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Abstract

This paper proposes a computationally e�cient procedure for evaluating

the zeros of the vector moving average operator whose coe�cients are matri�

ces� A feature of the proposed method is that it is not necessary to explicitly

construct the determinantal equation from a given moving average operator

in order to evaluate its zeros� Application of the procedure is illustrated and

numerical examples are provided to demonstrate the relative computational

accuracy of the suggested method�
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� Introduction

The evaluation of zeros of polynomial equations is one of the most frequently

occuring problems in many branches of mathematics� statistics� econometrics� en�

gineering and natural sciences� amongst others� Many algorithms and computer

programs have been developed in the last three decades for evaluating the zeros of

scalar polynomial �e�g� Dunaway ������� Jenkins and Trauch ������� and Grant

and Hitchins �������� These algorithms have been widely used in many applications

and the problem of evaluating the zeros of low to moderate order scalar polynomials

could now be assumed to have been somewhat solved� Parallel developments in

the case of polynomial operators with matricial coe�cients seems to have attracted

rather less attention� Yet the need to evaluate the zeros of this class of polynomials is

ever present� and infact such evaluation plays an indispensible role in understanding

and estimating the multivariable linear systems� where there are many inputs and

outputs at each time point� as has been widely considered in both the engineering

and statistical literature� see� for example� Wolovich ������� Kailath ������� Hannan

and Deistler ������� L�utkepohl ������� and more recently� Reinsel ����
�� amongst

others�

In order to provide some motivation for considering the problem addressed

in this paper� we will consider the class of vector autoregressive moving average

�VARMA� processes of the form
pX

j��

A�j�y�t� j� �
qX

j��

M�j���t� j�� t � ��� �� � � � �����

where y�t� is a v�dimensional� observable vector process and ��t� is a v�� unobserv�

able white noise process� The parametersA�j� andM�j�� j � �� � � � � p are coe�cient

matrices of order v� Interpreting z as a unit lag operator� that is� zy�t� � y�t� ���

����� can be succintly written asA�z�y�t� �M�z���t� where the autoregressive oper�

ator� A�z� �
Pp

j��A�j�zj� and the moving average operator� M�z� �
Pp

j��M�j�zj�

are assumed to be left coprime� and satisfy

detA�z� �� �� detM�z� �� �� j z j � � �����

with det denoting the determinant of the indicated matrix� To increase the generality

sought for model ������ we will further assume that the matrix pair fA�z� � M�z�g

�



are in echelon form� Writing Aij�z� for the �i� j�th element of A�z�� i� j � �� � � � � v

and similarlyMij�z� forM�z�� the echelon form carries with it the requirement that

fA�z� �M�z�g has the following unique structure�

Aii�z� � � 	
Pni

k�� aii�k�z
k� Mii�z� � � 	

Pni

k��mii�k�zk� i � �� � � � � v�

Aij�z� �
Pni

k�ni�nij��
aij�k�zk and Mij�z� �

Pni

k��mij�k�zk� i �� j � �� � � � � v
���
�

wherein

nij �

���
��

min�ni 	 �� nj�� i � j

min�ni� nj�� i � j�
i� j � �� � � � � v�

Using property ���
� it is readily veri�ed that �A�z� �M�z�� has row degrees ni� i �

�� � � � � v� and that A��� � M��� is lower triangular with units down the leading

diagonal� The integers ni� i � �� � � � � v are known as Kronecker �or structural� indices

and in ����� p � q � max�ni�� Property ���
� intimates that particular elements of

the matrices �A�j� � M�j��� j � �� � � � � p are restricted to be zero or one� It su�ces

now to note that the number of coe�cients not restricted to be zero or one in A�z�

is

vX
i��

vX
j��

nij � n	
XX

i � j

fmin�ni� nj� 	min�ni� nj 	 ��g� n �
vX

i��

ni

and in M�z� there are an additional
Pv

i��

Pv
j�� ni � nv parameters giving a total of

n�v 	 �� 	
X X

i � j��

fmin�ni� nj� 	 min�ni� nj 	 ��g �����

freely varying parameters� For an illuminating description of the property of echelon

canonical form described in this section� see� for example� L�utkepohl and Poskitt

����
� and Salau ������ where di�erent aspects of the concept are laid bare�

There are several advantages for employing model ����� over other identi�ed

VARMA representations to analyse data� and for a lucid discussion of these� see�

for example� L�utkepohl and Claesson ������� The standard methods for e�ciently

estimating model of the form ����� requires that the moving average operator�M�z��

be invertible �cf� ������� In practice� however� random �uctuations do cause the

estimate of M�z� to occur outside the invertibility region� This problem appears

to trouble all commonly employed algorithms for estimating model ����� as has






been attested to in the literature �e�g�� Hannan and Deistler�op� cit��� Salau �������

Poskitt and Salau ������� where the only exception could be a procedure due to

Walker ���
�� which is di�cult to generalize to the vector case� Thus� constant

checks have to be made to ensure that det �M�z� �� �� j z j � � �cf� ������ where the

circum�ex has been used to indicate the estimate of the indicated quantity� This

check can be achieved with a Schur�Cohn procedure as suggested by Hannan and

Rissanen ������ and if the test fails the zeros of det �M�z� will have to be evaluated

with a view to identifying those that lead to invertibility for possible re�ection on the

unit circle� The question of which method to use to evaluate these zeros therefore

bears serious consideration� This is because the accuracy with which the zeros are

evaluated will impinge on the numerical accuracy of the re�ection scheme�

A number of procedures have indeed been suggested for evaluating the zeros

of a polynomial matrix operator� M�z�� To a very large extent� these methods rely

heavily on the explicit construction of the determinantal equation� det fM�z�g� from

a given polynomial operator in order to evaluate its zeros �e�g� Robinson ����
��

chap� ��� For moderate to large values of v and�or p the degree of the resulting

determinantal equation could be anything other than a small number and the di��

culty in obtaining the zeros of this equation with good precision could also increase

rapidly with the polynomial order� This problem has been alluded to elsewhere in

the literature� see� for example� Hilderbrand ������� It may be� perhaps� in recog�

nition of this inherent problem that an alternative procedure is introduced in the

numerical algorithm group �NAG� library �G�
DXF�� This routine is restrictive in

the sense that it works on the assumption that M��� is an identity matrix� and

in the context of echelon canonical form� speci�ed by ���
�� this condition cannot

always be guaranteed� What is therefore needed is a general procedure that can be

applied to all possible VARMA representations but gives good numerical accuracy�

The purpose of this paper therefore is to propose a more general� computa�

tionally e�cient and numerically accurate procedure for the evaluation of zeros of

a moving average operator� A feature of the proposed method is that it is not nec�

essary to explicitly construct the determinantal equation in order to evaluate the

zeros of a given moving average operator�
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The rest of this paper is organized as follows� In Section � we give a brief

exposition of the technique that is currently in widespread use� and also presents the

proposed procedure� This is followed in Section 
 by an algorithm for implementing

the proposed procedure� A numerical example is also provided to illustrate the

di�erent aspects of the algorithm� Section � is devoted to the examination of various

but di�erent examples� contrasting the performance of the proposed procedure with

that of the existing method� The paper concludes� in Section �� with some summary

remarks�

� The Methods

In this section� the existing and proposed methods for evaluating the zeros

of a given polynomial operator are introduced� For ease of presentation we have

organized our discussion in this section into two subsections dealing with the con�

ventional method and the proposed procedure� respectively�

��� The Conventional Approach

The standard method used in evaluating the zeros of a polynomial matrix

operator is to explicitly construct its determinantal equation and then uses it to

evaluate the zeros� Most of the available techniques for evaluating the zeros of a

polynomial matrix operator rely on this approach� For ease of comparison� it may

prove useful to highlight its main features� To illustrate the general principle� we

consider the following example� Suppose we have a bivariate VARMA process in

echelon form de�ned by the speci�cation n� � � and n� � � for which its moving

average component is of the form

M�z� �

�
B�

��� �

��� ���

�
CA 	

�
B�


�� ���

��� ����

�
CA z 	

�
B�


�� ���

��� ���

�
CA z�

	

�
B�

��� ����

� �

�
CA z� 	

�
B�

��� ���

� �

�
CA z�� �����
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Herein� an asterisk has been used to denote an element that is restricted to be naught

by virtue of the structure of echelon canonical form� a notational convention that

we will persist with in expressions of this type� Now observe that equation ����� can

be compactly written as a matrix with polynomial entries �i�e� polynomial matrix��

M�z� �

�
B�

�z� 	 �z� 	 
z� 	 
z 	 � z� � ���z� 	 z�

�z� 	 �z 	 � z� � ���z 	 �

�
CA � �����

This example typi�es one of the basic properties of the echelon form and also nicely

illustrates that the freely varying coe�cients can introduce additional naught and

other constraints into the operator over and above those given by ������ In ������

one of the �
 freely varying parameters in M�z� is naught for example�

Let us denote the elements of M�z� in ����� by

�
B�

m���z� m���z�

m���z� m���z�

�
CA� Then the

determinant of M�z� can now be readily obtained in the same way as for a matrix

with scalar elements as

detM�z� � m���z� �m���z��m���z� �m���z�

� z� 	 ���z� � ���z� 	 ���z 	 ��

In general� for v � �� the determinant� using standard results in matrix algebra� is

obtained as detM�z� � m�j�z� � coffm�j�z�g 	 � � � 	 mvj�z� � coffmvj�z�g for any

j � f�� � � � � vg where coffmij�z�g � ����i�jminorfmij�z�g� i� j � �� � � � � v� denotes

the cofactor of mij�z�� see� for example� L�utkepohl ����
� and the related references

therein for detailed exposition� The evaluation of zeros of detM�z� can now be

readily accomplished using any of the standard �nite algorithms �e�g� GAUSS�

NAG Library� IMSL� MATLAB� amongst others��

From the foregoing discussion� it is evident that in moderate to large multi�

variable systems the construction of the determinantal equation and the subsequent

evaluation of zeros could impose a huge computational burden� and moreover the

accuracy of zeros could likely su�er from pertubation arising from rounding errors�

The natural question which now arises centred on how to overcome these problems�

and this is considered next�






��� The Proposed Procedure

We describe in this section a convenient procedure for evaluating the zeroes

of a v � v non�singular matrix M�z�� To make the proposed procedure somewhat

more general we will for now refer to polynomial matrix operator and will drop

explicit reference to the quali�cation moving average operator in our exposition

except where the context makes the use of the latter more natural� We commence

the discussion by �rst repeating some facts from the algebra of polynomial matrices

�see� e�g� Barnett� ����� Gohberg et� al� ����� MacDu�ee� ���
� which are exploited

in the subsequent developments� Now let��z� �
P�

j����j�zj be a v�v polynomial

matrix with real coe�cients and of full rank� If there exists a polynomial matrix

U�z� such that H�z� � U�z���z� then U�z� is called a right multiple of ��z�� A

polynomial matrix U�z� is called unimodular if detU�z� is a constant not equal to

zero and if and only if U�z��� exists� and is a polynomial matrix� Thus� U�z��� �

�detU�z���� � adjU�z� � c�� � adjU�z� for some non�zero constant c since U�z� is

unimodular where adj denotes the adjoint �adjugate� of the indicated matrix� Thus�

we state the following result�

Theorem �� �Hermite Normal Form�

Every non�singular matrix v � v polynomial matrix ��z� of full rank v can be

transformed by left multiplication by a unimodular matrix U�z� to a unique matrix

H�z�� called the Hermite normal form� with the following properties�

�i� H�z� is lower triangular�

�ii� hii�z� �i � �� � � � � v� are monic polynomials �i�e� the highest degree coe�cient

of hii�z� equals unity��

�iii� �fhji�z�g � �fhii�z�g� j �� i� where � denotes the degree of the polynomial indicated�

�iv� �fdetH�z�g � �fdet��z�g and the zeros of detf��z�g and detfH�z�g coincide�

Proof� By performing a series of elementary row operations �involving inter�

changing of any two rows� adding to any row a polynomial multiple of any other row

or multiplying any row by a nonzero real number and�or a combination of these � on

��z�� properties �i� � �iii� can be readily established� Property �iv� follows from the

�



fact that by construction H�z� � U�z���z� and hence detfH�z�g � c � detf��z�g

where c is a non�zero constant since U�z� is unimodular� The result is now imme�

diate� see Birkho� and Mclane ������ Chapter 
� Theorem ���

Some properties of the matrix H�z� that are worth observing are that

hii�z� � zni 	
ni��X
r��

hii�r�z
r� i � �� � � � � v�

hji�z� �
njiX
r��

hij�r�z
r� � � i � j � �� � � � � v� nji � ni

and if hii�z� is unity all other entries in the ith column are zero�

It is also clear from Theorem ��iv� that the zeros of det��z� can be evaluated

by examining the diagonal elements of H�z� and this does not involve explicit con�

struction of the determinantal equation for although det��z� � �v
i��hii�z� where

�fhii�z�g � �v and �� as before� is the degree of the polynomial matrix ��z�� It

is� perhaps� worth pointing out that the reduction of a polynomial matrix to its

Hermite normal form is a fairly e�cient numerical procedure which is e�ected via

the Euclidean division algorithm�

� The Algorithm

In this section we present an algorithm for implementing the procedure intro�

duced in the previous section� Now suppose we have a non�singular matrix ��z�

of order v with elements �ij�z� where �ij�z� is a polynomial of degree nij� i� j �

�� � � � � v� and that the evaluation of its zeros is of interest� This goal can now be

achieved in the following steps�

Step �� Identify the entry in the last column of ��z� which has the lowest degree

among the non�zero entries of this column and bring it in the �v� v� position

by row interchange�

Step �� Apply the Euclidean division algorithm� subtract from every row in that

column except for the last one an appropriate polynomial multiple of the last

row such that the new entries in that column have degrees strictly less than

���vv�z���

�



Step �� Repeat step � until all elements in the vth column� except the �v� v� element�

are zero�

Step 	� Ignore the vth row� Repeat steps � and � for the second last column of the

resulting matrix until all entries above the �v � �� v � �� entry are zero�

Step 
� Check whether the �v� v� �� entry has degree lower than the �v� �� v� ��

entry� If it does not then apply the division algorithm and the corresponding

subtractions to obtain a �v� v � �� entry having lower degree than the �v �

�� v � �� entry�

Step �� Continue the procedure for all remaining columns and ensure that the resul�

tant matrix� say H�z�� is lower triangular� and that the property �fhji�z�g �

�fhii�z�g� j �� i � �� � � � � v� is preserved�

Step �� Check whether the hii�z�� i � �� � � � � v is monic� If it is not then scale all

its coe�cients by the coe�cient of its leading term�

Step 
� Evaluate the zeros of hii�z�� i � �� � � � � v� using standard �nite routine�

Remark� It is important to emphasize that the implementation of the algorithm

does not require the entire matrix M�z� to be stored at one go in order to obtain

the required diagonal elements of H�z�� As it can be readily veri�ed� the Euclidean

division algorithm is only applied to one column of M�z� at a time� This inti�

mates that the ith column of M�z� can be stored at a time and processed to obtain

hii�z�� i � �� � � � � v� The virtue of this mode of construction will be more appreciated

when the algorithm is applied to large multivariable systems�

��� An Illustrative Example

In order to facilitate a clearer understanding of the algorithm presented in the

previous section as well as providing some guide as to the practical implementation

of the scheme� we now consider a numerical example� Suppose we have a polynomial

operator given by equation ������ For the purpose of the present exposition� it is also

most convenient to rewrite M�z� as a matrix with polynomial entries as in ������

�



First� our objective is to generate matrix H�z� from the polynomial matrix

operator M�z�� and second to obtain the zeros of M�z� by examining the diagonal

elements of H�z�� The �rst step in the procedure is to identify the entry in the

last column of matrix M�z� �column � in the present case� with the lowest degree

among its non�zero entries and bring it in the ����� position by a row interchange�

This condition has already been met� The second step of the procedure is to apply

Euclidean division algorithm using the entry in position ����� as a divisor and sub�

tract the polynomial multiple of the entry ����� from that of entry ������ As can be

easily veri�ed� the resulting matrix� denoted by �M��z�� is obtained as

�M��z� �

�
B�

m���z� �

m���z� m���z�

�
CA

where m���z� � �z� 	 �z� 	 
z� 	 
z 	 �� m���z� � �z� 	 �z 	 � and m���z� �

z� � ���z 	 �� Since m����� � � Steps � and 
 of the algorithm are automatically

ful�lled and we are therefore led into step �� Repeating steps � and � for column �

of �M��z� reduces the matrix to the form

�M��z� �

�
B�

z� 	 
z 	 � �

�z� 	 �z 	 � z� � ���z 	 �

�
CA �

The application of Steps � and 
 to �M��z� yields

H�z� �

�
B�

z� 	 
z 	 � �

z z� � ���z 	 �

�
CA

and the corresponding unimodular matrix� generated in an analogous manner to

H�z� commencing with an identity matrix� is obtained as

U�z� �

�
B�

��� �z�

���� �z� 	 �

�
CA �

In order to complete the step leading to the evaluation of zeros of M�z� via H�z��

a check has to be carried out to ensure that each of the diagonal elements of H�z�

is a monic polynomial� and this constitutes Step � of the algorithm�

As it can be readily veri�ed� detA�z� � detH�z� � ��
i��hii�z� � z� 	 ���z� �

���z� 	 ���z 	 � as before� Hence� the zeros of det M�z� are evaluated� via the

��



diagonal entries of H�z�� using the NAG routine C��AGF� and are written to two

decimal places as �� � ���
�� �� � ���
�� �� � ��� and �� � �����

In choosing this example however� we are constrained to a simple� perhaps

obvious� problem that can be easily veri�ed� This is done to keep the exposition as

simple as possible in order to convey the basic ideas of the procedure� Working with

the diagonal elements ofH�z� to obtain the zeros ofM�z�� as it does in this example�

obviates the need to construct the determinantal equation in order to achieve the

same end� Since the degree of hii�z�� i � �� � � � � v� will always be relatively small�

it is most expected that increased accuracy would obtain through the use of the

proposed algorithm� This last part of the argument is heuristic and it has to be

checked using various but di�erent numerical examples� This now forms the focus

of the next section�

� Numerical Comparison Of Procedures

The theoretical discussion of the previous section indicates that improved ef�

�ciency and accuracy could result from using the proposed method to evaluate the

zeros of the moving average operator but it does not� as it stands� provide a simple

summary measure of its relative performance over its competitors� The purpose of

this section is to provide such analysis via the use of some numerical examples� To

facilitate this investigation� a suite of programs designed to perform both the imple�

mentation of the conventional approach� described in Section �� and the algorithm

introduced in Section 
 were developed� These programs� supplemented by the nu�

merical algorithm group �NAG� routine �C��AEF�� were written in FORTRAN ��

and implemented on a SUN SPARC Station �� utilizing double precision arithmetic

in all calculations� The accuracy of the programs was checked in various obvious

cases�

We commence our investigation by introducing in Tables � and � the moving

average operators employed� arranged according to their degrees of determinantal

equation with the smallest �rst� Table � contains examples of moving average oper�

ator with unrestricted coe�cients while those derived from echelon canonical form

��



are presented in Table �� We have chosen to present the moving average oper�

ator with unrestricted coe�cients separately not only we feel they are commonly

employed in most applications but because its structure is more readily assimilated�

This distinction further serves to re�ect the general applicability of the proposed

scheme�

It is also worth mentioning that the moving average operators presented in

Tables � and � have been carefully constructed to re�ect the situations that are

commonly encountered in practice in the statistical analysis of vector linear time

series� The choice of these examples in itself is guided to some extent by our previous

experience� They are so constructed such that detM�z� contains some repeated

zeroes with real or complex values and�or a combination of these� These zeros are

however chosen to be a mixture of values that are close to origin or very close to

unity and of those that are clearly outside the unit circle�

The �rst phase of the proposed procedure is to generate the Hermite normal

form� H�z� �cf� Theorem �� corresponding to each of the moving average �MA�

operators introduced in Tables � and �� using a suite of computer programs designed

for that purpose� The resulting matrices are presented in Table 
 but note that the

symbol � has been used to denote the entry that is null by construction�

Following what may be regarded as a standard practice we will measure the

accuracy of the two procedures by reference to the Euclidean norm of the di�erences

between the true and the computed zeros of detM�z�� This criterion measure is

given as

Cd �

�
�

nX
j��

j �j � ��j j
�

�
A

�

�

�

where �j and ��j stand for the true and computed zeros� respectively� and n denotes

the number of zeros evaluated� The choice of the criterion measure is motivated by

the ease of interpretation that it provides� namely� the size of Cd varies proportionally

with the distance between the computed and the true zeros� This intimates that

the closer is ��j to �j then is Cd tends to zero almost surely� Thus� the method that

gives the smallest value of Cd may be considered as the most e�cient method of

evaluating the zeros of the moving average operator� The results obtained from this

empirical investigation are now summarized in Table ��

��
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TABLE �

Hermite Normal Forms corresponding to M����z� �M����z� and M
���
y �z� �M

���
y �z�

MA Operator Hermite Normal Form �H�z��
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� h���z� �

h���z� h���z�
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M����z� wherein	

h���z� � z� � 
�����������z�� 
�
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��

h���z� � ���z � ��
� h���z� � z� � ��
z� � ��
z � ��
�

H����z� �

�
BBB�

h���z� � �

���z� � ���z� � ��
z h���z� �

���z� � ���z 
���z�� ���z h���z�

�
CCCA

M����z� wherein	
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��
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TABLE 	

Summary of Results for the Conventional and Proposed Procedures

MA Operator n m Cd Values

CA PP

M
���
y �z� � � ��

 � ����	 ���

M ����z� 
 � ���� � ����� ���

M ����z� �� � ���� � ���� ���

M ����z� �� � 
��� � ���� ���

M
���
y �z� �� �� ���� � ���� ���

Table � contains the criterion values� Cd� obtained for the two procedures�

the degree of the determinantal equation �n� corresponding to the moving average

operators employed in this investigation and m denotes the number of zeros of

detM�z� that lie on or close to the unit circle� In this table� the symbols CA

and PP have also been used to denote the conventional approach and the proposed

procedure� respectively� The criterion value� Cd� is taken to �� places of decimal

and this enables us to capture on the essential characteristics of each of the two

methods� As can be observed� the results indicate that there are marked di�erences

in the accuracy of the two procedures� The proposed procedure seems to outperform

its competitor irrespective of the location and nature of the zeros and�or the degree

and dimension of the moving average operator being considered� and this re�ects

the general characteristics in the vast majority of the cases that we considered� As

it might be anticipated� the accuracy of the conventional approach deteriorates as

the degree of the determinantal equation increases� What is perhaps surprising is

the fact that the degree of the determinantal equation does not have to be extremely

large for the conventional method to yield unacceptably poor values of the zeros� It

is our experience that when the determinantal equation contains a number of zeros

that are equal in magnitude but opposite in sign� the conventional method tends to

produce inaccurate results� This is in contrast to what obtains using the proposed

procedure where the computed zeros are� in most cases� in close agreement with the

true values�

The results in Table � further hinted that the bias associated with the values

��



of zeros obtained via the proposed procedure is much smaller than those obtained

using the conventional approach� The bias associated with the proposed procedure

seems to be invariant to the location of the zeros or the degree of the determinantal

equation while those associated with the conventional approach increase rapidly

with the degree of the determinantal equation� It is however not clear from these

results what might be responsible for the observed di�erences in the performance of

these alternative procedures� Some insight into the mechanism giving rise to this

phenomenon can be gained by examining the values of zeros obtained from the two

procedures individually� As an illustration we show in Table � the values of zeros

obtained from the moving average operator� M����z�� and their absolute deviations

from the actual zeros for the two procedures�

The results in Table �� written to six places of decimal� are representative and

indicate that the two procedures can produce somewhat di�erent outcomes� These

results re�ect what could likely happen when these procedures are used to evaluate

the zeros of detM�z� and this is typical of situations where detM�z� contains a

mixture of real and complex zeros that lie close to the unit circle or contains a number

of repeated zeros that are equal in magnitude but opposite in sign� These features

seem to have a much more pronounced e�ect on the performance of the conventional

method than the size of the degree of the determinantal equation as it is generally

believed� Closer examination of the experimental outcomes further reveals that the

observed deviations from the true zeros arise from pertubation caused by rounding

errors and they become magni�ed as the number of repeated zeros increases and�or

the degree of the determinantal equation becomes large� This bias� in the context

of vector ARMA estimation� is most likely to feed through to other quantities of

interest such as the prediction error variance and estimates of power spectra should

any attempt is made to re�ect the zeros bounded by j z j� �� through the unit circle

to obtain an equivalent stable moving average operator� One would also expect

similar e�ects to be re�ected in the subsequent parameter estimates obtained via

the Gauss�Newton iterative scheme or the generalized least squares procedure� Given

the complexity of the problem and the absence of the knowledge of the situation

we might be dealing with in practice� it therefore becomes imperative to opt for a

procedure that ensures accuracy when consideration is given to the evaluation of

��



zeros in the estimation of vector ARMA models�

TABLE 


Observed Patterns of performance of the Conventional and Proposed

Methods using M����z� Example

j Conventional Approach Proposed Procedure �j

��j j �j � ��j j ��j j �j � ��j j

� ���� ��� ���� ��� ����

� ������� 	 �����
��i �������� ��� ��� ���


 ������� � �����
��i �������� ��� ��� ���

� �����
�� �����
�� ��� ��� ���

� ��� ��� ��� ��� ���


 �������� �������� ��� ��� ���

� ���� ��� ���� ��� ����

� �������� �������� ��� ��� ���

� �������� �������� ��� ��� ���

�� �������� �������� ���� ��� ����

�� �������� �������� ���� ��� ����

�� ��� 	 �i ��� ��� 	 �i ��� ��� 	 �i

�
 ��� � �i ��� ��� � �i ��� ��� � �i

�� �������� ��� �������� ��� ��������

�� ��������
� 	 ��������i ������

 ���� ��� ����

�
 ��������
� � ��������i ������

 ���� ��� ����

�� ����� ��� ���� ��� ����

�� ��������� �������
 ���� ��� �����

� Summary Remarks

In this paper� an alternative procedure for evaluating the zeros of the mov�

ing average operator is proposed� By means of the proposed approach� it has been

possible to evaluate the zeros of large order and higher dimensional moving average

operators with some degree of accuracy� The approach is more convenient in sev�

��



eral ways� First� the evaluation of zeros does not require the explicit construction

of the determinantal equation� Second� the intermediate �gures obtained during

calculations are always within the memory capacity of most available present day

computers� This makes it easy to be implemented on microcomputers with limited

memory capacity� Third� it yields good numerical accuracy irrespective of the degree

and dimension of the given moving average operator� These comparative advantages

suggest that there may be some practical virtues in using the proposed approach to

evaluate the zeros of the moving�average type of operator�

Finally� the objective of the present study is to provide a practical solution to

the problem rather than an abstract theoretical treatment of the subject�matter�

It has nevertheless been impossible to avoid mathematical exposition completely

so much that it has been considered best to give the main theoretical results in

algorithmic form� This is done solely in the interest of clarity� however� and not to

provide a pretence of rigour where no particular degree of rigour is required�
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