an additional randomization with the aid of independent random
variables Ny and N/, t = 1,..., T, with P(N, = 1) = P(N; = 1) = ~. If X; hits K,
then we define the ng-step transition probability equal to v(.) if Ny = 1 and equal
to [P™(Xy,.) —yv()]/(1 —~) if N, = 0. (The same is done for the chain {X]} in
dependence on the value of N/.) In other words, X; hits the atom « if X; € K and
N, = 1.

(iii) An experiment consisting of successive trials
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In view of (5.4), it remains to find a pairing of {X;} and {X]} such that

(5.5) /Pl, (Too + 10 > n)p(de) < Cup”,

where P, refers to an initial condition of Xy = z for the Markov chain.

To bound the probability Py(7.o +no > n), we consider successive trials of the chains
{X:} and {X]} to hit the state a at the same time. We define stopping times 7; and
7! that refer to certain events that {X,} and {X}} visit K. Let

o = min{X; € K}
J

and
7o = min{X} € K | j > m0}.
J

Further, we define inductively

n=min{X; e KN |j>74}
J

and
7 = min{X} € K | j > 7}
]

It is clear that 7; and 7/ are indeed stopping times with respect to the o-field B; =
o(Xo, ..., X5, X{, ..., X/). These stopping times are defined in such a way that

0<rm<mp<n<r<...<rn<7<. .

The time 7,, corresponds to the first joint visit of the Markov chains {X;} and {X/}
at a. Accordingly, we call a trial (7, 7/, N;, N!) successful if , =7/ | N, =N/, =1
or 7/ =71, N/ = N; = 1. Our next step consists of showing that the conditional
probablhty of a success of a trial (7;, 7/, N;, N/) given B;_; is bounded away from
zero. [Actually, we were not able to prove that P(r; = 7" L No=N_, =1]|B;-1)
can be bounded in such a way. It might happen that 7/_; — 7,y is arbltramly large.
Since we do not have an explicit lower bound for mszL inf,e,, P/(K), we cannot
derive an explicit lower bound for P(7; = TZ»/_I,NZ' = N/, = 1| Bi—1).] However,
fortunately, we can find such a bound for P(7/ = TZ,N/ = N, = 1| B;—1). This
explains why we are considering such “double trlals” (1,7, Ni, N’) rather than single
trials.

Using the last-exit representation, we find by (ii) of Lemma 2.1 that

P (TZ' — T»’_l > L | Bi_l)

K3

= Z /1 Xn 171 a S(dy)Py(TK > L+s)

= ZSUP {Py(re = 1)}
=], YEK
(5.6) < Zsup{Ey,o”‘ } < CZ,O — 0 as L — 0.

t=1, vEK
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Hence,
P (TZ' — 7l < Lo| Bi_l) >
for appropriate C' > 0 and Ly < oo, which implies that

P (the ith trial is successful | B;_1)

> P(ri=m,N/=N;|Bi1)
Lo
> 72 Z P (Ti - 7-2.’_1 =7, Xﬂ/—i/—l-l'j c K Bi—l)
7=0
Lo
= VY. P(n—r =j|B)P (X, ,, €KX, )
7=0
> P (ri—7iy < Lo|Bia) nf inf {P (2. K)}
(5.7) > 5> 0.

This is just the point where (A2)(ii), which is slightly stronger than aperiodicity of
the Markov chain, enters into the proof of geometric ergodicity.

(iv) An exponential bound for the coupling time

Let n denote the number of the first successful trial (7;, 7/, N;, N!), that is, 75, = 7.
We split up:
(5.8) P(Toa + 10 >n) < P(n > [kn]) + P(Tp + 10 > n),

where the constant £ will be specified below.
Let T; be the indicator of the event that the i¢th trial is successful, that is,

0 otherwise

T; = { ; i (=7, Ni= Ni_y) or (7] = 7, N = Ny)

According to (5.7), we have that

P(n > [kn])
P(TOZO)P(Tl :0 | TOZO)P(T[HTL] :0 | TOZO,... 7T[H7’L]—1 :0)
(5.9) < P(T, =0)(1 — 7)1,

Now we are going to find an upper bound for E,pTnit",
Using the last-exit representation, we obtain

! .
T T Ti-1

P (Ti -7 = k‘ B¢_1) = Z / P)T(i;;i_Ti_l_s(dy)Py(T]" =k+s)

1
5—0 K

< sup {Py(x = k)} < p~Fsup {E,p <},
yeK yeK



16 FRANKE ET AL.

which implies, for 1 < r < p,

Bi—l) = ZTkP(TZ' — Ti/—l = k | Bi—l)
k=0

(5.10)

IA

up {Bp™} Y (r/p)f = €(r) < o,

Analogously we obtain

(5.11) B (rrin

o(Xoy. o Xo, Xp, XL ) < (),
which implies in conjunction with (5.10), for ¢ > 2, that
B (ri7 = o(Xo,. o Xo Xooo o XD )
= B[ BT | By [o(Xe o Xn L XG X))
(5.12) < (&(r))%

Next we bound F,r™, where E, refers to the initial condition X, = 2. We can apply
(5.11) if { X[} visited K before or at 75. Let 7/, = inf;{X} € K}. [We have either
'y <Toor Tl =17L]

We have that

B 4 By [rB (v o(Xowe o, Xy X, X0 )]
(5.13) < BT 4 () EerTE

IA

From (5.10), (5.12) and (5.13) we conclude

< < B, {rTéE(rTl—Té |Bo)} (f(r))Q[Hn]—Q
(5.14) < (BT 4 E(r)EarT) (60r) T

which implies

P(T[HTL] + ng > n) < rno_nEach[Hn]
S (B 4 () B (60
(5.15) < (B E(r) Epr) (€0 )
Choosing x small enough, we obtain the assertion. 0

Proof of Theorem 3.2. As already announced, we set Xo = X§ = xg, where zy €
K N Xy, (for T sufficiently large, K N T is nonempty). We pair the chains {X;} and
{X;} in such a way that we have at each transition step a maximal coupling: Given
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Xi—1 = 24—y and X[ | = 27_;, then the joint distribution of X; and X is chosen such
that

P (X, = X7 | Ximy = 2000, X7y = 27y
(5.16) = [Pz () Az (2) d

If #,_1 € Xr, then we obtain from (A4) that

/pi;(t*LXt*_l:l’t—l (Z) /\ pXt|Xt—1:l’t_1 (Z) dZ

1
_ 1__/
2

= 1-0(r7".17).

p}ﬂXt*_l:xt_l (Z) = PX¢|Xioi=wi (Z)‘ dz

This implies, by P(Xo,..., X, 2 € X§) =1—0(nT"?), that
(5.17) P(Xoo # X5, | Xo= X5 =20) = O (n17",77")

For the conditional densities of X,, and X we get

‘an|X0=l’o(Z) - p;{mXa‘:xo(Z)
< [ Iz = mly)) = pelz = T [Pt amen ) AP 530 (9)]
[ 2z = ) (P tomen (8) = Pz pxsme ()
[ Bele =) (Psxgme(9) = PXacsxumea(9)
< sup{llp:(- —m(2)) = p-(. = (=)}
t (Ipelloe 4 1Belloe) P (Xnma # X7y | Xo = X5 = a0)
(518) = O (n1=",17%).
Since { X} and { X[} are geometrically ergodic, we obtain with n = [C)log T'] that
[7(B) — m(B)]
< |P"(20, B) = m(B)| + [P (20, B) — 7°(B)|
+ |P"(x0, B) — P*"(xo, B)|
(5.19) = O(T™,17) + O (\(B)T™", T
holds simultaneously over all measurable B. O

Before we turn to the next proofs, we quote a useful lemma from Neumann and
Kreiss (1997). This lemma describes the stochastic behavior of sums of geometrically
f-mixing random variables.

Lemma 5.1. Suppose that (Z;)i=1,.. 1 is geometrically B-miving and EZ; =0 .
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(i) If |Z:] <1 almost surely, then

ZT:Zt =0 (min{\/Tlog T, [> var(Z)log T + (log T)z} ,T_A) :

(ii) Under the weaker assumption that VM < oo 3Cy < oo such that E|Z,M < Cy

we have
T o~
SiZv= 0| > var(Z)logT + T°, 77 .
t=1 t

Proof of Lemma 3.1. First, we choose two constants 0 < ¢ < §” with N/T =
o(T=% ) and define

(5.20) Xp = {x e =17, 79| n(x) > T“S”}.
(i) Proof of m(X§) = O(T~?)

It is obvious that

(5.21) m (X [-17, 1) = 0 (177).

Hence, it remains to show that

(5.22) (=17 17) = 0 (17).

According to (A3)(i), we have that
Im(z)| < alz] + G
holds for all  and some « < 1. Hence, we get the estimate
[Xe| < afXea] + (Cr+ ad)
< L <X+ T (Cit a]) + oo+ (Gt e

t
Oét|X0| + ZO[S_I (Cl + |€5|) .
s=1

ES

Setting for a moment Xy = 0, we obtain by (A6) that
/|:1;|M7T(:1;) de = /|:1;|Mtlim px, (z) dx

< [sup {px, (o))"} do
< E (i o O+ |€t|))M

t=1

- M
< K (Z ol (Cl + |€1|)) < o0,

t=1



NONPARAMETRIC AUTOREGRESSIVE BOOTSTRAP 19
which implies (5.22) by Markov’s inequality.
(ii) Estimation of supxeXTﬂm\N(:L‘) —m(x)|}
Define the intervals

Iy = [F'(k/T), F{'(1/T)], 0<k<I<T,

where Fx(t) = ['_ m(x)dz is the cumulative distribution function of X;. We obtain
from Lemma 5.1 that

#{1§t§T: Xt_lelkl}—(l—k)

(5.23) _ 0 (min{\/l “Flog T + (log TV, /T log T} ,T—A) .
Let
Nyr(z) = [v —nnr(z), 2 + nyr(x)]

be the nonrandom counterpart to ﬁ]\f(l‘), where ny r(2) is the minimal number such

that #(Nyr(x)) = N/T. We obtain from (5.23) that
(5.24)
p (NN—CA\/NlogT,T(x) - NN(*’”) - NN-I—O)\\/ﬁlogT,T(x) for all x € R) > 1 - O(T_A)v

which implies, by NN+C>\\/NlogT,T(x) Clz— crd’ N/T z + ore’ N/T],
1 ~ "
(5.25) ~ X X -m() = 0 (T‘S N/T,T‘A).

Xi—1€Ny(2)

Further, we have by Lemma 5.1

sup { > £t }
* t:Xt_1€/\A/N(x)

< sup { Yoo

frant =
t: X1 ENN 1 (2) T Xl NN (2) ANy 1 ()
(5.26) = O(VNlog,17") .

which yields the assertion. O
Proof of Lemma 3.2. We define

) = K ()

and
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The difference of p.(x) and p.(x) will be decomposed as follows:
p=(x) — p:(x)

_ % 5 [K (:1;;@) ok (:1; — [ X _hm(XH)])]

X e[-T9 18]

+ % > { [K (x X _hm(Xt‘l)]) - K (x - gt)] (X, € [-T7,77)

t

- KK

| )= ()
+ %;E _K( h_ ) - K (x ;gt)_ [(Xiy € Xr)
( ) (5

1 .
+ 7 Zt:E _[x
P >
Th t: X1 ¢[-T% 179
+ p=(x) — p-(2)
= Ti(z) + ... + Ts(a).
(5.27)

It can be shown (see also (5.26)) that

wp  {n(y) — mylt = O (NPT 1Y),
ye[_TélvTél]

which implies
(5.28) sup {|Ti(«)|} = O (' N7V27e 77
Further, we can show for fired x that

| Ty(x)| + |Ta(x)] = O (Th)™/*log T.T7*) + O(h?)

holds. By proving this result on a sufficiently fine grid and using that P(|e;] > T°) =
O(T~*) we get

(5.29) sup {|To(e)| + |To(2)]} = O ((Th)™?1og T,77Y) + O(h?).

Since p. is Lipschitz, we have

5300w {IEl) = 0 (sup () = i) = 0 (1),

yeXT

By (5.23) we obtain
(5.31) sup {|T(«)[} = O (P(Ximy € [-17, T\ A1) = O (177)
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and, by (5.24),
(5.32) sup {|T5(2)|} = O (777).

From (5.27) to (5.32) we obtain (i).
To get (ii), we first conclude from (i) that

~ _ —
g P2 = pellde = O (777).
Since, furthermore, [i_gs 7o pe(2) do = O(T=*) , we obtain (ii). O

Proof of Lemma 4.1. In order to save space, we give only a brief sketch of the proof.
We assume throughout this proof that (Xo,...,X7) € Qr .

We consider “small” intervals [ = [(k — 1)g, kg) , where an appropriate choice of ¢
will become clear from the calculations below. To construct a pairing of Xy, ..., X7
and X§,..., X7 such that sup, {> K((z — Xi—1)/h)er — > K((x — X[_1)/h)er}
is small, we try first to find a pairing such that the partial sums w.r.t. the Iy,

Zy = Z &t

t: Xy 1€l
and
* *
Zk - Z 51&7
Xy €l

are close to each other. This will be achieved by a simultaneous embedding of
€1,...,6r and &7,...,e% in a common set of independent Wiener processes Wi
assigned to these intervals.

*

(i) Embedding of €1,...,er and €5,..., ¢}

In order to embed the ¢; in the Wiener processes, we define appropriate stopping

(t) (0)

times 7, ’. To initialize this procedure, we set 7, =0 for all k. Let £; be the index
of that interval [, into which X, did fall. Then we embed ¢, in the Wiener process
Wiy, , that is, according to Lemma A.2 in Hall and Heyde (1980, Appendix A.1) we

choose an appropriate stopping time 7',511) such that
1 0
e = Wi (7)) = Wi (7)),

For k # ki, we set 7',51) = 7',50) :

Now we repeat this procedure to embed successively e5,e3,...,67 . Assume that
€1,...,6_1 are already embedded. Let k; be the index of that interval into which
X;_1 did fall. Then we use the remaining part of the process Wy, to represent &,

that is we choose a stopping time T]S) such that
e = Wi(m)) = Wi (™),

For k # k; , we set T,gt) = T,it_l) :
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After T such steps we obtain the representation
T
Zk == Wk(ﬂg ))

Now we use the same Wiener processes to e bed successively X, ... e By exactly
P 1 ) <
the same steps as above we obtain

7 = Wa(7).

(ii) Closeness of Zy, and Z};

The proof of the closeness of Z; and Z; will be based on an upper estimate of
|T]£T) — 7~',£T)| . First of all, note that T,gt) — T,gt_l) depends only on X;_; and
{Wk(s), T]S_l) <s< T]S)}. Hence, these differences are also geometrically S-mixing.
Therefore, we obtain from Lemma 5.1(ii) that

D — mr | + 7Y — BFD| = O ((Tg)*log(T) + 1°,77%) .
Moreover, we get from Theorem 3.2 that
Pl A = T (B10% € 1t - BI0G € 10557 = 0/(177%).
Provided that 1/g = O(T'7%) , these two estimates yield that
P (7" = 79 > Tg177) = 0 (T7)

holds for some x > 0. This implies, by Lemma 1.2.1 in Csorgé and Révész (1981,
p. 29), that
P (12 = 2| > (Tg)'/’17%) = O (T7).

With a simple extra argument we can also prove that

(5.33) P (12 = Zz| > (Tg)'*T™ forall k) = O (17").

(iii) Closeness of > K((x — Xi—1)/h)er and Yy K((x — X]_{)/h)e;

To exploit the result of our partial sum approximation, we approximate K ((x—.)/h)
by piecewise constant functions, i.e.,

K((z—y)/h) = Zk:ozk(x)[(y € ly) + r(z,y),

where

onle) = < [ Kita =)y
rlz,y) = K((x—y)/h) — Zozk(:li)[(y € 1Iy).

k
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This yields the decomposition

YK (o= Xie)/hye = K (@ = Xi)/h) <

t

< Z|0zk W2 — Zi| + Yo, Xe)ed 4+ Do r(e, X7 y)e)
(5.34) = Ul( ) + Uz(x) + Us(x).
Now we obtain by (5.33) that
(5.35) suplIa (@)} = O ((Th) 1 /hfg, 7).

Since K is Lipschitz we have sup, {|r(z,y)|} = O(g/h) , which implies by Lemma 5.1
that

(5.36) Us(2)] + [Us(x)] = O ((Th)"g/hlog(T) + T°,T7).

Let
XO = {l’ /
supp(K ((z—.)/R))

It is clear that there exists some set K of cardinality O(Tc) such that Xy C Urex, Ix -
Proving (5.36) for = on a sufficiently fine grid on Ujex, [r we can show that

(5.37)

w(x) + 7(x)de > T—l}.

sup {|Ua(x)] + |Us(2)[} = O ((I'h**g/hlog(T) + T°,T7") .

z€Xp

Finally, one can show by simple extra arguments that

(5.35) qup (U] + [Us(e)l} = O (19,17
l’ER\XO
The assertion follows now from (5.34), (5.35), (5.37) and (5.38). O

Proof of Lemma 4.2. We will show that

7 3 (X7 = X)) )

(5.39) = \/_Z(X*mo ) = B X mo(X5)))
fz(mo Xy = B lme(X5)?))
= N(0,7%).
and

1
TZmO(Xt*—l)z — Em,(Xo)?,
t

if (Xo,..., X7) € Qp . Since the method of proof is simple we demonstrate the ar-
gument by showing weak convergence of (5.39), only. Concerning this we make use
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of a CLT for a triangular array of strongly mixing random variables given in Politis,
Romano and Wolf (1997, Theorem Al). Since the bootstrap process is assumed to
be stationary the assumptions of Politis, Romano and Wolf (1997) simplify to

(i) E* (Xtmo(X2)*™ < A for all T and some § > 0 |

(ii) there exists o € (0,00) such that for 7' — oo

1 T
Var (ﬁ ZXt*mo(Xt*_l)) —o?
t=1
i) Y (k4 120k < K for all T
k=0 T

Here ar(-) denote the strong mixing coefficients of the bootstrap process.

Since all moments of the bootstrap process exist and are uniformly bounded (use
(A4)(v) and the same argument as in the proof of Lemma 3.1) we obtain (i) because
of (AT).

(iii) is an immediate consequence of Theorem 3.1 and the inequality |az(-)| < |5%(+)] .
To see (ii), let

o? = Var (X1m,(Xo)) + 2 - Z Cov (X1mo(Xo), Xer1mo(Xi)) -
k=1
Thus, it suffices to prove (as T"— o0)
(a) E* X{m,(Xg) = E Xim.(Xo)
and
(b) B Xgpmo(XD)Ximo(X3) = B Xepmo(Xo) Xamo(Xo), k=012,
The left-hand side of (b) equals

/Rk+2 Tpp1mo(@p)e1mo(2o)pe(pyr — m(xg)) ... pe(@1 — Mm(20))m™(20) dapys - . . dag

= /Xk+2 Tpp1mo(@g)x1mo(2o)pe (g1 — Mm(ag)) ... (@1 — M(xo)) 7™ (20) dagyr ... dxg + o(1)
T

= F Xk+1mo(Xk)X1mo(X0) + 0(1) 5
because of (A4)(ii), (iii) and Theorem 3.2.

The argument for (a) is quite similar and therefore omitted. 0
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