~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Sperlich, Stefan; Tjgstheim, Dag; Yang, Lijian

Working Paper
Nonparametric estimation and testing of interaction in
additive models

SFB 373 Discussion Paper, No. 1998,14

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Sperlich, Stefan; Tjgstheim, Dag; Yang, Lijian (1998) : Nonparametric estimation
and testing of interaction in additive models, SFB 373 Discussion Paper, No. 1998,14, Humboldt
University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of
Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10056484

This Version is available at:
https://hdl.handle.net/10419/61263

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10056484%0A
https://hdl.handle.net/10419/61263
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nonparametric Estimation and Testing of Interaction in Additive

Models

Stefan Sperlich Dag Tjgstheim
Institut fiir Statistik und Okonometrie Department of Mathematics
Humboldt Universitat zu Berlin University of Bergen
Spandauer Str.1 5007 Bergen
10178 Berlin Norway
Germany

Lijian Yang
Department of Statistics and Probability
Michigan State University
East Lansing, Michigan 48824
U.S. Al

February 16, 1998

Abstract

We consider an additive model with second order interaction terms. It is shown how the
components of this model can be estimated using marginal integration, and the asymptotic
distribution of the estimators is derived. Moreover, two test statistics for testing the presence
of interactions are proposed. Asymptotics for the test functions are obtained, but in this case
the asymptotics produce inaccurate results unless the number of observations is very large. For
small or moderate sample sizes a bootstrap procedure is suggested and is shown to work well
on a simulated example. Finally, our methods are illustrated on a five-dimensional production
function for a set of Wisconsin farm data. In particular, the separability hypothesis for the
production function is discussed. *
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1 Introduction

Linearity is often used as a simplifying device in econometric modeling. If a linearity assumption
cannot be entertained, even as a rough approximation, a very large class of nonlinear models is

subsumed under the general regression model
(1) Y=m(X)+o(X) |,

where X = (X1,..., Xy) is a vector of explanatory variables, and where ¢ is independent of X with
E(e)=0and Var(e) = 1. Although in principle this model can be estimated using nonparametric
methods, in practice the curse of dimensionality would in general render such a task impractical.

A viable middle alternative in modelling complexity is to let m be additive, i. e.

d
(2) m)=c+ > fulaa)

where the functions f, are unknown. The additivity assumption has been employed in several areas
of economic theory, for example in connection with separability hypotheses for production functions.
Traditionally, additive models have been estimated using backfitting ( Hastie and Tibshirani 1990
), but recently the method of marginal integration ( Auestad and Tjgstheim (1991), Linton and
Nielsen (1995), Newey (1994), Tjostheim and Auestad (1994) ) has attracted a fair amount of
attention, an advantage being that an explicit asymptotic theory can be constructed. It should be
remarked that important progress has been made recently (Linton, Mammen and Nielsen (1997),
Opsomer and Ruppert (1997)) in the asymptotic theory of backfitting.

A weakness of the purely additive model is that interactions between the explanatory variables are
completely ignored, and in certain econometric contexts - production function modeling being one
of them - the absence of interaction terms has been criticized. In this paper we therefore allow for

second order pairwise interactions resulting in a model

d
(3) m(z)=ct+ Yy falza) ¥ D fapl(ta,zs) .

1<a<f<d

Such models have been mentioned in Hastie and Tibshirani (1990) and briefly in Tjgstheim and
Auestad (1994) and a hierarchy of increasing order of interactions has been discussed. The main
objective of this paper is to consider estimation and testing of the interaction terms using marginal
integration theory. Again the latter makes it possible to construct a precise asymptotic theory. An
application to testing for the presence of interaction terms in a production function will be given

in Section 5.3.

Not surprisingly, the problems of testing and estimation are intimately connected. The estimation
theory is used in constructing tests, and once the test has been performed, estimation theory can
again be used to construct confidence intervals for the model resulting from the testing procedure.

We construct two basic functionals for testing of the presence of interaction between a pair of

variables (z,23). The most obvious one is to estimate f,g and then use a test functional

(4) /fzﬁ(wa,xﬁ)ﬂ(xa,wg)dxadwg ,



where 7 is an appropriate non-negative weight function. The other functional is based on the fact
that 0?m/dx,0x4 is zero iff there is no interaction between z, and zg. By marginal integration
techniques this can be achieved without estimating f,s itself and its derivative, but it does require
the estimation of a second order mixed partial derivative of the marginal regressor in the direction

(Tor23).

It is well known that the asymptotic distribution of test functionals of the above type is not a
very accurate description of the finite sample properties unless the sample size n is fairly large,
see e.g. Hjellvik, Yao and Tjgstheim (1998). As a consequence for a moderate sample size we have
adopted a wild bootstrap scheme for constructing the null distribution of the test functional.

Our test is in effect a test of additivity with the added bonus that the alternative is formulated in
terms of interactions between pairs of variables. Thus as an outcome of the testing procedure we
should be capable of indicating which pairs (if any) of variables should be included to describe the
interaction. We again refer to the example of Section 5.3.

Other tests of additivity or interaction terms have been proposed. The one coming closest to ours
is a test by Gozalo and Linton (1997), which is based on the differences in modelling m by a
purely additive model as in equation (2) opposed to using the general model (1). The curse of
dimensionality may of course lead to bias - as pointed out by the authors themselves. Also, this
test is less specific in indicating what should be done if the additivity hypothesis is rejected. A
rather different approach to additivity testing (in a time series context) is taken by Chen, Liu and
Tsay (1995). Still another methodology is considered by FEubank, Hart, Simpson and Stefanski
(1995).

2 Some Simple Properties of the Model

In general, X = (X1, X3, ..., X4) represents a sequence of independent identically distributed (i.i.d.)
vectors of explanatory variables, ¢ refers to a sequence of i.i.d. random variables independent of X,

and such that F(¢) = 0 and Var(e) = 1. In the expression (3) for m(z), ¢ is a constant, {fa(-)}i:1
and {fap(")}<,cp<q are real-valued unknown functions, and where for @ = 1,2, ...,d one has

(5) Efoz(on) = /fa(xa)@a(xa)dxa =0,

and for all 1 <a < g <d,

(6) /faﬁ(wa,wﬁ)%(%)d% = /faﬁ(xavwﬁ)@ﬁ(wﬁ)dwﬁ =0,

with {@a(-)}_, being marginal densities (assumed to exist) of the X,’s. Equations (5) and (6)
are identifiability conditions. If one starts with a function of the form given in (3) not necessarily
satisfying (5) and (6), the following steps could be taken:

1. Replace all {faﬁ($a,$ﬁ)}1§a<g§d by {fap(®ar ) = fo,ap(Ta) — fo.08(zs)+ CO,aﬁ}1§a<ﬁgd7
where

fap(2a) = / fas (o ) pp ()



foilies) = [ Fuplusamealundu

€0,06 = /faﬁ(uav)@a(u)@g(v)dudv

and adjust the {fg(xﬁ)}ézl’s and the constant term ¢ accordingly so as to keep m() the same
function;

2. Replace all {fﬁ(wg)}ézl by {fs(zp) — Coﬁ}é:p where ¢g 5 = [ fs(u)ps(u)du, and adjust the
constant term ¢ accordingly so as to keep m() the same function.

Let X, be the (d—1)-dimensional random variable obtained by removing X, from X = (Xy,..., Xq),
and let X,3 be defined analogously. With some abuse of notation we write X = (X,, X3, Xop)
to highligl? the directions in d—space represented by the a and f coordinates. We denote the
marginal density of X, that of X, and of X by ¢.(z4), @as(zag), and ¢(z), respectively.

We now define by marginal integration

™ Fuloa) = [ o, sgalon)d

for every 1 < a < d and

(8) Fup(was9) = [ m(zanon 20 punlas)dzas,

for every pair 1 < @ < § < d. Denote by D, and D, 3 the subset of {1, 2, ...,d} with a, respectively

a and f, removed. Moreover, let
Doo ={(7,6)| 1<y <6<d,y€ Dy, b €D},

Dog={(7,0) |1 <y <é<dyye DoN Dy, b€ Do Dy}
and

Capg = /fag(u,v)cpag(u,v)dudv

for every pair 1 < oo < < d. Then (5) and (6) entail the following lemma.

Lemma 1

1) Fo(wa) = fal®a) + ¢+ X2, 6)eDan C67
Fop(ta,vp) = fap(@a,2p) + fol@a) + fo(2p) + ¢+ 20 5)eD, 5 C6v
2)  Fapl@a,ap) = Falwa) = Fplap) + [ m(z)p()de = fop(2a,25) + cap

3) cop = [{Fap(u,zp) — Folu)} po(u)du — Fs(zg) + [ m(z)e(z)de
fap(a,2p) = Fap(ta,25) = Fala) = [{Fap(u,2p) — Fa(u)} @a(u)du



Proof.
1) Both formulas follow from the definitions of Dyn, Dag, ¢op and equations (7) and (8).

2) Note first that the population mean is simply

/m(w)c,o(w)dx =c+ Z Conye

(1<y<8<d)

Using this and the formulas in 1), one arrives at
Fup(eas6) = Fuea) = Fo(aa) + [ miayetayds =

[RESETTED SIT R DU SEPSE S

1<y<6<d (7,6)EDagp (v,6)€Daa (v:8)€Dgg

= fap(Tarp) + Cap-

3) We only need to integrate both sides of the equation in 2) and note that the right hand side
comes out as ¢,g because of the identifiability condition (5). The rest follows by the equation in

2). Q.E.D.
We define another auxiliary function
Jap(a,2p) i= Fop(@a, 2p) — Fo(za) — Fplep) + /m(w)@(ﬂﬁ)dw = fap(®ar2p) + ap

which is a convenient substitute for f,g(z,,25) as shown in the following.

Corollary 1
Jap(2a,28) =0 = fop(2a,25) =0
Proof.
=: by the previous lemma, F,5(zo, 2g)—Fal(2o)—Fp(25)+ [ m(z)p(z)de = 0 implies fop(zqs, 25)+
cop =0, 0r fop(2q,23) = —cap, which by (6) gives

0= [ Fusloasslpateadinn = = [ cospatasdas = ~cas

and therefore f,g(zq,23) = 0;

<=: first by the definition of ¢, g, fag(za,25) = 0 gives ¢ = 0, and thus fo5(2a,23) + cag = 0.
Q.E.D.

The corollary provides a marginal integration tool for testing the presence of the interaction term
faﬁ($a7 xﬁ):
/f25($a7$ﬁ)ﬂ($a7$ﬁ)dwadxﬁ £0

5



where 7(2,,23) is any weight function. This observation suggests the use of the following statistic
for testing of additivity of the a-th and §-th directions:

~2
(9) [ Fastiaraa)pus(zas oadoadsy
where
~ R R N 1 n
(10) fap(@ar25) = Fap(a,v5) = Falwa) = Fo(wp) + ~ >v

J=1
with Faﬁ, E, and Fﬁ being defined in the next section, and where it follows from the strong law

of large numbers that

1 n
- E Y; a-5 m(z)e(x)dx .
n

i=1

As an alternative it is also possible to consider the mixed derivative of f,3. We will use the notation

+s r+s

fc(ygs) to denote the derivative afrrwfag and analogously Fc(ygs) for aerFaﬁ- We only have to
29T 29T
check whether

2
/ {Fc(ylg’l)(wa, 965)} (2, 2g)dzodrg

is zero which is equivalent to f,3 = 0.

3 The Estimators

3.1 Estimation of interaction

To use the marginal integration type statistic (9), estimators of the interaction terms must be
prescribed. Imagine the X-variables to be scaled so that we can choose the same bandwidth h for
the directions represented by a, § and g for af. Further, let K and L be kernel functions and
define K4(-) = +K(-/h)and Ly(-) = %L(-/g). We will give more detailed descriptions of the kernels
K and L and the bandwidths & and ¢ in the next sections. For ease of notation we use the same
letters K and L (and later K*) to denote kernel functions of varying dimensions. It will be clear
from the context what the dimensions are in each specific case.

Following the ideas of Linton and Nielsen (1995) and Tjgstheim and Auestad (1994) we estimate
the marginal influence of z,, 25 and (z,,23) by the integration estimator as follows

n n

~ 1 . = 1 .
Fop(za,28) = —Zm(wa,xﬁ,Xl%) , Foles) = —Zm(wa,X@),

n n

where Xio5 ( X, ) is the [th observation of X with X, and Xp ( X, ) removed.

The estimator m(zq, g, Xiag) Will be called the pre-estimator in the following. To compute it
we make use of a special kind of multidimensional local linear kernel estimation; see Ruppert and
Wand (1994) for the general case. We consider the problem of minimizing

(11) E{YZ —ag— a1(Xio — o) — a2(Xip — 25) 2 Kn(Xia — 70, Xig — 28)Lg(Xiag — Xiap)
=1



for each [ fixed. Accordingly we define
(@0 25, Xiag) = 1(Z2sWiapZap) " ZLsWiagY

in which
Y = (Ylv"'vyn)Tv

. 1 "
Wl,ozﬁ = dlag {E[x/h(Xm — wa,Xig — wg)Lg(Xi% — Xl%)} R
=1

1 Xloz — Ty Xlﬁ — g
Zaﬁ = 9
1 Xpa —20 Xpp— 28

and e; = (1,0,0). It should be noted that this is a local linear estimator in the directions a, # and
a local constant one for the nuisance directions af.

Similarly, to produce the pre-estimator m(zo, X1 ), with ey = (1,0), we define
W20y Xia) = e1(ZE W10 Zo) T ZE WY

in which .

1
Wha = diag {—I(h(Xm — wa)Lg(Xm — Xla)} R
n a a

=1
1 X140 — 24
o =
1 X,0 — 2o

This estimator results from minimizing
Z{K — g — al(Xioz - xa)}zlﬁrh(Xia - xa)Lg(Xig - Xlg) P

which gives a local linear smoother for the direction o and a local constant one for the other
directions.

In order to derive the asymptotics of these estimators we make use of the idea of equivalent kernels;
see Ruppert and Wand (1994) and Fan at al. (1993). The main idea is that the local polynomial
smoother of degree p is asymptotically equivalent to, i. e. it has the same leading term as, a kernel
estimator with "higher order kernel” given by

P
(12) Z syt K (u

t=0

for the one dimensional case, where § = (f ut"'slf(u)du)oq o<p and 57! = (8,1 )o<pi<p. Estimates

of derivatives of m can then be obtained by taking different rows of 571,



1 0

0 py'(K)
For the two dimensional case with p = 1 the equivalent kernel is

),With p2(K) = [w*K(u)du.

For the one dimensional case and p = 1 we have §7! = (

(13) Kx(u,v) = K(u,v)s,(1,u,v)’, with s, being the (v 4+ 1) row of
1 0 0
St o= 0 p' 0 |[,0<v<2
0 0 puy'

To estimate the function m itself (v = 0) using a local linear smoother (p = 1) we have simply
Kj(u) = K(u) and Kj(u,v) = K(u,v), but K} becomes increasingly important when we estimate

derivatives. We will come back to this point in Section 3.2.

o~

We are interested in the asymptotics of the estimator faﬁ(xa,xﬁ) given in (10). We need the

following assumptions.

Al: The kernels K (-) and L(-) are positive, bounded, symmetric, compactly supported and
Lipschitz continuous . The bivariate kernel K is a product kernel such that (with some
abuse of notation) K(u,v) = K(u)K(v), where K(u) and K(v) are identical functions with
[ K(u)du = 1. The d — 1, respectively d — 2 dimensional kernel L(-) is also a product of

univariate kernels L(u) of order ¢ > 2, i.e.

1 for r=10
/uTL(u)du: 0 for 0<r<yq
¢ €IR for r>gq

nh2g2(d=2)

In?(n)

A2: Bandwidths satisfy — 00, ?TZ — 0 and h = hgn ‘.

A3: The functions f,, fap have bounded Lipschitz continuous (p + 1)th derivatives..
Ad: The variance function, o?(+), is bounded and Lipschitz continuous.

A5: The d-dimensional density ¢ has compact support Sx with inf,es, ¢(x) > 0 and is Lipschitz

continuous.

Remark to assumption (A1l): Product kernels are chosen here for the ease of notation, especially
in the proofs. The theorems work also for other multivariate kernels. In the following we will use

the notation || K3 := [ K*(x)dz for a kernel K (or K*) of any dimension.

Theorem 1 Let (z,,23) be in the interior of the support of wog (). Then under conditions (Al)-

(A5), R
(14) Vil { f ot 25) = fap(@ar2p) = B Bi(2a, 25)} —— N {0,Vi(za,25)}

where faﬁ is given by (10) and

2

Pops
V o — ]7* 2 2 —_— — d o
(r0n00) = K7 [ o20) 2oy



and
1
Buloaas) = ma(K) 3 {88 ) = [ 15 w0 unstug)du

-I-fc(y%’Z)(xa,xg)—/fc(y%’Z)(ua,xg)cpg(ug)du}

The proof of Theorem 1 is given in the appendix.

3.2 Estimation of derivatives

Since the estimation of derivatives for additive separable models has already been introduced in
the paper of Severance-Lossin and Sperlich (1997), we concentrate in this section on estimating
the mixed derivatives of the function F,s. Although the derivative estimation for multivariate
functions with the aid of multidimensional local polynomials is worked out in Ruppert and Wand
(1994) and other papers, the case of mixed derivatives has not been explicitly considered yet. Our
interest in this estimator is motivated by testing the hypothesis of additivity with no second order
interaction. Since Fc(ylﬁ’l) = fc(ylél), to test for Fc(ylﬁ’l) = 0 is equivalent to testing the hypothesis that
fap is zero.

Following the ideas of the previous section (or see also Severance-Lossin and Sperlich (1997) ) at the
pre-estimator point (24,23, X;og) we implement a special version of the local polynomial estimator.
For our purpose it is enough to use a bivariate local polynomial estimator. We want to minimize

Sim Y — a0 — a1 (Xia — wa) = a2(Xig — v5) — a3(Xia — va)(Xip — 2p) — aa(Xia — 24)?
—a5(Xi5 — wg)z}zfx’h(Xm — wa)[(h(Xig — wg)Lg(Xi% — Xl%)

and accordingly define our estimator by

n

~(1,1 1 -1
(15) Fo(zﬁ )(xa, xﬁ) = E Z €4 (ZEBWWBZQB) Zg;ﬁWipﬁY

=1
where Y, W, .3 are defined as above in Section 3.1 and e4 = (0,0,0,1,0,0).
Thus in equation (15) above, Z,z is

1 Xio—2a Xip—ap (Xia—2a)(X1p = 25)  (X1a —2a)®  (X1p— 2p)?
Zag=| i1 : s : :
1 Xno =20 Xpg =25 (Xna = 20)(Xnp = 25) (Xno = 20)? (Xng — 25)°
This estimator is bivariate locally quadratic for the directions « and f and locally constant else.

Certainly it is also possible to use polynomials of higher degree but for ease of presentation we
restrict ourself to local quadratic polynomials.

Recalling the ideas of the preceding section we can now put the equivalent kernel K™ to effective
use. Using a local quadratic smoother (p = 2) we have for the two dimensional case

K (u,v) = K(u,v)s,(1,u,v,uv,u?, vz)T



where s, is the (v 4 1), 0 < v < 5, row of

M4+M2 1—po — U2
ua—é 0 0 0 fa — 3 fa—p3
0 u;' 0 0 0 0
o1 0 0 wuy' 0 0 0
B 0 0 0 u? 0 0
— M2 _,2N—1
12 0 0 0 (pa—p3) 0
M4+M2 _ 2\—1
o 000 0 (4 — p13)

where p1; = p;(K) fuflx u)du. The relationship between S™1 and (ZgﬁWLaﬁZag)_l is given in
Lemma A2 of the appendix.

If we want to estimate the mixed derivative, we use K3(u,v)= K (u,v)uvu;*(K) where
/ule’;(u, v)dudv = 1

/uqlx’g(u,v)dudv = /vqlx’g(u,v)dudv =0 for ¢ =0,1,2,3,....
To state the asymptotics for the joint derivative estimator we need bandwidth conditions that differ
slightly from (A2):

h2 2(d 2) q 1

A6: Bandwidths satisfy ™ T % Z_Z) — 0 and h = hgnT .

Then we have

Theorem 2 Under conditions (A1), (A3)-(A6),
VahS{FD (2o, 05) = F Y (war 1) = 2 Ba(wa, )} == N {0, Va(2,25)}

where
@aﬁ(w ﬁ)

o(z)

dwaﬁ

Vo a5) = K31} [ o*(2)

and

1]
Baleaas) = malK ()G wann) [5 4 107 00n0) [ 2]
—|-3'{faﬁ (vay25) + fc(ylﬁ’?’)(aca,xg) + fc(%’o)(xa,xg)/gﬁ + fc(y%’S)(xa,xg)/Qa

+1O @) [ op+ FP(5) | 0a+ FEN o, 2y)0p +
[ore s [ 3 [ 100
> [ 9]

WeDaﬁ
with

84 xO[
o = Pap(Tap) 3@(w)d$aﬁ

elz)  Ove =
and pg defined analogously.

10



4 Testing for Interaction

We are now in a position to state the problem of testing for second order interaction. As mentioned
in Sections 1 and 2 for the model (3) we consider the null hypothesis Hy : f,3 = 0, i.e. there is no
interaction between X, and Xg for a fixed pair (o, 3). Applying this test to any pair of different
directions X, X5, 1 < < é < d this can be regarded as a test for additivity in the regression
model.

In Section 2 we pointed out that for this purpose it is equivalent to consider fag instead of f,z3.
We propose two procedures; the first one is focused on fag directly, the second one on the mixed

(1,1)

derivative fa s

4.1 Considering the interaction function

We will briefly sketch the idea as to how the test statistic can be analysed and then state the
theorem giving the asymptotics. The detailed proof is postponed to the appendix.

~2
We consider [ f,s(2a,23)Pas(2as2g)drsdrs. To study this test statistic, note first that by The-
orem 1, equation (14) and some tedious calculations we get the following decomposition

/fozﬁ Taon¥8)Pas(Ta,tg)dradrg = 2 Z H(X;, e, X5,¢5) + EH(XZ',&,XZ',&)—I-
1<e<j<n =1

/fiﬁ(%» 2p)¢ap(a, vp)deadrs + 207 / Fai (@ 23) Bi(a 25)Pas(@as 2g)daadus + 0,(h7)
where
H(Xi,ei, Xjrej) = eie; / %(wiaﬁ — Wio = Wip)(Wjop = Wja = wjg)o(Xi)o(Xj)pop(ta, p)deadrg
with weights w;,, w;g and w;,s defined in the appendix, equation (20) and (23).

We then calculate the asymptotics of H(X;,e;, X;, ;) and H(X;,e;, X;,¢;), put the results together
and obtain (cf. Lemma A3 of the appendix)

Theorem 3 Under assumptions (A1) to (A5), as h — 0 and nh* — o

990[ Zoz
{2K®) }/ ap(Zas) 2(2)d

~2
nh/faﬁ(xa,wg)cpag(wa,xg)dxadxg—
—nh/}Zﬁ(xa,wg)cpaﬁ(wa,xﬁ)dxadxg —2nh3/fag(wa,xﬁ)Bl(wa,xﬁ)cpag(xa,xg)dxadxg

2
Papl\Fla Papl Z2a
£N {0 8 HI (2) H / ﬁ ﬁ A ap(22a0) )0-2(21)0-2(210”Zlﬁ,ZQ%)ledZQ%}7

P\ Rlay #1685 22008

where K2 is the 2-fold convolution of the kernel K, and where By is defined in the formulation of
Theorem 1.

11



4.2 Considering the mixed derivative of the joint influence

In contrast to the preceding method one can test for interaction without estimating the function of
interaction f,g explicitly but looking at the mixed derivative of the function F,g. Our test statistic
is ch(ylﬁ’l) 2 ap(ta,2s) drs deg which certainly for our purpose is the same as [ fc(ylél) zc,oag(wa, zg)
dz.dzg.

As can be seen from the proofs of Theorems 1 to 3, the asymptotics for this test statistic are the
same as in Theorem 3 with the only difference that we now have to deal with A7 and end up with
asymptotic formulas containing K7 instead of K; see the definition in Section 3.1. Thus we state

the following theorem without an explicit proof.

Theorem 4 Under assumptions (A1) and (A3)-(A6), as h — 0 and nh® — o

2 (K72(0))” | @ 5(7a0)
— — 0?(2)d=>

- (1,1)2
nh5/Fc(yﬁ (2o 2p)pas(tar 2p)duadas - h P(2)

—nh5/fo(llél)z($a,$ﬁ)§0aﬁ($a,$ﬁ)d$ad$ﬁ—2nh7/fo(llél)($a,$5)B2($a,$ﬁ)§0aﬁ($a,$ﬁ)d$ad$ﬁ

£y {0 8‘ o H /%ﬁ #108)” (90@22%)2

2 2
dzd
ZloleﬁvZQ%)U (21)e 1 216, 2220) 451 ZZ%} 7

where By is defined in the formulation of Theorem 2.

5 An empirical investigation of the test procedures

In nonparametric statistics for small and moderate sample sizes one has to be careful when using
the asymptotic distribution in practice. In our case we have the additional problem of having
unknown expressions in the bias and variance of the test statistics, and we are dealing with a type
of nonparametric test functional which has been known (Hjellvik, Yao and Tjgstheim (1998)) to
possess a low degree of accuracy in its asymptotic distribution. It is therefore not unexpected
when a simulation experiment (Section 5.2, Figure 2) for n = 150 observations reveals a very bad
approximation for the asymptotics, and we must look for alternative ways to proceed for low and

moderate sample sizes.

5.1 Using the wild bootstrap

One possible alternative is to use the bootstrap or the wild bootstrap, the latter being first in-
troduced by Wu (1986) and Liu (1988). Hérdle and Mammen (1993) set it into the context of
nonparametric hypothesis testing as it will be used here.

The basic idea is to resample from residuals estimated under the null hypothesis by drawing each
bootstrap residual from a two-point (a, b) distribution G (4,5),; Which has mean zero, variance equal
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to the square of the residual and third moment equal to the cube of the residual forall 2 = 1,2,...,n.
Thus, through the use of one single observation one attempts to reconstruct the distribution for
each residual separately up to the third moment. For this we do not need additional assumptions

on € or o(-).

Let T, be the test statistic described in Theorem 3 or 4 and let n* be the number of bootstrap
replications. The whole procedure for the test using the wild bootstrap then consists of the following

steps:

1. Estimate the regression function mg = mg g under the hypothesis Hg o5 that f,5 = fag =0
in model (3) for a fixed pair (o, 3), 1 < a < § < d and construct the residuals @; = ;03 =
Y — mo(X;), fori=1,2,...,n

2. For each X;, randomly draw a bootstrap residual u} from the distribution G, ;); such that
for U~ G(a,b),i?

EG(a,b),i(U) =0 , EG(a,b),i(Uz) {%2
and EG(a,b),i(US) = .

3. Generate a sample {(Y*, X;)}"_; with Y* = mg + u;. Here, for the estimation of mg it is
recommended to use slightly oversmoothing bandwidths, see Hardle and Mammen (1993).

4. Calculate the bootstrap test statistic 7,7 using the sample {(Y;*, X;)}/; in the same way as

the original T), is calculated.

5. Repeat steps 2-4 n* times and use the n* different T to determine the quantiles of the
test statistic under the null hypothesis and subsequently the critical value for the rejection

boundaries.

For the two-point distribution G, ) ; we have used the so called golden cut method, setting G, 4); =
¢64 + (1 — q)8, where §,,6;, denote point measures at a = ;(1 — v/5)/2, b = @;(1 + /5)/2 with ¢
has to be (54 +/5)/10.

For the marginal integration estimator Dalelane (1998) recently proved that the wild bootstrap
works for the case of i.i.d. observations. In the setting of times series some work on this has been
done by Achmus (1998). Dalelane showed via strong approximation that it holds in supremum
norm whereas Achmus proved that the wild bootstrap holds at least locally for time series. There
is still some work needed to establish a theory of the wild bootstrap for the test statistic we are

using. But this is beyond the scope of the paper.

5.2 The simulation study

To compare our two test procedures, to investigate and demonstrate their behavior empirically as
well as to present how well the estimation works we did a simulation study for a small sample size
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of n = 150 observations. The data have been generated from the model

m(z) = E(Y|X =2)=c+ > fi(z;)+ fia(z1,22)

j=1
where
(16) filu) = 2u
fo(u) = 1.5sin(—1.5u)
fa(u) = —u* + E(u?)
and
(17) f172(u, ?J) = auv

with @ = 0 under the null hypothesis and @ = 1 under the alternative. The input variables X,
Jj=1,2,3arei.i. d. uniform on [—2,2]. To generate the response ¥ we added normally distributed
error terms with standard deviation o, = 0.5 to the regression function m(z).

For calculating the test statistic we used the quartic kernel 12(1 — u?)?1{|u| < 1} for K(u) and
L(u) and product kernels for higher dimensions. We chose different bandwidths depending on the
testing procedure and whether the direction was of interest or not (in the previous sections we
distinguished them by denoting them A and g).

When we considered the test statistic based on the estimation of fi, (direct test) we used h =
0.9,¢9 = 1.1 and for the pre-estimation to do the wild bootstrap h = 1.0 and g = 1.2. To calculate
the test statistic based on the joint derivative fl(}z’l) (testing derivatives) we selected h = 1.5,9 = 1.6
and h = 1.4, g = 1.5, respectively.

In Figure 1 we depict the performance of the estimation procedure for @ = 1.0 in (17) using the
local linear smoother. The estimates of fy, fo and fs with their corresponding true functions are
displayed in the upper part of Figure 1; the corresponding estimate f; o in the lower part. The
estimation procedure is working quite well.

Turning to testing, we consider the null hypothesis Hy : fi2(u) = 0. First we take a look at the
asymptotics. In Figure 2 we have plotted kernel estimates of the standardized densities of the test
procedures compared to the standard normal distribution. The densities of the test statistics have
been estimated with a quartic kernel and bandwidth 0.2. To make the densities comparable we
also smoothed the normal densities using the same kernel. We see clearly that the test statistics we
introduced in the previous sections look more like a y? distributed random variable than a normal
one. Thus, even if we could estimate bias and variance of the test statistics well, the asymptotic
distribution of them is hardly usable for testing for such a moderate sample of observations.

This conclusion is consistent with the results of Hjellvik, Yao and Tjgstheim (1998) for a similar
type of functional designed for testing of linearity. For that functional roughly 100000 observations
were needed to obtain a good approximation. The reason is that for a functional of the type

=2
ffaﬁ(xa, 2g)m (2, 25)de,drg several of the leading terms of the Edgeworth expansion are nearly
of the same magnitude, so that very many observations are needed for the dominance of the first
order term yielding normality. We refer to Hjellvik, Yao and Tjgstheim (1998) for more details.
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Figure 1: Additive components
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To get the results of Table 1 and Figure 3, describing the bootstrap version of the tests, we did 249
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Figure 2: Densities of the test statistics;
direct method (solid), testing derivatives
(dashed) and normal density (thick, solid).

bootstrap replications and considered the test statistics
1 N
- E Ji2(X1, Xo){| Xy < 1.6 for k = 1,2}
n
=1

and

n —

1
=3 X X L{IX] < 16 for k= 1,2}
=1

respectively, i.e. we used a weight function for the test statistic to correct for boundary effects
caused by the estimation.

Table 1 is presenting the error of the first kind for both methods and at different significance levels.

TABLE 1: Percentage of rejection under Hg

significance level in % | 1 5 10 15 20
direct method 3.0 6.0 127 17.3 223
testing derivatives 0.5 45 114 144 18.2

For both test procedures obtaining an accurate error of the first kind with the aid of wild bootstrap
depends on a proper choice of bandwidth. Thus, Table 1 does not give decisive information whether
the direct testing procedure is superior to the other one. We just see that wild bootstrap obviously
works quite well and can be used for this test problem. For a comparison of the direct method
against the derivative approach and to be able to judge the tests more generally we have to look at
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Figure 3: Power functions at the 1,5,10 and 20% significance levels for both
procedures: direct method (solid) and testing derivatives (dashed).

the power at a wide range of examples. The power as a function of @ in (17) is displayed for both
methods and different levels in Figure 3. Both procedures are working well. For this particular
model the power function of the direct method is steeper, but it is quite likely that the comparative
advantages of the two methods depend on the particular model or design.

5.3 An Application to Production Function Estimation

In this section we use our estimation and testing procedures for a five dimensional production

function.

Separability and additivity of production functions have been discussed since the early paper by
Leontief (1947). These conditions yield many important economic results, e.g. they allow the
aggregation of inputs or decentralization in decision-making. But there has been much discussion
in the past whether production functions can be taken to be additive (strongly separable % ) for a
particular data set. This discussion goes back at least to Denny and Fuss (1977), Fuss, McFadden

?The expression ”strong separability” is equivalently used for ”additivity” or ”generalized additivity”, see Berndt
and Christensen (1973).
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and Mundlak (1978), Deaton and Muellbauer (1980, pp.117-165). Our test procedure is an adequate
tool to investigate the hypothesis of additivity.

We consider the example and data of Severance-Lossin and Sperlich (1997) and look at the es-
timation of a production function for livestock in Wisconsin. In that paper strong separability
(additivity) among the input factors was assumed and the additive components and their deriva-
tives were estimated using the marginal integration estimator. Whereas their interest was focused
mainly on the return to scale and thus on the derivative estimation, we are more interested in
examining the validity of the assumption of additivity by looking at the second order interaction
terms. We use a subset of n = 250 observations of an original data set of more than 1000 Wisconsin
farms collected by the Farm Credit Service of St. Paul, Minnesota in 1987. Severance-Lossin and
Sperlich removed outliers and incomplete records and selected farms which only produced animal
outputs. The data consists of farm level inputs and outputs measured in dollars. The output YV
in this analysis is livestock, the input variables are family labor X4, hired labor X5, miscellaneous
inputs (e.g. repairs, rent, custom hiring, supplies, insurance, gas, oil, and utilities) X3, animal
inputs (purchased feed, breeding, and veterinary services) X4, and intermediate run assets (assets

with a useful life of one to ten years) Xs.

The underlying additive model is of the form

d
(18) In(y)=ct 3 fu{in(za)} -

This model can be viewed as a generalization of the Cobb-Douglas production technology. In the

Cobb-Douglas model we would have f, {In(z,)} = fo In(z4).

We have extended this model by including interaction terms f,g to obtain

d
(19) In(y)=c+ z fa{In(za)} + Z fap{In(za), In(zs)}

1<a<f<d

and the assumed strong separability (additivity) can be checked by testing the null hypothesis
Hy: fop =0 for all a, 3.

First we estimated all functions f, and f,3. The estimation results are given in Figures 4 to 6. For
the estimation we used the quartic kernel for K and L. The data were divided by their standard
deviations so that we could choose the same bandwidths for each direction. We tried different
bandwidths and h = 1.7 and ¢ = 3.3 yield reasonable smooth estimates. However, we know by
experience that the integration estimator is quite robust against different choices of bandwidths.
For a detailed discussion of the bandwidth choice and robustness, compare Sperlich, Linton and

Hérdle (1997).

In Figure 4 the univariate function estimates (not centered to zero) are displayed together with
a kind of partial residuals 7, 1= y; — E#a [i(Xi5) = fa(Xia) 4+ €. To see clearly the shape of
the estimates we display the main part of the point clouds including the function estimates. As
mentioned already in Severance-Lossin and Sperlich, the graphs in Figure 4 give some indication of
nonlinearity in family labor, hired labor and intermediate run assets. They even seem to indicate

18



that the elasticities for these inputs increase and finally could lead to increasing returns to scale. An
obvious inference from the economic point of view would be that larger farms are more productive.
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Figure 4: Function estimates for the univariate additive components and partial
residuals.

In Figures 5 and 6 we have shown the estimates of the bivariate interaction terms f,. For their
estimation and presentation we trimmed the data by removing 2% of the most extreme data points.

The interaction terms seem not to provide an (economic) interpretation.
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Figure 5: Fstimates of the interaction terms.
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Figure 6: Fstimates of the interaction terms.

For the testing we again used the quartic kernel and trimmed the data by removing 2% at the tails.
We did 249 bootstrap replications.

Since we know about the sensitivity of the test procedures against the choice of bandwidths, we
applied the procedures for a wide range of different bandwidths. For the first method, which
employs the estimate of the interaction term directly, we used h = 1.3 to 2.1, g = 2.9 to 3.7 for the
pre-estimation to get estimates for the bootstrap and h = 1.6 to 2.4, g = 3.1 to 3.9 to calculate the
test statistics. For the second method which involves the mixed derivatives of the interaction term,
we used h = 1.6 to 2.4, g = 3.1 to 3.9 for the pre-estimation to get estimates for the bootstrap and
h=2.1102.9,¢g=3.11t0 3.9 to calculate the test statistics.

To test the different interaction terms for significance, we used the following iterative model selection
procedure. First we calculated the p-values for each interaction term f,s including all the other
functions in the model (19). Then we removed the function f,z with the highest p-value, and again
determined the p-values for the remaining interaction terms as above. Stepwise dropping out the
interaction terms with the highest p-value, we end up with the most significant ones.

This procedure was applied for both testing methods. For large bandwidths the interactions are
smoothed out and we never rejected the null hypothesis of no interaction for any of the pairwise
terms, but for small bandwidths some of the interactions terms turned out to be significant. For
the first method, where we consider the interaction terms directly, the term f; 5 (family labor and
miscellaneous inputs) was significant at a 5% level with a p-value of about 2%. Of the other terms

fi3 and fi 5 came closest to being significant.
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For the second method, considering the derivatives, f 5 (family labor and intermediate run assets)
and fs5 (miscellaneous inputs and intermediate run assets) had the lowest p-values, f; 5 having a

p-value of less than 1%.

Even though the two procedures are not entirely consistent in their selection of relevant interaction
terms, both procedures indicate that a weak form of interaction is present, and that the variable
family labor plays a significant role in the interaction. There are fairly clear indications from Figure
5 that f; 3 and f; 5 are not multiplicative in their input factors. This would make it difficult for a

parametric test to detect the interaction.

A  Appendix

A.1 Proof of Theorem 1

The proof of Theorem 1 makes use of the following lemmas, whose proofs are not difficult. They

can be found in Severance-Lossin and Sperlich (1997).

Lemma Al Let D,, B, and A be matrices, possibly having random variables as their entries.
Further, let D, = A+ B,, where A~ exists and B, = (bij)1<ij<d where by; = O,(6,) with d fized,
independent of n. Then D' = A1 (I + C,) where C,, = (cijh<ij<d and c;; = Op(6,). Here 6,
denotes a function of n, going to zero with increasing n.

Lemma A2 LetW, ., Wiog, Zao, Zap and S be defined as in Section 3.1 and H = diag(hi_l)i:17...7p+1.

Then

—-17T —1y—1 _ 1 -1 Inn
a) (HT'ZaWiaZo H7Y) ™ = ongg S {I+0p (h+ W)}
and

-1
—17T -1 _ 1 -1 Inn
b) (H ZozﬁWLOzﬁZOlﬁH ) - ap(xa,xﬁ,Xl%)S {I + Op (h + /nh2gd_2) }

n,d

,a=1,1"

Define F;[-]= E[-| Xi1,..., X and E.[-] = E[- | X], where X is the design matrix { X, }

The proof of Theorem 1 can now be divided into two parts:

I) We start by considering the univariate estimator F,. This is one component of the estimator

faﬁ of interest in Theorem 1. First we will separate the difference between the estimator and the

true function into a bias and a variance part.

Defining the vector
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C‘|‘fa($a)‘|' E faw(xava)+ E f’Y(XW)—I_ E f%( Y )

F' — ’YeDa ’YeDa ( 5)€Daa
’ e+ 2 A (e, Xiy)
’VeDa

and applying Lemma A2 a), we have

Fola) = Falwa)

_ %Z er (ZTW; 0 Zo) " ZTW, Y — Fo(aa)

=1

1< _
= S e (ZIWiaZa) T ZIWia (Y = Zu) + Op(n7H?)
1 1 Inn
= -y —— ST+ 0, | h+ ———
n = p(ra, Xia) ! { 8 ( \/nhgd—1

When we compute the matrix product and use for Y; = o(X;)e; + m(X;) the Taylor expansion of
m(X;) around (24, X)) we get

) } HZIW, o (Y = ZoF;) + Op(n"%)

Folwa) - Fa(wa)

1
- _Z G foh (X1 — aLg(Xlg—X@){l—l—Op(h—l— nnd_l)}x

nhyg

[w{f@(%” SIEY (o, X)) b+ Y (X)) = (X)) +

'VGDOL ’VeDa

S0 s (Xt X0 = s (X Xi)} + 0, (X0 — %) + (X021 0,0

(7:6)€Daa

Now we can separate this expression into a systematic ”bias” and a stochastic ”variance”. Then
we have

. 1 Ei(a;) 1 a; — Fi(a;) h Inn
Foz a) Foz a) — -
(w ) (w ) n ; @(xozing) * n Zz_; @(xozing) * Op nhgd—l * nhgd_l
where
1 n
a; = — Ky (X —2o) Ly (Xio — Xig
@ nth( o = %a) Ly (Xia = Xia) x [ ]
and the expression in the brackets [. . ] is as in the formula above. Notice that @; is O, {(nhg?~!)~1/2}.

It remains to work with the first order approximations.

Let

1 — Ei(a;) 1 <= a; — E;(a;)
Tip=—S =24 gy 2N LT )
! n ; (20, Xia) 2 n E
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For the bias part we prove that

Tln = h21u2 (I() %{fo(?)(xa) + E %E fo(z?yp) (xOMXi’Y) } + Op(h2) :

YED =1

Consider (24, X;o) ' Ei(@;), which is, in fact, an approximation of the (conditional) bias of the
Nadaraya-Watson estimator at (24, X;q). This is, by assumptions (A1), (A2), (A3) and (A5)

Ei(a;)
@(waing)
= ;EZ |:l zn: I(h(Xloz — wa)Lg(Xla — Xm) [M
(2o, Xia) n = = 2

{fc@(xm > 18 (wa,Xm)} 2 A () = S (X o

'VGDOL ’VeDa

Yo {Fs (Xiy Xis) = fos (Xiy, Xis) } + 0p{(Xia — %)3}”
(7,6)€Daa
1 z— xa)Q

) , | (
- s [ R e e < [EE

{fc(f)(%)Jr > &Y (waaXm)} + Y U () = £ (X))

'VGDOL ’VeDa

Y A (wyws) = frs (Xiy Xis)} + Op{(2 - %)3}] dwdz + 0,(1)
(7,6)€Daa
1

P C(u v x m . v M (Q)x
- (P(QCMX@)/I( VL(v)¢ (za + uh, Xio + g)x[ 5 {fa (2o) +

E fézw,o) (Tar Xiy) } + Op{(Uh)S} + Z {5 (Xiy + gvy) = f1(Xiy)}

'VGDOL ’VeDa

+ Y A (Xiy 9oy, Xis + vsg) = [ (XmaXz'é)}] dvdu + 0,(1)
(’Y,(S)eDaa

= hPua (K)

N | —

’VeDa

{fo(?)($a) + Z fo(%o) ($a7XlW)} + Op(hz) + O,(97)

since P, (e;) = 0, respectively E;(g;) = 0 for all ¢ and [. We have used here the substitutions

Z—Tq w— (xe

U= and v = , where v and w are (d — 1) -dimensional vectors with 7" component Uy,

respectively w,.

Since the random variables ¢(z,, X;y )™ F;(@;) are bounded we have using (A2)

Ty, = h2,u2 (K) %{fc(yQ)(QCa) + Z % Z fc(vz#o) (2o, Xiy) } + Op(hQ)

’VeDa =1

24



For the stochastic term we use the same technique as in Severance-Lossin and Sperlich (1997) to

prove that

1 @a(Xia)
20 to — —K a — Xioz — N
(20) Wia = —Kp(a )9Q tor Xa)
(21) T, = szaff e+ op{(nh)_l/z}.

with a rate of /nh.

II) Analogous to the univariate case of E,, we proceed for the bivariate case considering Faﬁ:

We need the following definition
e+ folwa) + fo(@p) + fap(earzp) + 20 {7}

'VeDozﬁ
o | B+ S Y (e Xi) £ (20 p)
'VeDozﬁ
e+ 2 A2 @e Xo) + £G4 (20, 25)
'VeDozﬁ

where {---} is

Jory (@as Xiv) + foy (25, Xin) + [5(Xiy) + Z fre (Xiy, Xis)

WvéeDa,B
Applying Lemma A2 b) we have for the estimator
Fap(a,25) = Fap(@a, 2p)
RS T -1 57
= — D e (ZasWiasZap)  ZagWiapY = Fap(was )
=1
1< -1 1
= =2 a1 (ZaWiapZas) ZagWias (Y = ZagFi) + Op(n7%)
=1

Inn
= = -1y ht ——
Z xa,xﬁ,Xi%) 618 { T Op ( + /nh2gd—2) }

xH—lzaﬁWi,aﬁ (Y = ZogF)) + Op(n"7) .

As above in I) we do the matrix calculation, replace Y; by Y7 = o(X;)e; + m(X;) and use the Taylor
expansion of m around (2., 23, Xiag). Then we get

(22) Faﬁ(%a 965) - Faﬁ(%» zp)

B Z xomxﬁv zozﬁ

tn (Kta = 2a)® ¢ 12) (2,0)
I+0,(h . @, X
{ " p( +\/W)} [ 2 {fa (2 )—I_We%;ﬁfw ( lw)

25

leh Xla_ [xh(Xlg—wg)Lg (Xl%—Xi%) X




Xin — 2
+f§2’0><xa,m>}+M{f§><xﬁ>+ Y S8 (a5, X0)

2
’VeDa,,B
-|-fioﬁ72) (T, ) } + Z {(X) = (X)) + Z {fwé (X1, Xi5)
€D (v:6)€Dagp

—Fos (Xis Xis) } o+ (Xt = 20) (Xi5 — 25) F15 (200 26) + Op{ (X1 — 70)°)

+0,{(X15 — 23)°} + 0p{( X1 — 20 )( X1 — 25)} + U(Xz)el] +0,(n"%)

We pursue the same steps as for the one dimensional case and separate this expression into a

systematic ”bias” and a stochastic ”variance”:

lz”: Ei(d;) N lz a; — Fy(a;) Lo h . Inn
n —1 @(wavxﬁin%) n P 99($a,$ﬁ,Xi%) p \/ng_z nh29d—2

1=

where,
1 n
G = — > K (Xio = 2a) Kn (Xi5 = 0) Ly ( Xiag = Xiag) X [
a n;‘h(’ To) Kn (Xig = wp) Ly ( Xiag — Xiap) X [ ]
and [...] is the expression in the same angular brackets of equation (22). Notice that a; is

Op{(nh2gd_2)_1/2} ‘
Again we only have to work with the first order approximations.

Let

0N Ei(ai) L~ @ — Eia)
nz;@(xavwﬁin%) nz;@(xomxﬁin%)

We prove:

1 Ly
T = Wu®) {0+ 3 2300 (e Xo) + 1700 +

’yEDa75 =1

1 n
> =B @ Xe) + 55 s wn) + £GP (2asan) )+ 0p(h2)

’yEDa75 =1

Consider ¢(z4, 75, Xiap)~ ' Fi(@;), which is again an approximation of the (conditional) bias of the
Nadaraya-Watson estimator at (2,23, X;a3). By assumptions (A1), (A2), (A3) and (A5) we have

Ei(a;)
@(wav T3, Xz%)
1

= Kn(zo —20)Kp(z5 — 25) L (w — Xing)p(z,w
99(%79057)(2'%)/ ( JEh(zp — 2p) Ly( ap)p(z,w)

_ 2
[M{f@(wa) £ R o X))+ S (e ) +

YE€Da s
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2
zZp — &
G2l (0w + 3 127 (o X+ 1 ()} +
7€Da,p

E {f(wy) = [ (X)) + Z {fys (wey, ws) = frs (Xiy, Xis)} +

'VeDoz,ﬁ ’Vy(seDa,B
(za = 2a) (25 — 25) L5 (@as 25) + O (20 — 22)?} + Op{(25 — 25)%)

Fou{(an — 20)(za = 29} = + 0,(1)
1

= K(us ) K (ug)L(w)p(xs + uah, 25+ ugh, Xjnp + vg) X
ey ] KK o+ ush, Xiag + v9)
(hug)®

2
(0t Y ) X+ 15 o )+

YE€Da s

U+ 2 18" @ Xi) + £330 (ronwa) }+ Y LK+ g0y)

'VeDoz,ﬁ 'VeDoz B8

Xiy)} + Z {frs (Xiy 4+ g0+, Xis + gvs) — frs (Xiy, Xis)} +
(’775)€Da5

(hia) (hug) £ (2 20) + 0p<h3>] dodu + 0,(1)

1
= W (K) 5 { P o)+ D0 S8 (o Xi) + 1 (w5) +
’VeDa,,B

SR8 @ Xi) 4 15 anws) + 15D (a0 20) o+ 0, (h2) + O,(g")

WeDa,ﬁ
. . . Z—(l’a,l’ﬁ)T w— Xza,@
since Fy [¢;] = 0. We have used here the substitutions u = ——~— and v = , where v, w
are (d — 2) -dimensional vectors with y** component v, w.,.
Since the ¢(2,, 25, Xiag) ' Ei(d;) are independent and bounded we have
Tin = h’pe (K) B Efa (2ar Xir) + f5(25) +

YED4 5 =1

3 Efﬁ (25, Xin) + L5 (war2p) + £ (2ar2g) } +0,(h2)

YED4 5 =1

Thus, combining with the bias formulas obtained for F,(z,) and Fj(x3), the bias of Flg(za,25) —
Fo(2y) — Fg(xp) is as claimed in Theorem 1

1
BBy = o (K) {5 s = [ 130 npaluldu
1 oo = [ 19 o p)optuldu + o(12)

We now turn to the variance part 73,. In Fan, Hardle, Mammen (1997) it is shown that for
Pap(Xiap)
@(wav T3, Xz%)

1
(23) WiaB = —Kh(xa - Xia, T3 — Xig)
n
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(24) Top = Z Wia 50 (X;)e: + Op{(nhz)_l/z}

with a rate of vnh? and it also obeys a Central Limit Theorem.

Finally we want to calculate the variance of the combined estimator Flg(2q,25) — Fol2a) — F(2g).
Because of the faster rate of the stochastic term in I than the one in II, it is enough to consider 11,
ie. Y0 wiapo(X)ei + 0p{(nh?)"1/2}. Tt is easy to show that the variance is then

2
S‘Qaﬁ(xaﬁ)

K 2/02 z)————dx,

1518 | o) 2 s

QED.

A.2 Proof of Theorem 2

This proof is analogous to that of Theorem 1 for the two dimensional terms. The main difference is
that at the beginning the kernel K (-) has to be replaced by K*(-),i.e. K*(u,v)= K(u,v)uvuy*(K)

and the weights are

Pap(Xiap)

K} (2o — Xiay 2 — Xia )
Sh( I} )@(xa7xﬁ7Xi%)

(25) Wiap = —

where K3, () = 5 K3(5, 7).
QED.

A.3 Proof of Theorem 3

Consider the decomposition

//_\\2 n
/faﬁ(aca,xﬁ)cpaﬁ(aca,xﬁ)dxadxﬁ =2 Z H(Xi,éi,X]‘,éj) + ZH(XZ',&,XZ',&)—I-
1<i<j<n i=1

[ Fostwaapan(ensaddeadsy + 20 [ Fus(a, 6 Ba(ea. 25 pan(as oa)doadzy + o,(h)
in which
1
H(Xi i, Xj,5) = eiej / —3 (Wiap = Wie = Wip)(Wjap — Wja = jp)o(Xi)o(Xj)Pap(ta; v5)dradrs

with w;,, wig and w;, 3 as in equation (20) and (23).
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We first simplify H(X;,e;, X;,¢;) by substituting alternatively v = (2, — X;s)/h, v = (25— X;3)/h

Ei&5 ., . a3 Xia_ : o( Xia ) N Xi_
H(X;, e, Xj,65) = /{Ix(u)lx(v)M — Ix(u)& _ Ix(v)m}

n? o(X;)h o(Xi) o(Xi)
) Xio — Xio Xis— Xjs 0ap(Xjap)
]/ (33 Jo ] J _ =
x{ K (u Ay I G S S ST
Xia—X‘ ozX‘oz Xz - X; o X;
_K(u+ o) ©a( ]_) _ K+ 8 g, ¥ a( Jﬁ) }
h o(Xiar Xjo) h (Xig, Xjp)

x0(Xi)o(X;)ap(Xias Xig)dudv {1 + op(1)}
Denoting by K() the r-fold convolution of the kernel K, one obtains

Y H(Xie, Xjej)= Y (Hi+ Hy+ Hs+ Hy+ Hs) {1+ 0,(1)}

1<i<j<n 1<i<j<n
where
€Z'€‘U(XZ')U(X‘) . Xm - X; , Xi - X
Hy = 2 o i) 5o (2) ?f K@ % ap(Xiap)Pop(Xjop)
y 1 4 1
P(Xi)o(Xia: Xig, Xjap)  P(X))o(Xjar Xjg, Xiag)
o, = e X)a(X)) ap(Xjas) @) (Xw — Xja) PalXia) | po2) (Xiﬁ — Xm) ps(Xip)
n*h P(Xias Xigy Xjap) h o(X;) h P(X7)
_eigjo(X)o(X;)  ¢ap(Xiag) K@ (Xj - Xm) Po(Xjo ) LK (Xj - Xiﬁ) po(Xip)
n2h P(Xja, Xjg, Xiap) h o(X;) h e(X;)
Hs = _cigjo(Xi)o(X)) pap(Xiap) K@ (Xioz - X ) Po(Xjo) e (Xiﬁ - X; ) ©3(Xjp)
n*h (X) h O(Xia, Xja) h o(Xig, Xjp)
cigjo(Xi)o(X;) Pap(Xjos) @ (Xj - Xm) Pa(Xia) ec (Xm - Xm) ep(Xip)
n*h e(X;) h O(Xjas Xia) h (Xjs, Xip)

o(Xi) (Xias Xja h o(Xi) p(Xig, Xjp)

,(2)(Xj —Xw) ep(Xjp)  ¢p(Xip) }

_ igjo(Xi)o(X;) {K(z) (Xw - Xja) pa(Xia) PalXja) LR (Xw - Xm) ps(Xig) 2p(Xip) }
h )

+ K
h o(X;) e(Xjs, Xip)

gigjo(Xi)o(X;) ) Xio = Xio\ Pa(Xja) @alXia)
’ {] ( h ) o(X;) o(Xjar Xig)

) es(Xjp) _I_@aﬁ(Xiﬁ) Pal(Xja) +99g(ng) op(Xig)
P(Xigs Xjp)  9(Xo) o(Xiay Xjo)  #(X)) (X5, Xig)

gigj0(Xi)o(X)) {%(Xz’
(

s
\_/|Q
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All of these are symmetric and nondegenerate U-Statistics. We will derive the asymptotic variance
of Hy and one will be able to see in the process that all the other H;’s are of higher order and thus

negligible. Now we calculate
1 - Fla — 220 \ g~ 218 — 22
I {le(X1,€1,X2,€2)} = W/A (2) 2 (T) K®?2 (%) @aﬁ(Zlaﬁ)‘P ﬁ(Z2aﬁ)

1 1
X +
{@(Zl)@(zma 213, 22%) 99(22)99(27%7 7285 Zlaf

Introducing the change of variable

) } a?(21)0?(22)(21)p(29)d21d 2.

290 = Zla — hu, 208 = 215 — v
we obtain

1 . .
P {H%(X1,€1,X2,82)} = W/K (2) 2(u)]& (2) z(v)gozﬁ(zlaﬁ)gozﬁ(zmg) 2(21)02(21%215,22%)

2
1 1
+ z Zas 218, Z2ap)dz1dudvdzens {1 + o( 1)}
{S‘Q(Zl)@(zlavzlﬁvzéﬁ) S‘Q(Zlav215722%)@(21a7215721%)} SO( 1)99( ! 15 2_5) ! 2_5{ ( )}

or

H / @aﬁ Zlaﬁ @35(22%)
— X

Zlom 2103 ZQaﬁ)

02(21)0* (210 215 zzﬂ)dzld@%{l + 0(1)} .

E{H{(X1,61, X0,62)} = 4h2

To prove that EK]‘ Hy(X;, e, X, ;) is asymptotically normal, one needs to show that

E{GH(X1,61,X0,62)} + n ' E{H{(X1,61,X2,62)} = 0p {{Eﬂf(Xlﬁthaéz)}Q}

where

(26) G1($7573/75) = E{Hl(X17€17wag)Hl(Xh&,@/aé)} )
see Hall (1984).

Lemma A3 Ash — 0 and nh? — o

n"VE {HY Xy, 1. Xpi29)} = 0,(n~h™%) = o, {{EHE(Xl,gl,XQ,gQ)}Q} .

Proof. As in the case of the second moment, the fourth moment can be calculated as

h? . .
P {Hf(X1,€1,X2,€2)} = W/K (2) 4(u)]& (2) 4(@)9945(21a5)9945(22a5) 4(21)04(21%215,22%)

1 1
_I_
{ 99(2'1)99(210” 21835 22%) S‘Q(Zlav 21835 22%)@(21a7 21135 Zl%
which implies that

4
] } e(21)e( 2105 2185 zzﬂ)dzldudvd@%{l +0,(1)}

n_lE {H%(Xl,{fl,XQ,éz)} = Op(n_gh_G) = {EH%(XI,gl,XQ,gQ)}z Op(n_lh_2)

which proves the lemma as n='h™2? — 0.
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Lemma A4 As h — 0 and nh? — o

26599@(90%)99@(@/@)0(90)U(y)K@) To =Y\ oy (Lo Us
n*h2p(x) h h

G1($,€,y,6) =

1 1 2 2
/ { e(y)e( * } Pap(705)0 (Tas 25, 2ap)dzap {14 o(1)}

yavyﬁvzﬂ) @($a7$ﬁ72%)99($a7$ﬁ7@/%)

Proof. According to the definition of G4

cé
nth?t

Xio— Xig—= 1 1
g (Fremte) o (Fe ) +
[ h h o(x1)e(T10, 18, Xap)  P(X1)@(X1a, X1, 2ap)

G1($,€,y,6) = E{Hl(X1,€1,$,€)H1(X1,€1,y,(s)} = X

X@ap(X1a8)Pap(Tap)o(X1)o(x)

- Xia — Yo - Xlﬁ — Y 1 1
LK@ (7) KO ( ) i
h h o(y1)e(y1as Y15 Xap) — P(X0)P(X1as X15, Yas)

x@X@%y@a(&)a(yﬂ

o €0 0u8(Tan)eas(Yag)o(x)o
Cre.e.8) = Pap( _ﬁ)ﬁi&?ﬁ}fi/_ﬁ) (z) (y)/@i_g(Z%)Uz(Z)

—~ - 1 1
< (e g (2200) "
h h @($)§0($a,$572%) S‘Q(Z)S‘Q(Zomzﬁvw%)

— — 1 1
< (2 ) g (220 " ).
R P ) oo o) oo aag) | P

Introducing the change of variable

o = %o +hu,zg =28+ hv

we obtain
£6pap(Tap)Pap(Yap)o(x)o(y)
G1($,€,y,6): - nTh‘l_ /@3_5(2%)0'2($a,$5,2’%)
LK () KO () ! i ! K (u | e y)
@($)§0($a,$572’%) 99($a,$572%)§0($a,$ﬁ,$%) h

- 1 1
<K@ (v 4 I8 @/ﬁ) n
h e(y)P(YarYps 2ap)  P(Tas g5 2ap) (T T8, Yos)

X(za, g, 2ﬂ)h2dudvd2%{1 +o(1)}.
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Using convolution notation, one has

Ga(6.9,6) = €0ap(Tap)Pap(Yap)o(z)o (@/)K(4) (wa - ya) ) (xﬁ - yﬁ)

nih?

1 1 1 1
+ +
/ {@(x)@(xavwﬁvzﬂ) @(wavxﬁvzﬂ)@(xavwﬁvwﬂ)} {@(y)@(yomyﬁvzﬂ) @(wavxﬁvzﬂ)@(xavxﬁvyﬂ)}

X@Z_ﬁ(z%)az(xa, xg, 2%)99(36&, xg, z%)dZ%{l +o(1)}

or
2e09ap(Tap)Pap(Yap)o(z)o(y) Ty — g —
_ ar aF A(4) [ Lo = Yo\ gy (T8 T Yp
Gqi(z,e,y,0) VR K ( - )Ix ( - )
></ ! + ! 2 (o)X (s 2, 7as)dzag {1+ 0(1)}
(PP Yos Yo 208)  P(Tar 25,5 208)P(Tas Ty Yos) PaplZab artfy zaf )Zaf

which is what we set out to prove. By techniques used in the two previous lemmas, one has

Lemma A5 Ash — 0 and nh? — o

E{G1(X1.61,Xp,62)"} = O(n"h™%) = 0 [{EHI(X17517X2752)2}2] :
Lemmas A3 and A5, plus the Martingale Central Limit Theorem of Hall (1984) implies

Proposition A1 As h — 0 and nh®> — x
nh Z H(Xi,éi,X]‘,éj) £>
1<i<y<n

2
¢ Zlaﬁ oo 5(7208)
{0 QHA H/ ob St )Uz(zl)gz(zlavZlﬁvz2aﬁ)d21d22aﬁ}-

Zlozv 213, 22%
The “diagonal” term > " ; H(X;, &, X;, ;) has the following property

Proposition A2 As h — 0 and nh? —

2{ K(9(0))? / op(zap)

D H(Xi e, Xpei) = 2 o(2)

o*(z)dz+ 0, (ﬁ)

Proof. This follows by simply calculating the mean and variance of H(X1,e1, X1,¢€1).

Putting these results together, Theorem 3 is proved.
QED.
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