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Evolutionary Dynamics on Infinite Strategy
Spaces”

Jorg Oechssler’ and Frank Riedel?
Department of Fconomics
Humboldt University, Berlin

August 13, 1998

Abstract

The study of evolutionary dynamics was so far mainly restricted
to finite strategy spaces. In this paper we show that this restriction
is in most cases unnecessary. We give a mild condition under which
the continuous time replicator dynamics are well defined for infinite
strategy spaces. Furthermore, we provide conditions for the stability
of rest points. Finally, we apply this general theory to a number
of applications like the Nash demand game, the War of Attrition,
Cournot and Bertrand oligopoly games, and mixed strategies.

JEL—classifications: C70, 72.

Key words: replicator dynamics, evolutionary stability, continuous
strategy spaces, oligopoly.

1 Introduction

The study of evolutionary game theory has focused on finite strategy spaces,

especially when continuous time dynamics of an evolutionary game were in-
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volved (e.g. the replicator dynamics).! However, many economically relevant
games have a continuous strategy space, e.g. bargaining games, oligopoly
games, public good games or all games in which mixed strategies are consid-
ered. The reason for the restriction to finite strategy spaces is mainly that
one has to study differential equations, and it is somewhat unfamiliar to do
so with infinite dimensional spaces. However, most of the standard theory
of ordinary differential equations carries over to the general case of Banach
spaces.

It is the purpose of this paper to show that the restriction to finite strat-
egy spaces 1s in most cases unnecessary. If one wants to study evolutionary
dynamics on infinite strategy sets, one has to work with the space of proba-
bility measures over those strategies. It is important to note the difficulties
that arise with such spaces. The main difference to the finite case is that
on infinite dimensional spaces there are different “natural” norms that need
not be equivalent. We propose to use the variational norm as it provides
an intuitively sensible choice of distance in an evolutionary context and it is
mathematically convenient. Endowed with the variational norm the space of
probability measures becomes a Banach space. The usual Lipschitz continu-
ity assumptions guarantee then a unique solution of the differential equation.
We show that the replicator dynamics satisfy this condition if the underlying
payoff function is bounded.

There are some further important differences to the finite case, though.
In particular, the stability conditions are much more demanding. We provide
an example showing that not even strict Nash equilibria are necessarily stable
with respect to the replicator dynamics. This is in contrast to the finite case,
where an ESS is a sufficient condition for asymptotic stability (Hofbauer
et al. [12]). We show that a stronger condition, namely uninvadability, is
sufficient for stability of a homogeneous population state.

We apply this general theory to a number of specific problems where a

continuous strategy space is particularly natural. Namely, we consider the

'Exceptions are Hopkins and Seymour [13] and Binmore and Seymour [4], who study
the replicator dynamics but only on spaces of probability distributions with a continuous
density, Bomze [5], [6], Seymour [18], and Friedman and Yellin [7]. The latter study
gradient dynamics. The special case of mixed strategies has been studied by Akin [1],
Hines [9], and Zeeman [22].



replicator dynamics in the context of the Nash demand game, the War of At-
trition, a Cournot duopoly, a Bertrand duopoly with homogeneous products,
and in the context of mixed strategies.

In the Nash demand game the symmetric efficient equilibrium is stable
and weakly attracting with respect to the replicator dynamics. In the War of
Attrition the replicator dynamics converge to the unique mixed equilibrium
from initial states which are within finite Kullback-Leiber distance from the
equilibrium.

For the Cournot setting with a linear demand function we show that the
replicator dynamics weakly converge to the Cournot—Nash equilibrium from
all initial states with positive weight on the equilibrium strategy, generalizing
a result obtained by Qin and Stuart [16] for the finite strategy case. While
one can debate whether replicator dynamics are appropriate to study the
interaction in duopoly, we think that those results are interesting nevertheless
since many other games, like public good games, have a similar structure as
the Cournot game.

With respect to the Bertrand case Hehenkamp [8] shows that if prices
have to be chosen {rom a finite grid, the unique (globally) stable rest point
of the dynamics is the price just above the Bertrand equilibrium. Note
that this price is also a strict Nash equilibrium. In the continuous case
this (second) equilibrium disappears leaving us with the unique Bertrand
equilibrium, which is not even an ESS. While we can show that strategies
bounded below marginal cost will vanish asymptotically, we have nothing
to say about the shape of the limit distribution. We conjecture that the
probability mass on intervals near the equilibrium increases.

However, if we restrict the strategy space by excluding an open interval
(¢,b) of prices above marginal cost ¢, we obtain the result that the price b is
strongly attracting, which is the analog to the discrete case.

Finally, we show that mixed strategies also fit in our framework. Here
we can use results already obtained by Hines [9] and Zeeman [22]. The
advantage of using replicator dynamics on the space of mixed strategies is
that — in contrast to dynamics on pure strategy spaces — evolutionary stable

strategies are characterized by the asymptotically stable rest points of the



replicator dynamics.

The paper is organized as follows. In the next section we describe the
framework for analyzing dynamics on infinite dimensional spaces. In Section
3 we introduce the replicator dynamics and show that they are well defined
on infinite strategy spaces. Section 4 is devoted to the derivation of stability
conditions. Section 5 contains the applications, Nash demand game, War of
Attrition, Cournot duopoly, Bertrand duopoly, and mixed strategies. Finally,

Section 6 concludes. Some proofs are relegated to an appendix.

2 Formulation of the game

Let S C R". Elements of S are called strategies. Typical examples are the
discrete case, S = {x1,...,x,}, the set of all possible quantities in a Cournot
game, S = R, or some subset of R" with the usual metric.

Let S be the Borel o-field on S. In the discrete case, this is the power
set of S (and not mentioned because it plays no role); in the continuous case,
this is the smallest o-field containing all open sets.

For notational simplicity we restrict ourselves to the case of symmetric
two—player games, though the setup can be extended to the asymmetric
case. Let f: 9 xS — R be the payoff function. For the beginning, the only
condition we impose on f is that it be measurable. f(z,y) is the payofl for
player 1 when she plays z and player 2 plays .

A population is described by a probability measure P on the measure
space (5,S). The simplex of all populations is denoted by A. The (expected)
payoff of population P against population () is

B(P.Q) = [ [ s ris).

The aim is to study the evolution of populations over time. For this
purpose, we need a Banach space to which all populations belong. We say
that v is a signed measure on (S, S) if there are two finite measures p' and p?
such that for all sets A € S, v(A) = p'(A) — p?(A). The space of all signed
measures is denoted by M*(S,S). It is clearly a vector—space. What kind
of norm is appropriate to describe the “distance” between two populations?

We propose the supremum or variational norm.
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Definition 1 The variational norm on M®(S,S) is given by

I

il = sup | [ .

where the sup is taken over all measurable functions f : S — R bounded by
Lsupeq [f(s)] < 1.

Endowed with the variational norm, M€ is a Banach space (cf. Alt [2]),
that is, every Cauchy sequence in M€ converges to an element in M°.

Since we want to study the dynamics of populations as time unfolds,
we have to deal with curves m : Ry — M° Such a function is called

continuously differentiable if there exists a continuous function m’ : Ry —
M€ with
. m(t+h) —m(t)
lim
h—0 h

=m'(t),

where the limit has to be taken with respect to ||-]|.
Now, it is easy to introduce ordinary differential equations, too. Let

F: M® — M° be continuous. A continuously differentiable function m with

m/(t) = F(m(t)), m(0) = p (1)

is called a solution to the ordinary differential equation (1).
A crucial fact is that with Lipschitz—conditions one has always a unique

solution to such initial value problems.

Theorem 1 Suppose that F' is bounded and satisfies a global Lipschitz con-

dition:
K >0 s.t. Vp,v e M® ||F(p) — F(v)|| < K|p—v| .
Then the ordinary differential equation (1) has a unique solution on [0, c0).

For a proof see e.g. Zeidler [23] Corollary 3.9. The important property

needed in the proof is Lipschitz—continuity. It allows to define a contraction

m— <t =+ /OtF(m(s))ds>



on the space of all continuous functions that map R, into M¢ and the typical
fixed—point argument gives existence and uniqueness.

It is useful to have some tools at hand that make calculations of the
variational norm easier and lead at the same time to a better understanding
of the induced topology.

For the rest of this section, let P,Q € A denote probability measures.
For probability measures we have that (cf. Shiryaev [19, p. 360])

|1P = Q| = 2sup |[P(A) — Q(A)].
Aes

Thus, the maximum distance between two probability measures is 2 and

is reached when the measures are orthogonal,
PLQ=|P-Q|=2.

To see this, take a set A with P(A) =1 and Q(A°) =1 and let f = 14— 14,

where 1,4 denotes the indicator function. Then
[ fa(r @) = Py + Q) =2

Therefore, ||-|| is a very strong measure of distance. For example, even
if z, — x in R and z, # x, the corresponding Dirac-measures 6,  do not
converge to 8, in the sense of the variational norm because of ||6,, — 6,| = 2.
Since we are interested in populations, there may be an argument in favor of
such a strong norm of the following type. The Dirac measure 6, describes a
homogeneous population. From an evolutionary point of view, two distinct
homogeneous societies are quite far from one another in evolutionary terms
because everyone in a population has to mutate in order to convert one
population into the other, which indeed would be a very rare event.

It may seem quite difficult to calculate the variational norm. However,
this is not so if we have densities. Let p = aP’ — bQ), for some nonnegative
a,b > 0, be a signed measure. Assume that there is a third probability
measure 12 that dominates® P, (), hence also . Then the Radon-Nikodym

densities ¢ = % ) = % and £ = 3—1’% = a¢p — by exist. We have

2Every set A with R(A) = 0 has P(A) =0.



Theorem 2 The variational norm of p is given by

Il = / €| dR.

In particular, the distance between probability measures s given by
IP=@l = [ lo-viar.
s

Proof. See appendix. R

The preceding theorem implies that the convergence of P* — P in the

. . . . o, 7
variational norm is equivalent to the convergence of the densities % — %

in the £!'-sense with respect to the dominating measure R if the sequence
(P™) and the measure P are dominated by R.

We state this as a corollary for the case of the Lebesgue measure.

Corollary 1 Let P" and P have densities v"(x) and v(x) with respect to the

Lebesgue measure. Then
P —>P<:>/OO |0 (z) —v(z)| dz — 0.
Finally, let us have a look at the classical discrete case.
Corollary 2 Let S ={1,...,n}. Set pi = P"({i}) and p; = P({i}). Then
P"— P&p! —p Vi

Proof. See appendix. R

As we see, in the discrete case, the topology induced by the variational
norm is equivalent to the pointwise convergence of probabilities. The classical

results will therefore be contained in our results.

3 The Replicator Dynamics

The dynamics most widely studied in the literature on evolutionary game
theory are the replicator dynamics. They formalize the idea that in a dy-

namic process of evolution a strategy x should increase in frequency if it is a
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successful strategy in the sense that individuals playing this strategy obtain
a higher than average payofl. Formally, the success (or lack of success) of a

strategy x if the population is () is given by the difference

o(2,Q) = / £ (2. )Q(dy) / / F(2.1)Q(dy)Qdz) = B8, Q)—E(Q.Q).

The idea of replicator dynamics is that the relative increment of the frequency

of a set of strategies is given exactly by the success of that set. Formally,

Definition 2 The ordinary differential equation

Q0 = [o@Q)Q). QO =P

or in more extensive form,

wanzfdame@um Q) = P

A

for all A € S, is called replicator dynamics.

Note that by taking A = {z} we get the usual formulation of the replicator
dynamics for the finite strategy case.

Our first message in this paper is that the replicator dynamics are well
defined in this general setting if the payoff function f is bounded. The
remainder of this section is devoted to proving this statement.?

Denote by F(Q) = [ o(z,Q)Q(dz) the right—hand side of the replicator
dynamics. The strategy for proving the statement is the following. Since
it is easier to work with the vector space M° rather than with A, in the
following lemma we state sufficient conditions on ¢ for the existence of a
Lipschitz continuous function F' defined on M¢ which coincides with F on
A. In Lemma 2 we will then verify that the conditions on ¢ are satisfied if f
is bounded. Finally, in Theorem 3 we show that A is invariant with respect

to the differential equation Q' (t) = F(Q(t))

3The following analysis owes much to the work of Bomze [5], [6]. See also the recent
paper by Seymour [18], who develops a similar framework to ours for the asymmetric case.



Lemma 1 Suppose the following Lipschitz and boundedness conditions hold

for o
[l 15l <2 = suplo(z, Q) —olz, R)| < L@ — £ (2)
sup o (z, Q)| < 0, (3)
QlQll<2

where L and 0., are some constants with L, 0., < o0o.Then there exists a
bounded, Lipschitz continuous function I : M® — ME, which coincides with
Foon A,

F(P)=F(P), VP € A.

Proof. See appendix. W

Lemma 2 If the payoff function f is bounded, then conditions (2) and (3)
of Lemma 1 are salisfied.
Proof. See appendix. R

By the preceding lemmata we know that the ordinary differential equation

Q'(t) = F(Q(t)) (4)

has a unique solution. For the replicator dynamics to make sense we need
furthermore that the set A of all populations is invariant under these dy-

namics.

Theorem 3 Let (Q(t)) be the unique solution to (4) with initial condition
P e A Then (Q(t)) C A, that is, the set of all populations A is invariant
with respect to (4).

Moreover, Q(t) and P are uniformly equivalent in the sense that there

exists constants 7y, I'y > 0 such that

7Q(1)(A) < P(A) <TWQ(t)(A)

for all sets A€ S. The density of Q(t) with respect to P satisfies

L0 0) = exp ([ o teas) 5)



Proof. See appendix. R

That is, if we start with a population P € A, the solution of (Q(%))
stays in the set of populations A. On A the functions F and F coincide.
Combining Lemmata 1 and 2 with Theorem 3 we get the following

Theorem 4 If the payoff function [ is bounded, then the replicator dynamics
are well defined.

4 Stability concepts

We start with the classical concept of evolutionary stability introduced by

Maynard Smith [15].

Definition 3 A population P is called an evolutionary stable state (ESS) if
for every “mutation” Q, there is an invasion barrier £(Q) > 0 such that for
alln < e

E(P, (1 =n)P+1Q) > E(Q, (1 —n)P +nQ). (6)

Two stronger notions are better suited for the dynamical aspects of evo-

lutionary game theory.

Definition 4 A population is called uninvadable if there is a uniform inva-
sion barrier, that is, an e > 0 such that (6) holds for all Q and alln < e.

Uninvadability requires a uniform invasion barrier for all possible mu-
tations (). In general, one could require even more. Up to now, we have
considered the case in which a small fraction 1 of the populations changes
arbitrarily. More generally, one could look at the case where the whole pop-
ulation is allowed to mutate, but only in a manner that the distance between

the original and the mutated population remains small.

Definition 5 (Bomze) A population P is called strongly uninvadable if
there is a barrier € > 0 such that for all populations R in the e —neighborhood
of P, R+ P,

I =Pl <e,
we have

E(P,R) > E(R,R).

10



We put together some simple facts about the various stability concepts

n

Lemma 3 1. Fvery strongly uninvadable population is uninvadable, and

every uninvadable population is evolutionary stable.

2. If a discrete measure P = Z?:1 p;bz, s uninvadable, then it is also

strongly uninvadable.

3. If the strategy space S is discrete, then the three concepts coincide.

Proof. The first statement is obvious. For the second, let P = E?Zl Pj0a;
be uninvadable, and assume without loss of generality that p; > 0 for all

j. Let £ be a uniform invasion barrier and set £ := eminp;. Now assume
|[R—P| < & Set r; := R({z;}). Then n := max%i < . Define a

7

measure () via () = % (R— (1 —n)P). Then it is easy to check that @ € A.
Hence, R can be written as R = (1 — n)P + n@ for some 1 < £ and some
population ). Since P is uninvadable, it follows that F(P,R) > E(Q, R)
and hence F(P,R) > E(R, R).

That every ESS is uninvadable in the discrete case is well known (cf. [21]).
Since with a discrete strategy space all populations are discrete measures, the
second statement implies that every uninvadable population is also strongly

uninvadable. B

Finally, we recall the following dynamic stability notions.
Definition 6 Let Q* be a rest point of the replicator dynamics,
o, Q") =0 Q" —a.c.
Then

e () is called Liyapunov stable if for all ¢ > O there exists an n > 0 such
that |Q(0) — Q*|| <n=|Q@F) — Q|| <& forallt > 0.

e ()" is called strongly attracting if there exists € > 0 such that
1QO0) =@l <= = Q) — Q| = 0.

11



e ()" is called weakly attracting if there exists € > 0 such that

1Q0) — Q¥ <= Q@) — Q in distribution.

As we shall see, convergence in variation is in most cases too much to
hope for. Therefore, the concept of weak attraction is more appropriate for
our purpose. Nevertheless, we will later encounter an example where a rest
point is strongly attracting (Section 5.4).

We have the following useful result, which connects the static and the

dynamic stability concepts.

Theorem 5 If Q* = 6, is an uninvadable, homogeneous population, then

Q* is Lyapunov stable.

Proof. Since §, is uninvadable (and therefore strongly uninvadable by
Lemma 1), there exists an € > 0 such that for all R € A with |R — 6,|| <e

E(62,R) > E(R,R).

For Q(0) = 6, there is nothing to show. Assume Q(0) # §,. The function
H(t) := Q(t) ({x}) is continuously differentiable. By Lemma 3 we have

1) = 1) [ ot Qo))

hence
H'(t)
T~ @Q0). (7

We claim that H is strictly increasing. By assumption, H'(0) = o(z, Q(0)) >

0. Suppose that H' eventually became zero and set
to :=1inf {t > 0; H'(t) = 0}.

Then H'(ty) = 0 since the set {t > 0; H'(t) = 0} is closed. For all s
to we have H'(s) > 0 which implies H(s) > H(0), hence ||Q(s) — 6|
. Continuity of the trajectory yields ||Q(to) — 6| < £, hence H'(ty) =
o(z,Q(to)) > 0 by uninvadability, a contradiction. Therefore, H is strictly

<
<

increasing which implies that ||Q(¢) — 6.] <e. W

12



The proof of the preceding Theorem shows that the replicator dynamics
increase the weight on the pure strategy x if 6, is uninvadable. Therefore,
the weight Q(t) ({}) converges and the growth rate of the strategy must

vanish. We state this fact as a corollary.

Corollary 3 If Q" = 6, is an uninvadable, homogeneous populalion, then

the fitness differential vanishes:

Proof. By (7), the convergence of Q(t)({z}) = H(t) implies [;° o(z, Q(s))ds <
00. The result follows if we show the equicontinuity of the map ¢ — o(x, Q(?)).

Since the conditions of Lemma 1 are satisfied, we have by (2),

jo(2, Q1)) = o(z,Q(s))| < LIIQ(1) = Qs)] -

The boundedness of o on A, (3), and replicator dynamics yield for every set

A

Q0)(A) - Q(s)(A)] = /t@'<u><A>du

= < Ot —s| .

/:/AU(S,Q(U))Q(u)(dg)du

Hence, using (2),

|o(, Q1)) — o(x, Q(s))| < 2Lowo ||t — 5]

which implies Lipschitz and hence equicontinuity of the map ¢ — o(x, Q(1)).
|

If the payoff function f is continuous — which it is frequently not —, then

we have the following

Corollary 4 If the payoff function f is continuous, every uninvadable, ho-

mogeneous population Q* = 6, is weakly attracting.

Proof. For continuous f, the expected payofl difference F(6,,Q) — E(Q,Q)
is continuous in () with respect to the weak topology. The set A of all

13



populations is compact in the weak topology. Let PP be a weak accumulation
point of the trajectory (Q(t)). By the preceding corollary 0 = lim o (z, Q(t)) =
lim [E(6,,Q(t)) — E(Q(t),Q(t))] = E(64, P) — E(P, P). By Theorem 5, ¢, is
stable, hence P is close to 6,. By uninvadability, P = 6,. B

We should compare the stability results obtained in this section with those
for the finites case. As is well known in the finite case an ESS is sufficient
for asymptotic stability (Hofbauer et al. [12]). A fortiori, all strict equilibria
are asymptotically stable. One may wonder whether this result survives in
the infinite case. Somewhat surprisingly it does not as the following example
shows.

Consider a game with strategy set S = R and payoff function

l—|z—1 ify=1
fy) =4 0 =1y 41

1 otherwise.

It can easily be checked that (1,1) is a strict Nash equilibrium. However, it

is not uninvadable and it is no? Lyapunov stable. For any ¢ > 0,
o145, (1—¢)b +eb2) = (1—¢%)2/2>0,

Therefore, 67 is not uninvadable. Moreover, for Q(0) = (1 — £)6; + 2011 ¢
simple calculations show that the weight on 14 /2, n(t) := Q ({1 +¢£/2}),

satisfies

7' (1) £ 2
i = oHe/2,000) = (L) [n0) (L+e/2) = 5] 2 (1=) /2 >0

Thus, n(t) increases to 1 and &; is not Lyapunov stable.*

5 Applications

For many games it is more natural to think of strategies as continuous, in
particular, if strategies involve the timing of actions or the choice of prices or

locations. Even if smallest measurement units for quantities or prices exist,

4Note that the payoff function in the example is discontinuous. However, it can be
smoothed out without changing the result.

14



it is often more convenient to model them as continuous. In this section we
present a number of examples where the replicator dynamics are applied to

infinite strategy spaces.

5.1 Nash demand game

One simple example is the Nash demand game. T'wo players have to decide
how to divide a resource of size 1. Both players simultaneously submit de-
mands, z and y (i.e. S =R,). If the demands are feasible, both get what
they demanded. If not, both receive nothing. Thus the payoff function is

|z fx4+y <1
f@’y)_{o if x4y >1
11

The unique efficient symmetric equilibrium of this game is (3, 5). Since this
equilibrium is strict, it is an ESS. The next proposition shows that it is

uninvadable and weakly attracting.

Proposition 1 In the Nash demand game the homogenous population 61/9

18 uninvadable, Lyapunov stable, and weakly attracting.

Proof. To establish uninvadability, we need to show that E (P, P) < E(612, P),
for all P # 813 with |12 — P|| < . All P in the s neighborhood of 6y,

can be written as

P=aQ +8Q"+ (1 —a— )b, (8)

where ()~ and Q71 are some probability measures with Qf([%, 1]) = 0 and
Q* (o, %]) =0, and o + 3 < . For probability measures R, R concentrated
on [0, %}, one has E(R, R') = m(R) < 1/2, where m(R) = [ zR(dz) denotes
the mean value of population R. If = 0, one has that E(P, P) = m(P) <
2 = E(61)9, P).

Next consider § > 0. In general, (619, P) = %(1 — ). Note that
E@QT, P)=abB(Q",Q7) <am(Q") < a. The bilinearity of E yields

7 (8.P) = 31— 5) - B(P.P)

=5(1=08)—aB(Q ,P)— (1—a =3B, P) - BEQ",P)

15



>3(1-p)—am(Q) —z(1—a=-AH1-p)—apm (@)  (9)
>53(1=p)—30—3(1-a=-pP)(1-p)-ap
=310(1—p8—3a). (10)

Thus, 6(1/2,P) > 0if 8 > 0 and 3a+ 3 < 1, which is satisfied for & small.
Hence 8;/2 is uninvadable. It follows from Theorem 5 that 6,/ is Lyapunov
stable.

By Corollary 3 the fitness difference o (%, Q(t)) vanishes. Defining 3(1), c.(t)
for Q(t) as in equation (8), we obtain by (10) that 3(¢) — 0. (9) implies
then that () — 0 or m(Q(t)") — 3. In both cases, Q(t)~ converges in £,
hence weakly, to 0;/9. Therefore, the 8,5 is also weakly attracting. W

5.2 The War of Attrition

An example for a game in which timing is the relevant choice is the well
known War of Attrition, which has important applications in economics and
biology. Consider two players fighting for a prize worth V' to both players.
A strategy is to choose a length of time x € [0, M] for which one is prepared
to stay in the race. Fighting is costly. The payoffs are given as follows

V—y ifx>y

—x ifr<y
that is, a player gets the prize if he stay longer in the race than his rival but
has to share if they stay equally long. We assume that M > V/2. Otherwise
waiting until the end is always profitable.

It is obvious that no pure strategy Nash equilibrium exists. But as shown
by Bishop and Cannings [3] there is a unique, completely mixed Nash equilib-
rium, which has the following equilibrium distribution P*. Let t* = M —V/2.

1—e oV ifr<tr
P[0, 2)) =< 1—e ¥V iftr<z< M
1 ifx=M

Bishop and Cannings [3] show that P* is an ESS. In fact, they show [3, p.
118] that the fitness differential between the equilibrium distribution P* and
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any mutation @ is given by the square of the £2-distance of the corresponding

distribution functions:

E(P*,Q) - B(Q,Q) = (|P*—Ql,)’° (11)

b= ([ Mu([s,M])Qde

denotes the £2-norm on the space of distribution functions. Note that since
the right hand side of (11) is strictly positive for all @) # P*, it follows that

P* is strongly uninvadable.

where

In light of (11), it seems natural to use the £2-topology in dynamic con-
siderations. On the space of populations A, this topology is equivalent to
the weak topology as shown by Hindy, Huang, and Kreps [10]. The following
theorem demonstrates that the replicator dynamics converge globally to P*
from all initial states (0) which have finite Kullback—Leiber distance (or

cross—entropy ) with respect to P*.

Theorem 6 Assume Q(0) dominates P* and

ar+

Then the replicator dynamics with initial condition Q(0) converge weakly to

the equilibrium distribution P*.

Proof. Because of Theorem 3, Q(t) and Q(0) are uniformly equivalent.
Thus, the Kullback—Leibler distance

*

dP*

K(Q(¢), P*) = /log dCéQP(t)

is well defined, finite, and nonnegative. With the use of the representation

for the density of Q(t) with respect to Q(0) obtained in Theorem 3 it follows
that

0 < KQ).P)
dQ(0) dpP* "
/ tog <d@<t> d@<o>> r

17



= / / olx ))dsd P~

(E(P — B(Q(s),Q(s))) ds .

I
\

(11) yields
¢
0 < K(Q().P) - / (17— Qo)) ds
Hence, the integral

/0 TP - QUs)]ly)Pds < oo (13)

exists. It follows that the distance ||P* — Q(s)|, tends to zero as s — oo
since the map s +— ||P*— Q(s)|, is equicontinuous, which can be seen
as follows. By the triangular inequality, |||P* — Q(s)|l, — [|P* — Q@1)]l5] <

1Q(s) — Q(t)]|,. The L£%norm is dominated by the variational norm,

1Q6s) - Q)l, = ( / <Q<s><[a:,oo>>—@<t><[x,oo>>>2da:>5

l
M=z

<

5 1Q(s) =Ml

and the trajectory (Q(t)) is Lipschitz, ||Q(s) — Q(t)| < 204 |s — t|, compare
the proof of Corollary 3. B

5.3 Cournot duopoly

Another example where the strategy space is generally modelled as contin-
uous is a duopoly model where firms choose quantities, i.e. S = [0, M], for
some M large enough. Let p(z 4+ y) = a — b(z + y) denote the linear inverse
demand function with a,b > 0. A representative firm’s profit function is given
by
f(@,y) = plz +y)z — C(2),

where C(z) is a twice continuously differentiable and convex cost function.
Given this assumption there exists a unique symmetric Nash equilibrium of
the duopoly game in which both firms choose quantities z°.

To study the stability properties of ¢ we need the following useful fact,

which is particular to the linear structure of the Cournot setup.

18



Lemma 4 F(6,,Q) > F(Q,Q) for all Q # 6.

Proof. Let § := fooo xQ(dz) denote average output. The Lemma follows

from the following chain of (in)equalities.

E(6ee, Q) = [(=°,0) > [(7.9) 2 B(Q,6) = B(Q, Q).
The first equality follows from the linearity of the profit function f(z,y) in
Y.
Br @) = [ e+ 9) - O QM)
= z'p(z’ + q) — C(z°) = f(z*, Q).

To verify the first inequality suppose § < x° and let 7(y) := arg max, f(z,y)

denote a firm’s reaction function. Since % < 0, r(y) < 0. Thus,
y

r(g) > r(z°) = z°. By definition of r(y) and § < z¢

[r(@),9) > 13, 9)-

Concavity of f(z,y) in = implies that

[0 > [(7,9)-

A similar argument holds for § > z°.
The second inequality follows directly from concavity of f(x,y) in x and

Jensen’s inequality.
@D = [ fe.aQs) = EQ.5).
0

Finally, the last equality follows again from linearity of f(z,y) in y. B

Lemma 4 implies in particular that 6,c is strongly uninvadable. Theorem
5, therefore, yields that the Cournot equilibrium is Liyapunov stable. We
show next that replicator dynamics converge globally to the Cournot equi-

librium from all initial states which put positive weight on the equilibrium.

Proposition 2 The replicator dynamics converge weakly to the Cournot equi-
librium from any initial state with Q(0)({z°}) > 0. In particular, the Cournot

equilitbrium s weakly attracting.
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Proof. Since the profit difference o(z¢,@Q)) > 0 for all populations ), the
weight on z° increases with time for every initial state ((0), which puts
positive probability on z¢. By Corollary 3 the fitness differential o(z¢, Q(t))

vanishes. The mean payoff is
PQ.Q) = [ o)
= /OO lax — ba® — bz — C(x)] Q(dx)

0

< ga—2bg) — C(q) — bVar(Q)
= f(3,@) —Var(Q).

Thus

o(2%,Q) = B(,Q) - EQ,Q)
> [ ~ f(7.9) + bVar(Q).

Since f(z¢,q) > f(q,q) by the proof of Lemma 4, o(z¢,Q(t)) — 0 implies
that Var(Q(t)) — 0 and § — z°¢. Thus, Q(t) — &4 in £? , which implies

weak convergence . Bl

5.4 Bertrand duopoly

In Bertrand models of price competition with homogenous goods a continu-
ous strategy space is particularly appropriate given the usual “undercutting”
argument. Strategies for both firms are now prices z,y € R,. Market de-
mand is given by a continuous and bounded function ¢(x) which is strictly
decreasing for all z with ¢(z) > 0. Furthermore, we assume that there exists
an T < oo such that for all z > Z, ¢(z) = 0. Marginal costs, ¢, are constant,

with ¢ > 0. A representative firm’s profit function is then given by

(r—clg(z) z<y
(2 - )q(2)/2 x=y
0 >y

flz,y) =

where we assume as usual that both firms get half of demand if they choose

equal prices.
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As is well known the unique Nash equilibrium of this game is for both
firms to choose p? = c. Note, however, that the game does not possess an

ESS. In particular, 6,5 is not an ESS since
E(byp, (1 —2)bpe +Q) < E(Q, (1 —£)bys +£Q)

for all Q with Q((c,Z)) = 1. For the same reason, 6,z is not Lyapunov stable.
For a discrete strategy space Hehenkamp [8] demonstrates that the small-
est price above ¢ is globally stable. We can derive a similar result if we exclude

from the strategy space some small open interval (¢,b), b > c.

Proposition 3 Let S = Ry \(¢,b) for some b with & > b > c¢. Then &, is
uninvadable, and, therefore, Lyapunov stable with respect to the replicator

dynamics. Moreover, &, is strongly attracting.

Proof. Tet m = (b — ¢)g(b) > 0 and K be an upper bound for the payoffs.

Choose )
2K\~
n < <1 + —> . (14)
T

We show first that o(b, R) > 0 for every population R # &, with |R — 6| <
n. Every such R can be written as aP~ 4+ (1 — a — 3)6, + fPT with
P ([b,0)) = PT([0,0]) = 0and 0 < a+ 3 < 5. Then E(6,R) =
(1—a+p)7n/2 and

E(R,R) = aFE(P ,R)+ (1 —a—B3)E(6,R) +BE(PT P
< (1—a—pB)E(6,R) + #*°K.

Hence,
s(b,R) > (a+)(1 —a+ﬂ)g—ﬂ2[{
> (a+8) (1-a+p)F-BK)
>

(+8) (L-m5-nk) >0,

by (14).Thus, 6 is uninvadable and, by Theorem 5, Lyapunov stable. Now
assume 6, # Q(0) ({b}) > 1 — 7. Define a(t) and 3(t) via

Q) =a()P +(1—at) — A1) & + S) P (1)
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as above. Then, exactly as above,

o(b.Q(t) = (alt) + A1) (1= n) 5 —nK) > 0.

By Corollary 3, a(t) 4+ 3(t) must go to zero. R

The outcome for the unrestricted strategy set, however, is still an open
question. We can show that all prices p < ¢ — ¢ will vanish, which does not
exclude the possibility that prices p = ¢ and p > Z will survive in the long

run.

Proposition 4 For all initial populations Q(0) with Q(0)((c,Z)) > 0 and
arbitrary small § > 0, all strategies below ¢ — & die out: Q(t)([0,¢ — 6]) — 0

ast — oo.

Proof. See appendix. R

5.5 Mixed strategies

Replicator dynamics are usually defined on the (finite) space of pure strate-
gies. In contrast, the static analog of an evolutionary stable strategy (1SS)
allows for individuals playing mixed strategies. This is the reason why the
set of EESS cannot be characterized by the stable rest points of the replicator
dynamics. Every ESS is an asymptotically stable state of the finite replica-
tor dynamics but not vice versa (see e.g. Weibull, [21], or Vega—Redondo,
[20]). The divergence of these concepts disappears if one defines replicator
dynamics on the set of mixed strategies.

Let < U,T > denote the underlying symmetric 2-player normal form
game, where U : T' x T — R denotes the payoff matrix and T is the finite
set of pure strategies. Let n be the number of pure strategies. Let A(T') :=
{x e R"|z; > 0,57 & =1} denote the n — 1 dimensional simplex.

Since we are concerned with the evolution of mixed strategies, our strat-

egy set S is given by A(T). The corresponding payofl function is simply

flz,y) =aUy = Z Za:iijij.

i=1 j=1
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Note that a mix over mixed strategies induces just another mixed strategy.

Tet
= Q)

denote the mean mixed strategy in the population. Compare now the fitness
of some subpopulation in which everyone mixes half-half between two pure
strategies i and 7 with some other subpopulation in which half of the players
choose i and the others j. Since their mean mixed strategy is the same, one
cannot expect evolution to select among those subpopulations. At best one
can hope that the mean mixed strategies possess some kind of stability. Such
a result was proved by Hines [9] (see also Vega—Redondo [20, p. 60]). By

Lemma 5 of Zeeman [22], the evolution of the mean strategy satisfies

p(t) = C(Q)Uu(L),
where C(Q) = [(z — p)(z — p)Q(dz) denotes the covariance matrix.

Proposition 5 (Hines, [9]) Let x* >> 0 be a completely mized ESS. Then

*

©* is asymptotically stable if and only if p* = x*.

6 Conclusion

We have shown in this paper that the replicator dynamics can be applied
to continuous strategy spaces without modification. The only condition is
that the underlying payoff function must be bounded, which can often be
achieved by imposing arbitrarily large bounds on the strategy space.

In games in which a continuous strategy space is more natural, e.g. when
quantities, prices, timing etc. are strategies, it should be possible now to use
replicator dynamics directly on the continuous strategy space rather than on
a more or less suitable discretization.

We have applied the theory to a number of examples. In the Nash de-
mand game, the War of Attrition, and a Cournot duopoly, the results for the
discretization are (roughly) reproduced. However, in a Bertrand setting the
results of the discrete model turned out to be somewhat misleading. While

in the discrete model the price above marginal cost is asymptotically stable,
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in the continuous model no such stable outcome seems to exist. The shape
of the limit distribution is still an open question.

Further applications of the model are replicator dynamics defined on
mixed strategy spaces and games in which continuous preference parame-
ters are selected for in an evolutionary game (see e.g. the analysis of the

endowment effect in Huck, Kirchsteiger, and Oechssler [14]).

Appendix

Proof of Theorem 2. It suffices to prove the first formula because the
second formula follows by taking a = b = 1.
For a measurable function f bounded by 1, one has by the monotonicity

of the integral with respect to R

‘/fdﬂ‘ _ ‘/f&dR‘ < [1glan < [igar,

hence ||p| < [ |£]dR. To show equality, set A ={¢ >0} and f =14 — Lae.
Then f is bounded by 1, hence

HMHZ‘/fdu‘Z‘/AEdR—/ACSdR‘:/!E!dR,

because £ = || on A and —¢ = |{| on A°. W
Proof of Corollary 2. The discrete measures P" and P are dominated by

the counting measure ¢ = > 7 | 8;. The densities are

dp"
i (i) =i .

By Theorem 2,

P = P = ¢

ac d¢

The left—hand side goes to zero if and only if for every i the probabilities pf
tend to p*. W

o = _lpi —pil.

Proof of Lemma 1. As a candidate for F , We propose
FQ)=2-]eh" F@).
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F is zero for |Q]| > 2, bounded and coincides with F' on A because proba-
bility measures have norm 1. Let ( and R be measures with |Q] , | R|| < 2.
Choose P = W as the dominating measure. Here, we use the notation
lp| :== pt + p ,where the nonnegative measures p* and g~ form the Hahn
decomposition of p, i.e. p = pt—p~. Note that F'(Q) has the density o(-, Q)
with respect to () and therefore

dF(Q)
dP

With the use of Theorem 2, we obtain

dQ
dpr’

=0(Q)5

IF(Q) = F(R)|| = £”

- [ e fpe) - o @
g/ya(a:,Q) a:R]‘ )| dP(x /yoa:R!‘ (x)

< [1ot.@) - ot a1 /waﬂ (=)

dF(Q) dF(R)‘
dP dP

dQ dR

dP(z)

dP(z)

dP(z).

Using the boundedness and Lipschitz conditions (3) and (2) in conjunction
with Theorem 2, it follows that

1F(Q) = F(B)| < L|Q =Rl Q + 20 [|Q — £l
< 2L+0.) Q- R . (15)

Hence, F' is Lipschitz continuous on the set of measures with variational
norm less than 2.

To extend this property to F we distinguish three cases. If || Q]| , || R|| > 2,
then F(Q) F(R) = 0 and there is nothing to show. If |Q| > 2 > | R||,
then

FQ-Fm)| = |Fm)
— - IR IF@®)] -

25



By Theorem 2 and the boundedness condition (3)

170 = [ lote. ) | 50)| ar) < o). (16)

Therefore,

IA

2 =Bl [|1£]

2(1Q1 = 1210
20 |Q — RI| .

F(Q) -~ F(r)

IAIA

If, finally, both ||Q|, |R|| < 2, then

FQ - FR)| = le-1ehF@ - @- |R)EM®)
< @ 1QNIF@ - PR+ IFE] QN - &I

Now we use the Lipschitz continuity of F' obtained in (15) and the upper
bound for ||F'(R)]| of (16):

FQ-FR)| = @=IQNEL+0.) IQ = Rl + 204 |Q - &I
< A(L+0) Q- R

This completes the proof of the Lemma. W

Proof of Lemma 2. We have to check that a bounded payoff function f
implies the Lipschitz and boundedness conditions on ¢ assumed in Lemma
1. Let M be a bound for the payoff function f. Then

B(Q.Q)] = / / £(2.9)QUdy)Q(dz)| < MQ)?
and
/ f<a:,y>@<dy>\ < M|Q).
yield
o(2.Q) < M QL+ Q) (a7

whence (3) follows with o, = 6M.
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For the Lipschitz condition (2), note that
0.0 = oo )] = | [ 1)@ Ba) + B 1) - Q.0
< M |Q— Rl +|E(R,R) - B(Q,Q) .
The bilinearity of E allows to write
|E(R,R) — B(Q,Q) < [E(R, R —-Q)|+|E(R-Q,Q)| .

But

B E=-Q) = | [ [ fwnkn(E- Q)
< M|R|[]|R-Q]
implies
|E(R, R) — E(Q, Q)] < M(|E| + Q) £ -l
and (2) follows. M
Proof of Theorem 3. Let (Q(t)) be the unique solution of the differential

equation

Q) =F(Q@), QO =P

with P € A. Define new nonnegative measures (R(t)) via

dig ) = e < / tU(%Q(S))ds) |

The integral on the right-hand side is well defined because the integrand

o(z,Q(s)) is uniformly bounded in z on every interval [0,¢] by (17) and the
continuity of (Q(s)). Hence, the density is bounded and bounded away from
zero. It follows that R is finite, R € M® and uniformly equivalent with
respect to P.

In a first step, we show that R is continuously differentiable with deriva-
tive

RO = [ oo Q) R()da).

A
For this we need to show that

lim % HR(t +h)— R(t) — h/a(a:, Q@))R(t)(dx)

h—0

=0.
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Using Theorem 2 we have that
L H R(t+h) — R(t) — h / o (2, Q) R(1) (dx)
— 2[R ) - 1 - hote, )| R0 )

:/E

But the integrand approaches zero as h — 0 for every z, and the integrand

exp [ ot ¢) = 1= hoa, Q)| B(Od).

is bounded in x because so is o (z, Q(s)).
Now we show that R = () on any compact interval [0,7]. Let f be a

measurable function bounded by 1. Then

\ / fd(R(t)—Q(t))‘ - |[ [raw-

s))(£(s) — Q(s))(dw)ds

ds

s))(B(s) — Q(s))(dx)

By (17) we have |f(2)o(z, Q())] < M|Q(s)]| (1 + [Q(s)]) < Me for some

constant ¢ because ||Q(s)] is continuous and therefore bounded on compact

‘/fd(R(t) _ ‘ < Mc/ IR(s) — O(s)] ds

for all measurable functions f bounded by 1. It follows that

sets. Hence,

170 - Q)1 < e [ 176) - Qo ds

Gronwall’s inequality (see e.g. [L1]) gives || R(t) — Q(t)]| = 0.
Therefore, Q(t) = R(t) is a nonnegative, finite measure. Because of
Q'(t)(S) =0 it is a population. H

Proof of Proposition 4. We start by noting that the weight on the strate-

gies in the open interval (¢, Z) increases with time.
QW)((e7) - /( | e, Q) )
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—Q(t) ((c.7)) / B (6., Q(1)Q(1)(dx)

Ry

> [ Be.Qoeu)s)
(c,7)
—Q(t) ((c.7)) / B (6., Q(1)Q(t) (dx)

(¢,00)

> [ Be.eueEn) - [ Be.Qoei)

(c,¥) (e,00)

- - /[ 6, QUIQ) ) =0

because the strategies above T have zero payoff in any circumstances.
Fix a 6 > 0 with Q(0)({c—6}) = 0. We show now that the weight on the
closed interval bounded away from ¢, [0,c¢ — §|, vanishes exponentially. By

the replicator dynamics,

Q' ()([0,¢ = ¢]) = /[0 L E (b2, Q(1)Q(1)(dx) = Q()([0,¢ = 6)) E(Q(L), Q(1))

= /[0 o (z = c)q(x)Q(0)((x, Z)Q(1)(dx) — Q(1)([0, ¢ — ) E(Q(1), (1)) -
On [0,¢ — 6], z — ¢ < —8. Moreover, ¢ is decreasing. Hence
Q(t)([0,c=8]) < —bq(c—8)Q(t)([c — 6, z))Qt)([0,c — ¢])
—Q()([0,¢ = 6 E(Q(1), QL)) -

On the other hand, the strategies above marginal cost have a positive payoff

if they win against their opponent, that is

Q' (t)(le,7]) = /[ , (62, Q(1))Q(t)(dx) — Q) ([e, ) E(Q(L), Q(1))
> =Q)([e, 2 E(Q(1), Q1)) -
Comparing the growth rates on the two sets yields

Q1)((0,c—9d) @ )(c 7))
Q)([0,e=8]) Q) ([e, 1)

ININ A
|
jo%)
=
o
|
Nt
O
=
o
&



where we have used the fact that the weight on (¢, Z) increases with time.

Armed with the uniform lower bound ¢, it follows

Q(0.c—8) _ Q)(0.c—8)
o) = ooed) © (18)

and the weight on [0, ¢ — 6] decreases exponentially to 0 as desired. W
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