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MAXIMIZATION OF EMPIRICAL SHANNON INFORMATION

IN TESTING SIGNIFICANT VARIABLES OF LINEAR MODEL

M� MALYUTOV AND H� SADAKA

Abstract� Search for an unknown set A�Card�A� � s� of signi�cant variables
of a linear model with random IID discrete binary carriers and �nitely supported
IID noise is studied� Two statistics T�� Ts� based on maximization of Shannon
Information �SI� of the corresponding classes of joint empirical input�output dis�
tributions� are proposed inspired by the related study in Csiszar and K�orner
��	
��� The �rst one compares sequences of values of each variable and of the
output separately� The second one explores the relation between the subsets of
the �N � t� design matrix corresponding to each subset of variables of given car�
dinality and the output sequence� Here N is the number of experiments and t is
the total number of variables� Both statistics are shown to be asymptotically as
e�cient as the ML�test for the corresponding classes of joint empirical distribu�
tions in the arti�cial case when ML�test is applicable� if the unknown parameters
b�� � � A� of the model and the distribution of errors are known� Our tests do
not require this information� Therefore� they are asymptotically uniformly most
e�cient in the corresponding classes of tests� The second statistic is shown to
provide asymptotically best rate of search for the set A of signi�cant variables
when t � �� but requires about ts log t cycles of computing� This may appear
in accessible for actual computations in some applications� The �rst statistic
requires only t log t cycles of computing operations and provides the best order
of magnitude of the characteristics studied for the second class of tests�

Introduction� Formulation of main results�

The problem of search for a limited number of distinguishable elements of a large
population is very popular in mathematics and related natural sciences� Here we
restrict our attention only to active problems of this kind� namely� we assume a
rational choice �or design� of search experiments� Under certain restriction on the
design and analysis of such experiments and the pre�assigned error probability it
is desirable to minimize the number of experiments�
We present here the construction of generally applicable search strategies and prove
certain optimality of the performance of our search strategies under a linear model�
This distinguishes our study from some applied ones �see e�g� recent volume Patel
������� devoted to search construction in speci	c models� where even the notions
are absent sometimes providing possibility of comparing procedures proposed with
the optimal ones��
After the famous textbook of W� Feller on probability� it has been popular to begin
exposition of successful search strategies from Dorfman
s group �pooled� testing of
blood� This approach is being intensively developed at present for applications in

The research was carried out within SFB � at Humboldt University� Berlin and was printed
using funds made available by the Deutsche Forschungsgemeinschaft�
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medical screening� Less known is the dramatic history of Random Balance Method�
Consider a linear model

zi �
X

����t
��A

b�xi��� � ei� ���

with random jointly IID carriers xi��� � B � f��� �g� xi��� � � with probability
��  � � � �� � � �� � � � � t� i � �� � � � � N and IID with 	nite support random errors
ei� i � �� � � � � N� Assume that b� �  unless � � A with cardinality jAj � s �� t�
For the detection of the set A the �Random Balance Method��RBM� �F� E� Sat�
terthwaite� T� A� Budne� Technometrics� �� No �� �������� was proposed and applied
successfully to numerous cases of 	nding disorders of industrial production�
In the discussion contained in the same issue of the journal� RBM was unanimously
rejected by the leading applied statisticians of that time� They seemed to overlook
the di�erence of the set�up studied from that of the estimation of parameters of the
model requiring a new type of design and analysis� Actually� the visual inspection
of scatter diagrams of data N �sequences �XN���� ZN� for each � � �� � � � � t� was
proposed by the authors of RBM� although some rank statistics �e�g� Budne test�
were also applied�
The main point in their arguments was probably Fisher
s idea of randomization�
when the value of a variable is 	xed� other variables
 contribution to the output is
a pure noise under the random design� Hence the in�uence of each variable on the
output can be estimated in this noisy background� The relevant Bahadur e�ciency
of linear and other rank tests was studied for the search of A in Nikitina �������
Shcherbakova ������� but they failed to 	nd the asymptotically best statistic from
this class�
Use of rank statistics seemed natural because the parameters of noise caused by
other variables were unknown suggesting some non�parametr�
icity of tests� It was precisely with the justi	cation of RBM that mathematical
study of the planning of screening experiments began in Kolmogrov laboratory of
Moscow State University� USSR� Its main ideas were revived by simulation and
early theoretical papers attributed to simpler models �Meshalkin ������ Malyu�
tov� Pinsker ������� Malyutov and Freidlina ������� Freidlina ������� summarized
in survey Malyutov �������� where RBM was at last been related to earlier combina�
torial approach of P� Erd�os and A� Renyi to search problems without experimental
errors�
The paper of Erd�os and Renyi ������ was one of their series devoted to the the�
ory of search in various simple models� In this particular one they partly solved
a problem of identifying special elements �which we call further false� of a set �t�
containing t elements supposed to be numerated by numbers from � to t by the
following tests which we call weighings� Any sequence of subsets of �t� can be cho�
sen and numbers of false elements in these subsets become known after weighing�
It can be interpreted as a search for false coins �FC� �say� copper� with known
identical weight which is e�g� smaller than the weight of a real coin �say� golden��
The construction of asymptotically e�ective static search for FC in a large sample if
no restrictions are imposed on the number of FC is described in Lindstr�om �������
He formulated also new problems� particularly on the best rate of sequential search
�in terms of its maximal length� for a limited number of FC in a large sample�
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He invented a general principle of concatenated construction of successful search
strategies for unique FC in a collection of subsets �which is the second phase of
the general class of sequential strategies and was extended afterwards at least in
two Ph�D� theses� and conjectured the lower bound for the minimal duration Ns�t

of static errorless search

lim
Ns�t

log
�
t

s

� � h�s�� t��� ���

where h�s� is the entropy of the binomial distribution of a number of successes in
s trials with probability �

�
of a success�

Recall that if p�� � � � � pt are probabilities with sum � in a 	nite sample space� then
the entropy of this distribution is H � �

Pt
i�� pi log pi� The bound ��� was proved

in Dyachkov ������ using one elegant result of Mateev ������� Useful instruments
for it were already prepared in Erd�os and Renyi ������� The random coding upper
bound for the left�hand side of ��� is asymptotically two times worse �Dyachkov
��������
We modify some of Lindstr�om
s problems in that general linear model ��� �of which
the search of false coins is a special case when all parameters b�� � � A are identi�
cal� and we admit mean error probability �MEP� � �  of search under the uniform
prior distribution U�s� t� of FC allocations�
Introduce the asymptotic rate AR � limt��

log t
N���

of a test T � Here N��� is the

minimal sample size for the probability of T to detect correctly subset A �under
the uniform prior distribution of variables
 subsets of cardinality s� to be not less
than � � � �  � � � �� It will be shown for the chosen tests that AR does not
depend on ��  � � � ��
The ML�decision provides �see e�g� Gallager ������� the best AR under any 	xed
design when all the coe�cients b�� � � A and the distribution of errors are known�
For the case when signi	cant parameters b�� � � A and the law of IID disturbances
ei� i � �� � � � � N are unknown ML�test is not applicable� Nevertheless� we 	nd two
tests Ti� i � � or s� with the following properties� Test Ts provides the maximal
AR of search for the subset A� when t � � for any 	xed  � MEP � �� it
requires about ts log t cycles of operations� The test T� has the best characteristics
of the same kind inside the subset of the tests based on comparing functions of
�XN���� ZN�� � � �� � � � � t� About t log t cycles of computing operations are re�
quired for these tests�
Remark� For t � � and MEP of the order e�dN in some range  � d � D
the 	rst class of tests provide the maximal AR as well� This will be proved in our
subsequent publications�
Both statistics for the case t � � are based on calculation of Kullback�Leibler
divergence �KULD�

K���XN �A�� ZN�� ��XN�A��� ��ZN��

of the joint empirical distribution � � �N �A� of the output and a subset X�A� of
input variables of cardinality s or � from the corresponding product distributions
with the same marginals� This particular case of KULD �called Empirical Shannon



� M� MALYUTOV AND H� SADAKA

Information �ESI�� is

I��N �A�� �
X

x�A��BjAj

X
z�Z

��x�A�� z� log���zjx�A�����z���

where ���� is the marginal empirical distribution of the output�
Introduce ��s� t��set of unordered s�tuples �without replacement� from �t� �
f�� � � � � tg and U�s� t��uniform prior distribution over ��s� t�� Test Ts chooses the

subset �A maximizing I��N �A�� among all subsets A of cardinality s� i�e�

Ts � arg max
A���s�t�

I��N �A���

Test T� chooses the subset of variables corresponding to s maximal values of
I�� �N������ � � �� � � � � t describing in�uence of each variable x��� on output sepa�
rately� We describe this de	nition by the following notation�

T� � arg max
����t

I��N �����

Remark� We consider only extreme cases jAj � � or s� The extension of these
de	nitions and properties for the tests Tk� � � k � s is straightforward� We are
going to deal with them in the next publication�
One of intuitive ideas behind the choice of the statistics T� is that for signi	cant
variables �and subsets of these variables� our statistics are strictly positive while
for non�signi	cant variables �and sets� these statistics vanish for large samples�
The less transparent idea which will become clear later is that the large deviation
probabilities for these tests are unexpectedly easy to bound�
All cases of ambiguity of the above decisions are treated as errors of the tests� The
similar study of the case of unknown but a priori bounded jAj is postponed until
the next publication as well as the discussion of yet unsolved problems connected
to the choice of the optimal randomization parameter �� It is reduced in Malyutov
and Mateev ����� to that of 	nding the maximin strategy of the player in the
game ���� which is solved only in the extreme cases when either i� all signi	cant
parameters b� are equal or
ii� the cardinality of the set of their distinct linear combinations with coe�cients
� or �� is �s�
In both cases the optimal randomization parameter is� of course� �

�
�

In general� maximin randomization parameter can be a mixture of not more than
�s pure ones� if model ����� fails to be ordinary in terminology of Malyutov and
Mateev ������
Meshalkin ������ Malyutov and Pinsker ������ �respectively Lindstr�om �������
Dyachkov ������ and Mateev ������� proved for errorless observations in the op�
timally randomized case ii �respectively� i� that the uniqueness of the subset A of
cardinality s that provides existence of the solution of the natural system of linear
equations X

��A

	�xi��� � zi� i � �� � � � � N

�	� � const for the case i� takes place with the probability approaching � with
exponential in N rate i� AR � � �respectively� AR � s��h�s�� where h�s� is
the entropy of the sum of s Bernoulli trials with probability �

�
of success� i�e�� of

Binomial �s� �
�
�� The subset A which provides the solution of the corresponding
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system of linear equations may be regarded as an extreme case of ML�test for
errorless observations�
It is straightforward to check that our test Ts requires the same AR as the optimal
one in both cases� For the test T� it su�ces AR � � in the case i and AR � �s�

�s �
s��X
�

Bins���z� log

�
� �z � ���s� z�

s�

�
�

in the case ii for its MEP to decay when t���
For describing the maximalAR of tests in the presence of noise 	rst introduce Shan�
non information between the output Z and a subset X�A� of IID P��distributed
input variables

I��X�A� 	 Z� � EP� log
P��ZjX�A��

P��Z�
�

where P��X� � �� � �� P��X� � � � �� �� P���� is the marginal distribution of
Z�

C�s� � max
��D

I��X�A� 	 Z�� ���

These quantities play the main role in describing the maximal rate of search for the
separate testing of variables for signi	cance �jAj � �� and for ordinary �Malyutov�
Mateev ������ particularly for symmetric� models �jAj � s�� The extreme models
i and ii described above are ordinary ones� Moreover i remains ordinary even in
the presence of arbitrary discrete IID noise� It is not yet established if the general
model ��� is always ordinary�
It is worthwhile to emphasize that the distribution P��ZjX�F �� describes the noise
created not only by observation errors but also by the randomly varying SV
s not
included in x�F �� jF j � s�
For general �not ordinary� models AR of ML� and of our test Ts� under t � �
is described in terms of conditional Shannon information �CSI�� Under the 	xed
sequence �s� � f�� � � � � sg of SV let V�v� s� denotes the set of unordered subsets
V 
 �s� of the cardinality jV j � v� V�s� � �s�����V�
� s�� V

c � �s� n V� x�V � be a
function x�i�� i � V� CSI is

I��V � � IP��Z 	X�V �jX�V c��� ���

where

IP �X 	 Y jZ� � EP log
P �XjY Z�

P �XjZ�
� ���

P ��� being the joint density of RV X� Y� Z� Let C�s� be the value of the game� in
which one of players chooses � � D � �� �� and the second chooses V � V�s� with
the pay�o� function

J��V � �
I��V �

jV j
�

i�e��

C�s� � supminJ��V �� ���
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sup is over the class D� of probability distribution � on D� min is over V 
 V�s��
Malyutov ������ found that sup in ��� can be replaced by the max over distri�
butions on D� concentrated in not more than �s points� This follows from the
characterization of maximin strategies with convex pay�o� function �see e�g� Kar�
lin �������� Moreover� it was stated in Malyutov ������ that C�s� determines the
maximal AR of static search in a very general discrete model including model ����
Now we are ready to formulate our main results� De	ning

R�Xt� �
logt

N�Xt�
�

where N�Xt� is the number of rows in the design matrix Xt we have Theorem �

i� For any � �  and discrete mixture � of IID P��randomized designs Xt with the
limit rate

min
��A

I��X��� 	 Z�� ��

ML�test based on s maximal values of the likelihood of �X���� Z� and T� have MEP
exponentially small in N when t���
ii� Particularly� the assertion of the �rst part holds for the maximin randomization
mixture ������

Theorem �� i� For any � �  and discrete mixture � of IID P��randomized designs
with the limit rate min

V
J��v� � �� �see ���� ML�test and the test of maximal ESI

have MEP exponentially small in N when t���
ii� Particularly� the assertion of the �rst part holds if

lim
t��

R��t� � C�s��

and the maximin randomized design for the game ��� is chosen� C�s� is the maximal
rate of any design and test admitting arbitrary small positive MEP�
Remark� Proof of the last statement of theorem � for ML�test uses some of the
main ideas of the capacity region construction for MAC without feedback �see
Csiszar and K�orner ������ and the end of this section�� although it does not follow
from the MAC theory� However� the lower bound for AR is proved almost along the
lines of Csiszar and K�orner ������ �it does not follow from famous Fano inequality��
Proof and its generalization for the case of unknown s and for unknown T ��� are
published in Malyutov� Dyachkov ����� � and in Malyutov �����a�� in Russian�
supplied by the Dyachkov
s estimate from below for the same quantity in the case

j log ��t�j � �log t��

which is� unfortunately� not sharp� The proof of Malyutov is reproduced in German
by Viemeister ������ supplied by some minor generalizations� In Malyutov� Mateev
����� the coincidence of ����� and ����� for ordinary models introduced there
�including symmetric ones� is proved�
Solution of maximal empirical Shannon Information was studied in Csiszar and
K�orner ������ for convential Shannon scheme of Information Theory and essentially
the same decision was studied in Dyachkov and Rashad ������ for the search of
SV
s of symmetric discrete functions of s variables when t��� In Malyutov and
Mateev ����� the maximal AR of separate detection of SV
s by ML�test is found�
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In papers ����� ���� and ��� the theory of sequential search for signi	cant variables
was developed�

Outline of MAC theory� A discrete multiple access channel �MAC� with s
senders� one receiver and �with or without � errorless feedback is described by the
transition probability

P �zjx���� x���� � � � � x�s�� ���

of a symbol z from a 	nite alphabet Z at the input of the receiver when senders
transmit code symbols x���� � � � � x�s� respectively� If sender i chooses one of Mi

messages� say� the jth one� he codes it into codeword

Xj � �x
�j�
� �i�� � � � � x

�j�
N �i��

and all senders transmit their codewords synchronously� symbol by symbol� These
symbols are converted into sequence a Z�� � � � � ZN of conditionally independent
RV
s given all the codewords of the senders according to ������ where zn� xn�j�� j �
�� � � � � s� are substituted instead of z� x�j�� j � �� � � � � s�
A decision rule must be chosen� mapping the set of sequences fz�� � � � � zNg into the
set of s�tuples of messages
 indices� where N is 	xed block size� A transmission�
consisting of coding and a decision is called erroneous if at least one of the indices
of messages is determined erroneously� For a general MAC� information�theoretic
framework is equivalent to the following statistical one�
Let us numerate the sequences ��� � � � � �s corresponding to di�erent distributions
and introduce the deterministic function f���� � � � � �s� which takes values from the
set Z of indices of distinct distributions � i� e� we have glued together sequences
��� � � � � �s having the same input distribution P ��j��� � � � � �s� of the reciever��
Hence each MAC�scheme is equivalent to the superposition of a deterministic func�
tion f��� and transformation of its values into distributions P ��jf���� � � � � �s�� such
that the function f��� depends essentially on each of its arguments and all the dis�
tributions P ��jz� are distinct for z � Z�
The important advantage of MAC senders is that they know their messages and
can use arbitrary codes whereas in the search the statistician does not know the
true indices of the SV
s and design� Thus the coding is indirect�
Let N be the codelength� The rate Ri of transmission for the i�th sender is de	ned
as Ri �

logMi

N
� An s�tuple R�� � � � � Rs is called ��achievable�  � � � �� if transmis�

sion with these rates and with mean error probability over P not exceeding � is
possible� The capacity region is the set of all ��achievable s�tuples for all � � �
Let us outline for s � � and binary inputs the construction of the capacity re�
gion E of a general MAC without feedback described e� g� in Csiszar and K�orner
������� Let Xi be independent random variables taking values �� with probabili�
ties pi� ��pi� i � �� �� and let the conditional distribution of the random variable Z
be P ��jx�� x��� Consider the set E�p�� p�� of pairs R�� R� satisfying the inequalities
in terms of CSI ���

 � Ri � I�Xi 	 ZjX��i��

 � R� �R� � I�Z 	 �X�� X����

Then E is the convex hull of all E�p�� p���  � pi � �� i � �� �� It is straightforward
to prove that AR of our strategy is the intersection of the capacity region described



� M� MALYUTOV AND H� SADAKA

above for s � � with the main diagonal D where the rates of di�erent senders co�
incide� Indeed� maximization on D over the arbitrary distributions corresponds
exactly to the intersection with D of the convex hull of the sets corresponding to
one�point randomizations and inner minimization over B is equivalent to the in�
tersection of the corresponding sets determined by inequalities for Ri in terms of
CSI�
Thus� we may use the well�known upper bound from the MAC�theory for the
numbers of the points of support of the optimal distributions of randomization
parameters�

Notations

We use the following abbreviations�

AR for asymptotic rate�
C for correct message�
CSI for conditional Shannon information�
IID for independent identically distributed RV�
MAC for multiple access channel�
MEP for mean error probability�
ML Maximum Likelihood�
NSV for nonsigni	cant variable�
RV for random variable�
SI for Shannon information�
SV for signi	cant variable�
and notations�
�� means equality by de	nition�
XN is a sequence �X�� � � � � XN��
Ac is the complement to the set A�
jAj is the number of elements in a 	nite set A�
A� is the set of Borel measures over a space A�
ClA is the closure of A�
B is the set f� �g�
Z is a RV with values z�
R is the rate of a design� R �N � log t�
I for Empirical Shannon information�
�t� is the set f�� � � � � tg��
t

s

�
is a binomial coe�cient�

Bins�z�
�
s

z

�
��s �if we assume the probability of success is �

�
��

U�s� t� is the uniform distribution over
�
t

s

�
allocations

of SV
s in �t��

�� Preliminaries

Entropy� Relative Entropy and Mutual Information� The concept of infor�
mation is too broad to be captured completely by a single de	nition� However� for
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any probability distribution� we de	ne a quantity called entropy� which has many
properties that agree with the intuitive notion of what a measure of information
shoud be� This notion is extended to de	ne mutual information� which is a measure
of information one random variable contains about another� Entropy then becomes
the self�information of a random variable�
Mutual information is a special case of a more general quantity called relative

entropy or Kullback�Leiber divergence� which is a measure of the divergence of
one probability distribution from another� In particular� relative entropy of a dis�
tribution with respect to the uniform distribution is entropy�
In the following section we give survey of the de	nitions and results on information
measures� The proofs are contained in Cover and Thomas �������

Entropy�

De�nition ���� The entropy H�X� of a discrete random variable X with p�X �
j� � pj� j � �� �� � � � � t� is de	ned by

H�X� � �
X
x

p�x� log p�x�� ���

where we put  log  � �

Lemma ����  � H�X� � log t�

Joint Entropy and Conditional Entropy�

De�nition ���� The joint entropy H�X� Y � of a pair of discrete random variables
�X� Y � with a joint distribution p�x� y� is de	ned as

H�X� Y � �
X
x

X
y

p�x� y� log p�x� y�� ���

De�nition ���� If �X� Y � � p�x� y�� then the conditional entropy H�Y jX� is de�
	ned as

H�Y jX� �
X
x

p�x�H�Y jX � x� ���

Theorem ���� �Chain rule��

H�X� Y � � H�X� �H�Y jX�� ����

De�nition ��	� The relative entropy or Kullback Leibler divergence �KULD� of
probability mass functions p�x� from q�x� is de	ned as

K�pjjq� �
X
x

p�x� log
p�x�

q�x�
� ����

and �� if p��� is not absolutely continuous with respect to q����

De�nition ��
� Consider two random variables X and Y with a joint probability
mass function p�x� y� and marginal probability mass function p�x� and p�y�� The
mutual information I�X 	Y � is the relative entropy between the joint distribution
and the product distribution p�x�p�y�� i�e��
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I�X 	 Y � �
X
x

X
y

p�x� y� log
p�x� y�

p�x�p�y�
� ����

we can write the de	nition of mutual information I�X 	 Y � as

I�X 	 Y � � H�X��H�XjY �� ����

Theorem ���� �Chain rule for entropy�� Let X�� X�� � � � � XN be drawn according
to p�x�� x�� � � � � xN�� Then

H�X�� X�� � � � � XN� �
NX
i��

H�XijXi��� � � � � X��� ����

De�nition ���� The conditional mutual information of random variables X and
Y given Z is de	ned by

I�X 	 Y jZ� � H�XjZ��H�XjY� Z� � Ep�x�y�z� log
p�X� Y jZ�

p�XjZ�p�Y jZ�
�

Theorem ���� �Chain rule for information��

I�X�� X�� � � � � XN 	 Y � �
NX
i��

I�Xi�Y jXi��� Xi��� � � � � X��� ����

De�nition ����� The conditional relative entropy K�p�yjx�jjq�yjx�� is the mean
of the relative entropies of the conditonal probability mass function p�yjx� with
respect to q�yjx� averaged over the probability mass function p�x��
More precisely�

K�p�yjx�jjq�yjx�� �
X
x

p�x�
X
y

p�yjx� log
p�yjx�

q�yjx�
� Ep�x�y� log

p�Y jX�

q�Y jX� ����

Theorem ����� �Chain rule for relative entropy��

K�p�x� y�jjq�x� y�� � K�p�x�jjq�x�� �K�p�yjx�jjq�yjx���

Corollary ����� If y � f�x�� where f � X � Y is injective� then

K�p�y�jjq�y�� � K�p�x�jjq�x�� ����

Theorem ����� �Information inequality�� Let p�x�� q�x�� x � X � be two probability
mass functions� Then

K�pjjq� �  ����

with equality if and only if

p�x� � q�x� for all x� ���
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Corollary ����� For any two random variables� X� Y�

I�X 	 Y � � � ����

with equality if and only if X and Y are independent�

Corollary ���	�

K�p�yjx�jjq�yjx�� � � ����

with equality if and only if p�yjx� � q�yjx� for all y and x with p�x� � �

Corollary ���
�

I�X 	 Y jZ� � � ����

with equality if and only if X and Y are conditionally independent given Z�

Theorem ����� H�X� � log jX j� where jX j denotes the number of elements in
the range of X� with equality if and only if X has the uniform distribution over X �

De�nition ����� A function f�x� is said to be convex over an interval �a� b� if for
every x�� x� � �a� b� and  �  � ��

f�x� � ��� �x�� � f�x�� � ��� �f�x��� ����

A function f is said to be strictly covex if equality holds only if  �  or ��

Theorem ���� K�pjjq� is convex in the pair �p� q�� i�e�� if �p�� q�� and �p�� q�� are
two pairs of probability mass functions� then

K�p� � ��� �p�jjq� � ��� �q�� �

� K�p�jjq�� � ��� �K�p�jjq��� ����

for all  �  � ��

The Method of Types

LetX�� X�� � � � � XN be a sequence ofN symbols from an alphabetX � f��� ��� � � � � �jX jg�

De�nition ����� The components of the vector type ��XN� �or empirical proba�
bility distribution� of a sequence XN are the relative proportions of occurences of
each symbol in XN

�XN ��� � � �XN � �

�
n����jX

N�

N
� � � � �

njX j��jX jjX
N�

N

�

where n���jX
N� is the number of times the symbol � occurs in the sequence

XN � XN �

De�nition ����� Let T N denote the set of types with denominator N�
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De�nition ����� If t � T N � then

T �t� �� fXN � XN � ��XN� � tg� ����

The type class is sometimes called the composition class of t�

Theorem �����

jT N j � �N � ��jX j� ����

Theorem ����� If X�� X�� � � � � XN are drawn i�i�d� with distribution Q�X�� then
the probability of XN depends only on its type and is given by

QN�X� � Q�XN� � expf�N�H��� �K�� jjQ��g� ����

Corollary ���	� If XN is in the type class of Q� then

QN �XN � � expf�NH�Q�g� ����

Theorem ���
� �Size of a type class T �t���
For any type t � T N �

�

�N � ��jX j
expfNH���g � jT �t�j � expfNH���g� ���

Theorem ����� �Probability of type class�� For any t � T N and any probability
distribution Q� the probability of the type class T �t� under QN is approximately
expf�NK�tjjQ�g in the sense that

�

�N � ��jX j
expf�NK�tjjQ�g � QN �T �t�� � expf�NK�tjjQ�g� ����

Theorem ����� �Sanov�s theorem�� i� Let X�� X�� � � � � XN be i�i�d� with distribu�
tion Q�x�� Let E be a set of distributions closed in the euclidean topology of X ��
Then

QN �E� � QN��XN 
 E� � �N � ��jX j expf�NK�t�jjQ�g� ����

where

t� � argmin
t�E

K�tjjQ� ����

is the distribution in E that is closest to Q in relative entropy�
ii� If in addition E � �IntE�c then

lim
N��

�

N
logQN�E� � �K�t�jjQ�� ����

Remark ���� We shall use only part i of Sanov
s theorem in the proof of theorem
� of our dissertation�
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Conditional Types

In our main theorem � we use the following generalization of the above method
of types �see Csiszar and K�orner ��������
If X and Y are two 	nite sets� the joint type of a pair of sequences XN � XN and
Y N � YN is de	ned as the type of the sequence f�xi� yi�gNi�� � �X �Y�N � In other
words� it is distribution �XN �Y N on X � Y denoted by

�XN �Y N ��� �� � n��� �jXN � Y N� for every � � X � � � Y� ����

Joint types will often be given in terms of the type of XN and a stochastic matrix
M � X � Y such that

�XN �Y N ��� �� � �XN ���M��j�� for every � � X � � � Y� ����

Notice that the joint type �XN �Y N uniquely determines M��� �� for those � � X

which do occur in the sequence XN � For conditional probabilities of sequences
Y N � Y given a sequence XN � X � the matrix M in the equation above will play
the same rule as the type of Y N does for unconditional probabilities�

De�nition ����� We say that Y N � YN has conditional type M given XN � XN

if

n��� �jXN � Y N� � n��jXN�M��j�� for every � � X � � � Y� ����

For any given XN � XN and stochastic matrix M � X � Y� the set of sequences
Y N � YY having conditional type M given XN will be called the M �shell of
XN � TM�XN ��

Let MN denote the familly of such matrices M� Then

jMN j � �N � ��jX jjYj� ����

Remark ����� The conditional type of Y N given XN is not uniquely determined
if some � � X do not occur in XN � Nevertheless� the set TM�XN� containing Y N

is unique�
Notice that the conditional type is a generalization of types� In fact� if all the
components of the sequence XN equal x� conditional type coincides with the set of
sequences of type M��jx� in YN �

In order to formulate the basic size and probability estimates for M �shells� it
will be convenient to introduce some notations�
The average of the entropies of the rows of a stochastic matrix M � X � Y with
respect to a distribution � on X will be denoted by

H�M j�� ��
X
x�X

��x�H�M��jx��� ����

The analogous average of the Kullback�Leibler divergences of the corresponding
rows of stochastic matrix M� � X � Y from M� � X � Y will be denoted by

K�M�jjM�j�� ��
X
x�X

��x�K�M���jx�jjM���jx��� ���
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Notice that H�M�j�� is the conditional entropy H�XjY � of RV
s X and Y such
thatX has distribution � and Y has conditional distributionM on X� The quantity
K�M�jjM�j�� is called conditional Kullback�Leibler divergence �conditional relative
entropy��
The counterpart of �theorem ����� for M �shell is

Theorem ����� For every XN � XN and stochastic matrix M � X � Y such that
TM�XN� is non�void� we have

�

�N � ��jX jjYj
expfNH�M j�XN �g �

� jTM�XN �j � expfNH�M j�XN �g� ����

Proof

This is an easy consequence of theorem ����� In fact� jTM�XN �j depends on XN

only through �XN � Hence we may assume that XN is juxtaposition of sequences

XN
� � � � X where XN

� consists of n��jXN� identical elements of �� In this case

TM�XN� is the cartesian product of the sets of sequences of typeM��j�� in Yn��jXN ��
with � running over those elements of X which occur in XN � Thus� theorem ����
gives Y

��X

�

�n��jXN� � ��jYj
exp fn��jXN�H�M��j���g �

� jTM�XN�j �
Y
��X

exp fn��jXN�H�M��j���g�

�

�N�XN ��� � ��jX jjYj
expfN

X
��X

�XN ���H�M��j���g �

� jTM�XN�j � expfN
X
��X

�XN ���H�M��j���g�

then

�

�N � ��jX jjYj
expfNH�M j�XN �g �

� jTM�XN�j � expfNH�M j�XN �g�

Theorem ����� For every XN � XN and stochastic matrix M� � X � Y� M� �
X � Y such that jTM��X

N�j is non�void�

M��Y
N jXN� � expf�N�K�M�jjM�j�XN � �H�M�j�XN ��g ����

if Y N � jTM��X
N�j

�

�N � ��jX j
sjZj

expf�NK�M�jjM�j�XN �g �

�M��TM�XN�jXN � � expf�NK�M�jjM�j�XN �g� ����
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Proof

M��Y
N jXN� �

Y
��X

Y
��Y

M���j��
n����jXN �Y N �

�
Y
��X

Y
��Y

M���j��
N�

XN
���M���j��

�
Y
��X

Y
��Y

expfN�XN ���M���j�� lnM��j�j��g

� expfN
X
��X

�XN ���f�
X
��Y

M���j�� ln
M���j��

M���j��
�

�
X
��Y

M���j�� lnM���j��gg

� expf�N
X
��X

�XN ���fK�M���j��jjM���j��� �

� H�M���j���gg

� expf�N�K�M�jjM�j�� �H�M�j���g�

For the second part� we have

M��TM��X
N�jXN� �

X
Y N�TM�

M��Y
N jXN� �

X
Y N�TM�

NY
i��

NY
j��

M��yijxj�

�
X

Y N�TM�

Y
��X

Y
��Y

M���j��
n����jXN �Y N �

�
X

Y N�TM�

Y
��X

Y
��Y

M���j��
n�

XN
���M���j��

�
X

Y N�TM�

expf�N�K�M�jjM�j�XN � �

� H�M�j�XN ��g

� jTM��Y
N�j expf�N�K�M�jjM�j�XN � �

� H�M�j�XN ��g�

using theorem ������� we get

�

�N � ��jX jjYj
expf�NK�M�jjM�j�XN �g �

�M��TM��X
N�jXN� � expf�NK�M�jjM�j�XN �g�

Theorem ����� �Conditional Sanov�s Theorem�� Let XN � XN be i�i�d� with
distribution matrix M� � X � Y� Let E be a set of distributions closed in the
euclidean topology of Y�� Then

M��EjX
N� � �N � ��jX jjYj expf�NK�M�

� jjM�j�XN � ����

where

M�
� � arg min

M��E
K�M�jjM�j�XN �� ����
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is the distribution in E that is closest to the matrix distribution M� in terms of
conditional relative entropy�

Proof

M��EjX
N� �

X
M��E�MN

MN
� �TM��X

N�jXN �

�
X

M��E�MN

expf�NK�M�jjM�j�XN �g

�
X

M��E�MN

expf�N min
M��E�MN

K�M�jjM�j�XN �g

�
X

M��E�MN

expf�NK�M�
� jjM�j�XN �g

� �N � ��jX jjYj expf�NK�M�
� jjM�j�XN �g�

Remark ���	� We prove only the 	rst part in the conditional Sanov
s theorem
since we shall use only it in our dissertation�

For simplicity we assume all the input variables are binary� The generaliza�
tion to an arbitrary 	nite input alphabet is straightforward� For a sequence
x � �x���� � � � � x�t�� � Bt� B � f��� �g of binary variables and a subset A 
 �t� �
f�� � � � � sg of cardinality jAj � s �� t denote by x�A� the subset of x components
with indices from A� Let the function ��A� � Bs � Z� ��A� �

P
��A b�x���� x��� �

B� the planning is static� i�e�� the points of experiments xi � X� i � �� � � � � N � are
preassigned� The planning of the experiment will be denoted by the �N� t��matrix
jjxi���jj � x� i � �� � � � � N and � � �� � � � � t� The rows of x are xi� and x��� is the
��th column�
In place of the value of the function �� the random variable z with a 	nite range

Z is observed� The matrix of the conditional probabilities of distortions of ��the
�noise�� is known�

P � jjp�zjx�jj� x � X� z � Z�

Without loss of generality� we can assume that the distributions P ��jx�� and P ��jx��
are di�erent for x� � x��

P �zjx� �
NY
�

p�zijxi��
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The uniform distribution U � U�s� t� is given on ��s� t��the set of all ordered
s�sets �� The decision about the true � is obtained with the help of the decision
function

d�x� z� � XN � ZN � ��s� t��

We shall assume that an error occurs if the set of SV
s is restored incorrectly� This
error depends on the design� an unknown set of SV and a decision function� A
static �non�sequential� strategy S � St� consisting of a static design and a decision�
is characterized by its sample size N and by its mean error probability MEP not
less than � � �
Denote by argmaxz�Z f�z� the set of s maximal values of function f�z� over a 	nite
set Z�

T� � argmax
�
I��N �����

The case of ambiguity of this de	nition is always regarded as the error of T�� hence
any of de	nitions for the case of ambiguity can be applied�

Ts � arg max
F���s�t�

I��N �F ���

�Here� and in sequel� for a closed �particularly 	nite� set Y� argmaxY ��y� � fy� �
maxy�Y ��y� � ��y��g�� Moreover� if the maximum is attained for several �� then
one of them is chosen by trial in an equiprobable manner�

�� Noiseless Search

To expose the idea of the method� we consider 	rst the case ei � � Assume
	rst that the cardinality of the set f

P
��As b�xi���jxi��� � ��g is �s� This is the

maximal cardinality of the range of the function ��b�� � � � � bs�� �For the case b� � ��
the cardinality of the set f

P
��As b�xi���jxi��� � ��g is s� �� This is the minimal

cardinality of the range of the function ��b�� � � � � bs��� We consider the method of
one by one detection of signi	cant variables by test T�� We want to examine all
pairs �xN ���� zN� where xN ��� is the binary input column and zN is the output
column with components taking �s values�
Let us assume for de	niteness that variables x���� � � � � x�s� are SV�
First case� Let X��� be signi	cant variable �SV��
Second� X��� is a nonsigni	cant �NSV��� � � s�
The random balance method� �RBM� consists of inspections of scatter diagrams of
data N �sequences �xN���� zN ��
In the left �right� side of the scatter diagrams corresponding to x��� � �� we have
non�overlapping sets of outputs y�b� �y�b��� respectively� with coe�cients b�� � �
�� � � � � s� y where y � A�� A� is the set of linear combinations of signi	cant variables
di�erent fromX���� The cardinality jA�j is �s��� Hence for each signi	cant variable
X��� we have a separate partition of the outputs Z into two subsets f�b� �
A�g described visually by scatter diagrams� Let us 	rst calculate the theoretical
Shannon information� SI�

I���x���� z�� �
X
x���

X
z

��x���� z� log
��x���� z�

��x���� ������ z�
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���������������
A� � b�

����� A� � b�

jA�j � �s��
��������������������

�� ��

X��� � � X��� � ��

Figure �� Outline of limiting scatter diagrams in the case of signif�
icant variables in the absence of noise

where ��x���� �� �
X
z

��x���� z�� ���� z� �
X
x���

��x���� z�� ��x���� z� is the joint

distribution over x���� ��x���� z� � ��s and ��z� is the marginal distribution
over Z� ��z� � ��s� z � Z� We get

I���x���� z�� � ���
X
y�A�

��s�� log
��s��

��s
� log �� � � �� � � � � s�

Next we study the behaviour of the empirical Shannon information ESI�
Case of NSV� if x��� NSV� the distributions of XN��� and ZN are independent�
We have two subsets� each of cardinality �s� and the mutual Shannon information
I���x���� z� �  since the joint distribution ��x���� z� over x��� and z is uniform
with weights ��s coinciding with the product of the marginal distributions ���� z��
��x���� �� i�e��

log
��x���� z�

��x���� ������ z�
� log � � �

Since we de	ned the acceptance region AR of signi	cant variables by the set of all
�xN���� zN � such that I���xN ���� zN� � ���� using Sanov
s theorem for each NSV
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�

����� �

����� ������ � �

����� �

�

����� �

����� ������ � �

����� �

�

����� �

����� ������ � �

����� �

�

����� �

����� ������ � �

����� �

�� �� �� ��

a b

Figure �� Limiting scatter diagrams in case of three signi�cant vari�
ables and jZj � �� � �� For signi�cant �a� and non�signi�cant �b�
variables in the absence of noise

�see theorem � below�

P �I���xN ���� zN � � �� ��� � �N � ���
s�� X

��xN ����zN ��AR

�f�NI���xN ����zN ��g

� �N � ���
s��

max�f�NI���xN ����zN ��g

� �f�N min I���xN ����zN ��g

� �f�N��������o����g�

Our bound for AR follows easily from the above estimate by using Bonferroni
bound�

Algorithm� We give a brief description of our algorithm which compute both em�
pirical and theoretical Shannon informations�
�� Create a random �N � t��matrix of ��s and ���s�
�� Fix s� pick value
s for bs�i� and ei and compute zi� i � �� � � � � N�
�� Count the number of ��s and ���s for each XN�k�� k � �� � � � � t� separately� and
compute ��XN �k��� count the number of similar outputs and compute its empiri�
cal distribution� Also count the number of various pairs �XN�k�� ZN� and compute
��XN�k�� ZN�� i � �� � � � � N�
�� Compute the ESI� I���XN �k�� ZN��� k � �� � � � � t� then sort I���XN �k�� ZN���
k � �s� in ascending order and sort I���XN �j�� ZN��� j � s� in descending order� If
I���XN ���� ZN�� � I���XN �s� ��� ZN��� there is no error� else there is an error�
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���������������
Z

����� Z

jZj � �s
��������������������

�� ��

�� ��

Figure �� Outline of limiting scatter diagrams in the case of non�
signi�cant variables in the absence of noise

The following tables show the outputs of the above algorithm in the case when ei �
� Each table contains number of runs� �e�g� � runs� which includes min

k�	s

I���XN �k�� ZN���

max
j	s

I���XN �j�� ZN�� and results�

Notice that for table �� we choose b� � ��� �� ��� and for table � we choose
b� � ��� �� ��� In each row in the above tables� we get

min
k�	s


I���XN �k�� ZN���� maxIj	s���X
N �j�� ZN���

and the conlusion is� we have no error�

Proof of Theorem �

Let us introduce the following lemma�
Lemma ��

The mean of MEP over the ensemble of designs equals the same mean of conditional
error probabilities P	s
� when �s� is the true set of SV
s�
The proof is straightforward because of the symmetry of the ensemble of the design�
As we have already mentioned� it was proved in Malyutov and Mateev ����� that
AR of separate search for SV
s in model ��� using the most e�cient ML�test when
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min
j�	s


I���XN � ZN�� max
k	s

I���XN � ZN�� results

������� ������ C
����� ������ C
������� ������ C
������ ������ C
������� ������ C
������ ������ C
������� ������ C
������� ������ C
������� ������ C
������� ������ C
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it is applicable is
AR � min

��j�s
Ij � I��

where Ij � I�X�j� 	 Z�� j � �s� and we assumed for de	nitness WLOG �without
loss of generality� that X�j� are SV
s� j � �� � � � � s� and I� � I� � � � � � Is� The
error of the test T� occurs when

max
k	s

I���XN �k�� ZN�� � min
j�	s


I���XN �j�� ZN�� ����

The event in ���� is included in the event

�
T��

� �
k	s

fI���XN�k�� ZN�� � Tg�j�	s
fI���X
N �j�� ZN�� � Tg

�
� ����

We bound probability of ���� from above byX
k	s

P �I���XN �k�� ZN�� � I� � �� �
X
j�	s


P �I���XN�j�� ZN�� � I� � ��
����

where � �  is arbitrary� Let us estimate from above the 	rst sum in �����
It is easy to check that

K���x�k�� z�jj��x�k�� ������ z�� � K���x�k�� z�jj��x�k����z�� �

� K���z�jj���� z�� �K���x�k��jj��x� ���

� I���x�k�� z�� �K���z�jj���� z�� �

� K���x�k��jj��x� ���� ����

By Sanov theorem the 	rst sum in ���� does not exceed

�t� s� expf�N min
��D�

K���x�k�� z�jj��x�k�� ������ z��g

� �t� s� expf�N�I� � ��g� ���

where D� � f� � I��� � I� � �g� in view of ����� ���� and nonnegativity of K��jj���
When R � ln t

N
� I� � �� we have

�t� s� expf�N�I� � ��g � expfN��I� � ���� I� � ��g � expf�N�g�

By Sanov theorem� the second sum in ���� is bounded from above by

s expf�Nmin
ClDc

�

K���x���� z�jj��x� z��g� ����

Now� we note that� by de	nition� ���� �� �� ClDc
� for any � � �

Since K�� jj�� is a convex function of the pair ��� �� �see Cover and Thomas��������
hence K is jointly continuous in �� and �� and

min
��ClDc

�

K�� jj�� � K�� �jj�� is attained at some points � � � D� which does not

coincide with �� Hence K�� ��x���� z�jj��x� z�� � ���� � � We see that ���� does
not exceed s expf�N����g� The total upper bound for ���� is

expf�N�g � s expf�N����g �  when N ��

for any rate R � I�� ��� Therefore� AR � I�� �� for any � �  and� consequently�
AR � I�� The proof is complete�
Here we prove the theorem on asymptotic optimality of test Ts� Recall that by
Lemma � we need to bound from above the mean over the ensemble of designs of
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the conditional error probability when the true set A is 	xed� The proof is the
generalization of the proof of theorem � involving some type of conditioning�

Proof of Theorem �

We denote the set of unordered v�sets 
 � �i�� � � � � i��� � � i� � i� � � � � � i� �
s�  � 
 � s by V� For an arbitrary 
 � V we de	ne I�
� as follows�

I�
� � I�Z 	X��s� n 
�jX�
���

Let us consider the subset ��
�� 
 � �i�� � � � � i�� � V of the set �� � ��s� t� n �s�
that consists of those � � �� for which f��� � � � � �sg � �s� � fi�� � � � � i�g�
It is obvious that ��
� � ��
�� � � if 
 � 
� and �� � �V��
��
We de	ne

A�
� � f�XN � ZN� � Ts�X
N � ZN� � ��
�g�

It is obvious that A�
� is expressed in the form

A�
� � f�XN � ZN� � �������I���X
N ���� ZN�� � I���XN ��s��� ZN��g�

By the formula for the composite probability we get

P �A�
�� �
X

xN ����z

P �A�
�jxN�
�� P �xN�
�� ����

The following inclusion is valid for arbitrary T �

A�
� � fI���xN ��s��� zN�� � Tg � fmax
����

I���xN ���� zN�� � Tg�

Consequently� for 	xed xN �
� the conditional probability of the event A�
� can be
estimated as

P �A�
�jxN�
�� � P �I����xN ��s��� zN��� � T j�� �

� P ������I����x
N ���� zN ��� � T j��

� P �I����xN ��s��� zN��� � T j�� �

�
X
��
�

P �I����xN ���� zN ��� � T j���

where T � T ���� � �� xN�
��

P �A�
�� �
X

xN ����z

�
P �I����xN ��s��� zN��� � T j�� �

�
X

������

P �I����xN ���� zN��� � T j��

�
P �xN�
��� ����
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Let us estimate from above the second sum in square brackets in ����� T �
I�
�� �� we have the corresponding conditional identities

K���xN ���� zN �jj��xN���� ������ zN�j�xN �
�� �

�
X
x�X

�xN �
�fK���x
N ���� zN j�xN �
��jj��x

N���� ������ zN�j�xN �
��g �

�
X
x�X

�xN �
�fK���x
N ���� zN�jj��xN ������zN �j�xN �
�� �

� K���zN �jj���� zN�j�xN �
�� �K���x
N ����j�xN �
��jj��x

N � ��j�xN �
��g �

� K���xN ���� zN �jj��xN�����zN �j�xN �
�� �

� K���zN �jj���� zN�j�xN �
�� �K���x
N ����jj��xN � ��j�xN �
�� �

� I���xN ���� zN�j�xN �
�� �

� K���zN �jj���� zN�j�xN �
�� �K���x
N ����jj��xN � ��j�xN �
��� ����

By conditional Sanov theorem in view of ����� ����� the nonnegativity of K��jj � j���
and the inequality j��
�j � ts��� the second sum in square brackets in ���� does
not exceed

ts���N � ��jX j
sjZj �

� expf�N min
��D�

K���xN ���� zN �jj��xN������zN �j�xN �
��gg�

Here D� � f� � I��� � I�
���g� Since the last bound does not depend on ��xN �
��
we bound the sum in ���� over types of xN �
� from above by

ts���N � ��jX j
sjZj expf�N�I
�
�� ��g� ����

When R � ln t
N
� I�
�� ��� ���� is bounded from above by

expf�N ���s� 
��
jX jsjZj log�N � ��

N
�g�

which is exponentially small for su�ciently large N�
Also by conditional Sanov theorem� the 	rst term in ���� is bounded from above
by
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X
�
xN ���

�N � ��jX j
sjZj�

� expf�N min
ClDc

�

K���xN ��s��� zN �jj��xN � zN �j�xN ����gp��xN �
��� ����

We note that� by de	nition� ���� �� �� ClDc
� for any � � �

Hence min
ClD�

K���xN ���� zN�jj��xN � zN �j�xN ���� � ���� � � because of the continuity

of conditional KULD in all its variables� We see that ���� does not exceed

expf�N������
jX jsjZj log�N � ��

N
�g�

The total upper bound for ���� is

expf�N������
jX jsjZj log�N � ��

N
� �

� expf�N ���s� 
��
jX jsjZj log�N � ��

N
�g � � when N ��

for any rate R � I � ��� Therefore� AR � I � � for any � � � and consequently�
AR � I� The proof is complete�

Remark Proof of the last statement of theorem � for ML�test uses some of
the main ideas of the capacity region construction for MAC without feedback �see
Csiszar and K�orner ������ and the end of this section�� although it does not follow
from the MAC theory� However� the lower bound for AR is proved almost along the
lines of Csiszar and K�orner ������ �it does not follow from famous Fano inequality��
Proof and its generalization for the case of unknown s and for unknown T ��� are
published in Malyutov� Dyachkov ����� � and in Malyutov �����a�� in Russian�
supplied by the Dyachkov
s estimate from below for the same quantity in the case

j log ��t�j � �log t��

which is� unfortunately� not sharp� The proof of Malyutov is reproduced in Ger�
man by Viemeister ������ supplied by some minor generalizations� In Malyutov�
Mateev ����� the coincidence of ��� and ��� for ordinary models introduced there
�including symmetric ones� is proved� Solution of maximal empirical Shannon In�
formation was studied in Csiszar and K�orner ������ for convential Shannon scheme
of Information Theory and essentially the same decision was studied in Dyachkov
and Rashad ������ for the search of SV
s of symmetric discrete functions of s vari�
ables when t ��� In Malyutov and Mateev ����� the maximal AR of separate
detection of SV
s by ML�test is found�
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