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1 Introduction

In an essay to overcome the deficiencies of the received theory, Hindy, Huang and
Kreps [2] (henceforth, HHK) presented a fundamentally new approach to intertem-
poral utility theory. They replaced the standard consumption space with the space
of right-continuous, increasing functions and proposed to use a new class of utility
functionals since the standard time-additive utility functionals are not continuous
in the economically appropriate topology. Here, we present a new method for solv-
ing the utility maximization problem associated with the class of utility functionals
HHK introduced. Our aim is to give necessary and sufficient first order conditions
for optimality. Moreover, we will characterize explicitly the solution for a large
class of utilities. The special case of separable power utilities within a finite time
horizon is solved in closed form.

When consumption problems in continuous time are considered, agents are typ-
ically assumed to consume all in a final gulp or to consume continuously at rates. In
the latter case, the utility functional is usually assumed to be of some time-additive
form. This approach has several difficulties. First, there is no reason, a priori, to
exclude the possibility of consumption both in gulps and in rates. It is therefore
more natural to allow for jumps in cumulated consumption plans. Hence, the nat-
ural consumption space is the space of all increasing, right-continuous processes.
Second, in the classical approach, resulting equilibrium prices are in general not
continuous in time, whereas it seems plausible to consider consumption at nearby
dates as substitutes which should, therefore, have similar prices. Moreover, the
existence of an interest rate is not ensured by the time-additive model. Techni-
cally, this is due to the fact that standard time-additive utility functionals are not
continuous in the weak topology, as HHK showed.

Unsatisfied with the time-additive approach, HHK develop a new framework for
intertemporal utility theory. They consider, as mentioned above, a larger consump-
tion space, namely the space of all distribution functions which are interpreted as
cumulative consumption plans. The authors suggest to use a new type of utility
functional in which the argument of the felicity function is some index of past con-
sumption rather than of current consumption alone. HHK give sufficent conditions
for optimality in the corresponding utility maximization problem by using the Bell-
man methodology. In particular, they solve explicitly for the case of power utilities
within the framework of constant interest rates and an infinite time horizon.

We propose a new, more static, approach to solve the corresponding optimiza-
tion problem which avoids the Bellman methodology. Instead, we provide an ana-
log of the Kuhn-Tucker theorem for this infinite-dimensional problem which yields
necessary and sufficient first-order conditions. Endowed with this theorem, we ex-
plicitly solve the utility maximization problem for the case of a finite time horizon.

The paper is organized as follows. In the next section, we formulate the prob-
lem to be solved and show that it is equivalent to the dynamic problem studied by
[2]. Section 3 demonstrates one of the advantages of the HHK approach: the utility
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functional is continuous and budget sets are compact in the appropriate topology.
Hence, existence and uniqueness of solutions are easily shown. In Section 4, we give
Kuhn-Tucker-like necessary and sufficient conditions for optimality. Section 5 de-
velops a method for solving such utility maximization problems and characterizes
completely the optimal solution for a large class of utilities. Section 6 illustrates
the procedure by appplying it to the case of power utilities in the finite horizon
case. This case is led to a complete closed-form solution.

2 Formulation of the Problem

An economic agent living from time 0 up to some time T ≥ 0 decides how much
of a perishable consumption good to consume at each time t ∈ [0, T ]. Following
HHK, we denote the set of all possible consumption plans by

C ∆={C : [0, T ]→ IR nonnegative, nondecreasing and rightcontinuous} .

Instead of studying the dynamic problem set up by HHK, we consider a static prob-
lem. As in the Arrow-Debreu framework, we assume as given a complete set of for-
ward markets, where the consumption good is traded at some deterministic price
ψ(t) (0 ≤ t ≤ T). The agent buys his preferred consumption plan at time 0.

We assume that ψ is a continuous, strictly positive function. Then, the corre-

sponding price functional1 Ψ(C) ∆= ∫ T
0 ψ(u)dC(u) is a linear functional on C which

is continuous in the weak topology. The agent is endowed with some capitalw ≥ 0
and his budget set is given by

A(w) ∆={C ∈ C such that Ψ(C) ≤ w}.

Remark 2.1 This formulation is equivalent to the dynamic one considered by HHK.
In their setup,ψ(t) = e−rt, and the agent’s wealthw(t) (0 ≤ t ≤ T) is defined by the
intertemporal budget constraint dw(t) = rw(t)−dC(t) and has to be nonnegative
(no ruin). It follows that w(t) = ert

(
w(0−)− ∫ t0 e−rsdC(s)). The no ruin condition

implies 0 ≤ w(T) ≤ erT
(
w(0−)− ∫ T0 e−rsdC(s)), hence Ψ(C) ≤ w(0−) = w.

In contrast to the standard models, the agent does not obtain utility from his
current consumption dC(t), but from an index of past consumption YC . Following
HHK we assume this index to be given by

YC(t) ∆=y(t)+
∫ t

0
θ(t, s)dCs

1Here, and in the rest of the paper, the range of the integral is the whole closed interval [0, T ],
unless otherwise indicated.
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for some nonnegative, continuous functions θ and y . A typical example, which we
will study later on, is the familiar habit formation index θ(t, s) = βe−β(t−s), confer
[1] and [3]. y represents some exogenously given standard of living.

The utility associated with a given consumption plan C ∈ C is given by the
functional

U(C) ∆=
∫ T

0
u(t, YC(t))dt(1)

where u(., .) denotes a continuous function [0, T ]× IR+ → IR.
The remainder of the paper studies the agent’s utility maximization problem

Maximize U(C) over C subject to C ∈A(w).(2)

3 Existence and Uniqueness of an Optimal Consumption
Plan

In a first step, we approach the utility maximization problem from a general per-
spective and establish existence and uniqueness of optimal consumption plans.
This is done easily in the present setup, since, as in the finite dimensional case,
budget sets are compact and utility functionals are continuous with respect to the
weak topology. It may be interesting to note the problems which arise with classical
utility functions. These are, if at all, continuous only with respect to the variational
norm topology. But budget sets are not compact in this strong topology. Therefore,
additional assumptions are needed to establish existence of optimal solutions. In
this sense, HHK provide an elegant and convenient framework for intertemporal
utility maximization.

Proposition 3.1 The utility functional U(.) is continuous on C equipped with the
topology of weak convergence of measures on ([0, T ],B([0, T ])).

Proof: Since the topology of weak convergence of measures on ([0, T ],B([0, T ])) is
metrizable (e.g., by the Prohorov metric) it suffices to consider a weakly convergent
sequence of measures Cn ∈ C (n = 0,1, . . .) and show that the corresponding

utilities U(Cn) converge to the utility U(C) of the limiting measure C ∆= limn Cn.
For every fixed t ∈ [0, T ] such that ∆C(t) = 0 the function s , θ(t, s)1[0,t](s)

is continuous in dC-a.e. s ∈ [0, T ]. Therefore, by the Portmanteau Theorem, we
have YCn(t) → YC(t) for each such t, i.e. in particular for Lebesgue a.e. t ∈ [0, T ].
By weak convergence we have Cn(T) → C(T) implying the uniform boundedness
of Cn(t) and consequently the uniform boundedness of YCn(t) (0 ≤ t ≤ T ,n =
0,1, . . .). Now the assertion follows by use of dominated convergence. �

Proposition 3.2 A(w) is compact with respect to the weak topology.
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Proof: It suffices to consider a sequence Cn ∈ A(w) − {0} (n = 0,1, . . .) and

show that there is a convergent subsequence. For this we note that Pn ∆=Cn/Cn(T)
defines a sequence of probability measures on the compact interval [0, T ]. Thus,
by Prohorov’s theorem, there is a subsequence along which the sequence Pn (n =
0,1, . . .) converges weakly to some probability measure P on [0, T ]. Since Cn ∈
A(w) implies 0 ≤ Cn(T) ≤ w/minψ we can extract a further subsequence, again
denoted by n, such that also Cn(T) converges. It follows the weak convergence of
Cn = Cn(T)Pn along this subsequence. �

Theorem 3.3 There is a solution C∗ ∈ A(w) to the optimization problem (2). If
u(t, .) is strictly monotone and strictly concave for every t ∈ [0, T ] and if C , YC is
injective this solution is unique.

Proof:

(i) The first statement follows immediately from Propositions 3.1 and 3.2.

(ii) Let C̃ 6= C∗ be another optimal consumption plan. Then by rightcontinuity
(and optimality2) there must be an open interval on which Y C̃ 6= YC∗ .

Now, if u(t, .) is strictly concave for all t ∈ [0, T ] this implies for λ ∈ (0,1)

U(λC̃ + (1− λ)C∗) =
∫ T

0
u(t, λY C̃(t)+ (1− λ)YC∗(t))dt

>
∫ T

0
{λu(t, Y C̃(t))+ (1− λ)u(t, YC∗(t))}dt

= λU(C̃)+ (1− λ)U(C∗)
= max

C∈A(w)
U(C)

contradicting the optimality of C∗ over A(w).
�

Remark 3.4 For C , YC to be injective it suffices, e.g., to assume that θ(., .) is strictly
positive and separable, i.e. θ(t, s) = η(t)κ(s) (0 ≤ s ≤ t ≤ T) for some strictly
positive, continuous functions η, κ.

4 Sufficient and Necessary Conditions for Optimal Con-
sumption Plans

We have already seen that the preferences associated with (1) are continuous. To
ensure that they satisfy also the standard properties of convexity and local non-
satiation, we make the following standing

2The case Y C̃ 6= YC∗ only for t = T is excluded since it implies that C̃ or C∗ must have a real
jump in T — a property obviously contradicting optimality, if u(t, .) is strictly monotone.
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Assumption 4.1 For all t ∈ [0, T ] the felicity function u(t, .) is strictly monotone
and concave. The derivative ∂yu(t,y) exists and (t,y) , ∂yu(t,y) is continuous
on [0, T ]× (0,∞).

We are now in the position to formulate the announced Kuhn-Tucker-like nec-
essary and sufficient first-order conditions for optimality.

Theorem 4.2 Necessary and sufficient conditions for a consumption plan C∗ ∈
A(w) to solve the optimization problem (2) are



(i) Ψ(C∗) = w
(ii)

∫ T
t ∂yu(s, YC

∗(s))θ(s, t)ds ≤ Mψ(t) ∀t ∈ [0, T ]

(iii)
∫ T
t ∂yu(s, YC

∗(s))θ(s, t)ds = Mψ(t) ∀t ∈ supp dC∗

(3)

for some constant M = M(w,T) ≥ 0.

Proof: Consider C ∈ A(w) and let Y ∆=YC , Y∗ ∆=YC∗ . By concavity of u and defi-
nition of Y and Y∗, one has

U(C∗)−U(C) =
∫ T

0
{u(s, Y∗(s))−u(s, Y(s))}ds

≥
∫ T

0
{∂yu(s, Y∗(s))(Y∗(s)− Y(s))}ds

=
∫ T

0
{∂yu(s, Y∗(s))

∫ s
0
θ(s, t) [dC∗(t)− dC(t)]}ds .

Fubini’s theorem and the first-order conditions (3) (ii) and (iii) allow to conclude

U(C∗)−U(C) ≥
∫ T

0
{
∫ T
t
∂yu(s, Y∗(s))θ(s, t)ds} [dC∗(t)− dC(t)]

≥ M
∫ T

0
ψ(t) [dC∗(t)− dC(t)]

≥ 0

where the last inequality is due to the budget constraint and (3) (i). This proves
sufficiency.

The necessity part is more difficult and is provided by the following lemmata.
The idea is that an optimal plan C∗ solves also the problem linearized around C∗
(Lemma 4.3). The solutions of the linear problem are easily characterized (Lemma
4.4), and necessity follows (Corollary 4.5). �

Lemma 4.3 Let C∗ ∈ A(w) be optimal for (2) and let

f∗(t) ∆=
∫ T
t
∂yu(s, YC

∗
(s))θ(s, t)ds (0 ≤ t ≤ T).(4)
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Then C∗ solves the linear problem

Maximize
∫ T

0
f∗(t)dC(t) over C subject to C ∈A(w).

Proof: Consider C ∈ A(w) and let Cε ∆= εC + (1 − ε)C∗. By optimality of C∗ and

concavity of u(t, .) for all t ∈ [0, T ] we have for Yε ∆=YCε , Y ∆=YC and Y∗ ∆=YC∗

0 ≥ 1
ε
{U(Cε)−U(C∗)}

=
∫ T

0

1
ε
{u(s, Y∗(s)+ ε(Y(s)− Y∗(s)))−u(s, Y∗(s))}ds

≥
∫ T

0
{∂yu(s, Y ε(s))(Y(s)− Y∗(s))}ds

=
∫ T

0
{∂yu(s, Y ε(s))

∫ s
0
θ(s, t) [dC(t)− dC∗(t)]}ds

=
∫ T

0
{
∫ T
t
∂yu(s, Y ε(s))θ(s, t)ds} [dC(t)− dC∗(t)]

ε↓0
-→

∫ T
0
{
∫ T
t
∂yu(s, Y∗(s))θ(s, t)ds} [dC(t)− dC∗(t)]

by dominated convergence. Rearranging terms we get

∫ T
0
f∗(s)dC∗(s) ≥

∫ T
0
f∗(s)dC(s).

�

Lemma 4.4 Let f , g ∈ C0([0, T ]) with g > 0 on [0, T ]. Then the solutions to the
linear optimization problem

Maximize
∫ T

0
f(s)dC(s) over C subject to

∫ T
0
g(s)dC(s) ≤ 1.

are precisely those Ĉ ∈ C such that

(i)
∫ T
0 g(t)dĈ(t) = 1,

(ii) supp dĈ ⊂ arg max f
g .

Proof: Let M ∆= max f
g and consider C ∈ C such that

∫ T
0 g(s)dC(s) ≤ 1. We have

∫ T
0
f(t)dC(t) =

∫ T
0

f(t)
g(t)

g(t)dC(t) ≤
∫ T

0
Mg(s)dC(s) ≤ M

with equality if and only if C satisfies (i) and (ii). �
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Corollary 4.5 Every solution C∗ ∈ A(w) of (2) satisfies



(i)
∫ T
0 ψ(t)dC∗(t) = w

(ii) supp dC∗ ⊂ arg maxφC∗

where for C ∈ C we set

φC(t) ∆= 1
ψ(t)

∫ T
t
∂yu(s, YC(s))θ(s, t)ds (0 ≤ t ≤ T).(5)

Proof: This follows with f ∆=f∗ as in (4) and g(t) ∆=ψ(t)/w (0 ≤ t ≤ T) by the
above lemmata. �

5 Explicit Solution for a Large Class of Utilities

In this section we present a general method for solving the optimization problem
(2). This method works if the price density ψ is given by

ψ(t) = e−rt (0 ≤ t ≤ T)

for some constant r ≥ 0 and if the investor’s preferences are as follows.

Assumption 5.1 (i) For C ∈ C the investor’s index of past consumption YC is given
by

YC(t) ∆=ye−βt + β
∫ t

0
e−β(t−s) dC(s) (0 ≤ t ≤ T)(6)

for some constants y,β > 0.

(ii) The investor’s felicity function u and its first and second partial derivatives are
continuous on [0, T ]× (0,+∞). Furthermore u = u(t,y) is strictly concave in
y > 0 and

∂yu(t,0+) = +∞, ∂yu(t,+∞) = 0 (0 ≤ t ≤ T).

Finally we have
Lu(t,y) > 0 (0 ≤ t ≤ T ,y > 0)

where L is the differential operator defined by

L ∆= r∂y − βy∂2
y + ∂t∂y.
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Remark 5.2 (i) The choice of

θ(t, s) ∆=βe−β(t−s) and y(t) ∆=ye−βt (0 ≤ s ≤ t ≤ T)

links the above setting to the preceding sections. As pointed out in Section 2 it
gives us a familiar habit formation index which has been studied in the context
of a notably different utility functional by, e.g., [1], [3]. In our context it has been
proposed and treated by HHK. This index evolves according to the differential
equation

YC(0−) = y, dYC(t) = β(dC(t)− YC(t)dt) (0 ≤ t ≤ T)

which allows an easy interpretation and a comfortable analysis.

(ii) By Assumption 5.1 ∂yu(t, .) is a strictly decreasing, continuous and surjective
function (0,∞) → (0,∞) for every t ∈ [0, T ]. Therefore it allows an inverse
which we denote by i(t, .) : (0,∞) → (0,∞). Of course, i(., .) has the same
degree of smoothness as ∂yu(., .).

(iii) In terms of rate of time preference δ ∆= − ∂t∂yu(t,y)
∂yu(t,y) , interest rate r , relative risk

aversion a ∆= − y∂2
yu(t,y)

∂yu(t,y) and rate of decay β, the condition Lu(t,y) > 0 is
equivalent to δ < r + βa. Hence, we assume that the investor’s rate of time
preference is sufficiently small as compared to interest rate, risk aversion and
rate of decay. As we will see later on in an example (confer Remark 6.1), a high
rate of time preference induces the consumer to take a large gulp and to stop
consuming afterwards.

Obviously, our optimality criterion (3) does not give an explicit description of
a solution to (2). The main problem seems to be that one does not know enough
about the structure of the support of an optimal consumption plan C∗. In fact, one
only has that this set has to be contained in arg maxφ∗ where

φ∗ ∆=φC∗ = e(r+β)t
∫ T
t
∂yu(s, YC

∗
(s))βe−βs ds (0 ≤ t ≤ t)

as defined in Corollary 4.5. The following theorem shows that under Assumption
5.1 these two sets coincide and that they are a closed interval in [0, T ]. Thusφ∗ may
be viewed as a ”consumption signal” which characterizes the time periods when the
investor should consume.

Theorem 5.3 Under Assumption 5.1 we have supp dC∗ = arg maxφ∗ which is a
closed interval in [0, T ].

Proof:
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1. We first show that supp dC∗ is a closed interval. Otherwise there are t0, t1 ∈
supp dC∗ with t0 < t1 satisfying (t0, t1) ∩ supp dC∗ = ∅. This implies that
φ∗ is smooth on (t0, t1) with first and second derivatives given by

∂tφ∗(t) = (r + β)φ∗(t)− ert∂yu(t, Y∗(t))
and

∂2
t φ∗(t) = (r + β)∂tφ∗(t)− ertLu(t, Y∗(t))(7)

respectively. By Corollary 4.5 we know that t0 and t1 maximize φ∗. Hence
the minimum of φ∗ over [t0, t1] must be attained at some interior point t̂ ∈
(t0, t1). Since t̂ locally minimizes the smooth function φ∗ we must have

∂tφ∗(t̂) = 0, ∂2
t φ∗(t̂) ≥ 0.

But using ∂tφ∗(t̂) = 0 and (7) we get that

∂2
t φ∗(t̂) = −er t̂Lu(t̂, Y∗(t̂)) < 0

by Assumption 5.1 (ii) — a contradiction.

2. It remains to show that supp dC∗ = arg maxφ∗. By 1. we know that there
are t, t ∈ [0, T ] such that supp dC∗ = [t, t]. By Corollary 4.5 we know that
supp dC∗ ⊂ arg maxφ∗. Therefore, if the above assertion is wrong, there
must be some t̂ ∈ arg maxφ∗ such that either t̂ < t and [t̂, t)∩supp dC∗ = ∅
or t < t̂ and (t, t̂] ∩ supp dC∗ = ∅. Replacing (t0, t1) by (t̂, t) ((t, t̂) respec-
tively) one obtains a contradiction to Assumption 5.1 (ii) using the same ar-
gument as in 1.

�
In connection with our optimality criterion (3) the above theorem implies the

following structure for the optimal consumption index YC∗ our investor can achieve.
There are t, t ∈ [0, T ] with t ≤ t such that

• the investor does not consume before t and after t, hence YC∗ decays expo-
nentially at rate −β on [0, t)∪ (t, T]

• for t ∈ [t, t] we have

βe(r+β)t
∫ T
t
∂yu(s, YC

∗
(s))e−βs ds = M ,

which yields upon differentiating

YC
∗
(t) = IM(t) ∆= i

(
t,M

r + β
β
e−rt

)
(8)

for some constant M > 0.
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This suggests the following strategy for finding an optimal consumption plan. For
each M > 0 determine t(M), t(M) ∈ [0, T ] such that the process of bounded varia-
tion CM with supp dCM = [t(M), t(M)] and YCM(t) = IM(t) on [t(M), t(M)] is in-
deed a nondecreasing, nonnegative process with arg maxφCM = supp dCM . Choose
then M∗ > 0 such that CM∗ meets the investor’s budget constraint precisely, i.e.
Ψ(CM∗) = w.

Remark 5.4 An easy calculation shows that on open intervals where YC∗ is given by
(8) we must have

βdC∗(t) = dYC∗(t)+ βYC∗(t)dt = − Lu
∂2
yu
(t, IM(t))dt

which is strictly positive by Assumption 5.1. Similarly, one can see

∂
∂t
(IM(t)eβt) = −eβt Lu

∂2
yu
(t, IM(t)) > 0 (t ∈ [0, T ]),(9)

a property which will prove useful later. This underlines once more the role condition
Lu > 0 plays, since it ensures the process CM associated to YCM to be nondecreasing
on intervals where YCM = IM .

In order to construct the above t(M) and t(M) let us define the auxiliary func-
tions

φM,t(s) ∆= e(r+β)s
∫ T
s
∂yu(v, IM(t)e−β(v−t))βe−βv dv (t ≤ s ≤ T)

and ΦM(t) ∆=φM,t(t) where M > 0 and t ∈ [0, T ]. φM,t(.) describes how the con-
sumption signal evolves if the investor refrains from consumption from time t on
when his consumption index equals IM(t), c.f. (8). The optimality criterion (3) and
Theorem 5.3 suggest that the last time of consumption is given by the minimal t
such that φM,t(s) attains its maximum over [t, T] at time s = t. Since this descrip-
tion is far from being explicit we would like to give a different characterization of
t(M). This is done in

Lemma 5.5 EachM > 0 has one and only one of the following two properties: either

(i) There is t∗ ∈ (0, T ] such that ΦM(t∗) = M .

or

(ii) ∂sφM,t(s) ≤ 0 for all t ∈ [0, T ], s ∈ [t, T].
In addition, if (i) holds the corresponding t∗ is uniquely determined and we have

∂sφM,t
∗(s) ≤ 0 for all s ∈ [t∗, T ].

Proof:
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1. For 0 ≤ t ≤ s ≤ T we have

∂sφM,t(s) = (r + β)φM,t(s)− βers∂yu(s, IM(t)e−β(s−t)).

Hence, using the monotonicity of ∂yu(s, .) and of IM(t)eβt (0 ≤ t ≤ T) (confer
Remark 5.4) we get

∂sφM,t(s) ≤ (r + β)[φM,t(s)−M] ∀ 0 ≤ t ≤ s ≤ T(10)

by definition of i(s, .) = ∂yu(s, .)−1.

2. Suppose that (i) does not hold. Then we must have ΦM(t) = φM,t(t) ≤ M for
all t ∈ [0, T ] because ΦM(.) is a continuous function with ΦM(T) = 0 < M .
Therefore proceeding from (10) we see:

∂sφM,t(s) ≤ (r + β)[φM,t(s)−φM,t(t)] ∀ 0 ≤ t ≤ s ≤ T

or, equivalently,

∂sφM,t(s) ≤ (r + β)
∫ s
t
∂sφM,t(v)dv ∀ 0 ≤ t ≤ s ≤ T .

Gronwall’s Inequality yields (ii).

3. Now let us assume that (i) holds, i.e. there is t∗ ∈ (0, T ] with ΦM(t∗) = M .
For t ∈ [0, T ) we have

∂tΦM(t)

= ∂
∂s
φM,t(s)

∣∣∣
s=t +

∂
∂t
φM,t(s)

∣∣∣
s=t

= (r + β)[φM,t(t)−M]+ e(r+β)t
∫ T
t
∂2
yu(. . .)

∂
∂t
(IM(t)eβt)βe−2βv dv

< (r + β)[ΦM(t)−M]

where the last inequality is due to Remark 5.4. Therefore, we get ∂tΦM(t∗) < 0.
Thus there must be some t̂ ∈ (0, t∗) satisfying ΦM(t̂) > ΦM(t∗) = M . We have

∂
∂s
φM,t̂(s)

∣∣∣
s=t̂ = (r + β)[Φ

M(t̂)−M] > 0,

i.e. (ii) can not hold.

4. The above estimate for ∂tΦM(.) implies that ΦM(.) is strictly decreasing at each
point t∗ ∈ (0, T ] such that ΦM(t∗) = M . Therefore if there was another point t̂
solving this equation there would have to be a third solution inbetween where
∂tΦM(.) is nonnegative — a contradiction. This proves the asserted uniqueness
of t∗. ∂sφM,t

∗(s) ≤ 0 for s ∈ [t∗, T ] follows as in 2. with t = t∗.
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�
The above lemma tells us that

t(M) ∆=
{

the unique solution t∗ of ΦM(t) = M in (0, T ] if there is some,
0 otherwise

(11)

is a well defined function t : (0,∞) → [0, T ]. In fact, this function can even be
proved to be continuous:

Lemma 5.6 t : (0,∞)→ [0, T ] defined by (11) is continuous.

Proof:

1. IfM0 > 0 is such thatΦM0(t∗) = M0 for some t∗ > 0 we know from the proof of
Lemma 5.5 that ∂tΦM0(t∗) < 0. Thus the Implicit Function Theorem yields that
the equality ΦM(t) = M has a solution also for M in some open neighborhood
of M0 that depends continuously on M . This proves the continuity of t(.) at
such a point M0.

2. Let us now prove continuity also in points M0 > 0 where there is no solution
to ΦM0(t) = M in (0, T ]. For this it suffices to consider a sequence of values
Mn → M0 > 0 (n ↑ ∞) with corresponding tn ∈ (0, T ] such that ΦMn(tn) =
Mn (n = 0,1, . . .) and prove that we must have tn → 0 (n ↑ ∞). Suppose to
the contrary that this sequence has an accumulation point t0 ∈ (0, T ]. Since
Φ.(.) is continuous we must have

ΦM0(t0) = lim
n
ΦMn(tn) = lim

n
Mn = M0

at least along some suitable subsequence. Thus t0 is a solution of ΦM0(t) = M0

in (0, T ] in contrast to our assumption on M0.

�
The natural time to start consumption is when the marginal utility of consuming

is greater than the price of consumption:

t(M) ∆= inf{t ∈ [0, T ] : ∂yu(t,ye−βt) ≥ Mr + ββ e−rt} ∧ t(M)
= inf{t ∈ [0, T ] : ye−βt ≤ IM(t)} ∧ t(M) (M > 0)(12)

with the convention that inf∅ ∆= +∞. We have

Lemma 5.7 t(.) is continuous and satisfies t(M) = 0 iff 0 < M ≤ β
r+β∂yu(0, y) and

t(M) = t(M) for M ≥ β
r+βe

rT∂yu(T ,ye−βT ).

Proof: This is straightforward since IM(t)eβt is continuous in (t,M), strictly de-
creasing in M > 0 and strictly increasing in t ∈ [0, T ]. �

Now we can give the main result of this section.

12



Theorem 5.8 For eachM > 0 the uniquely determined process of bounded variation

CM with CM(0−) ∆=0, supp dCM ∆= [t(M), t(M)]3 and corresponding

YC
M
(t) ∆=

{
IM(t)
ye−βt ∨ IM(t) if

t(M) < t(M)
t(M) = t(M) for t ∈ [t(M), t(M)]

is nondecreasing and optimal in its class A(Ψ(CM)). Furthermore M , Ψ(CM) is a
continuous, surjective mapping (0,∞)→ IR+.

Proof:

1. Let us first show that CM defined as above is indeed a nondecreasing process.
If t(M) = t(M) = 0 we have

∆CM(0) = β−1(YC
M
(0)−y) = β−1(y ∨ IM(0)−y) ≥ 0,

i.e. CM is nondecreasing in this case. If t(M) = t(M) > 0 we have CM = 0
which trivially is nondecreasing. It remains the case t(M) < t(M). To prove
that CM(t) is nondecreasing in t ∈ (t(M), t(M)] we refer to Remark 5.4. For
t = t(M)we only have to check that∆CM(t(M)) ≥ 0. This is clear by definition
of t(M).

2. Next we prove that CM is optimal inA(Ψ(CM)). This is trivial if t(M) = t(M) >
0 or t(M) = t(M) = 0 and y ≥ IM(0) since in both cases we have CM = 0. If
t(M) = t(M) = 0 and y < IM(0) our optimality criterion (3) tells us that it is
enough to show 0 ∈ arg maxφCM . Note that for t(M) = 0

φC
M
(s) = e(r+β)s

∫ T
s
∂yu(v, IM(0)e−βv)βe−βv dv = φM,0(s) (0 ≤ s ≤ T)

which is a nonincreasing function by Lemma 5.5. Let us now consider the case
t(M) < t(M) in which we know that the consumption signal φCM(s) is given
for s ≥ t(M) by

φC
M
(s) = e(r+β)s

∫ T
s
∂yu(v, IM(t(M))e−β(v−t(M)))βe−βv dv = φM,t(M)(s).

By Lemma 5.5 again this turns out to be a nonincreasing function on [t(M), T].
For s ∈ [t(M), t(M)] we have

∂sφC
M
(s) = (r + β)φCM(s)− e(r+β)s∂yu(s, IM(s))βe−βs

= (r + β)[φCM(s)−M]
= (r + β)[φCM(s)−φCM(t(M))]

3In the singular case t(M) = t(M) > 0 we set CM ∆=0, hence we have supp dCM = ∅ instead of
supp dCM = {t(M)}. This is consistent with the above formula for YCM .
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i.e. φCM solves the ordinary differential equation ∂tf (t) = (r + β)[f(t) −
f(t(M))] which obviously admits only constant solutions. Thus φCM(s) ≡ M
on [t(M), t(M)]. By our optimality criterion (3) this already proves the case
t(M) = 0 < t(M) and yields that for 0 < t(M) < t(M) it suffices to show
φCM(s) ≤ M on [0, t(M)). Indeed the above considerations and the definition
of t(M) give us

φC
M
(s) = e(r+β)s

(∫ t(M)
s

∂yu(v,ye−βv)βe−βv dv + e−(r+β)t(M)M
)

≤ e(r+β)s
(∫ t(M)

s
M(r + β)e−(r+β)v dv + e−(r+β)t(M)M

)

= M

for s ∈ [0, t(M)).
3. Continuity ofM , Ψ(CM) can be proved showing the continuity ofM , CM ∈
C when C is equipped with the topology of weak convergence of measures.
For this we note that YCM(t) (0 ≤ t ≤ T) can be written in the more compact
form

YC
M
(t) = ye−βt ∨ IM(t ∧ t(M))e−β(t−t(M))+ .

Obviously, this is continuous in M > 0. Now the formula

CM(t) = 1
β
(YC

M
(t)−y)+

∫ t
0
YC

M
(s)ds (0 ≤ t ≤ T)

yields continuity of CM(t) in M > 0 for each t ∈ [0, T ] which is sufficient for
continuity of M , CM w.r.t. the topology of weak convergence of measures.

4. It remains to show the surjectivity of M , Ψ(CM). Since this function is
continuous this follows easily by Ψ(CM) = 0 for M sufficiently large and
Ψ(CM) ≥ IM(0)−y ↑ ∞ (M ↓ 0).

�

Corollary 5.9 Under Assumption 5.1 the solution to the investor’s optimization prob-
lem (2) withψ(t) = e−rt for some constant r ≥ 0 is given by the uniquely determined
CM satisfying Ψ(CM) = w.

�

6 Complete Solution for Power Utilities

Let us now illustrate the above method by the case of a separable power felicity
function, i.e.

u(t,y) ∆= e−δt 1
α
yα (0 ≤ t ≤ T ,y > 0)
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for some constants δ > 0, α ∈ (0,1). Simple calculations yield

∂yu(t,y) = e−δty−(1−α), i(t, z) = (eδtz)− 1
1−α

∂2
yu(t,y) = −(1−α)e−δty−(2−α), ∂y∂tu(t,y) = −δe−δty−(1−α)

Lu(t,y) = (r + β(1−α)− δ)e−δty−(1−α)

and

IM(t) =
(
Mr+β

β e
(δ−r)t

)− 1
1−α ,

φM,t(s) = M r+β
δ+αβe

−(r+β(1−α)−δ)t (e(r+β(1−α)−δ)s − e−(δ+αβ)Te(r+β)s) ,(13)

ΦM(t) = M r+β
δ+αβ

(
1− e−(δ+αβ)(T−t)) .

Thus an investor with such a felicity function u has preferences satisfying our
standing Assumption 5.1 iff r + β(1 − α) − δ > 0, a condition also appearing in
HHK, p. 426.

Remark 6.1 Although our method does not apply to the case r +β(1−α)−δ ≤ 0 we
nevertheless can show that in this case it is optimal to consume the whole wealth in
one single gulp at time t = 0. Indeed, this follows by our general optimality criterion
(3) because for C ≡ w ∈ A(w) we have φC = φM,0 for some suitable M > 0 and
φM,0(s) decreases in s if r + β(1−α)− δ ≤ 0, confer (13).

So let us assume that r + β(1 − α) − δ > 0 and apply our method. First we
determine the last time of consumption t(M) for each M > 0. It is easy to see that
ΦM(t) = M has a solution t ∈ (0, T ] iff τ > 0 where

τ ∆=T − 1
δ+αβ log

r + β
r + β(1−α)− δ < T(14)

and in this case it coincides with this quantity. Hence, we have t(M) = τ+ for all
M > 0. This tells us in particular that, surprisingly, the last time of consumption
does not depend on the investor’s initial wealth w — a fact which seems to rely
heavily on the special structure (separability, homogenity) of the above choice of u.

For t(M) = 0, i.e. in case τ ≤ 0, we know it is optimal to consume the whole
wealth immediately at time t = 0.

Thus it remains to treat the case t(M) ≡ τ > 0. By (12) the first time of con-
sumption t(.) can easily be seen to be given by t(M) = τ(M)+ ∧ τ+ (M > 0) where

τ(M) ∆= 1
r + β(1−α)− δ log

(
M
r + β
β
y1−α

)
(M > 0).(15)

We have

τ(M) > 0 iff M > M ∆= β
r + βy

−(1−α)
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and

τ(M) < τ iff M < M ∆= β
r + βy

−(1−α)e(r+β(1−α)−δ)τ

which leads us to distinguish the following three cases to determine CM (M > 0):

(i) For 0 < M ≤ M , i.e. t(M) = 0 < t(M), CM is given by supp dCM = [0, τ],

∆CM(0) = 1
β

(
(M
r + β
β
)−

1
1−α −y

)

and, since dCM(t) = − 1
β
Lu
∂2
yu
(t, IM(t))dt on the interior of supp dCM by Re-

mark 5.4,

dCM(t) =
(

1− δ− r
β(1−α)

)(
M
r + β
β
e(δ−r)t

)− 1
1−α
dt (t ∈ (0, τ)).

Consequently,

Ψ(CM) =
(
M
r + β
β

)− 1
1−α {1

β
+ r + β(1−α)− δ

β(δ−αr)
(
1− e−δ−αr1−α τ

)}
− y
β

if δ 6= αr , and

Ψ(CM) =
(
M
r + β
β

)− 1
1−α {1

β
+
(

1− δ− r
β(1−α)

)
τ
}
− y
β

in case δ = αr .

(ii) For M < M < M , i.e. 0 < t(M) < t(M), CM has support [τ(M), τ] where

dCM(t) =
(

1− δ− r
β(1−α)

)(
M
r + β
β
e(δ−r)t

)− 1
1−α
dt.

Hence,

Ψ(CM) = r + β(1−α)− δ
β(δ−αr)



(
M
r + β
β

)− r+β
r+β(1−α)−δ

y−
δ−αr

r+β(1−α)−δ

−
(
M
r + β
β

)− 1
1−α
e−

δ−αr
1−α τ




for δ 6= αr , and

Ψ(CM) =
(

1− δ− r
β(1−α)

)(
M
r + β
β

)− 1
1−α
(τ − τ(M))

if δ = αr .
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(iii) Finally, for M ≥ M , i.e. 0 < t(M) = t(M), we have CM = 0 and Ψ(CM) = 0 as
pointed out in Theorem 5.8.

Now, given the investor’s initial capital w ≥ 0 we only have to find M > 0 with
Ψ(CM) = w — the corresponding CM has to be the optimal consumption plan
by Theorem 5.8. This can easily be done using the above explicit formulas for
Ψ(CM) (M > 0).

Let us summarize the above results in

Theorem 6.2 Assume the investor’s index of past consumption YC (C ∈ C) is given
by (6) and his felicity function is of the form u(t,y) = e−δt 1

αy
α for some constants

δ > 0, α ∈ (0,1). Then he optimally consumes his whole wealth w > 0 in one single
gulp at time t = 0 iff

r + β(1−α) ≤ δ
or

τ given by (14) is not strictly positive.

Otherwise, if

w ≥ ŵ ∆=



r+β(1−α)−δ
β(δ−αr)

(
1− e−δ−αr1−α τ

)
y(

1− δ−r
β(1−α)

)
τy

for
δ 6= αr
δ = αr

it is optimal to have an initial consumption gulp of size

∆C(0) = w − ŵ
(y + βw)(y + βŵ)y

and to consume at rates

dC(t) =
(

1− δ− r
β(1−α)

)
y + βw
y + βŵye

− δ−r1−αt dt

until time t = τ .
In case w < ŵ the investor optimally waits until time τ(M∗) > 0 defined by (15)

when he starts consuming at rates

dCM
∗
(t) =

(
1− δ− r

β(1−α)

)(
M∗r + β

β
e(δ−r)t

)− 1
1−α
dt

until time t = τ . Here M∗ > 0 is determined as M∗ ∆= β
r+βK where K > 0 is the

(unique) solution to

K−
r+β

r+β(1−α)−δy−
δ−αr

r+β(1−α)−δ −K− 1
1−α e−

δ−αr
1−α τ = β(δ−αr)

r + β(1−α)− δw

if δ 6= αr , and

K−
1

1−α

{
1
β

logK + 1−α
β

logy − (r + β(1−α)− δ)τ
}
= −(1−α)w

in case δ = αr .
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Remark 6.3 The most surprising feature of the above solution might be that in con-
trast to both, the infinite horizon setting in HHK and to a setup using time-additive
utilities and habit-formation (as in, e.g., [1], [3]), in our context the investor optimally
refrains from consumption at a certain point in time. The solution in HHK may be
recovered from ours letting T ↑ ∞ assuming (as in HHK) that αr < δ < r +β(1−α).
To illustrate the difference to the time-additive setup, one might consider the case
δ = r and initial standard of living y = 0. Then a time-additive utility maximizer
consumes at constant rates cadd = rw

1−e−rT . A HHK-utility maximizer takes an initial
gulp of size rw

β(r+β(1−e−rτ)) and consumes afterwards at constant rates cHHK = rw
1−e−rτ

which are higher than cadd because of τ < T . Thus, a HHK-utility maximizer trans-
fers wealth from the distant future to the present. The reason for this is, that he
still obtains utility from past consumption even after stopping consumption. Loosely
speaking, being old, he enjoys having had a good time as a young man.
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