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Abstract

The literature on systems cointegration tests is reviewed and the various sets
of assumptions for the asymptotic validity of the tests are compared within a
general unifying framework. The comparison includes likelihood ratio tests, Lagrange
multiplier and Wald type tests, lag augmentation tests, tests based on canonical
correlations, the Stock-Watson tests and Bierens’ nonparametric tests. Asymptotic
results regarding the power of these tests and previous small sample simulation studies
are discussed. Further issues and proposals in the context of systems cointegration
tests are also considered briefly. New simulations are presented to compare the tests
under uniform conditions. Special emphasis is given to the sensitivity of the test

performance with respect to the trending properties of the DGP.
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1 Introduction

Since the invention of cointegration by Granger (1981) and Engle & Granger (1987) one
branch of the associated literature has been concerned with finding the number of cointe-
grating relations in a system of time series variables. Even for a single equation analysis it
may be important to know the number of cointegrating relations among the variables in-
volved so that the issue is an important one even in that context. Early tests for the number
of cointegration relations are due to Johansen (1988) and Stock & Watson (1988). These
early tests are derived under special assumptions which are not always realistic in applied
work. Moreover, these tests are based on asymptotic considerations and it was found in
simulation studies that their small sample properties may not be very satisfactory in some
situations of interest from the point of view of applied work.

Therefore, it is not surprising that there has been a substantial growth in the literature
on systems cointegration tests with many proposals for improvements of existing tests and
suggestions of alternative procedures. By now a wide range of procedures is available which
work under various sets of assumptions. Although there are small sample comparisons of
some of these tests it may be useful to review the alternative sets of assumptions under which
these testing procedures are supposed to work and to compare them in a general unifying
framework. We will attempt to do so in the present study.

The study has the following structure. In the next section the general framework is de-
scribed in which the various tests can be analyzed and compared. Likelihood ratio, Lagrange
multiplier and Wald type testing procedures are reviewed in Section 3. We also discuss the
different sets of assumptions for the asymptotic validity of these tests. Several further is-
sues and modifications of this group of tests are discussed. An important property of many
of these tests is their dependence on deterministic terms in the data generation process.
Therefore we have structured the presentation according to the properties of deterministic
terms. An applied researcher who wishes to get information on the tests suitable for his
or her purposes should decide on the deterministic terms first, e.g., is a deterministic trend
term necessary? Once that decision has been made it is possible to go to the appropriate
section and check out the suitable tests. In Section 4 some other tests are considered. These
include tests based on limiting x? distributions and the Stock & Watson tests, tests based on

canonical correlations as well as Bierens’ nonparametric tests and choosing the cointegrating



rank by model selection criteria. Some further proposals are also discussed. In Section 5
we first review previous simulation studies which explore and compare the size and power
properties of some of the tests in small samples and then we present own simulations to
compare the full range of tests on a common footing. Section 6 concludes.

Since the subject of this review is still a lively research area many of the articles cited
in the following are not even published yet. Also, there may be important papers related to
the topic of which we are not aware. We apologize to the authors for the omission. Some
tests and ideas came to our attention only after finishing the simulations and therefore we
have not been able to include them in our small sample comparison. Again we apologize to

those who proposed them.

Notation

The following general notation is used. y; denotes an observable n-dimensional vector of time
series variables. The normal distribution with mean (vector) p and variance (covariance
matrix) ¥ is denoted by N(u, ). A set of independently identically distributed random
variables or vectors is said to be iid. The symbol B, = (By, ..., Bg)' denotes a k-dimensional
standard Brownian motion. Moreover, = and N signify convergence in probability and
distribution, respectively, and a.s. is short for almost surely. O(-), o(:), O,(:) and o,(-) are
the usual symbols for the order of convergence and convergence in probability, respectively,
of a sequence.

The lag and differencing operators are denoted by L and A, respectively, that is, Ly; =
yi—1 and Ay, = y; — y;—1. The symbol I(d) is used to denote a process which is integrated
of order d, that is, it is stationary (or asymptotically stationary or trend stationary) after
differencing d times while it is still nonstationary after differencing just d — 1 times.

The symbols Az (A), tk(A) and tr(A) signify the maximal eigenvalue, the rank and the
trace of the matrix A, respectively. If A is an (n x m) matrix of full column rank (n > m)
we denote its orthogonal complement by A, . In other words, A, is an (n x (n —m)) matrix
of full column rank and such that A’A; = 0. The orthogonal complement, of a nonsingular
square matrix is zero and the orthogonal complement of zero is an identity matrix of suitable
dimension. For an (m x n) matrix A and an (m x s) matrix B, [A : B] is the (m x (n + s))

matrix whose first n columns are the columns of A and whose last s columns are the columns



of B. The (n x n) identity matrix is denoted by I,,.

LS, GLS and ML are short for least squares, generalized least squares and maximum
likelihood, respectively. LR and LM abbreviate likelihood ratio and Lagrange multiplier,
respectively, and RR means reduced rank. EC is a short form for error correction and DGP
stands for data generation process. A vector autoregressive process is abbreviated as VAR
process or as VAR(p) process if p is the lag order. A vector autoregressive moving average
process is briefly called VARMA process. As a general convention, a sum is defined to be

zero if the lower bound of the summation index exceeds the upper bound.



2 The Testing Framework

The general framework in which the tests for the cointegrating rank are considered in the
following assumes an observable n-dimensional time series y; = (y1¢,...,Ynt)’, t=1,..., T,
generated as

yt:M0+M1t+$t, t:152a"'a (21)

where 1o (n X 1) and p; (n x 1) are parameters which may, of course, be zero. The first of
these parameter vectors will sometimes be referred to as the mean term or mean parameter
and p; will be called trend term or trend parameter. The quantity x; is an unobservable
process with zero mean. The different tests make different assumptions regarding g, f1,
and z;. For instance, some tests assume that x; is a general integrated process whereas
others require that it follows a pth order VAR process. We will discuss the differences in
the assumptions in the following. In all the tests we assume that the components of x; are
at most (1), that is, Az, = x; — x;_ is stationary. This implies that y; is also at most
I(1). Of course, there may be cointegration among the variables of z;. In other words, there
may be stationary (I(0)) linear combinations of the elements of x;. In fact, x; may be I(0)
altogether. If z; is cointegrated some linear combinations of y; are trend stationary and
is also said to be cointegrated.

For some tests we assume that z; has a finite order EC representation
p—1
Az =1z + Y DAz + &y, t=1,2,..., (2.2)
j=1
where II and the I'; are (n x n) matrices of unknown parameters, £, ~ (0, (2) is white noise
and the initial values z;, ¢ < 0, are assumed to be zero for convenience. Alternatively, it
may be assumed that they are fixed constants or that they are stochastic with some fixed
distribution. It is important, however, that the initial conditions do not depend on the
sample size. As mentioned in the introduction, a sum is zero if the lower bound for the
summation index exceeds its upper bound, e.g., if p =1 in (2.2).
The number of linearly independent cointegration vectors of y; (that is, the dimension of
the cointegration space) is called the cointegrating rank of y;. It will be denoted by r in the
following. The tests we consider in this review are designed for checking either the pair of

hypotheses
Hy(ro) : 7 =19 VS. Hi(ro) : 7> (2.3)



or the pair

Hy(ro):m =19  vs. Hi(rg) :r =19+ 1. (2.4)

If Hy(rp) in (2.3) or (2.4) is true and z; has the representation (2.2), the matrix II in the
EC form is zero if 1y = 0 or, if 7y > 0, it can be written as a product I1 = o', where « and
are (n X ro) matrices of rank r5. Thus, we may write the null hypothesis as Hy(ro) : II = a8’
with a, 8 (n x 1) and rk(a) = rk(5) = 9. The matrix (3 is the cointegration matrix whereas
« is sometimes referred to as loading matrix. For later purposes it is useful to note that the
matrix o) (I, — Z?;} I';) 3. is nonsingular under the present assumptions because we require
that all series are at most I(1) (see Johansen (1995, p. 49)).

If rk(IT) = r > g, there exist (n X r) matrices [ : aq] and [3 : 31] of rank 7, such that

II=[a: o] ﬂl =af + a1 .
1

Hence, the alternative hypothesis in (2.3) can be written as
Hi(ro) : I=af' 4+ a1 (2.5)

and analogously for H;(rg) in (2.4). The tests considered in the following are consistent
against fixed alternatives of the type (2.5), that is, if a4, f; are fixed (n x (r — ry)) matrices
of rank r — ry > 0, the probability of rejecting Hy(ro) approaches 1 if the sample size T goes
to infinity.

For some tests local power studies have been performed where the alternative hypotheses

depend on the sample size, e.g.,

1
HT(TQ) = Ojﬂ, + ﬁalﬂi, (26)

where ¢ is a suitable positive constant which is chosen such that the asymptotic rejection
probability is between the size of the test and 1. For § = 0, we just have the alternative in
(2.5) and, hence, the rejection probability of the tests tends to 1 as the sample size goes to
infinity. On the other hand, if § is chosen too large, the alternative will not be sufficiently
different from the null hypothesis for large 7" and, hence, the tests cannot discriminate
between the two hypotheses so that the power is equal to the size. Obviously, among two
tests having asymptotic power greater than the size against a local alternative Hr (7o) the
one with the greater § is to be preferred from an asymptotic point of view. We will now

discuss a number of alternative tests in this framework.



3 Likelihood Ratio, Lagrange Multiplier and Wald
Type Tests

In a series of papers Johansen (1988, 1991a, 1992, 1994) has proposed likelihood ratio (LR)
tests for (2.3) and (2.4) under the assumption that x; is a Gaussian VAR(p) process,

Ty = Alxt_l + -+ Apl't—p + Et, (31)

where the A; are (n x n) coefficient matrices and ¢; is Gaussian white noise, that is, &, ~ iid
N(0,9). The process can be written in EC form as in (2.2) by subtracting z;—; on both sides
of (3.1) and rearranging terms so that [ = —(/,—A4; —---—A4,) and I'; = — (411 +---+A4,)
for j = 1,...,p — 1. For this DGP we will now consider suitable tests under different

assumptions for the mean and trend parameters po and ;.

3.1 Zero Mean and Trend Parameters

3.1.1 The DGP

Suppose first that the DGP in (2.1) has zero mean and zero trend term, i.e. py = 3 = 0,
so that y; = x;. Although this case is not very realistic from a practical point of view
and some tests have obtained their motivation only from deterministic trend terms or other
deterministic components, it is useful to consider the case without deterministic terms first
because this makes it particularly easy to present the different testing concepts. Also, for
comparison purposes, it will turn out to be useful to know the properties of the tests under

these restrictive assumptions.

3.1.2 The Tests

For a sample yi,...,yr the LR test statistics may be computed as follows. Define z; =

(Ay,_q,---, Ayéfpﬂ) and

—1
T T T T
Mr=T—=p) " | Y vy — D w17 ( > ztzi) > ay, (3.2)

t=p+1 t=p+1 t=p+1 t=p+1



and let IT be the least squares (LS) estimator of the matrix IT in the model (2.2). Moreover,
denote the corresponding LS residuals by £; and define

T
Q=T -p)" Y & (3.3)

t=p+1
Denoting by 5\(1) > > 5\2 the ordered generalized eigenvalues obtained as solutions of
det (IIM7IT' — XQ) = 0, (3.4)
Johansen’s LR trace statistic for testing the pair of hypotheses in (2.3) is given by
LB} () = (T—p) Y log(1+ ) (35)

j=ro+1

and the so-called maximum eigenvalue statistic for testing (2.4) is given by
LRy, 05 (ro) = (T = p)log(1 + A3 11)- (3-6)

Note that these statistics are identical to those given by Johansen although they are pre-
sented in a slightly different way. Under Hy(rg), the statistics have the following limiting
(ro) % tr(D) and LR (1) % Amas(D), where

max

distributions: LR?

trace

1 ! 1 -1 1
D= ( / Bn,OdB;Lm) ( / BMOB;”Ods) ( / BnmdB;”O). (3.7)

Hence, the limiting distributions are nonstandard and depend on the dimension of the process
and the cointegrating rank ro. Critical values are tabulated in Johansen (1988, Table 1;
1995, Table 15.1) and Osterwald-Lenum (1992, Table 0). It may be worth noting that the
asymptotic distribution remains valid if the €; are not Gaussian, but have other suitable
distributions.

A number of modifications of these tests have been proposed to account for small sample
distortions of the test size. For instance, Reinsel & Ahn (1992) and Yap & Reinsel (1995)

proposed small sample corrections of the LR trace statistics. Specifically, they consider the

statistics
LRy, (ro) = (T'— (n+1)p) Y. log(1+ 1Y) (3.8)
j=ro+1
and
LRY(ro) = (T — (n+1)p+mo—1) > log(1+ A%, (3.9)
j=ro+1



respectively. Yap & Reinsel (1995) also modify the test statistics so as to allow for moving
average (MA) residuals of the VAR DGP, that is, they consider VARMA processes. In a
slightly different context (see Section 3.2 for details), Saikkonen & Luukkonen (1997) allow
the VAR order to be infinite. In that case, if again a finite order VAR is fitted to the data,
the asymptotic distribution of the test statistics is shown to remain unchanged provided the
order is assumed to approach infinity with the sample size at an appropriate rate. Specifically
it is assumed that the order of the fitted process is o(7%/?).

Because for ;\2 close to zero we have 5\2 A log(l—i—j\?), it can be shown that the LR statistics
have Wald counterparts, e.g. W, (r0) = (T — p) -, 1 A% and W0, (1) = (T — p)A% 14

with identical asymptotic null distributions as LR . (r¢) and LR?

D ace naz(T0), Tespectively. Gon-

zalo & Pitarakis (1997b) also consider the Hotelling-Lawley version of the trace statistic,

HLolro) = (T —p) 32 3/(1— A

Jj=ro+1

which is asymptotically equivalent to W2 ..(r¢) and LRY .. (o) because 5\2 R~ ;\2 /(1 — ;\2)

race trace

for 5\2 near zero. Of course, a corresponding maximum eigenvalue statistic may also be set
up.

For VAR processes with a deterministic linear trend Liitkepohl & Saikkonen (1997b)
use ideas associated with the Lagrange multiplier (LM) principle to construct tests for the
cointegrating rank. In the present context these tests may be derived by recalling that if
the cointegrating rank is r, then the matrix IT in the EC form (2.2) can be decomposed as
I1 = af', where o and 3 are (n x 7). Hence, using that 3(8'8)~'8 + B.(6,.8L)"'3, = I,
(2.2) can be written as

p—1
Azy = Kug_y + pvp_1 + Z LAz + &y, t=p+1,p+2,..., (3.10)

j=1
where u, = Bz, v, = B 1, k = HB(F'B)~" and p = B (B, BL)~". If Hy(r) holds so that
r = ro = rk(II), we have p = 0. On the other hand, under the alternative, some columns
of B, will be cointegrating vectors so that p # 0. Thus, a test procedure for the hypothesis
Hy(ro) may be based on testing the restriction p = 0 in a feasible version of (3.10) by noting

that under the present assumptions z; = ;. Because, under the null hypothesis, « is equal

to «, Liitkepohl & Saikkonen (1997b) propose to premultiply (3.10) by o and test the



hypothesis Hy : p* = 0 in a feasible version of
! p_l
aLA:rt:p*vt,1+ZF;Axt_j+nt, t=p+1,p+2,..., (3.11)
j=1
where I'; = aILFj and 7, = o/, ;. For this purpose Liitkepohl & Saikkonen (1997b) suggest
to obtain estimators 7, &, 83, 7, f‘j and Q by applying RR regression techniques to (2.2). Then

a feasible version of v; is ¥; = Bixt This results in a test statistic
LMy (ro) = (T = p)ir {5 Mywaxp" (&,Q61) 7'}, (3.12)

where p* is the LS estimator of p* from (3.11) with v, replaced by 7, & Qé, is the residual

covariance estimator of the error term in (3.11) and

-1
T T T T
Myax = (T=p) ' | Y. 0ty — Y. 01 AX, | D AXyAX, > AX 4T,
t=p+1 t=p+1 t=p+1 t=p+1
(3.13)
with AX{ | = [Az} ,,..., Az} ,,]. The asymptotic distribution of the test statistic is the
same as that of the LR statistic.

Alternatively, p* may be estimated from

p—1
&) Azy = K 1 + p 01 + Y DAz + 7, t=p+1p+2,..., (3.14)
j=1
where k* = o k is estimated unrestrictedly together with the other parameters and 4; =

B'x;. Denoting the corresponding estimator of p* by p* results in a test statistic
LM (ro) = (T = p)tr {p" My, ax 5" (@, Qa1) '}, (3.15)

which has the same asymptotic distribution as LM(OU (7o) under the null hypothesis. Here

T T T Loy
Myax = T=p)7" | X Gty — Y 01 AXy, ( > AXt*—lAXt*—1) > AXT 0
t=p+1 t=p+1 t=p+1 t=p+1

(3.16)
with AX} | = [a)_, Az}, ..., Az, 4] Tt is well-known that LR and LM tests are asymp-
totically equivalent. Therefore, it is not difficult to show that LM(OI) (ro) and LM(OQ) (ro) have
the same limiting null distribution as LR).,..(r¢) (Liitkepohl & Saikkonen (1997b)). Note
also that the LR)

(3.14) (see Saikkonen & Liitkepohl (1999)). In the following we will discuss the local power
of the tests.

statistic can be derived alternatively from the auxiliary regression model



3.1.3 Local Power

Assuming a VAR order of p = 1, Johansen (1991b, 1995, Chapter 14) has derived the

0

trace Under local alternatives Hyp(rg) as given in (2.6) with

asymptotic distribution of LR
d = 1. We use the following notation to state his result. The symbol W (u) is used to denote
a Brownian motion with covariance matrix € and K(u) denotes the Ornstein-Uhlenbeck

process defined by the integral equation

K() = o, W) + o anfif (o) 6)7" ["K(shds (0<us<)  (317)
or, equivalently, the stochastic differential equation

dK(u) = o/l dW(u) + o en f1 81 (o fr) ' K(u)du (0 <u<1)

(see e.g. Johansen (1995, Chapter 14)). Furthermore, N(s) is the Ornstein-Uhlenbeck
process defined by N(s) = (o/,Qa )" /2K(s) or, equivalently,

N(s) = Bn_po(s) + abf /0 "N (u)du, (3.18)

where B,,_,,(s) is again an (n—r¢)-dimensional standard Brownian motion and the quantities
a and b are given by a = (o, Q) ~"Y2a/, oy and b = (o/, Qo )2(B ) 1B B [ef. Johansen
(1995, pp. 207-208)]. In the following the argument of the Ornstein-Uhlenbeck processes
is occasionally dropped when no confusion is possible. With these notational conventions
Johansen (1991b, 1995) shows that, under local alternatives Hy(ro) : Il = a8’ + £ 3], that
is, in (2.6) we have 6 =1,

LRY.(rg) % tr { ( / 1 NdN’)I ( / 1 NN’ds) B ( / 1 NdN’) } . (3.19)

Hence, the asymptotic distribution under local alternatives is obtained from the one under
the null hypothesis by replacing the Brownian motions in the latter by Ornstein-Uhlenbeck
processes. The same result is easily seen to hold for Wy, (r0), LM (ro) and LMy (ro).
Thus all these tests are asymptotically equivalent under local alternatives. The asymptotic
distribution in (3.19) will be used later for comparison purposes. In the next section we

consider the case of a nonzero mean.

10



3.2 Nonzero Mean and no Trend Term
3.2.1 The DGP

We now assume that i is possibly nonzero and there is still no trend, that is, y; = 0. Again
we assume that z; is a finite order VAR(p) process with EC representation (2.2). Then y; is
a VAR(p) process with EC representation

p—1

Ay =vo+Ty, 1+ Y TjAy j+e&, t=p+1p+2,..., (3.20)
j=1
where vy = —Ilug. Hence, the model can be written alternatively in the form
p—1
Ay, =Ty + D> TjAy j+e, t=p+1,p+2,..., (3.21)
j=1

where II* = II[I,, : o] and y;_; = [y;,_, : 1J'. The relevant ML estimators and hence the LR
statistics may be obtained easily from these representations using RR regression techniques

as in Section 3.1.

3.2.2 The Tests

One possible approach is to obtain the LS estimators II and  from (3.20). An LR
test version which ignores the restrictions on the intercept is obtained by plugging z; =
(1, Ay; 15---, Ay, 1) into (3.2), using the resulting matrix MZ | say, in (3.4) and consid-
ering the corresponding generalized eigenvalues 5\30 > > ;\er) The resulting test statistics

will be denoted by LR __(ry) and LR

D e (7o), where the superscript ¢ stands for the intercept

term and 0 indicates that the trend parameters are zero. The asymptotic null distributions

are LR (rq) % tr(D) and LR, (o) % Amasz(D), where

trace maz

b= ([ Bap,_,) ([ BBas) B ([ BaB,.,)

with B(s) = By 1,(5) — Jy Bn_ro(u)du (see Johansen (1991a)). The corresponding critical
values are, for example, given in Johansen & Juselius (1990, Table A.2).

In this formulation of the LR tests the intercept term in (3.20) is estimated unrestrictedly.
In principle a model of this type with unconstrained intercept vy can also generate a linear
trend in the variables. Thus, this possibility is not ruled out in estimating the parameters.

In other words, the zero trend restriction is not properly taken into account. To enforce

11



that restriction in estimating the parameters the model form (3.21) may be used. That is,
we may compute LS estimators IT* and Q* from (3.21) and consider the ordered generalized
eigenvalues \* > --- > \* obtained from det(IT*MzIT¥ — AQ*) = 0, where M; is defined
as My in (3.2) with y;  replaced by y; ; and z; = (Ay; ,...,Ay; ,.,) as before. Now
statistics similar to (3.5) and (3.6) may be defined as
LRe(ro) = (T~ p) 3 log(1+4)

j=ro+1

and

LR} ..(ro) = (T — p)log(1 + 5‘:04—1)’

respectively. The asymptotic null distributions are LR, (o) % tr(D*) and LR%,,_(ro) %

trace mazx
Amaz (D), where

Dt = ( /0 1 B*dB;L_m)’ ( /0 1 B*B*'ds) - ( /0 1 B*dBil_m>

and B*(s) = [B,_,($)" : 1]’ (see Johansen (1995)). These distributions are obviously differ-
ent from the previous ones. Critical values are, for instance, given in Johansen & Juselius
(1990, Table A.3), Johansen (1995, Table 15.2) and Osterwald-Lenum (1992, Table 1*).

Saikkonen & Luukkonen (1997) suggest yet another possibility to proceed in the present
case without a trend in the DGP. They consider the EC representation

p—1
Ay = T (ys_1 — po) + ;FjAyt_j + &, t=p+1,p+2,..., (3.22)

and propose to estimate the mean parameter j in a first step, substitute the estimator, fig
say, in (3.22) and then proceed as in computing the LR? statistics with y; ; replaced by
Y1 — flo-

In order to obtain an appropriate estimator for yy the VAR form y; = v+ Ajxp 1 +---+
Apzy_p + € is initially estimated by LS. The estimators of 1y and the A; will be denoted by

7y and flj, respectively. Then the following quantities are computed:
. P . t=1
dt=yt—ZAjyt_j and Ct:In_ZAj, t=1,...,T,
Jj=1 j=1

with y, = 0 for ¢ < 0, C; = I,, and /Alj = 0 for j > p. The estimator of y is then obtained as



Here € is the estimator for the residual covariance matrix based on the LS estimator of the
VAR(p) process in levels. Note that the estimator [y may be regarded as a GLS estimator
for o and it can be motivated as an approximate Gaussian ML estimator if z; =0, £ < 0.

The test statistics are determined by considering the model

p—1
Ay, = (ye—1 — o) + > TjAy; + €5, t=p+1,p+2,.... (3.23)
=1
That is, they are based on the generalized eigenvalues ASY > ... > ST gay from

det(IIMEPIT — MQ) = 0, where II and Q are obtained from LS estimation of (3.23) and
MZ" is defined as in (3.2) with y_; replaced by y;—1 — fio and z; = (Ay;_,...,Ay;_, ) as
before. The trace statistic for testing the pair of hypotheses (2.3) then becomes

LRJE (ro) = (T —p) Y log(1+A5") (3.24)

j=ro+1
and the statistic for testing (2.4) is

LR, (ro) = (T — p)log(1 + \jhyy).

max

These test statistics have the same asymptotic null distributions as LR} ... (ro) and

LRY ..(ro), respectively. Hence, the same tables may be used for critical values.

Saikkonen & Luukkonen (1997) actually work under more general assumptions than the
narrow finite order VAR(p) framework considered in the foregoing. They allow the DGP to
be of infinite order VAR type and show that their modified tests remain asymptotically valid
under these more general assumptions if a finite order VAR is fitted to the data and the
order is assumed to go to infinity with the sample size at the rate o(7/?). Saikkonen (1992)
shows that this result even holds if the short-term dynamics are not taken into account in
the scaling matrix My. Because the resulting test was found to have poor small sample
properties if the short-term dynamics are neglected, we will not give the details of this
modification here.

For completeness we mention that tests corresponding to LRY (7o), LR% 4(70), W2 ,ee(T0)

and W0

 (To) may be set up in the obvious way for the tests considered so far in this

subsection. These tests are again asymptotically equivalent to the corresponding LR tests.
Moreover, we can use the LM forms of the test statistics in (3.12) and (3.15) if we simply
replace z; by #; = y; — fip. These forms of the LM statistics will be denoted by LMq(1)(70)
and LMpq2) (7o), respectively. Again their asymptotic properties are identical to those of

LRgrace (TO) :
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3.2.3 Local Power

Since we have a number of different tests now which are applicable under the same set of
assumptions, power considerations and small sample behaviour should be used as a basis
for deciding on which test to use in a particular situation. Therefore it is useful to consider
the local power of the different tests. Saikkonen & Liitkepohl (1999) have derived the local
power of the trace statistics in a VAR(1) setting for alternatives Hr(ro) : II = a3’ + 101 3.

Using the notation from Section 3.1.3, they give the following results:

LR})

0 (ro) S tr { ( /0 1 NdN’)I ( 01 NN'ds) - ( /0 1 NdN’) } ,

where N(s) = N(s) — [ N(u)du,

1 ! 1 , -1 1
LR;ace(ro)itr{( [Nan) ([ Nentas) (f N*dN’)},

where N*(s) = [N(s)' : 1) and

LRSY (ro) % tr { ( /0 1 NdN’)I ( /0 1 NN'ds) B ( /0 1 NdN’) } .

The corresponding Wald and LM statistics have the same local power properties, of course.
Saikkonen & Liitkepohl (1999) make the following observations based on these asymptotic re-
sults. None of the limiting distributions depends on the dimension and cointegrating rank of
the process directly but just on n —ry, the number of common trends under the null hypoth-
esis. Moreover, it follows from (3.18) and (3.19) that the limiting distributions depend on
a, 3, Q, a; and B, only through a = (o/, Qo )"Y2a/ a; and b = (o, Qa ) ?(BL o)1 3 .
This implies, for instance, for the case r — ry = 1, where «; and §; are (n x 1) vectors, that

the limiting distributions only depend on the two parameters
?=dab'b and d*= (V'a)?/(d'ab'b). (3.25)

A different parameterization is used in Johansen (1995) and Saikkonen & Liitkepohl (1999).
The present one is used here because it simplifies the interpretation of the results. Note
that {2 = 0 if and only if the null hypothesis holds. Hence, [ = v/12 may be thought of as
the distance of the local alternative from the null hypothesis. Moreover, 0 < d? < 1, where
d? = 0 implies a process with I(2) components which is excluded by our assumptions. The

quantity d = v/d? may be interpreted as the direction of the local alternative. We will use

14



the quantities [ and d later in presenting simulations for comparing the local power of the
tests.
The local power of none of the test statistics depends on the actual value of the mean

term. Moreover, note that the limiting distribution of LRyL (ry) is the same as that of

trace
LR}, ...(ro) given in (3.19). This result means that prior knowledge of a zero mean is not
helpful for improving the asymptotic local power of the test for the cointegrating rank. In
other words, the same local power can be achieved with and without such prior knowledge.
For the univariate case, a similar result was also obtained by Elliott, Rothenberg & Stock
(1996). These authors also show that other asymptotic distributions result if the initial values
are dependent on the sample size, e.g., by making them dependent on the local alternative.
In that respect our zero initial value assumption is a simplification with substance.

Since the local power functions of the tests involve nonstandard distributions the relative
efficiencies of the various tests are not obvious. Therefore, we present some simulation results
similar to those in Saikkonen & Liitkepohl (1999) in Figure 1. The results are based on the
values of [ and d given in the figure. Details on how the simulations were performed may
be found in Saikkonen & Liitkepohl (1999), where different parameter values are used but
otherwise the simulations are done in the same way.

A few interesting features can be seen from Figure 1. First of all, it is striking how much
local power can be gained from estimating the mean term in the “right way” relative to just
including an intercept term in the RR regression as in LR}, .. (r¢) and LR®, _(ry). For some
combinations of / and d the rejection probabilities of LRYL, () are seen to be about twice
as large as those of LR}, ,..(ro) and LR2, . (7).

It is also interesting to see that, for a large part of the parameter space considered in

our study, LR}, ,..(ro) has smaller local power than LR (r¢). Recall that LR;

trace( 0) uses

the additional correct restriction that the intercept term may be confined to the cointegra-

tion relations whereas such a restriction is not used in LR®

(ro). Obviously, in this case
imposing the extra restriction in LR}, ... (7o) may result in a loss of asymptotic local power
although the restriction holds for the DGP. This result is in line with simulations by Horvath
(ro) and LR;

& Watson (1995) who compare the local power of LRY (ro) in a more re-

trace trace

strictive setting and find the same result. In fact, in Horvath & Watson’s study LR;,,..(70)

was always inferior to LR . (ro). In Figure 1 it is seen that in part of our parameter space

15



d=0.25

d=0.

d=0.75

1 3 5 7 9 11 13 15 17 19 21 23 25 27 R9

o o
o o ——
0 I
& =
° °
0
o No
© of
o c e
g ¢ R
; oA IR
: : R - i0
S} [} P LR
-—“""’
o o
Q Q L L L L L L L L L L L L L L L L L L L
o o0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
1 1
o o
o 1<)
- -
© ©
I >~
o c
. 0
5 7 oa
o Il o
“ LR o
¥
LR
o —_ LR‘O c
o Pz o
Q L L L L L L L L L L L L L L L L L L L Q L L L L L L L L L L L L L L L L L L L
o0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 o0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
1 1
o o
o o
- -
© ©
& e
o c
(9}
o No
L ov
ko)
0 0
o Q
o o
e e
o0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 o0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
1 1

Figure 1: Local Power of LR tests
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the opposite may be true. Of course, from the point of view of local power maximization,
neither LR} . (r¢) nor LR® (ry) should be used. Clearly, LRJL (1) is the better choice
under the present assumptions.

Another issue of practical importance is the dependence of the power on n — ry, the
number of stochastic trends under Hy(rp). In Figure 1 it can also be seen that increasing
n — 1o results in a loss of power for all the tests. This behaviour was also observed by
Johansen (1995) in studying the local power of LR, . (7o).

trace

3.3 Unrestricted Mean and Trend Term
3.3.1 The DGP

We now consider the situation where both p and y; may be nonzero. In that case the DGP

has an EC representation
p—1
Ay =vy+ it + 1y + Y TjAyj + &y, t=p+Lp+2..., (3.26)
j=1
where vy = —ITpg+ (Z?Zl jAj) w1 and v; = —IIpy. Note that, for instance, Johansen (1995)
starts from this model and thereby allows y; to have a quadratic trend because, without
constraints on vy and vq, the model can generate quadratic trends. Of course, our DGP
(2.1) can have at most linear deterministic trends. Since higher order deterministic trends
seem to be less important in applied work we will continue to use (2.1) as our basic model

and thereby rule out quadratic trends.

If the trend is at most linear, using IT = o', (3.26) can be written alternatively as

p—1
Ayt = v+ a(ﬂ'yt,l — T(t — ].)) + Z FjAytfj —+ Et
o I=t (3.27)
= 1/+H+yt+_1+ZFjAyt_j+et, t=p+1,p+2,,
j=1
where v = —Ilpg+ (I, —T1 — - = Tp_1)pa, 7 = B'pq, I" = a[f’' - 7] = [I, : 1] and

v, = [y, | : t—1]. The relevant ML estimators and hence the LR statistics may be obtained
easily from these representations using RR regression.
3.3.2 The Tests

An obvious idea is to base an LR type test on the representation (3.26) by estimating vq

and v; unrestrictedly. The resulting tests were proposed by Perron & Campbell (1993).
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They use z; = (1,2, Ay, -, Ay;_,1) in (3.2). The test statistics are then computed as in
(3.5) and (3.6) and will be denoted by LRFC ~and LREC | respectively. The limiting null

trace max )

distributions are again nonstandard and differ from those of the previous tests. Specifically

we have LRFC (ro) % tr(DFC) and LREC. (ro) < Apas (DFC), where

trace mazx

DFC = ( / 1 BPCdB;_,O)I ( / 1 BPCBPC’ds) B ( / 1 BPCdB;z—ro)
0 0 0

and BFC is a trend adjusted version of B,,_,,. Critical values for these tests are given in
Perron & Campbell (1993, Table 1) (see also Rahbek (1994, Table 1)). It should be noted
that the null distribution is unchanged if in fact there is no trend and intercept term in the
true DGP (1y = v; = 0). Again Gaussian assumptions are not necessary for the ¢; as long
as their distributions are sufficiently well-behaved.

The foregoing test does not take into account the restrictions for vy and v; which result
from excluding quadratic trends in the DGP. This restriction may be enforced by using (3.27)
as a basis for estimation. The resulting estimators and weighting matrix M, say, are then
substituted in the determinantal equation (3.4) and, denoting the generalized eigenvalues
obtained in this way by j\f > > /A\:{, we get test statistics

n ~
LR (o) = (T —p) > log(1+ 1))
j=ro+1
and

LRy, 45(r0) = (T — p)log(1 + A ).

The limiting null distributions are LR; ... (o) = tr(D*) and LR} (r6) -5 Amas (D), where

maxr

1 ! 1 , —1 1
Dt = ( / B+dB;_TO> ( | BB ds) ( / B+dB;_TO>
0 0 0

and BT (s) = [B(s)’,s — 1]' where B(s) = B,_,(s) — Jy Bu—ro(u)du is (n — ro)-dimensional
(see Johansen (1994, 1995)). Critical values for these distributions are given in Johansen
(1994, Table V; 1995, Table 15.4) .

Yet another set of tests may be obtained by trend adjusting the data first and then
computing LR or LM type tests on the basis of the trend adjusted data. Some alterna-
tive methods for trend estimation were proposed by Liitkepohl & Saikkonen (1997b) and
Saikkonen & Liitkepohl (1997). Their unifying characteristic is that they are all based on

parameter estimators computed under the null hypothesis. Using this additional restriction

18



is hoped to result in more powerful tests. We will briefly describe the methods for estimating
o and p; in the following assuming that estimators 7, &, B,%, f‘j are available from a RR
regression of (3.27).

In developing the first set of estimators Liitkepohl & Saikkonen (1997b) define

0= ﬂ,,an 6* = 63_“07 T = ﬂ,,ula Ty = /Bj_ul

and note that
po = B(B'B8) ™6 + BL(BBL) 16, (3.28)
and

p = B(B'B) '+ BL(BLAL) T T (3-29)

They construct different suitable estimators 4, 0,,7 and 7, and use them together with the
previously obtained estimators 3 and 8, in (3.28) and (3.29) to compute estimators it
and ﬁgl), say, of ug and puq, respectively. Details may be found in Liitkepohl & Saikkonen
(1997b). Trend adjusted data are computed as :zﬁ” =y — /1(()1) — ﬁgl)t. These may be used to
construct test statistics like in Section 3.1.1 where zero mean and trend terms are assumed.
The resulting test statistics will be denoted by LRy ace(ta)(70), LRmas(ta)(70), LMza(1)(r0) and
LM,q9)(r0)." They have the following asymptotic distributions under the null hypothesis:

LRtrace(ta) (TO): LMta(l) (T’()), LMta(Q) (TO) i) tr(D*) and LRmaw(ta) (TO) i> /\maz(D*)a where

D= (] 1 B*(s)dB*(s)'>l (/ 1 B.(s)B.(s)'ds ) - (f 1 B.(s)dB.(s)') (3.30)

and B, (s) = B,,_,(s) — sBn_(1) is an (n —1r¢)-dimensional Brownian bridge and dB.,(s) =
dB,,_,,(s) —dsB,,_,,(1). Obviously, this distribution is free of unknown nuisance parameters
and does not depend on the actual trending properties of the process. Critical values are
given in Liitkepohl & Saikkonen (1997b, Table 1) and Saikkonen & Liitkepohl (1997, Table
1).

Another estimator of the mean and trend parameters proposed by Saikkonen & Liitkepohl

(1997) is based on a GLS approach applied to the model y; = ug + p1t + x;. Using the RR

' LMy4(1)(ro) and LMy, (2)(ro) correspond to LM (rq) and LM, (ro), respectively, in Liitkepohl & Saikkonen
(1997b).
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estimators from (3.27) we get estimators

Al = In+dﬁl+f1a

Aj = Fj_fj—la j:2,...,p—1,
Ap == _F—l

p

of the levels VAR coefficients and define A(L) = I,, — AjL —--- — A,L”. Moreover, define
Gy = A(L)a; and H, = A(L)b;, with
1 for t>1 t for t>1

Gt = ) t
0 for t<0 0 for t<0

and estimate po and g, by multivariate LS from the regression model

QA(L)y: = QGupo + QHyps +nj, t=p+1,...,T, (3.31)

where
- (&' 1a) 126/ 0!
(6" Qa,)~2a),

is a weight matrix which ensures that the error term roughly has a unit covariance matrix.
Note that Q'Q = Q~'. Thus, estimating the transformed model (3.31) by LS amounts
to GLS estimation of the untransformed model y; = po + pit + ;. We will denote the
resulting estimators of g and p; by a5 and %5 respectively. These estimators can also
be motivated as approximate Gaussian ML estimators under the assumption of zero initial
values. The resulting test statistics will be based on trend adjusted data 7; = y, — a§™S —

A$E5t. Using these data in the same way as in Section 3.1.2 gives test statistics which will be

denoted by LRGLS ) (ro), LRG0 (ro), LME(S (o) and LMG(S (ro). They have the same
limiting distributions under Hy as the corresponding L R4y, W;a) and LM,y statistics. Of
course, Wald versions or modifications similar to those proposed by Reinsel & Ahn (1992) or
Yap & Reinsel (1995) may be used here as well without affecting the asymptotic properties.

We will now compare the local power of these tests.

3.3.3 Local Power

Using again a VAR(1) framework, Saikkonen & Liitkepohl (1997, 1997a) and Liitkepohl &

Saikkonen (1997b) derive the asymptotic power of these tests under the local alternatives in
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(2.6) with 6 = 1, that is, Hr(ro) : II = af' + %alﬁ{, where, as usual, o and § are fixed
(n X 7r¢) matrices of rank ry and «; and (3, are fixed (n x (r — 7¢)) matrices of rank r — g
and such that the matrices [« : o;] and [§ : 3] have full column rank r. Using the notation

from Section 3.1.3 we have

1 ! 1 , —1 1
Ljofce(ro)imr{( / NPCdN’> ( / NPONPC ds) ( / NPCdN')},
0 0 0

where N¥C(5s) is a trend adjusted version of N(s), that is, N(s) is corrected for mean and

linear trend. Moreover,

1 ! 1 , —1 1
LR}, (ro) % tr { ( / N+dN') ( | NN ds) ( / N+dN') } ,
0 0 0
where N*(s) = [N(s)' : s — 1]’ Furthermore,

LRtrace(ta) (TO)a LMta(l) (7'0)7 LMta(Q) (To), LRLS (TO): LMgé‘? (7“0), LM;;(%? (TO)

trace(ta)

e { (5 N (AN (5)) (3 N (5N ()ds) ™ (13 Nu(s)dNL(5)') }.

where N, (s) = N(s) — sN(1) and dN,(s) = dN(s) — dsIN(1). Thus, all the tests based
on prior trend adjustment of the data are asymptotically equivalent. It may be worth
emphasizing again that these asymptotic distributions are obtained under our assumption
that the initial values do not depend on the sample size T. As mentioned earlier, it follows
from Elliott et al. (1996) that different asymptotic distributions result if the initial values
depend on the sample size.

In the present framework, the local power again depends on n—7y only and not on the di-
mension n and ry separately. Moreover, it does not depend on the actual values of the mean
and trend parameters o and p;. These results are analogous to those for tests based on pro-
cesses without trend. Asin Section 3.2.3, it can be seen that the limiting distributions depend
on a, B, Q, a; and B; through a = (o/, Qa1 )%/ ay and b = (o, Qo )28 ) B B
only. Tt follows from Johansen (1995, Corollary 14.5) that for the case r — ro = 1, where ;4
and (3, are just vectors, the limiting distribution only depends on 1?2 = a’ab'b if n —ry = 1
and on [? and d* = (V'a)?/(a’ab’b) for n — ry > 1. Again [ may be viewed as the distance
from the null space and values of d close to zero indicate processes close to being 1(2).

Liitkepohl & Saikkonen (1997b) simulate the local power based on the asymptotic distri-
butions given in the foregoing. We have also done so using a different parameterization of the

local power curves and considering a wider range of parameter values. Some of the results
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Figure 2: Local Power of LR- and LM-type tests
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are given in Figure 2 together with local power functions of tests which will be discussed in
Section 3.4. The following results emerge from the simulations. Because the test based on
LR} ,..(ro) imposes the restriction that the estimated trend is at most linear whereas this

restriction is not used in LRYY (ry), the local powers of the two tests differ. It turns out,

PC

1o (T0) despite the additional correct

however, that LR} ,..(ro) is not always superior to LR

restriction used in the former test. The tests based on prior trend adjustment have generally

PC

more local power than LR, ...

The power gains can be substantial especially for d close to
1, that is, for processes not close to being /(2). In many situations the tests based on prior
trend adjustment also outperform LR;,..(ro) in terms of asymptotic local power. Unlike
the case without trend, there is no clear winner under the presently considered conditions
where a trend is potentially present. Thus, for a particular data set one may want to try
different tests or base a decision on which test to use on the small sample performance which
is discussed in Section 5. Note, however, that the local power presented in Figure 1 for the
tests which assume p; = 0 is sometimes substantially better than the local powers in Figure
2. Hence, it pays to spend some effort on specifying the deterministic term properly.

In the next section we will consider a particular situation which has received some at-

tention in the theoretical literature and is also often assumed in applied work. It is assumed

that a trend appears in the variables and not in the cointegrating relations.

3.4 Trending Variables and No Trend in the Cointegration Rela-

tions
3.4.1 The DGP

If it is known that a trend is present so that u; # 0 but it is confined to the variables and does
not appear in the cointegrating relations, that is, f'u; = 7 = 0, tests for the cointegrating
rank may be constructed so as to take that additional restriction into account. We will
turn to that situation now. Although having this kind of prior knowledge may not be very
realistic in many situations, considering the corresponding cointegration tests is useful from a
conceptual point of view. Moreover, the resulting tests are perhaps the most frequently used
ones for determining the cointegrating rank in applied work. It may be worth emphasizing,

however, that for the (n x r) matrix § to satisfy 'y = 0, u1 # 0 implies that r < n. Hence,
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even under the alternative the rank must be smaller than n in the present setting, a fact
which is sometimes ignored in empirical applications. As a consequence, it is, for example,

unreasonable to test Hy : » =1 vs. Hy :r > 1 in a bivariate process in this context.

3.4.2 The Tests

If it is known that there is a deterministic trend (u; # 0), but p; is orthogonal to 3, that
is, #'u1 = 0 and, hence, v; = 0, the LS estimators IT and Q may be obtained from (3.20).
The corresponding test statistics are obtained by plugging z; = (1, Ay; ,,...,Ay; ,,,) into
(3.2), using the resulting M* matrix in (3.4) and considering the corresponding generalized
eigenvalues. The resulting LR statistics will be denoted by LR, .(ro) and LR (ry), where

the ¢ stands for ‘intercept’. The asymptotic null distributions of these test statistics are as

follows: LR! (o) < tr(D') and LR! __(ro) % Amae (D), where

trace mazx

) 1 _. ! 1., -1 1.
D = ( / B’dB;_TO) ( | BB ds) ( / Bde;_ro) , (3.32)
0 0 0

B'(s) = [Bu_r,_1(5)" : s]' and Bi(s) = B'(s)—J, B'(u)du (see Johansen (1995)). Critical val-
ues for these test statistics may be found in Johansen & Juselius (1990, Table A.1), Johansen
(1995, Table 15.3) and Osterwald-Lenum (1992, Table 1), among others. Unfortunately, the
null distributions change if the true u; turns out to be zero. In that case, the tests are

precisely the ones based on LR, (ro) and LR® (ro), respectively. In Section 3.2.2 these

max
tests were seen to have limiting distributions quite different from those of LR:,,..(ry) and

trace
LR!

! (7o) although the test statistics are identical.

In practice, the restriction p; = 0 will usually be unknown. In that case, Johansen (1992)
suggests to test null hypotheses for increasing ranks ro = 0, 1, ..., with both types of tests,
LR*(rg) and LR(ry), using the critical values obtained under the assumption pu; # 0 for
the latter. If both tests reject for a given ry we proceed to Hy(rg + 1) etc.. If at some stage
Hy(rp) is rejected by LR*(rg) and not by LR'(ry), then ry is chosen as cointegrating rank
and the process is assumed to have p; # 0. If Hy(rg) is not rejected by LR*(rq) for some ry,
we conclude that r = ry and the process does not have a linear trend. The same holds, of
course, if both LR'(ry) and LR*(ry) do not reject.

Assuming again that p; # 0 and 'y = 0 is known so that there is a deterministic linear

24



trend in the variables but not in the cointegration relations, the EC form may be written as
p—1

Ay — pp = O(y; 1 — po) + JZ:—1 Li(Ay—j — 1) + &, t=p+1,p+2,... (3.33)

Saikkonen & Liitkepohl (1998a) propose to base LR and LM type tests for the cointegrating

rank on this model form. The resulting test statistics will be denoted by LR}, (ro), LM}, (o)

and LMtia(Q) (7o), where the former statistic is the trace version and the latter two statistics

correspond to the two different versions of LM type tests considered in Section 3.1. Saikkonen

& Liitkepohl (1998a) show that the two LM type tests and LR:,(r) have identical asymptotic

properties. More precisely,

, , , 1_, VAN VNS R
LMtZa(l) (TO)a LMZa(Z) (TO)a LR:E,a (TO) _d> tr { (/ B dB'In—TO) (/ B'B’ dS) (/ B dB:z—'rg) } )
0 0 0
(3.34)
where B’(s) denotes the same process as in (3.32). We will now turn to a local power

comparison of these tests.

3.4.3 Local Power

We consider again local alternatives of the form (2.6) with 6 = 1. Moreover, to ensure that
we remain in the presently considered model class where a trend appears in the variables

and not in the cointegrating relations we have to assume that Iy, = 0 and, hence,

Bim = 0. (3.35)

Saikkonen & Liitkepohl (1998a) derive the limiting distributions of the test statistics con-
sidered previously under these assumptions. In other words, it is assumed that there is no
trend in the cointegration relations even under the alternative. Note that the fact that the
(n X r) matrix [ : (1] is orthogonal to u; also means that r has to be less than n.

Using the notation from Section 3.1.2, we now define the (n — ry)-dimensional Ornstein-
Uhlenbeck process
N(u) = B(u) + /0 "N(s)ds (0<u<1), (3.36)
where

—1/2 1 1

i=(g'c\Qaig)?’dd/ Loy and ¥ = B0 v](g'e/ Qaig)/?

with ¢’ being an ((n — ry) X (n — 79)) matrix which is the inverse of 3 [y : 7] and ~

any (n X (n — ro — 1)) matrix orthogonal to 3 and p; such that [# : g : ] is of full
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rank. Furthermore we need the process Z(s) = [Ny(s)' : s]' and its demeaned counterpart

Z(s) = Z(s) — J; Z(u)du. Here Ny(s) consists of the last n — 7y — 1 components of N(s).
Assuming again that the initial values are not dependent on the sample size, the limiting

distributions derived by Saikkonen & Liitkepohl (1998a) for VAR(1) processes under the

presently considered local alternatives are:

LR

e (10) 5 tr { ([ za8(y) ([ 2s)(s7as) B ([ 2ts)anesy) }

and

LMtia(l) (r0), LMtia(2) (r0), LRia (o)

4 { (f 1 Z(s)dN(s)')l (/ 1 ()2 ds) - (f 1 2(s)aN(s)') } |

Comparing the latter two limiting distributions shows that the nonnull distributions differ
in the same way as the limiting distributions under the null hypothesis.

The limiting distributions are similar to those obtained in previous sections under local
alternatives. An important difference results from the definitions of the parameters a and
b, however. These parameters now depend on the matrix g which did not appear in the
previous counterparts of @ and b. The zero matrix in b is due to the assumption B = 0.
Note, however, that we necessarily have 3]y # 0 (because (3; € span(3,) = span([y1 : v]))
so that b = 0 is not possible.

For LR!

trace

(ro), Rahbek (1994) obtained the limiting distribution under different local
alternatives. He considered two types of local alternatives. The first type is given by II =
af' + T~32a, 3, which is an order of magnitude smaller than the one used here. However,
Rahbek’s limiting distribution reduces to the limiting null distribution if condition (3.35),
Bip1 = 0, holds. In the present analysis we have employed assumption (3.35) because we wish
to consider the case where a linear time trend is a priori excluded from the cointegrating
relations. Another local alternative considered by Rahbek (1994) is given by II = af’ +
T~ 'ay 3] combined with #ju; = T7Y26 (0 < §'§ < oc). When § = 0 we get our local
alternatives. If 6 # 0 power gains are achieved but they are achieved by testing an inclusion
of a time trend in the cointegrating relations which is excluded by assumption in the present
framework.

Saikkonen & Liitkepohl (1998a) also report simulated local power functions for the case

where 7 — 7y = 1, so that @ and b are (n x 1) vectors, using @ = (/(1 — d2)i2, —V/d2[2)

26



and ¥ = (0,1) for n —ro = 2 as well as & = (\/m, —V@12,0) and ¥ = (0,1,0) for
n—rg = 3. These choices are motivated as follows. It is assumed that parameters are chosen
such that ¢'¢/, Qa, g = I, ,,. This is not very restrictive because suitable normalizations of
the parameters may be selected. Then ¥ = 3![0 : 7], where v is essentially equal to 3, for
n —ro = 2. Hence, b = (0,1) is a suitable choice if @ is fully flexible. If n —ro = 3, one of
the columns of v may be set equal to #; while the other one may be made orthogonal to ;.
Assuming that the first column of v equals §; justifies b’ = (0,1,0) for n — g = 3. The first
two components of the vector @’ are simply given a fully flexible form. The values used for [
and d are given in Figure 2 which also summarizes the local power results for the presently
considered tests.

It is obvious from the figure that prior knowledge regarding the trend being not in the
cointegration relations is quite helpful for improving the local power of the tests. In parts

of the parameter space, the tests which do not use this information are considerably inferior

to LR!

trace

(ro), LM},1y(ro) and LM}, (o) which use the information. Comparing the local
power of the latter types of tests it is clear that LR}, (ro), LMj,)(ro) and LMj, 4 (ro) are
generally substantially superior to LR, .(ro). Moreover, a comparison with the results in

Figure 1 shows that an improvement in local power is possible if there is no deterministic

linear trend term and p; = 0 is known a priori.

3.5 Summary of Models and Test Statistics

A summary of the model types in a VAR(1) setting and the corresponding LR type test sta-
tistics is given in Table 1. The associated asymptotic distributions under local alternatives
are given in Table 2. The corresponding null distributions are obtained from these distribu-
tions by replacing the Ornstein-Uhlenbeck processes by the associated Brownian motions.
Based on the foregoing theoretical results it is seen to be advantageous in applied work
to pay attention to the specification of the deterministic terms. If a linear trend term in
the variables and the cointegration relations cannot be excluded a priori the LR*, LRFYC or
LRGLS tests or their LM and Wald relatives have to be used. Substantial power gains are
possible, however, if a deterministic trend can be excluded from the variables and/or the
cointegration relations. Based on the local power comparison LR5" tests should be used if

w1 = 0 and LR!, type tests are the preferred candidates if 1 # 0 whereas 3'u; = 0.
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Table 1: Models for Lag order 1 and LR Type Tests

Assumption for Notation for
deterministic term | Model LR statistic | Reference
o =1 =0 Ay, =Ty, + &4 LR Johansen (1988, 1995)
1o arbitrary Ay = vy + Iy, 1 + &4 LR® Johansen (1991a)
Yt—1
=0 Ay, = [II: 7] |: ] + &t LR* Johansen (1991a)
1

Ayy = (ys—1 — fio) + & LRST Saikkonen & Luukkonen (1997)

Lo, p1 arbitrary Ay =v+[I1:0] { vt ] + e LR* Johansen (1992, 1994, 1995)
t—1

Ays =vo + it +Tyi_1 + &4 LRFC Perron & Campbell (1993)

Ay — fig = M(y;—1 — jio — i (t = 1)) + & | LRGLS Saikkonen & Liitkepohl (1997)
o arbitrary Ay = vo + y_1 + &4 LR Johansen (1991a)
w Z0,8u =0 Ay — i = O(ye—1 — fio) + & LR:, Saikkonen & Liitkepohl (1998a)

3.6 Further Issues

3.6.1 Incorporating Prior Information on the Cointegration Vectors

Horvath & Watson (1995) consider the power of LR and Wald tests under the assumption
that prior knowledge on the cointegrating vectors is available. For instance, if interest rates
are analyzed, the interest rate spread may represent a cointegration relation with known
parameters. In that case some cointegration vectors may be fixed and the likelihood for a
given cointegrating rank is optimized given the known cointegration vectors. In this case
the asymptotic distributions of the LR statistics will also depend on the number of known
cointegration vectors. Tests with deterministic mean and trend terms can be derived as well.
Details and critical values may be found in Horvath & Watson (1995). They conclude that
taking into account prior knowledge of this kind may result in improved asymptotic power.
Thus, generally speaking, taking into account more information of this kind results in more
powerful tests, at least asymptotically. As we have seen earlier, this result is not generally
true with respect to information on the deterministic terms of the process. Also, applying
these tests may be problematic, of course, if the prior information regarding the cointegrating
vectors is incorrect. If there are no known cointegrating vectors but identifying information
is available for 3 the approach of Kleibergen & van Dijk (1994) may be used. They discuss

LR, LM and Wald tests for the cointegrating rank in a model where prior knowledge allows
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Table 2: Limiting Distributions of Tests
Notation:

B(s) (n — rg)-dimensional standard Brownian motion,

N(s) = B(s) + at' [y N(u)du, a = (o/, Qo)) "2 a1, b= (e, Qo) /2B ar)~' B, B,
N(s) = N(s) = [y N(u)du, N*(s) = [N(s)" : 1]}, N*(s) = [N(s)' : s — 57,

NP (s) trend adjusted version of N(s),

N.(s) = N(s) — sN(1),

N(s) = B(s) +ab' [y N(u)du, & = (¢, Qa1 g) /2g'/ en, B = 1[0 : 7)(¢ o, Qi 9)V/2,

g ={BLlm 1},

v any (n X (n —rp — 1)) matrix orthogonal to § and u; such that [ : p; : ] is of full rank,
No(s) the last n — o — 1 components of N(s),

Z(s) = [Na(s) : s]', Z(s) = Z(s) — [, Z(u)du

Test

statistic | Limiting distribution

LR { (i NdN')' (i NN'ds) ™ (it NdN') }

LR® {( Ji NaNY)' (3 NN'ds ) (s NdN')}

LR* tr{( A N"ANY) (J N"N" ds ) N N*dN’)}
LRS" |t { (Ji NaN')' fo NN'ds) " (f3 NdN')}

LR tr{( Jo N*TANY) (A NFNYds) () N*dN’)}
LRPC |t { (s NPCdN' ( JE NPONPCds) (i NPCdN’)}
LRGTS tr{( JNANG) (JENLNLds) () N*dN;)}
LR tr{( fi zaN') (ji zz'ds) " (fy ZdN’)}

LR |t {( i zanN') (jizzids) " () ZdN')}

to place identifying restrictions on the cointegrating vectors.

3.6.2 Choosing the VAR Order

In the foregoing theoretical discussion it has been assumed that the DGP is a finite order
VAR(p) process and that the order p is known. Of course, these assumptions are unrealistic

in practice for various reasons. For instance, the true DGP may not be a finite order process.
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If it is a finite order VAR process then the true order is not likely to be known. Therefore
it is of interest to know the consequences of a violation of the assumption that the DGP is
a VAR process with known finite order.

Liitkepohl & Saikkonen (1997a) consider this problem by extending asymptotic results
of Ng & Perron (1995) for univariate unit root tests. In their analysis they assume a process
without deterministic trend term, that is, regarding the deterministic term they work under
the assumptions of Sections 3.1 and 3.2. Two alternative ways for specifying the VAR order
are discussed. The first possibility is to use a deterministic rule for choosing the order. It is
shown that if the DGP is a finite or infinite order VAR and the order p used in computing
LR test statistics is chosen as a function of the sample size T" in such a way that p — oo and
p*/T — 0as T — oo, then the limiting null distributions of the LR tests for the cointegrating
rank are the same as in the case of a known finite order.

The second and perhaps more realistic approach considered by Liitkepohl & Saikkonen
(1997a) assumes that the order is chosen by some data-dependent rule. Specifically, it is

shown that if a model selection criterion of the form
logdet(,) + (p + 1)Cr/T, (3.37)
with
p<pr= O(Tl/?’), Cr>n? and COp/T —0 as T — o0

is applied for choosing an order p, say, for the model on which the cointegration tests are
based, then the limiting null distributions of the LR tests are again the same as in the case
of a known finite order. In (3.37), Qp is the usual estimator of the residual covariance matrix
Q2 based on a model of order p (see (3.3)). The result regarding the limiting distribution
remains true if the DGP is of finite or infinite order. It follows that the order may be chosen,

e.g., by the Akaike (1974, 1973) information criterion which minimizes
AIC(p) = logdet(€,) + 2(p + 1)n?/T,
so that Cr = 2n?, or by the Schwarz (1978) criterion,
SC(p) =logdet(Q,) + (p + 1)n?log T/T,

so that Cp = n?log T, or by other similar criteria (see, e.g., Liitkepohl (1991, Chapter 4)). If

any of these criteria is used for order selection prior to testing for the cointegrating rank, the
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asymptotic properties of the LR tests remain unchanged. Note that the SC' criterion will
choose the order consistently if the DGP is actually of finite order whereas AIC' overestimates
the order with positive probability in this case. The aforementioned result for the LR tests
remains valid in either case despite the differences in the properties of the order selection
criteria. Thus, the asymptotic theory for the cointegration tests does not provide help in
discriminating between the criteria.

In contrast, Reimers (1992), Haug (1996), Liitkepohl & Saikkonen (1997a), Boswijk &
Franses (1992), Cheung & Lai (1993), Yap & Reinsel (1995), Ho & Sgrensen (1996), Saikko-
nen & Luukkonen (1997), Gonzalo & Pitarakis (1997b), Bierens (1997b) and Gonzalo & Lee
(1998) have found by simulation that in small samples the cointegration tests are strongly
dependent on the choice of the VAR order. Choosing a very small lag length which results
in a poor approximation of the true DGP may equally well result in major size distortions
and reduced power of the tests. A similar result is also obtained if a large lag length is used
which introduces substantial sampling uncertainty into the estimated model.

Generally, increasing the lag length eventually results in size distortions and loss in
power. Therefore, most studies recommend to use an order selection criterion to choose the
lag order. However, the different studies provide different recommendations regarding the
order selection criterion. Apparently, the recommendations depend on the DGP used for
the simulations. If processes with one lag are used, the parsimonious SC' criterion performs
best, as would have been expected (see e.g. Reimers (1992) and Haug (1996)). Otherwise, if
higher order processes are employed in the simulations, the Hannan-Quinn criterion or AIC
turn out to be advantageous (see, e.g., Reimers (1992) and Liitkepohl & Saikkonen (1997a)).

In general, however, choosing the lag length with order selection criteria which tend to
find a balance between a good approximation of the DGP and an efficient use of the sample
information appears to be a good strategy for applied work (see Liitkepohl & Saikkonen

(1997a)). A universally optimal criterion for this purpose does not seem to exist, however.

3.6.3 Subset and Conditional Models

Although we have presented the likelihood based cointegration tests in terms of full VARs or
EC models where no restrictions are placed on the short-run parameters I';, 7 =1,...,p —

1, it should be understood that such restrictions have no implications for the asymptotic
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properties of the tests. On the other hand, the computation of the test statistics may
become a bit more difficult if there are restrictions on the short-run coefficients, e.g., if lags
of some variables appear in one equation but not in others. This situation is fairly common
in practice and implies that there are zero restrictions on the short-run parameters. In that
case optimization of the likelihood function and, hence, computation of the test statistics
may require numerical optimization algorithms. Alternatively, one may use some kind of
GLS approach or one may simply ignore the restrictions. Although this does not change the
asymptotic properties of the cointegration tests, it may have an impact on the small sample
properties.

The situation is different if there are restrictions on the loading coefficients a. If in some
of the equations of the full system none of the cointegrating relations is actually present, that
is, some rows of « are restricted to zero, the corresponding variables are weakly exogenous
for the cointegration parameters. In that case a conditional model can be set up for those
variables which are not weakly exogenous. The number of cointegrating relations can then
be tested within the conditional model. Harbo, Johansen, Nielsen & Rahbek (1998) consider
LR tests for this purpose and Kauppi (1997) extends the LM type tests for application in
conditional models. He also shows by way of simulation that tests for the cointegrating rank
in conditional models may be considerably more powerful than the corresponding LR tests
based on full models. These results presume that the conditioning is done correctly, i.e., all
unmodelled variables are indeed weakly exogenous.

Rahbek & Mosconi (1998) and Seo (1998) discuss the case where additional stationary
regressors appear in a VAR model. They show that these variables have an impact on the
asymptotic distribution of LR tests for the cointegrating rank and they propose modifications

which result in asymptotically valid tests.

3.6.4 Seasonal Dummies and Structural Shifts

In the foregoing discussion we have focussed on the specific case where the deterministic part
of the DGP consists of mean and linear trend terms because these terms are of particular
importance from a practical point of view and they are also important for the asymptotic
theory. In practice there are sometimes additional candidates for deterministic terms. Im-

portant examples are seasonal dummy variables and shift dummies which may be used to
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account for structural breaks in the DGP. Whereas the inclusion of centered seasonal dum-
mies has no consequences for the asymptotic properties of the tests (see Johansen (1995))

the same is not true for shift dummies of the form

0, t<T
dt = )
1, t>T
that is, the DGP has the form
yt:M0+ult+5dt+xta t:1:25"'a (338)

where z; is as in Section 2. LR tests for the cointegrating rank in this situation have been
discussed by Johansen & Nielsen (1993). They show that the asymptotic distribution under
the null hypothesis depends on the timing of the shift or, more precisely, it depends on the
fraction of the sample before and after the structural shift. If the fraction is known, that is,
T is a known break point, then critical values can be generated.

An alternative proposal is due to Saikkonen & Liitkepohl (1998b). They extend the
approach described in Section 3.3.2 and propose to estimate the deterministic term in (3.38)
by GLS type procedures first. Then the estimated deterministic term is subtracted from y;

and the cointegration tests are applied to the adjusted data. The resulting test statistics

GLS

irace(ta) Statistics in Section 3.3.2.

have the same limiting null distributions as the LR
In these proposals the break date is assumed to be known. For applied work procedures
for unknown break dates are also of interest. Moreover, it would be useful to have tests

which allow for more general types of structural changes.

3.6.5 Sequential Testing

Often it is of interest to choose the cointegrating rank from the full range of possibilities
without prior knowledge or a good guess of what the actual rank may be. In that case
one may want to test various different ranks before a decision can be made. A typical
sequence of tests proceeds by checking Hy(0) and, if that null hypothesis is rejected, Hy(1),
etc. until the null hypothesis cannot be rejected for the first time. Obviously the tests in
such a sequence are not independent. In particular, for ro > 0, a test of Hy(rg) is performed
only if Hy(0),..., Ho(ro — 1) are rejected previously. Therefore Johansen (1995, Chapter
12) considers the joint probability Pr{LR(0) > ¢u,...,LR(r) > ch—r~}, where LR(r9) is
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the suitable LR statistic for the DGP at hand and ¢,_,,, is the corresponding asymptotic
critical value for a test with significance level v. Johansen shows that the asymptotic rejection
probability is bounded by 7,

lim Pr{LR(0) > cnpy,..., LR(r) > cy_rpy} < v

T—00

with equality if 7 is the true cointegrating rank, that is, » = rk(IT). Thus, asymptotically the
testing sequence has the correct size. In small samples the test decision will strongly depend
on the properties of the individual tests, however, which will be investigated in more detail

in Section 5.

3.6.6 Bootstrapping

In many situations it is possible to improve the small sample performance of asymptotically
valid statistical procedures by using the bootstrap. Therefore it is not surprising that the
bootstrap was also considered in the context of testing for cointegration. For example,
Van Giersbergen (1996) and Harris & Judge (1998) investigate the possibility to generate
more accurate critical values for LR cointegration tests by resampling the residuals of a VAR
or EC model. Harris & Judge consider a standard parametric bootstrap for that purpose
whereas van Giersbergen also investigates a nonparametric variant, the so-called stationary
bootstrap, which samples blocks of residuals of random length. A possible advantage of the
latter resampling scheme is that it may capture remaining residual autocorrelation in case
of underspecified lag order.

In Monte Carlo experiments mixed evidence is found regarding the potential for improv-
ing cointegration tests by using bootstrap methods. In other words, it is by no means clear
that the extra computational burden associated with bootstrapping methods is justified in
the case of interest here. Moreover, a formal proof does not seem to be available that boot-
strapping cointegration tests actually improves the convergence rate towards the asymptotic

distribution.

3.6.7 Nonnormal Processes

The likelihood based tests considered in the previous sections are derived under Gaussian

assumptions, that is, the DGP is assumed to be normally distributed. Although the Gaussian
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assumptions can be relaxed for much of the asymptotic theory, the Gaussian likelihood is
the basis for deriving the explicit form of the test statistics. In practice, many time series
and especially financial data contain outliers and volatility clusters which are not consistent
with Gaussian assumptions. Therefore Lucas (1997, 1998) considers other than Gaussian
likelihood functions and derives LR and LM type tests for the cointegrating rank from them.

Specifically he considers (pseudo) likelihood functions which are essentially of the form

ﬁdet(ﬁ)‘l/ exp{—y(Q7' %)}, (3.39)

where 1(-) is some suitable function. Of course, for ¢(u) = u'u/2 the Gaussian likelihood
is obtained. Using this set-up Lucas shows that considerable power gains are possible for
cointegration tests if the distribution of the DGP is far from normal. Such gains may also
result if (3.39) is not the true but just a pseudo likelihood. On the other hand, the level and
the power of the tests strongly depend on the true DGP. If it is in fact Gaussian or close
to normality some power may be lost by using the pseudo likelihood approach. Therefore
Boswijk & Lucas (1997) propose a seminonparametric approach where the true density is
estimated rather than assumed and, hence, can adapt to the actual data properties.
Another approach to deal with outliers is used by Caner (1998) who considers the case
where the residuals may have a distribution for which the variances do not exist. He shows

that considerable size distortion may result for the standard LR type tests in that case.

3.6.8 Possible Pitfalls

A number of studies consider situations where specific problems may arise for cointegration
tests. We already mentioned the case of nonnormal distributions which also falls into this
category. Other examples are processes with long memory, variables which are actually
I(2) or a singular or almost singular residual covariance matrix. These and other possible
problems are analyzed by Gonzalo & Lee (1998) in the present context. They find that the
aforementioned problems may lead to finding spurious cointegration relations by standard
LR tests for the cointegrating rank. An LR test in the presence of variables with long
memory is discussed by Lyhagen (1998). Ho & Sgrensen (1996) consider large dimensional
systems and find that the variability of the number of cointegrating relations found by LR
tests gets larger if the number of observations is small and the dimension gets larger and/or

the VAR order is misspecified.
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Table 3: Other Tests

Assumptions for the | Test statistic Section | References
deterministic terms
po =1 =0 LR Sec. 4.1 | Liitkepohl & Saikkonen (1997b)
LREM WEM Sec. 4.1 | Quintos (1998b)
SWVAR g NP Sec. 4.3 | Stock & Watson (1988)
o arbitrary, LR;D. Sec. 4.1 | Liitkepohl & Saikkonen (1997b)
p1 =0 LREM —wihM Sec. 4.1 | Quintos (1998b)
BYin, BYirace, BY?, BY? | Sec. 4.2 | Bewley & Yang (1995)
SWYAR gy NP Sec. 4.3 | Stock & Watson (1988)
o, 41 arbitrary LR;. Sec. 4.1 | Lutkepohl & Saikkonen (1997b)
LREM  wWEM Sec. 4.1 | Quintos (1998b)
SWYAR SwNP Sec. 4.3 | Stock & Watson (1988)
Bl,n, Blygce Sec. 4.4 | Bierens (1997b)
po arbitrary BY; . BY}.cer BYmaz Sec. 4.2 | Yang & Bewley (1996)
p1 # 0,61 =0

4 Other Tests

An overview of the tests discussed in this section is given in Table 3. Detailed explanations

of the tests and the notation will be given in the following.

4.1 Tests Based on Limiting x? Distributions

A couple of tests have been proposed based on statistics with standard limiting x? distribu-
tions under Hy. Liitkepohl & Saikkonen (1997b) obtain this result by augmenting the VAR
DGP by an additional lag whereas Quintos (1998a, b) uses the fully modified estimation
approach of Phillips (1995) as the basis for her tests. We will discuss the two approaches in

turn.

4.1.1 Lag Augmentation Tests

Liitkepohl & Saikkonen (1997b) point out that a small modification of Johansen’s LR tests

results in a x? limiting null distribution which does not depend on the deterministic trend
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terms. Assuming again that the true DGP is a finite order VAR(p) process, it suffices
to augment the regressor vector z; by y:—1—, and to estimate a VAR(p + 1) instead of
the VAR(p). Let us denote the resulting Mz matrix by M7*. Notice, that we still have
1= —(I, — A — .. — fip), where the /ij are now LS estimators of the coefficient matrices
of a VAR(p + 1) model. Equivalently, IT may be obtained as the LS estimator of the matrix
IT in the model

Ay =vo+ it + 1y + DAy + - -+ Tpo1 Aypi1 + Eypp_1 + €1

The test statistic obtained in this way is denoted by LRj.S.(ro), that is, LRy (ro) =
(T—p) Yot 10g(1+5\?“g ), where the 5\?“9 are now obtained from the lag augmented model.
It has a x%((n — r)?) limiting distribution under the null hypothesis which does not depend
on the properties of the deterministic terms. The same asymptotic x? distributions are also
obtained if 4 and/or vy are known to be zero and are thus set to zero in the estimation. Of
course, asymptotically equivalent statistics are obtained by using small sample corrections as
in the Reinsel-Ahn and Yap-Reinsel variants of the LR statistics in (3.8) and (3.9). Moreover,
the Wald version has the same asymptotic properties as the LR version.

One would expect that the standard LR type tests have better power properties because
an inefficiency is built into the modified statistics by adding an extra lag in the estimation
procedure. Although adding one extra lag may seem like a minor modification, in this case
it has rather severe consequences for the properties of the estimators and, hence, for the
tests of the cointegrating rank. Consider, for instance, a univariate I(1) process. Then the
estimator II is superconsistent (IT — 1 = O,(T~")) if the true AR order is used whereas it is
just v/T-consistent (IT — 1 = O,(T~'/?)) if an extra lag is added (see Choi (1993)). Hence,
a unit root test based on the latter estimator is asymptotically inefficient relative to one
based on the former estimator. More precisely, the local power of the lag augmentation test
of the hypothesis Hy : IT = 1 against local alternatives of the form Hy : Il = 1 — /T will
be equal to the size of the test whereas the tests of the previous section were seen to have
larger power against such alternatives.

In a multivariate situation the difference between the convergence properties of the two
estimators may not be quite so dramatic. In general there will be just some linear combi-
nations of elements of IT which will be estimated superconsistently if there is no overfitting,

whereas estimators of individual elements have the usual \/T—convergence rate. As a con-
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sequence, in small samples the loss in power may not be quite as severe in multivariate
cointegration tests as in univariate unit root tests. The small sample properties of the lag

augmentation tests will also be explored in Section 5.

4.1.2 Tests Based on Fully Modified Estimation

In presenting the tests of Quintos (1998b) we use the following notation. For time series

vectors vg, w; define

and

A'uw = va + Avwa

with estimators S,,, = % Zthl vw; of 3, and a kernel based estimator Ay Of Aoy (see, e.g.,
Phillips (1995)). The resulting estimators of €),,, and A, are indicated by hats as well.

Now we focus on a model without deterministic terms,
Ay = Hyr—1 + uy,

where u; = Z?;% I';Ay,—j+¢e¢. Although the lag order p is not assumed known in the present
setup there are some assumptions that make the model class more restrictive than in Section
3. Perhaps the most restrictive of these assumptions is that ('u; is not serially correlated,
where [ is as usual the cointegration matrix (this is an implication of Assumption 2 of
Quintos (1998b)). Of course, this assumption restricts the I'; matrices in the definition of
ug. In fact, if » = n is not excluded as a possibility, the condition implies that u; has to be
white noise and, hence, only first order VAR models are considered. Another assumption
made by Quintos (1998b) is that the lag polynomial I, — (I, +(3'a) L is invertible which implies
that ('« is nonsingular. This assumption may not be as restrictive as the previous one and it
is, in fact, satisfied for VAR(1) processes under the assumption that all variables are at most
I(1). For higher order processes the assumption does exclude parts of the parameter space
which are permitted in the framework of Section 3. For instance, if in a bivariate process 3
represents a spread (i.e., ' = (1,—1)), the loadings of the cointegration relations cannot be

the same for both equations, that is, o' = (1, 1) is not a possible loading vector.

38



For presenting the test statistics we define
Ay = Ay, — QuAyQZLAyAyt—l

and

AT — A At 0=l ¢
AAyu - AA?JU - AAyAZ/QAyAyQAyu’

where u; = Ayt—f[yt_l is substituted for u; with 1T being the LS estimator of II. Furthermore,

we let AFM > ... > AF'M be the ordered eigenvalues of

A—1/2 A+ — A A—1/2
QuAé/ ( gl/Ay+ - Aiyu)Syyl(SyAy"' - Aqu)QuAé/ :

Then the test statistic proposed by Quintos (1998b) is

Wik(ro) =T Y MM

trace
J=ro+1

which has an asymptotic x*((n — rq)?) distribution under Hy(ry) : tk(IT) = ry > 0. For
ro = 0 = rk(II) it has a degenerate distribution, i.e., WM (0) & 0. Thus it may be used with
critical values from a x? distribution for 7o = 0, ..., n—1, although it will be conservative for
ro = 0. Quintos also points out that a test with asymptotically correct size can be obtained
if suitable instrument variables are available that can be used in the estimation of the matrix
IT and hence in the rank test. An asymptotically equivalent alternative to WM (ry) is the

LR type statistic

LREM (rg) = (T —p) Y. log(1 + AIM).
j=ro+1

Quintos (1998b) mentions that modifications with intercept term and deterministic trend are
possible without changing the x? limiting distribution. A similar test statistic to WEM (r)
based on fully modified generalized method of moments estimation is proposed by Quintos
(1998a) for the case where suitable instruments are available. This test also has a x? limiting
distribution if r = 0.

Although the local power properties are not given by Quintos (1998b), it seems plausible
that the tests have local power of a similar rate as that of the LR tests discussed in Section
3. Hence, the loss in local power may be less than for the lag augmentation tests. Of course,

the price is that more restrictive assumptions are required for the DGP and that additional

instrument variables may be required.
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4.2 Tests Based on Canonical Correlations of Levels

Bewley & Yang (1995) and Yang & Bewley (1996) propose tests for cointegration which
may be thought of as being based on the canonical correlations of the levels ¥y, and y,_ if
the DGP is a VAR(1) process. Thereby they differ from Johansen’s LR tests which, in the
special VAR(1) case, may be regarded as a canonical correlation analysis for the levels and

first differences. Consider a VAR(p) model in EC form,
p—1
Ayy = vy + af'yr + Y DiAyj + &, t=p+Lp+2... (4.1)
j=1
and suppose (2.3) is the pair of hypotheses of interest. Bewley & Yang propose to compute
residuals g, and h; from regressions of y; and y—; on [1,Ay;_1,...,Ayr_py1], define G =

[9p+1s-- - 97), H=[hpt1,...,hr] and solve the eigenvalue problem
det|GH'(HH') 'HG' —yGG'] = 0.

Let v4 < --- < 7, be the ordered eigenvalues and ¢, ..., g, the corresponding eigenvectors
satisfying
GH'(HH"\ 'HG'q; = v;GG'q;, j=1,...,n.

Note that for p = 1 the 7; are just the canonical correlations of y; and 3, ;. The first r( of the
g; are used to estimate the cointegration relations, i.e., ﬁ = [q1,- .-, 4] Estimators of the
other parameters in (4.1) are then obtained by replacing 3 with 3 and applying multivariate
LS estimation to (4.1). The resulting estimators will be denoted by 7y, &, fj and the residuals
are £;. From these quantities we also obtain estimators &; and B | in the usual way. Based

on these estimators the following definitions are made:

A

C=BLd!) (I — D Tj)BL] ),
j=1
h/;O = dlht and HTO = [h/;‘)g-l) R hTTO]’
g =& (ke +Cé) and Gy =I[g%,. ., 7).

Denoting the ordered eigenvalues obtained as solutions of
det[GTOH;'O (HTOH’II‘())_IH"'OG{I‘O - ,YG"'OG’Ir‘o] = O (42)
by 41 < -+ < Ap—p,, the following statistics result:
BYmin(TO) = (T - p)(l - ’3/1) (43)
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and
n—rg

BYipace(ro) = (T'=p) 2 (1= %), (4.4)
j=

When 4, in BY,,;,(79) is small and, hence, the statistic is large, this indicates that there are
fewer than n — ry common trends. Thus, Hy(rg) is rejected when the statistic assumes a
large value. The asymptotic null distributions of these statistics are functionals of Brownian
motions and depend on n — ry and the trending properties of the process. Some critical
values for the case without deterministic trend (4, = 0) are given in Table 1 of Bewley &
Yang (1995)%. Critical values of the test statistics BY}.,, and BY}:

trace mn

B'p1 = 0, may be found in Table 1 of Yang & Bewley (1996).

for the case pu; # 0,

In the latter article the authors also note that for a given cointegrating rank ry, the pair
of hypotheses
Hy:py=0 vs. Hy:p #0

may be tested with the statistic
BYmaw(ro) = (T - p)(l - fs/nfro) (45)

where Hj is rejected if BY,,q,(70) is small. Critical values appear in Table 1 of their article.
Bewley & Yang (1995) also propose two other tests for the case u; = 0. They suggest to
perform Dickey-Fuller type tests for the parameter p in

4191° = pgihy° + vy,

where §; is the eigenvector associated with fi; from the eigenvalue problem (4.2). Denoting

the regression estimator of p by p and its ¢-statistic by t;, the resulting statistics are
BY*?(ro) = (T =p)(p—1) (4.6)

and

BY*(ry) = t,. (4.7)

Critical values for these tests for the driftless case (u; = 0) are also given in Table 1 of

Bewley & Yang (1995). The tests have some similarity to tests based on the residuals of a

2The table has to be used cautiously because the legend is not fully clear and the user is expected to add

minus signs to some of the entries.
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cointegrating regression as proposed by Engle & Granger (1987), Engle & Yoo (1987) and
Phillips & Ouliaris (1990).

In assessing the tests proposed here it may be worth pointing out that Bewley & Yang
work under similar conditions as the corresponding tests presented in Section 3 except that
they use the additional assumption that o/, 3, is nonsingular. This assumption is not re-
strictive for first order VAR processes because for these processes it follows from the fact
that o/, (I,, — ?;i I';) 3. has to be invertible if 1(2) processes are to be excluded (see Section
2). However, for higher order processes the assumption excludes processes which are per-
mitted in the likelihood framework of Section 3. Given that the likelihood based approaches
often have superior properties to more ad hoc approaches and given that a likelihood ratio
approach results in a canonical correlation analysis of first differences and lagged levels one
may wonder about the properties of the approach of this section especially as it requires
more restrictive assumptions in some sense.

Bewley & Yang (1995) and Yang & Bewley (1996) mention that the tests are consistent.
In the former article some small sample simulations are reported which show that the power
of the BY},4.. test is not very good. Therefore its use is not recommended. On the other
hand, in some cases the other tests proposed by Bewley and Yang have better small sample
power than the corresponding LR tests. The small sample properties of these tests relative

to other tests will be explored in more detail in Section 5.

4.3 Stock—Watson Tests

We present the tests proposed by Stock & Watson (1988) for the case where z; is observable
first, that is, we assume pg = p; = 0. Afterwards, the necessary modifications for processes
with deterministic terms are discussed. The Stock-Watson tests are suitable for the pair of
hypotheses given in (2.3), that is, Ho(ro) : r = 9 is tested against the alternative Hy(ro) : 7 >
ro- The idea underlying the tests is as follows. If there are ry cointegrating relationships for x;
then there must be n —ry common trends. Suppose the original data have been transformed
such that the last n — rq components of z; are just the common trends. In practice this is
usually not the case. Therefore Stock & Watson suggest to perform a principal components
analysis and order the principal components from smallest to largest. Denoting by ) the

orthogonal matrix whose rows correspond to the principal components, z; = Qy; where the 1;
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are the original data. The common trends 7; are then chosen to be the last n—ry components
of z;. Under Hy(rg) this process has n — ry unit roots (i.e., A7 is stationary with possibly
infinite order VAR representation). Thus, computing the multivariate LS estimator of ® in

7+ = P11 + u; results in a matrix

B T T -1
b = (Z 7'7:7'1/{_1> (Z Tt_thI_1> (48)
t=2 t=2
whose eigenvalues approach 1 in large samples. Therefore the test rejects Hy(rg) if the
eigenvalue of ® with smallest modulus is much smaller than 1.
In order to get a test statistic which does not depend on unknown nuisance parameters
adjustments for the short-term dynamics are made. Two types of adjustments were suggested

by Stock & Watson (1988). The first one assumes that 7, has a VAR(p) representation. In
that case A7y has a VAR(p — 1) representation, say

ATt = :‘lATt—l + -t :‘p—lATt—p—f—l =+ Vg
Denoting the LS estimators of the =; by =; we may compute residuals
&G =Te—E1T—1 — = Ep_1Ti—pt1

and use them to compute the estimator
R T T -1
¢ = Z ft&fl Z 6&15271 .
t=p+1 t=p+1

The test statistic proposed by Stock & Watson is then
SWVYAR(ro) = (T — p) (real(j\mm) —1),

where real(j\mm) denotes the real part of the eigenvalue of ® with smallest modulus. Hy(ro)
is rejected if SWYVAE(ry) is small. The asymptotic null distribution of this test statistic is
nonstandard. Its critical values are tabulated in Table 1 of Stock & Watson (1988).

This test may be regarded as nonparametric because the VAR (p) may just be an ap-
proximation to a more general DGP of the common trends ;. Note that, if y, is a VAR(p)
process, 7; will in general not have a finite order VAR representation. Therefore Stock &
Watson (1988) also propose another nonparametric procedure to account for the short-term

dynamics and thereby eliminate nuisance parameters in the limiting distribution of their test
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statistics. They suggest to compute residuals 4, = 7, — ®7,_;, where ® is defined in (4.8).

Then an estimator of the covariance matrix of u; is determined as

where hr is the bandwidth and K(-) is a kernel function. For instance, the quadratic kernel
may be used:

K(z) =

25  [sin(67z/5)
127222 | 67mz/5

Haug (1996) suggests to use a procedure of automatic bandwidth choice as proposed by

- cos(67rz/5)] .

Andrews & Monahan (1992) and Andrews (1991). The nonparametric estimator of ® is

then -1

T T
(I)Np = (T2 Z Tt’l'tlil — TIQU> <T2 Z Tt—ng_1>
t=1 t=1
Denoting the real part of the eigenvalue with smallest modulus of this matrix by real(/\N Py

mn

the test statistic becomes

SWNP(ro) = (T — p)(real(ADF) — 1).

mn

Under H, it has the same asymptotic distribution as SWVAE(ry). Of course, the two statis-
tics will differ in small samples (see Section 5.2).

Modifications are necessary if po and p; are nonzero. If g is arbitrary and pu; = 0, 2 is
replaced by z; — Z, where z; is the transformed vector where the last n — r, components are
noncointegrated I(1) processes, i.e. the common trends. The transformation is obtained by
a principal components analysis as above. If both iy and p; are nonzero, z; is replaced by

— fig — f11t, where fip and fi; are obtained by regressing z; on a linear trend. The resulting
test statistics will be denoted by SWYAR(rg) SWNP(ro), SWYAR(rg) and SWNF(ry), re-
spectively. The limiting distributions of these test statistics differ from those of SWYVAE(r)
and SW™P(ry). The critical values are listed in Tables 2 and 3 of Stock & Watson (1988).

4.4 Bierens’ Nonparametric Tests

Bierens (1997a, b) develops nonparametric tests for the cointegrating rank. In his approach
y; may have a quite general DGP which does not have to be a finite order VAR process. It

is assumed that y; is of the form (2.1) and z; is such that Az, is stationary and ergodic.
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Bierens considers weighted means of y; and Ay; and exploits the difference in their asymptotic

behaviour to construct a test for the cointegrating rank. He defines matrices

D, - 8%2 gjl k2 (% S cos(2kn(t — 0.5) /T)yt> (% S cos(2kn(t — 0.5) /T)yt>,

t=1 t=1

and

!

Fp=2TY" (% S cos(2kn(t — 0.5) /T)Ayt) (% S cos(2kn(t — 0.5) /T)Ayt) |

k=1 t=1 t=1
Other weights than cos(2kn(t — 0.5)/T) may be chosen here. The present choice is recom-
mended, however, to ensure invariance of the test statistics to drift terms.

Denoting by j\f > > j\f the generalized eigenvalues obtained from
det[Dy, — A(F,, + T7°D;1) ] = 0,

Bierens proposes to use BI(ry) = j\f_m as a test statistic for testing the hypotheses in
(2.3). The null hypothesis Hy(rg) is rejected if BI(rg) becomes too small, that is, the test is
left-sided. Again the asymptotic null distribution is nonstandard and critical values may be
found in Bierens (1997b).

The power of the test will depend on the number of terms m. For a test with 5%

significance level Bierens (1997a) suggests using the following rule for choosing this quantity

ifn <5andr <4:
n ifrg>0o0rn<?2

n+1 ifro=0andn > 2
Bierens also points out that the tests are not scale invariant, that is, for a nonsingular matrix
@, in small samples, the test decision may differ if the test is based on Q,; rather than ;.

Asymptotically the tests are invariant under linear transformations of the data, however.

4.5 Choosing the Cointegrating Rank by Model Selection Criteria

It was pointed out, for instance, by Liitkepohl & Poskitt (1998) and Gonzalo & Pitarakis
(1997b) that statistics for testing the cointegrating rank of a system can also be used to
construct criteria for estimating the rank consistently. Suppose that Qr(r) is a test statistic

for testing Hy(ro) with the properties

plim Qr(r)/T >0 for r <rg (4.9)
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and
Qr(r) =0,(1) if r>r. (4.10)

These conditions hold for most of the test statistics considered in the foregoing. Furthermore,
let ¢(r) be any strictly monotonically increasing function of r and let ¢r be a sequence of
numbers which is o(7). Then, defining Q7 (n) to be zero and choosing the cointegrating rank

such that a criterion of the form
Cr(r) =Qr(r) +¢(r)er, r=0,...,n, (4.11)

is minimized, results in a consistent estimator 7 of the cointegrating rank r. More precisely,
in that case, plim 7 = r, that is, Pr [f = r] — 1 (see Liitkepohl & Poskitt (1998, Therorem 1),
Gonzalo & Pitarakis (1997b) and Poskitt (1996) for a result on strongly consistent estimation
of the cointegrating rank).

Note that (4.9) says that a test based on Qr(r) has to be consistent and (4.10) requires
basically that the test statistic has an asymptotic distribution if the null hypothesis is true.
Thus most of the statistics considered in the foregoing may be used for Q7(-). Furthermore,
the conditions for ¢(r) and ¢y are quite general. For example, for the sequence ¢y one may
choose ¢ = T for every finite sample size and pretend that c¢r gets smaller than 7" eventually
for large samples. A simple choice for ¢(-) would be the identity function, ¢(r) = r. Another
choice that has been used in this context is ¢(r) = r(2n — r), that is, ¢(r) represents the
number of freely varying parameters in the (n X n) matrix I when its rank is . Obviously,
both choices of ¢(r) are strictly monotonically increasing in r and, hence, qualify here.
With the latter choice and ¢y = 2 we get the well-known AIC criterion, the Hannan-Quinn
criterion results for ¢y = 2 loglogT', and the Schwarz criterion is obtained for ¢y = logT
(see, e.g., Liitkepohl (1991, Chapter 4) for a discussion of these criteria). Note that instead
of Q1 (r) usually the more common T logdet Q(r) is used, where Q(r) is the Gaussian ML
estimator of the residual covariance matrix  for a cointegrating rank r. If Qr(r) is the LR
statistic based on Gaussian assumptions, Q7 (r) and T logdet Q(r) differ only by a constant
which is independent of r (see Liitkepohl (1991, Chapter 11)). Hence, replacing the latter
term by the former results in equivalent criteria. Using Qr(r) in the present context is more
convenient from a computational point of view.

H(@ and SC are both consistent criteria whereas AIC' may not be consistent. On the

other hand, even for the SC' criterion which has the largest penalty term, the sequence cr is

46



still much smaller than 7" which may be regarded as an upper bound. Hence, from this point
of view, even much more parsimonious criteria could be justified. In fact, in a simulation
study by Reimers (1992) the criteria did overall quite poorly in finding the true cointegrating
rank. Even the most parsimonious criterion SC' frequently overestimated the cointegration
rank. This result suggests that more parsimonious criteria may be justified not only on the
basis of asymptotic theory but also from a small sample point of view.

Phillips (1996) discusses a criterion based on Bayesian principles which can also be used
for consistent selection of the cointegrating rank of a VAR process. Another Bayesian variant
is proposed by Kleibergen & Paap (1997). Aznar & Salvador (1997) consider the determina-
tion of the cointegrating rank, the lag order and the properties of the deterministic terms by

model selection criteria. In particular, they discuss the Schwarz criterion for that purpose.

4.6 Further Proposals

There are numerous other proposals for determining the number of cointegration relations in
a system of variables. Some of them are quite different from those considered in this survey.
Although we do not intend to present them here in detail it may be worth mentioning some
of the related literature in order to help the reader in locating other contributions to the
topic. Since we are not striving for completeness we apologize for any omissions.

First of all, as mentioned earlier, we have focused our survey on systems cointegration
tests and therefore we have neglected the extensive literature on testing for cointegration
in conditional single equation models. Examples of publications in this area are Engle &
Granger (1987), Phillips & Ouliaris (1990), Banerjee, Dolado, Galbraith & Hendry (1993),
Choi (1994), Shin (1994), Haug (1996), to name just a few.

Within the systems framework considered in the present paper, instead of testing the
null hypothesis that the cointegrating rank is r, against the alternative that the true rank
is greater than r, it is also possible to test against a smaller rank than ry. In the univariate
case this corresponds to testing the null of stationarity against the I(1) alternative. This
type of tests has been considered, e.g., by Kwiatkowski, Phillips, Schmidt & Shin (1992),
Choi (1994) and Saikkonen & Luukkonen (1993) in the univariate case. For the multivariate
case Harris (1997) proposes a test for Hy : 7 = 7o against Hy : 7 < ry, 7o > 0, and Snell

(1999) considers testing Hy : 7 = 7o against H; : 7 = ry — 1. Choi & Ahn (1995, 1998)
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develop tests for the null of stationarity of multiple time series and of the residual vector of a
system of equations. The latter tests can be used to check whether the dependent variables
are cointegrated with the regressors.

A Bayesian analysis of the number of cointegration vectors is discussed by Kleibergen
& Paap (1997) and tests for seasonal cointegration are treated by Johansen & Schaumburg

(1997).

48



5 Small Sample Properties

With respect to the application of the tests in empirical analyses it is important not only
to compare their asymptotic properties but also to know how these tests perform in small
samples. Therefore, small sample comparisons presented in the literature are summarized
in Section 5.1. Since the results of small sample simulations depend to some extent on the
DGPs used, new simulations are presented in Section 5.2 which compare a wide range of

systems cointegration tests under uniform conditions.

5.1 Previous Studies

A number of small sample simulation studies have been performed to learn more about the
properties of the different tests for the cointegrating rank of a set of variables in samples
of the size usually encountered in applied work. In some cases, authors who have proposed
modifications of existing tests or who have suggested new testing procedures have also pro-
vided limited small sample evidence in favour of their proposals (e.g., Stock & Watson (1988),
Saikkonen & Luukkonen (1997), Yap & Reinsel (1995), Quintos (1998b)). In other studies a
specific class of tests is compared only (e.g., Toda (1994, 1995)), and in yet another group of
studies broad ranges of tests are compared (e.g., Reimers (1991, 1992), Haug (1996)). Some
of the simulation studies arrive at different conclusions which is partly due to the specific
DGPs and simulation designs used. Moreover, conflicting results may arise from different
subjective interpretations of the simulation evidence.

Most DGPs used in previous studies of systems cointegration tests are bivariate or three-
dimensional processes with lag orders one or two. In some studies higher dimensional pro-
cesses have also been used. For instance, a four-dimensional VAR(2) process is used in a
small simulation study by Reinsel & Ahn (1992) and a five-dimensional process is considered
by Bewley & Yang (1995). Gonzalo & Pitarakis (1997a) base their simulations on DGPs
of higher dimensions (n = 2,5 and 10). Four- to nine-dimensional data-based DGPs are
employed by Ho & Sgrensen (1996). Toda (1994, 1995) shows that for comparing LR tests
using rather simple DGPs is justified because these tests are invariant to nonsingular linear
transformations of the data and, hence, more complicated processes can be reduced to equi-

valent simple versions. In some studies DGPs derived from real economic data are used (e.g.,
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Reimers (1992), Ho & Sgrensen (1996) and Bierens (1997b)). Moreover, DGPs with moving
average components are employed in a number of simulation studies (Boswijk & Franses
(1992), Cheung & Lai (1993), Yap & Reinsel (1995), Saikkonen & Luukkonen (1997), Gon-
zalo & Pitarakis (1997b) and Liitkepohl & Saikkonen (1997a)). The sample sizes considered
in the Monte Carlo studies cover a range of 30 to 10000 observations. In many cases they
are concentrated on sample sizes around 200, however. Hence, most studies cover situations
often encountered in macroeconometric applications.

Johansen’s LR tests or their small sample modifications are included in almost all simu-
lation studies because they may be regarded as benchmark tests with comparatively good
performance and wide application in empirical research. Of the other tests discussed in the
previous sections, only the Stock & Watson (SW) tests have been included in several simu-
lations, e.g., by Haug (1996), Reimers (1992) and Yap & Reinsel (1995). The simulation
evidence for the other tests considered in this paper is rather limited.

Table 4 summarizes a large number of simulation studies with respect to the specific
test statistics considered, the dimension and lag order of the DGPs as well as the sample
sizes on which the simulations have been based. Also, it includes the information whether
sequential testing procedures have been carried out as well as the main topics analysed in
these simulation studies. Some of the results have been discussed in the previous sections
where the corresponding theoretical results are considered. For our own simulations the

following issues are important:

e In none of the studies all the tests have been compared simultaneously. Therefore, we
will include a wide range of tests that cannot be excluded on the basis of previous

simulation evidence or some other criterion (see below).

e The performance picture becomes more diffuse for more complicated processes of higher
order or larger dimension. Therefore, we will focus on simple processes only. A test or
class of tests which does not perform well in simple situations under ideal conditions
cannot be expected to do well for complicated DGPs in general even if there is simula-
tion evidence to that effect in a previous simulation study. In other words, in this case
we assume that the favorable performance is at least partly a function of the special

simulation design in other studies.
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Table 4: Some Previous Simulation Studies

Author(s) Test DGP Sample Seq. Topics analysed
Size Tests
Stock & Watson (1988) SWma VAR(2), 3-dim., 200 no size, power
SWia VARMA(1,1), 3-dim.
Reinsel & Ahn (1992) LR°, LR VAR(2), 4-dim., r = 2 200 no size, finite sample correction
Reimers (1991, 1992) LR, random walks (2/3-dim.), 50, no size, power,
LRigA, VAR(1), 2-dim., 100, lag order, dimension
swhP VAR(2), 3-dim., databased | 200
SwYAR (German interest rates)
Boswijk & Franses (1992) LR! VARX, 2-dim., 50 no size, power, lag order
VARMAX, 2-dim.
Cheung & Lai (1993) LRiO, VAR(I)H, 2-dim., 50-300 no size, power, lag order,
LRiSud VAR(2), 2-dim., 50-200 dimension, finite order correction,
VARMAC(1,1), 2-dim. 200 non-normality, MA component
Toda (1994) LR", VAR(1), 2-dim. 100, 200, yes size, power, initial values,
LRPC 300, 400 innov. corr., determ. terms
Toda (1995) LR?, VAR(1), 2-dim., 100, yes size, power, initial values,
LRiO, with drift parameters 200, innovation correlation,
LR*, 300 deterministic terms
LR' & LR*
Yap & Reinsel (1995) LRi?P, VAR(2), 3-dim., 200 no size, power, lag order,
swhNP, VARMA(1,1), 3-dim. MA component
swya®
Bewley & Yang (1995) LR"O, VAR(I)G, 2-dim., 75, 100, no size, size-adjusted power,
BY VAR(1), 5-dim. 200 innovation correlation
Haug (1996) LR, VAR(1)%, 2-dim. 100 no size,
SWTZ,\:f, SW};;‘R (not) size-adjusted power,
lag order
Ho & Sgrensen (1996) LR! 4- to 9-dim. data-based 40 yes lag order, dimension,
DGP (sectorial data), finite sample correction,
7-dim. data-based DGP, ratio no. of parameters
(exchange rates) to no. of observations,
VAR(p), p=1,2,3 ,
PAIC, PSC>
Liitkepohl & Poskitt (1998) LR;A, VAR(1), 3-dim. 50, no size, power, lag order
AIC, HQ, SC, VAR(1)%, 2-dim. 100,
CIR1, CIR2 200
Saikkonen & Luukkonen (1997) LRiO, LRSL, VAR(2)YR, 3-dim., 200 no size, size-adjusted power,
wio, wsk VARMA(1,1)Y B 3.dim. lag order, MA component
Liitkepohl & Saikkonen (1997b) | LRT, LRPC, VAR(1)T 100, 200 no size, power,
LRI, LMmLS deterministic terms
Saikkonen & Liitkepohl (1997) LRT, LRFPC, VAR(1)T, 2-dim. 100, 200 no size, power,
LMLES, LMGLS, innovation correlation,
LRtLaS, LRtGaLS deterministic terms
Saikkonen & Liitkepohl (1998a) LR", LMi, LR:'G, VAR(I)T, 2-dim. 100, 200 no size, power, deterministic terms,
LR+, LRPC, innovation correlation
LMGLS
Liitkepohl & Saikkonen (1997a) | LR, LR?, VAR(2)Y B, 3-dim. 100, 200 yes size, power, lag order,
AIC, HQ, SC VARMA(I,I)YR, 3-dim. MA component
Bierens (1997a, 1997b) LRT, BI VAR(8), data based, 80 yes size, power, lag order
(wages, GNP) a =10%
Gonzalo & Pitarakis (1997b) LRO, VAR(1), 3-dim., 150-160 no size, lag order
AIC, SO, VAR(2), 2-dim.,
HQ, LCIC, VARMA(0,1), 3-dim.
Gonzalo & Pitarakis (1997a) LR°, AIC, SC, VAR(1), 30, 90, no size, dimension
HQ, LCT, RALR n=2,5,10 150, 400
Gonzalo & Lee (1998) LR, LR*, diff. VAR(1)%¢ 100 no size, lag order,
LR:'race, n=2 (1000, deterministic terms,
LRfmaw with det. term 10000) order of integration,
singularity of error covariance,
random unit root coefficient
Quintos (1998b) LR°, wFM VARMA 100, 200, 300 no size, power

Note: H: DGP of Haug (1996), T: DGP of Toda (1994, 1995) , Y R: DGP of Yap & Reinsel (1995), G: DGP of Gonzalo (1994)
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Small sample modifications for LR tests such as those suggested by Reinsel & Ahn
(1992) and Yap & Reinsel (1995) (see Section 3.1.2) were found to improve the size
or power performance of some tests in specific situations. However, it was found in
Cheung & Lai (1993) that these modifications are inadequate in parts of the parameter
space. Therefore, we will generally focus on the unmodified, original versions of the
statistics. Thereby, situations may be identified where small sample modifications are

useful.

Previous simulation studies have shown that both the trace and the maximum eigen-
value statistic of the LR tests perform similarly (see, for example, Cheung & Lai (1993)
and Toda (1994, 1995)). However, Toda (1994) finds that the trace test performs better
in some cases where the power of both statistics is quite low. Therefore, only the trace

statistics are considered in our simulations.

Saikkonen & Luukkonen (1997) concluded that the Wald versions of the likelihood
based tests are inferior to the LR versions. Therefore, we exclude the Wald versions

from our simulation comparison.

In a series of papers Liitkepohl & Saikkonen propose and compare different versions of
LM type tests and LR tests with prior trend adjustment. In the simulations presented

below the test statistics that were found to perform best have been used.

In preliminary simulations we found that the nonparametric SW test performed rather
similarly to SWVAE. In contrast to Haug (1996) it was found that neither the SWVAE
test nor his variant of SW ™ outperforms the other. Our version of the SWNF test per-

forms somewhat worse than the others. Therefore, we report only results for SWVAE,

According to Bewley & Yang (1995), their minimum test statistic performs similarly
to BY”? and is more robust to variations in the innovation correlation than BY}, ... and
BY*. Furthermore, their trace statistic is outperformed by their other tests. Therefore,

only results for BY . will be reported.

men

For the Bierens test the minimum statistic was advocated by Bierens (1997a) and is,

therefore, included in the simulations.
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e The choice of the lag order was found to have an important impact on the test per-
formance. This problem was studied theoretically in Section 3.6.2 where also some
simulation evidence is reviewed. To avoid distortions resulting from inadequate lag
order selection we focus on the properties of the tests when the lag order is specified
correctly. Again the objective is to single out tests which do not work well under ideal

conditions.

e Initial values were found to have an impact on the test performance (see Toda (1994,
1995)). Since in practice the initial values are unknown, we choose them randomly in
our simulations by starting the simulated series at zero and discarding the first few

observations.

e The deterministic terms of a DGP have a severe impact on the performance of the
tests. Therefore, we will structure our results according to the assumptions for the

deterministic terms.

5.2 New Simulations
5.2.1 Simulation Details

Tables 1 to 3 (see Sections 3 and 4) summarize the tests reviewed and compared in this
paper. The assumptions for the deterministic terms of the DGP, y; = ug + pit + x4, under
which the tests are supposed to work are presented together with the references for the tests.
For the LR tests the respective model to be used for estimation is presented, whereas for the
other tests the reader is referred to the relevant section of the paper. The tables are also
meant as a reference for the notation used in the paper.

Different groups of tests are considered in the following according to their assumptions
regarding the deterministic terms with respect to their performance for alternative DGPs.
Tests with the underlying assumption pg = p; = 0 are not included in the simulations as
these tests are not relevant for applied research.

The size of the respective tests is analysed first because, in order to control the type I
error, a test should not exceed the nominal significance level considerably to be useful in
applied work. If the actual size is much smaller than the nominal size, the test is conservative

and tends to have little or no power. This is a particular problem in the present case
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since the cointegrating rank is usually determined in a sequential procedure starting with
the null hypothesis » = 0, which will often terminate too early and, hence, indicate fewer
cointegrating relations than the true number. On the other hand, if the actual size is much
larger than the nominal size, the test procedure tends to overestimate the cointegrating rank
which can also result in severe problems for the interpretation. Strictly speaking in that
situation we do not have a valid test because bounding the type I error is a fundamental
property of a test. In order to evaluate the results with respect to their random variation

the standard error of the true rejection probability P based on 1000 replications is given by

s = \/P(l — P)/1000. In the case of a 5% nominal significance level, as in the simulations
presented below, the standard deviation is s = 0.007 and, thus, the two-standard-error
confidence interval for P is [0.036,0.064]. A power comparison is performed for those tests
which have roughly a correct size.

The performance of the tests will be evaluated on the basis of their behaviour in terms
of size and power in response to variations of the key parameters influencing the DGPs con-
sidered (such as the autoregressive eigenvalues, the innovation correlation, the cointegrating
rank and the deterministic part). DGPs of different dimensions will be employed in the
simulations and the impact of the length of the time series on the test performance will be
studied.

In the simulations, the correct lag specification is taken as the most favourable situation
for the tests with respect to dynamic specification. We have generated samples of sizes
T = 50,100,200 and 400 plus 50 presample values. The initial value is set to 0 and 50
presample values are discarded to eliminate the influence of the zero initial value. The first
sample values are used for estimation purposes. Simulation results are presented for 7" = 100
only as economists often have to work with a similar sample size. Results for other sample
sizes are commented on if they provide additional insights.?

All programmes are written in GAUSS. The Johansen and Stock & Watson routine
are partly adapted from Sam Ouliaris’ COINT GAUSS program.® The RNDNS function
in GAUSS with a fixed seed has been used to generate the pseudo-normal variates. All

simulations were performed on a Pentium MMX PC.

3Further results on different sample sizes, variations in the parameters of the DGPs and results on further

processes are available from the first author upon request.
4Version 1, 1991.
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The rejection frequencies in the tables are obtained on the basis of asymptotic critical
values for a nominal level of 5%. The simulation results presented in Tables 5 to 8 and
Figures 3 to 6 are based on unconditional tests for the respective cointegrating rank, that
is, none of the tests is conditioned on the outcome of some other tests, as would be the case

in sequential testing procedures.

5.2.2 The DGPs

Because one of the main objectives of this study is to analyse the impact of the trending

properties of the DGP on the performance of the tests, a DGP of the general form

0 v 0 y I. ©
wy = + wi_1 +uy,  up ~ 1dN |0, (5.1)
5671—7‘ 0 In—r o In—’r

is employed, as in Toda (1994). The quantity J is a nonnegative scalar, e,_, is an (n — r)-
vector of the form e, . = (0, ...,0,1)", ¥ is a diagonal matrix with diagonal elements inside or
on the unit circle. The diagonal elements of this matrix are the eigenvalues which determine
the number of cointegrating relations and common trends. Toda shows that this type of
process may be regarded as a canonical form for investigating the properties of LR tests for
the cointegrating rank. Other VAR(1) processes of interest in practice can be obtained by
nonsingular linear transformations of w; and, hence, leave the LR tests for the cointegrating
rank invariant. The simplicity of the process makes it attractive for our purposes.

If n = 2, the corresponding two-dimensional VAR(1) DGP is of the following form:

0 v 0 - 0 14
wy = + Wi_1 + U, up ~ 1idN , i (5.2)
o 0 o 0 0 1
If ¢ =1 = 1 in DGP (5.2), the cointegrating rank is r = 0 and the process consists of two
nonstationary components. In this case, the second component has a deterministic linear
trend if 0 # 0 and no linear trend is present if 6 = 0. If 1) = 1 and |1/;| < 1 the cointegrating
rank is 7 = 1. Again there will be a linear trend in this case if § # 0. If both [¢| < 1 and
|1y < 1, the process is stationary (r = 2). In that case, a nonzero ¢ cannot generate a linear
trend.

Since the properties of some tests depend partly on whether or not p, is zero, but are

otherwise independent of the particular values of the deterministic parameters it suffices to
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vary the deterministic part by varying . If § = 0 the deterministic trend term of the DGP
in the representation (2.1) is gy = 0. In this case, all tests may be applied that allow for
arbitrary values of py and are derived under the assumption pu; = 0. Moreover, tests for
arbitrary values of ug as well as p; are applicable. For § # 0 and r = 0 or 1 with ¢y = 1,

the mean and trend parameters for the w; process are

0 0
Mo = ) Hy =
Wo )

and f'uY = 0. In this case, tests which require zero trend parameters are inappropriate
whereas all tests may be applied which allow for a nonzero trend parameter and possibly
require §'uY = 0. In the simulations we only report results for § = 0 and 1. The choice of
0 has no impact on those tests which allow for a linear trend and are invariant with respect
to the values of the trend parameters. Hence, for these tests the value of § # 0 is of no
consequence. In studying the small sample behaviour of some tests for which a distinction
between § = 0 and § # 0 is necessary, J values close to zero give similar results to the case
where § = 0. Hence, focusing only on results where ¢ is equal to 0 and where it is markedly
distinct from zero (6 = 1) provides a good picture of the differences in the behaviour of the
tests for 6 = 0 and § # 0.

The parameter  in the residual covariance matrix of the process (5.2) controls the cor-
relation between the two components of the process. For # = 0 the two components are
independent whereas they are instantaneously correlated for 8 # 0. In the simulations either
no innovation correlation (f = 0) or high innovation correlation (# = 0.8) is assumed. The
simulations are only carried out for nonnegative values of § because Toda (1995) shows that
the LR tests are invariant to the sign of 6.

To understand the relation between the VAR representation (5.2) and the EC represen-

tation it may be useful to consider the transformation

= wptw
Y1t 1t 2t (5.3)
Yor = W
Hence,
Ay = (V1 = 1) (Yr—1 — You—1) + (Y2 — D)yap—1 + €1 (5.4)

Ayor = oo+ (Y2 — 1)yas—1 + €2
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where v99 = § and

€1t = Up + U 2+20 1+460
. . . so that X, =

€2t = Uot 1+0 1

Thus, if ¢ = 1 and |1 < 1 (i.e., r = 1), ¢y — 1 determines the loading coefficient of
the cointegrating relation in the system. Moreover, 6 determines the instantaneous residual
correlation in the EC form. A value of # close to zero indicates intermediate correlation and
a value of # close to one results in large instantaneous correlation. Furthermore, using the

transformation (5.3),
Wo )
o = and iy =
Wo

The three-dimensional version of Toda’s DGP used in the simulations has the form

0 v 0 0 0 1 6, 6,
w=0|+]| 0 o 0|w—r+u, w ~wdN||0]|,|6 1 0 . (5.5)
) 0 0 1 0 B, 0 1

Here, § generates the drift in the third component. The third eigenvalue is unity whereas
Y1 and 1y vary. If 11| < 1 and [¢)s| < 1, the cointegrating rank is r = 2. If |¢);| < 1 and
¥y = 1, the cointegrating rank is » = 1, and the rank is zero if ¢y = ¥y = ¢35 = 1. The
quantities 6; and #, are the correlations between the first component of the process with the
second and third components, respectively.

We have also used other DGPs and we will comment on the results where additional
insights were obtained. In the next subsection the results from the bivariate DGPs are

presented and discussed and thereafter results from three-dimensional DGPs are considered.

5.2.3 Two-dimensional VAR(1)

5.2.3.1 Sizes of Tests

DGPs without Linear Trend (6 = 0) Table 5 shows empirical sizes of the tests when
the cointegrating rank is 7 = 0 (¢ = ¢y = 1) or r = 1 (¢ = 1,91 < 1). The tables are
structured according to the underlying assumptions of the tests regarding the deterministic
terms. The first part of Table 5 shows the tests that should be applied if restrictions on

the deterministic terms were known. These tests take into account that the data exhibit
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no linear trend (o arbitrary, u; = 0). The second part of Table 5 displays the empirical
sizes of the tests which can be applied if a linear trend is present. These tests allow for
a trend in the variables and in the cointegrating relation. The results are presented for
sample size T' = 100. Simulation results for 7" = 200 (not presented here) show slightly more

conservative sizes for all tests.

Table 5: Sizes of Tests for 2-dimensional VAR(1) with r =0or 1 (¢ =1), 6 =0

Test Assumptions for P =1 1 =09 1 =0.8 P =0.7
Statistics || test statistics (r=0) (r=1) (r=1) (r=1)
Hy:rg=01| Hy:rq=1| Hyg:rg=1| Hy:1r9=1
6=0
LR* po arbitrary, 0.069 0.017 0.039 0.047
LR™® pi =0 0.060 0.023 0.042 0.049
LRST 0.104 0.075 0.096 0.096
SWY AR 0.039 0.191 0.207 0.203
LR* Lo, p1 arbitrary || 0.060 0.008 0.024 0.041
LRFC 0.060 0.011 0.024 0.038
LR 0.432 0.030 0.072 0.100
LRSS 0.052 0.018 0.047 0.047
LMEES 0.033 0.018 0.042 0.042
SWyAR 0.041 0.111 0.184 0.187
BI 0.040 0.009 0.016 0.029
6=08
LR* po arbitrary, 0.069 0.037 0.055 0.057
LR® pi =0 0.060 0.040 0.053 0.051
LRSE 0.104 0.078 0.074 0.079
SWYAR 0.039 0.150 0.252 0.238
LR* o, 1 arbitrary || 0.060 0.040 0.065 0.070
LRFC 0.060 0.033 0.056 0.062
LR 0.432 0.044 0.080 0.095
LRGES 0.052 0.017 0.031 0.032
LMEES 0.033 0.016 0.030 0.029
SWyAR 0.041 0.112 0.242 0.324
BI 0.040 0.022 0.036 0.051

Note: Sample size T' = 100, nominal significance level 0.05
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LR* and LR™ reveal reasonable size properties, but are rather conservative for v, close
to 1 and innovation correlation § = 0. LRSL exhibits a tendency to overreject (i.e., the
empirical size is outside the confidence interval of a 5% nominal significance level), but can
still be considered to have reasonable size properties as the empirical size is below 10 % in
most cases. SW,YAR displays more severe size distortions and is, therefore, not recommended
for applied work. For r = 0, the residual correlation represented by 6 has no effect on the
tests. On the other hand, for » = 1, in general larger residual correlation 6 leads to better
size properties. For example, LR* is quite conservative for § = 0 and ; close to unity,
but displays an empirical size inside the confidence interval for the rejection frequency of a
5% nominal significance level if § = 0.8. This outcome has been explained by Toda (1995).
He refers to Johansen (1991a) who shows that if the true cointegrating rank is » = 1, the
eigenvalues At > Ao and the null hypothesis Hy : r = 0 is tested, M converges to the true
value \;, while T converges to a random variable. Therefore, for Toda’s DGP,

1
T+ (1= + )/ - )

Hence, the closer || is to one, the larger is A\;. Thus, the null hypothesis of no cointegration

W

is rejected more easily for |f| close to one.

The second group of tests considered in this context are the tests that allow for arbitrary
mean and trend parameters. These tests are not needed if it were known that pu; = 0.
However, in applied research it may not always be clear whether a linear deterministic trend
is present in the data. LMgS[S has been chosen to represent the class of LM type tests.
A comparison of alternative tests within this class of tests can be found in Liitkepohl &
Saikkonen (1997b) and Saikkonen & Liitkepohl (1997) (see also Section 3). These studies
indicate that LMg(Lg performs overall best in the class of LM type tests.

The size of the LR tests (LR™ and LRFC) appears to be reasonable for r, = 0 (see Table
5), whereas it is somewhat conservative for o = 1 if the eigenvalue v, is close to unity and 6
is zero. The LR* test has distorted size properties for ry = 0, whereas for ry = 1 it appears

to have a reasonable size. In contrast, the SWYAR

w1t test shows a correct size for o = 0, but

a heavily distorted size for rp = 1. Bierens’ nonparametric test has correct size for ro = 0,
but the size is quite conservative for ryo = 1. If 1) is close to unity and @ is zero, then its size
performance is similar to the LR tests LRT and LRFC.

Overall, LRSS and LMg(LQ’f are most robust with respect to variations of the parameters
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11 and 0 as well as to the sample size, but tend to be somewhat conservative for ¢; near
unity. The results for 7" = 200 are not presented here to save space.
We have not included the Bewley-Yang tests in the table because appropriate critical

values are not available for all cases.

DGP with Linear Trend (6 # 0) To illustrate the size performance of the tests that
are constructed for a DGP without a linear trend in case of incorrect application, simulations
for 6 = 1.0 are presented in Table 6. LR* and LR display severe overrejection whereas
LR® and SWYAR are extremely conservative. Therefore, these tests should not be applied
if the possibility of a linear trend cannot be excluded. If it is not clear whether or not the
data analysed have a linear trend, tests from the second group in Table 5, that allow for
both deterministic components, have to be applied. Their size properties do not depend on

the value of 4.

Table 6: Sizes of Tests for 2-dimensional VAR(1) with r=0or 1 (¢po =1),0 =1

Test Assumptions for =1 1 = 0.9 i = 0.8 P = 0.7
Statistics || test statistics (r=0) (r=1) (r=1) (r=1)
Hy:rg=01| Hy:rq=1| Hyg:rg=1| Hy:19=1
=0
LR* po arbitrary, 1.000 0.395 0.881 0.998
LR™ =0 0.028 0.003 0.003 0.007
LRST 1.000 0.751 0.955 0.999
SWYVAR 0.031 0.000 0.000 0.000
6=038
LR* Lo arbitrary, 1.000 0.391 0.832 0.986
LR® p1 =0 0.028 0.009 0.007 0.006
LRSL 1.000 0.307 0.466 0.760
SWYAR 0.031 0.000 0.000 0.000

Note: Sample size T' = 100, nominal significance level 0.05
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5.2.3.2 Power

DGP without Linear Trend The power of the tests for data without linear trend
is depicted in Figure 3, Panels A to C. The graphs show that LRS! clearly outperforms
the other tests in terms of power. Although this might have been expected because its
size is comparatively large, it should be noted that the difference in power is substantial,
especially in case of a cointegration rank of » = 2 (Panel C). Saikkonen & Luukkonen
(1997) also find that LR5" performs better than other LR tests even if size-adjusted power
is considered. LR outperforms LR* in terms of power except in Panel B where both tests
perform equally well. The SWYAR displays very low power in case of # = 0.8 and ry = 0
(Panel B) in comparison with the other tests, whereas in case of r = 2 the SW test has very
large power (Panel C) due to its large size .

The power of the tests for arbitrary mean and trend term are depicted in Figure 3,
Panel D to F. The performance of the tests is rather similar except for the Bierens test,
which is outperformed by all other tests in terms of power.® If the null hypothesis ry = 0
is tested, LR and LRP° perform better than the other tests (Panels D and E), whereas
for ro =1, LRSS and LM(%LS have larger power (Panel F). However, the LR and LM type
tests perform generally rather similarly in terms of power.

A comparison of the best performing tests of both groups of tests considered above is
presented in Figure 4. LRS" clearly outperforms the other tests in terms of power. Therefore,
this test statistic should be chosen if it is known that there is no deterministic trend in the
data although the test has a tendency to overreject somewhat, a fact, that is useful to
remember in interpreting the test results. The comparison of the performance of LR® and
LRSE with the tests that allow for unrestricted mean and trend terms, LR and LRGLS
shows that in case of a DGP without a linear trend it is worth applying tests that incorporate

an additional restriction on the trend term since this leads to a gain in power of the test.

5.2.4 Three-dimensional VAR(1)

The three-dimensional DGP proposed by Toda (1995) (see Section 5.2.2) was used for further

simulations. In this section tests that may be applied in case of trending data are considered.

5The SWYAE test is not presented because of its severely distorted size.
ta
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Figure 3: Relative Rejection Frequencies for 2-dimensional VAR(1), Assumptions for Test

p1 = 0 (Panel A-C), pg, p1 arbitrary (Panel D-F)

Statistics: pg arbitrary,
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Figure 4: Relative Rejection Frequencies for 2-dimensional VAR(1), Comparison of Best

Performing Tests of the Respective Groups of Tests Displayed in Figure 3
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As has been discussed in Section 3.4, in case of tests constructed for an arbitrary mean and
restricted trend term in the DGP, the cointegrating rank of a system can only be r < n due
to the restriction 3'p; = 0, and, therefore, the rank tested under the null hypothesis should
be smaller than n — 1 (ry < n—1). Therefore, testing the null hypotheses ry = 0 and ry = 1
is considered for the three-dimensional DGP in the following. In addition to the tests that
impose a restriction on the trend term (ug arbitrary, u; # 0, #'u; = 0), tests that allow for a
trend in the cointegrating relation (ug, u; arbitrary) are also presented in order to compare
the size and power performance of both groups of tests.

The simulation results presented are those for sample size T=100. Further simulations
have been carried out for other sample sizes as well as different values of the innovation
correlation and values of 1,. These simulations are not presented in detail to save space,

but are commented on in the respective context.
5.2.4.1 Sizes of Tests

DGP with Linear Trend Term (6 = 1) The simulation results for the empirical
sizes of the tests are presented in Table 7. The first group of tests is correctly applied if
0 =1 in the DGP. The LR and LM type tests of this group show reasonable sizes, although
for 6, = 0.4 and 0y = 0.8 the tests have a tendency to overreject. Further simulations (not
presented here) have shown that this tendency is less pronounced if only one of the innovation
correlations, i.e. the innovation correlation between the two nonstationary components, 6y,
or between the stationary and the nonstationary component, 6, is high and the other one
is zero. If both correlations are large this leads to size distortions of the tests. In contrast,
BY" displays severe overrejection even if §; = f, = 0. The size distortions are clearly too
strong to recommend these tests for use in practice.

The results for the second group of tests that do not restrict the trend parameter of
the DGP confirm the tendency of the foregoing results. The results differ in that the tests
are more conservative for #; = 6 = 0. On the other hand, their tendency to overreject is
less pronounced than that of the first group of tests if #; = 0.4 and 6, = 0.8. The Stock
& Watson test (SWYAE) again shows unacceptable overrejection. The Bierens test (BI) is
very conservative in case of a sample size of 7' = 100. Even for T' = 400 the size of the BI

test turned out to be conservative for eigenvalues v; near unity (not presented here).
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In general, the dependence of the test performance on the innovation correlation is less
pronounced in large samples (7" = 400). In turn, this dependence is even stronger for samples
of size T' = 50, especially LR and LM type tests become very conservative for ¢; = 6, = 0

even for a value of ¥; = 0.7.

Table 7: Sizes of Tests for 3-dimensional VAR(1), r=0o0r 1 (¢ =93 =1),6 =1

Test Assumptions for =1 P = 0.9 i = 0.8 P = 0.7
Statistics || test statistics (r=0) (r=1) (r=1) (r=1)
Hy:ro=0 || Hy:ro=1 | Ho:r9o=1| Hy:19=1
01 =0,=0
LR to arbitrary, 0.062 0.011 0.029 0.046
LR}, u1 # 0, 0.056 0.029 0.049 0.054
LMtia(2) B'ur =0 0.037 0.036 0.045 0.043
BY! 0.047 0.030 0.152 0.354
LR* Mo, 1 0.065 0.009 0.018 0.034
LRF¢ arbitrary 0.054 0.010 0.019 0.033
LRGLS 0.058 0.007 0.017 0.035
LMtGa{“.z‘)q 0.028 0.005 0.010 0.022
SWYAR 0.023 0.072 0.172 0.210
BI 0.032 0.004 0.007 0.015

01 = 04, 02 =0.8

LR po arbitrary, 0.063 0.092 0.088 0.084
LR;, p1 # 0, 0.056 0.131 0.091 0.081
LMy || B =0 0.036 0.106 0.079 0.065
BY? 0.023 0.028 0.142 0.365
LR* o, B 0.065 0.075 0.080 0.074
LRFC arbitrary 0.054 0.064 0.074 0.063
LRGLS 0.058 0.031 0.037 0.048
LMGES 0.028 0.022 0.024 0.032
SWYAR 0.023 0.042 0.112 0.216
BI 0.037 0.009 0.011 0.020

Note: Sample size T' = 100, nominal significance level 0.05

DGP without Linear Trend Table 8 shows simulation results for 6 = 0. In this case,

substantial overrejections occur for LR and LR!,. Because their sizes are too large, it is not
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surprising that the power of both tests is higher than in the case of 6 = 1. Power results
are not presented for this case because of the size distortions of the tests. LRT and LRGLS
are shown for comparison purposes. They do not depend on the values of ug and p; and,
hence, have exactly the same size and power properties as for § = 1. These results lead to
the conclusion that tests based on the intercept version of the VAR or EC model should be

used with caution if the trending properties are not clear.

Table 8: Sizes of Tests for 3-dimensional VAR(1), r =0or 1 (¢ =1¢3=1),6 =0

Test Assumptions for P =1 Y1 =0.9 P =0.8 P = 0.7
Statistics || test statistics (r=0) (r=1) (r=1) (r=1)
Hy:rg=01| Hy:rq=1| Hyg:rg=1| Hy:1r9=1
01 =60,=0
LR 110 arbitrary, 0.120 0.044 0.080 0.107
LR, m #0, 0.096 0.173 0.399 0.655
Blpr =0
LR* Mo, p1 0.065 0.009 0.018 0.034
LRGLS arbitrary 0.058 0.007 0.017 0.035
01 =04, 6,=0.8
LR 110 arbitrary, 0.120 0.150 0.150 0.147
LRi, i #0, 0.096 0.776 0.963 0.981
Blur =0
LR* Moy p1 0.065 0.075 0.080 0.074
LRSLS || arbitrary 0.058 0.031 0.037 0.048

Note: Sample size T' = 100, nominal significance level 0.05

5.2.4.2 Power

DGP with Linear Trend Figure 5, Panels A and B, show the power of the first group
of tests for 7y = 0 if the true cointegrating rank is 7 = 1. The LR and LM type tests perform
rather similarly. However, LR’ and LR!, tend to outperform LM} . SWYAE is not presented
because of heavily distorted size. In the second group of tests (see Panels C and D), LR",
LRPC and LRSS perform best, but exhibit lower power than the tests with restriction on

the trend parameter for most values of ¥;. The SW}YAE tests appear to have lower power
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despite their large empirical sizes. The Bierens test is clearly outperformed by the LR and
LM type tests in terms of power. In fact, its performance is so poor that its use cannot be
recommended. LMg(Lg is outperformed in terms of power by the original LR tests and the
LR tests with prior trend adjustment. Although this result is not surprising given the lower
size of the test, it makes this test less useful in applied research. LRT and LRF¢ perform
rather similarly. Each of these tests outperforms the other one in some situations. Therefore,
only the original test suggested by Johansen (1994) is considered in the graphs.

Comparing all tests in Figure 5, it is seen that they display a similar reduction in power if
11 approaches unity. However, tests that are based on the restriction of the trend parameter,
B'p1 = 0 (Panels A and B), have in most cases substantially higher power. Looking at the
power curves in Figure 5 clearly reveals that they are steeper than those of the corresponding
tests which allow for a general linear trend. Note that both types of tests perform similarly
under the null hypothesis in the present case.

Further results of the relative power performance are presented in Figure 6. Here, the
power is shown for the case where the cointegrating rank of the DGP is r = 2 whereas ro = 0
(Figure 6, Panels A and B) and 7y = 1 (Figure 6, Panels C and D) are tested. In Figure
6, the results of the tests with major size distortions (BY?, SWYAR and SW}YAR) are not
presented. However, their power has similar characteristics as in the case r = 1 (Figure 5).

A similar picture as in Figure 5 emerges in Figure 6 for the DGP with higher cointegrating
rank. The power of the tests based on the restriction of the trend parameter (3'yu; = 0)
is higher than that of the tests that impose no restrictions on the deterministic terms. For
ro = 0, the power is larger for r = 2 than for » = 1, as expected. However, if ry = 1 is
tested, the tests have considerably lower power for all values of #; and #,. To generalize,
if r > 1, testing higher cointegrating ranks leads to a loss of power. LR’ is in most cases
outperformed by LR:, and LM*, whereas LR, performs generally better than LM®. Of the
second group of tests allowing for a trend, either LRSS or LR* perform better depending

on the respective situation.

5.2.5 Three-dimensional VAR(2)

Simulations for the three-dimensional VAR(2) proposed by Yap & Reinsel (1995) have also

been carried out to learn about the performance of the tests for a DGP with higher lag order.
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Figure 5: Relative Rejection Frequencies for 3-dimensional VAR(1), Assumptions for Test

Statistics: pg arbitrary, u; # 0, 8'u; = 0 (Panel A/B), pg, u1 arbitrary (Panel C/D)

68



Panel A: DGP with r=1 or r=2, %,=0.9, ¥5=1.0, ro=0,
T=100, 0;=0,=0, 6=1

Q

0.0

0.75 0.80 0.85 0.90 0.95 1.00

Panel B: DGP with r=1 or r=2, 4,=0.9, ¥3=1.0, rg=0,
T=100, 64=0.4, 0,=0.8, §=1

.0

Q
o
[te]
o
~
o
o
o
<
© 0.75 0.80 0.85 0.90 0.95 1.00
(2

Panel C: DGP with r=1 or r=2, 4,=0.9, ¥3=1.0, ro=1,
T=100, 04=0,=0, 6=1

.0

o — LR
o A LR‘,to
O LM

© % - LR
c - LRGLS
~
o
o %; = -

—T-==-== ;§\\\\\\@:;\\\»»»
ol o TmmmX=EcET==— - ==
© 0.75 0.80 0.85 0.90 0.95 1.00

(2

Panel D: DGP with r=1 or r=2, ¥,=0.9, ¥3=1.0, ro=1,
T=100, B1=0.4, 8,=0.8, d=1

.0

— LR
g A LR‘»{U
O LM
© % LR*
o - LRELS
~
) 8.
N%’:%”i’ — - \\\
3 <
k—-——-—-—--=- X - —— __ _ >
Fe—— -9 - ___-Z%=-=-_T ~
o v V-IS==-==
© 0.75 0.80 0.85 0.90 0.95 1.00
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This DGP has been modified by adding a linear trend in simulations for tests which require a
linear trend. The results are not presented in detail to save space. It is perhaps worth noting,
however, that the results mainly confirm the findings from the two- and three-dimensional
VAR(1) processes. Tests allowing for arbitrary po and p, (LR*, LRPC LMELS) have lower
power than the tests for p; = 0 in the DGP (LR®, LRS) or with py # 0, 8'u1 = 0 (LR,
LR},).

5.2.6 Conclusions from Simulations

5.2.6.1 Comparing Different Classes of Tests One central aim of this simulation
study has been to compare a wide range of tests on the basis of the same DGPs. From
the results it becomes clear that the tests suggested by Stock & Watson (1988) as well as
the canonical correlations tests proposed by Yang & Bewley (1996) have empirical sizes con-
siderably in excess of the nominal size in many cases. For the SW tests, this confirms findings
by other authors (e.g., Reimers (1992) and Yap & Reinsel (1995)). Therefore, these tests
cannot be recommended for applied research, especially as they are also outperformed by LR
and LM type tests in terms of power. The Bierens test has correct size or is conservative, but
it has very low power, even in quite large samples. Also, it becomes extremely conservative
in small samples (7" = 50 or 100). LR®Y has dramatic variation in size and sometimes
overrejects in an unacceptable way. These tests are therefore not recommended for applied
work. Comparing LR, LM and Wald type tests it has been found that Wald type tests are
inferior. Therefore, the relative performance of LR tests, trend adjusted LR tests and LM

type tests is of foremost interest and has been considered in some detail.

5.2.6.2 Deterministic Terms One main focus has been on the assumptions regarding
the deterministic terms underlying the different tests. As earlier studies have shown, it
is very important to specify the deterministic terms correctly (see, e.g., Toda (1995) and
Gonzalo & Lee (1998)). Systems cointegration tests can be classified with respect to the
deterministic terms assumed for the underlying DGP. One group of tests can be applied if
the data do not have a linear trend. Another group of tests is constructed for trending data.
Finally, a third group of tests can be applied in either situation and allows for a trend in the
cointegration relation.

According to the simulation results it is worth taking additional known restrictions on

70



deterministic terms into account. The tests that allow for arbitrary deterministic terms
have generally lower power than the tests that restrict p;. The loss in power can be quite
severe. However, if there is uncertainty with respect to the trending properties, tests without
restrictions on the deterministic terms have to be applied. In this group of tests, LR tests
(original and trend adjusted) outperform all the other tests considered, except that in some
situations near the null hypothesis the LM type tests and the trend adjusted LR tests
perform better than the original LR tests. Comparing LR™ and LRFY, both show superior
performance in some situations. Either of these tests may be applied. However, LR will
probably be applied in practice as it has been implemented in frequently used computer
packages such as PcGive 9.0 or Eviews.

If data with deterministic trend are analysed and no trend enters the cointegration re-
lations, the application of the LM type test LM} as well as the trend adjusted LR test
LR, proposed by Saikkonen & Liitkepohl (1998a) is recommended as it has higher power
in many situations. If it is known that the data do not have a linear trend, the LR test
suggested by Saikkonen & Luukkonen (1997) is the obvious choice because it outperforms
all other tests constructed for such data in terms of power although it has a slight tendency
to reject too often under the null hypothesis. Some further topics have been analysed in the

simulation study and the results are summarized in the following.

5.2.6.3 Eigenvalues Close to Unity If the DGP has near integrated components, the
sizes of all tests become generally more conservative, which leads to lower power of the tests.
Exceptions are the LRSL, LR! | LM® and the LRGES tests, which even perform quite well if
an eigenvalue is near unity. In this respect, the original LR tests are outperformed by these

recently suggested tests.

5.2.6.4 Testing Different Cointegrating Ranks In testing higher cointegrating
ranks, LR;7" and LM have a power advantage over LR*, whereas LR}, and LM’
display higher power than LR, and the power advantage of LR°" over LR® becomes even
more pronounced. According to simulation studies based on sequential testing procedures it
is difficult for standard LR tests to find the correct rank if the cointegrating rank is greater
than one (see Toda (1994, 1995), Liitkepohl & Saikkonen (1997a)). Therefore, it may be

worth applying one of the aforementioned tests for testing large cointegrating ranks as alter-
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natives to carrying out standard LR tests. However, in a sequential testing procedure, LM
type tests or LR tests with prior trend adjustment may be inferior to the LR tests if the

true cointegrating rank is large, as they have lower power if ry = 0 is tested.

5.2.6.5 Dimensionality and Sample Size A higher dimension of a system leads to a
more conservative size of the cointegrating rank tests. Therefore, there is also a tendency to
lower power. Simulations for different sample sizes have shown that increasing the sample
size from 7" = 50 to 1" = 100 in non-sequential tests does not improve the test performance
markedly, whereas most tests (except the BI test) are more reliable for 77 = 200. A direct
comparison of the power of, for example, the LR* test for the two- and for the three-
dimensional Toda-DGPs in Figure 4, Panel A, and Figure 5, Panel C, shows a power of 0.6
in case of the two-dimensional DGP and of about 0.4 in case of the three-dimensional DGP
for an eigenvalue of ¥;=0.7 if ry = 0 is tested. However, other studies have found that in
sequential testing procedures it is still difficult, even for LR tests, to find a cointegration
rank greater than 1 using samples of size T' = 200. For the Bierens test, even a sample size

of T'= 400 is not large enough to get a reasonable power performance.

5.2.6.6 Recommendations for Applied Research The findings of this simulation
study show that the application of LRSY, LR, LR™, LRF® and LRSS in the respective
situation can be recommended, as these tests have some strengths in certain situations.
Regarding the deterministic terms, the conclusion is that it is important to specify these

terms correctly as the tests may reject far too often or have substantially reduced power in

case of misspecification.
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6 Conclusions

The present study compares a wide range of systems cointegration tests with respect to
their asymptotic properties as well as their small sample performance. One objective has
been to present the tests in a general unifying framework in order to compare the underly-
ing assumptions of the different test procedures. In applied work, it is very important to
know the assumptions under which a test procedure is supposed to work in order to choose
the appropriate test. An important aspect in this context is the assumption about the
trend parameters of the process and whether the test statistics depend on these parameters.
Therefore, one focus of this study is to analyse the sensitivity of the test performance to the
trending properties of the data generating process.

This review comprises the discussion of asymptotic power results of the tests considered
as well as the analysis of size and power in small samples. The discussion of the asymptotic
power results shows that all tests considered in this paper are consistent against fixed alter-
natives. Different studies on the asymptotic properties of a number of tests are reviewed,
including studies which consider a data generating process where a linear trend is present.
The results indicate a trade-off between the generality of the assumptions for the validity
of a test on the one hand and its local power on the other hand. Previous simulation stu-
dies suggest that in small samples some multivariate tests for the cointegrating rank often
show size distortions and/or poor power in certain situations. These results are investigated
further in new simulations.

In contrast to most previous studies, the scope of this review is very broad as it comprises,
besides some well-known test procedures, a number of systems tests for cointegration for
which limited knowledge about their properties has been available so far. Modifications of
existing tests allowing, for example, for outliers or nonnormal errors are also discussed in
this study.

The aim of the simulation study is to explore the strengths and weaknesses of the different
systems cointegration tests by carrying out a comparison on the basis of some simple DGPs.
The idea is that tests which don’t work well for a simple DGP cannot be trusted in more
complicated situations in general even if they have been shown to perform well in specific
complicated situations. Using this criterion, it is found that the lag augmentation tests, the

canonical correlation tests, the Stock & Watson tests as well as the Bierens tests perform
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very poorly even under ideal conditions. Therefore their use cannot be recommended for
applied work. Generally likelihood based methods are found to perform better but also have

deficiencies in some situations.

74



References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in
B. Petrov & F. Cséki (eds), 2nd International Symposium on Information Theory, Académiai
Kiadé, Budapest, pp. 267-281.

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Auto-
matic Control, Vol. AC-19, pp. 716-723.

Andrews, D. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estima-
tion, Econometrica 59: 817-858.

Andrews, D. & Monahan, J. (1992). An improved heteroskedasticity and autocorrelation consistent
covariance matrix estimator, Econometrica 60: 953-966.

Aznar, A. & Salvador, M. (1997). Testing for the rank of the co-integration space and the form of
the intercept using the BIC criterion, Paper presented at the ESEM 97 in Toulouse.

Banerjee, A., Dolado, J., Galbraith, J. & Hendry, D. (1993). Co-integration, Error-Correction, and
the Econometric Analysis of Non-stationary Data, Oxford University Press, Oxford.

Bewley, R. & Yang, M. (1995). Tests for cointegration based on canonical correlation analysis,
Journal of the American Statistical Association 90: 990-996.

Bierens, H. (1997a). Cointegration analysis, in C. Heij, H. Schumacher, B. Hanzon & C. Praagman
(eds), System Dynamics in Economic and Financial Models, John Wiley, New Yorck.

Bierens, H. (1997b). Nonparametric cointegration analysis, Journal of Econometrics T7: 379-404.

Boswijk, P. & Franses, P. (1992). Dynamic specification and cointegration, Ozford Bulletin of
Economics and Statistics 54(3): 369-381.

Boswijk, P. & Lucas, A. (1997). Semi-nonparametric cointegration testing, Research Memorandum
1997-41, Vrije Universiteit Amsterdam.

Caner, M. (1998). Tests for cointegration with infinite variance errors, Journal of Econometrics
86: 155-175.

Cheung, Y.-W. & Lai, K. (1993). Finite-sample sizes of Johansen’s likelihood ratio tests for coin-
tegration, Ozford Bulletin of Economics and Statistics 55: 313-328.

Choi, I. (1993). Asymptotic normality of the least-squares estimates for higher order autoregressive
integrated processes with some applications, Econometric Theory 9: 263-282.

Choi, I. (1994). Residual-based tests for the null of stationarity with applications to U.S. macro-
economic time series, Econometric Theory 10: 720-749.

Choi, I. & Ahn, B. (1995). Testing for cointegration in a system of equations, Econometric Theory
11: 952-983.

Choi, I. & Ahn, B. (1999). Testing the null of stationarity for multiple time series, Journal of
Econometrics 88: 41-77.

Elliott, G., Rothenberg, T. & Stock, J. (1996). Efficient tests for an autoregressive unit root,
Econometrica 64(4): 813-836.

75



Engle, R. & Granger, C. (1987). Cointegration and error correction: Representation, estimation
and testing, Fconometrica 55: 251-276.

Engle, R. & Yoo, B. (1987). Forecasting and testing in cointegrated systems, Journal of Econo-
metrics 35: 143-159.

Gonzalo, J. (1994). Five alternative methods of estimating long-run equilibrium relationships,
Journal of Econometrics 60: 203-233.

Gonzalo, J. & Lee, T.-H. (1998). Pitfalls in testing for long run relationships, Journal of Econo-
metrics 86: 129-154.

Gonzalo, J. & Pitarakis, J.-Y. (1997a). Dimensionality effect in cointegration analysis, mimeo,
Universidad Carlos III de Madrid.

Gonzalo, J. & Pitarakis, J.-Y. (1997b). Specification via model selection in vector error correction
models, mimeo, Universidad Carlos III de Madrid.

Granger, C. (1981). Some properties of time series data and their use in econometric model
specification, Journal of Econometrics 16: 121-130.

Harbo, I., Johansen, S., Nielsen, B. & Rahbek, A. (1998). Test for cointegration rank in partial
systems, Journal of Business & FEconomic Statistics, forthcoming.

Harris, D. (1997). Principal components analysis of cointegrated time series, Econometric Theory
13: 529-557.

Harris, R. & Judge, G. (1998). Small sample testing for cointegration using the bootstrap approach,
Economics Letters 58: 31-37.

Haug, A. (1996). Tests for cointegration: A Monte Carlo comparison, Journal of Econometrics
71: 89-115.

Ho, M. & Sgrensen, B. (1996). Finding cointegration rank in high dimensional systems using the
Johansen test: An illustration using data based Monte Carlo simulations, Review of Economics
and Statistics T8(4): 726-732.

Horvath, M. & Watson, M. (1995). Testing for cointegration when some of the cointegrating vectors
are prespecified, Fconometric Theory 11: 984-1014.

Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics
and Control 12: 231-54.

Johansen, S. (1991a). Estimation and hypothesis testing of cointegration vectors in Gaussian vector
autoregressive models, Econometrica 59(6): 1551-81.

Johansen, S. (1991b). The power function of the likelihood ratio test for cointegration, in J. Gruber
(ed.), Econometric Decision Models: New Methods of Modelling and Applications, Springer-
Verlag, pp- 323-335.

Johansen, S. (1992). Determination of cointegration rank in the presence of a linear trend, Ozford
Bulletin of Economics and Statistics 54: 383-397.

Johansen, S. (1994). The role of the constant and linear terms in cointegration analysis of nonsta-
tionary time series, Fconometric Reviews 13: 205-231.

76



Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models, Oxford
University Press, Oxford.

Johansen, S. & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration
— with applications to the demand for money, Ozford Bulletin of Fconomics and Statistics
52: 169-210.

Johansen, S. & Nielsen, B. (1993). Manual for the simulation program DisCo. Institute of Mathe-
matical Statistics, University of Copenhagen.

Johansen, S. & Schaumburg, E. (1997). Likelihood analysis of seasonal cointegration, EUI Working
Papers 97/16, European University Institute.

Kauppi, H. (1997). Testing for cointegration in conditional vector autoregressive models, mimeo,
University of Helsinki.

Kleibergen, F. & Paap, R. (1997). Priors, posterior odds and Lagrange multiplier statistics in
Bayesian analyses of cointegration, mimeo, Erasmus University Rotterdam.

Kleibergen, F. & van Dijk, H. (1994). Direct cointegration testing in error correction models,
Journal of Econometrics 63: 61-103.

Kwiatkowski, D., Phillips, P., Schmidt, P. & Shin, Y. (1992). Testing the null of stationarity against
the alternative of a unit root: How sure are we that the economic time series have a unit root?,
Journal of Econometrics 54: 159-178.

Lucas, A. (1997). Cointegration testing using pseudo likelihood ratio tests, Econometric Theory
13: 149-169.

Lucas, A. (1998). Inference on cointegrating ranks using LR and LM tests based on pseudo-
likelihoods, Econometric Reviews 17(2): 185-214.

Liitkepohl, H. (1991). Introduction to Multiple Time Series Analysis, Springer Verlag, Berlin.

Liitkepohl, H. & Poskitt, D. (1998). Consistent estimation of the number of cointegration relations
in a vector autoregressive model, in R. Galata & H. Kiichenhoff (eds), Econometrics in Theory
and Practice. Festschrift for Hans Schneeweifl, Physica-Verlag, Heidelberg, pp. 87-100.

Liitkepohl, H. & Saikkonen, P. (1997a). Order selection in testing for the cointegrating rank of a
VAR process, Discussion Paper 93, SFB 373, Humboldt-Universitit zu Berlin.

Liitkepohl, H. & Saikkonen, P. (1997b). Testing for the cointegrating rank of a VAR process with
a time trend, Discussion Paper 79, SFB 373, Humboldt-Universitat zu Berlin.

Lyhagen, J. (1998). Maximum likelihood estimation of the multivariate fractional cointegrating
model, Working Paper in Economics and Finance 233, Stockholm School of Economics.

Ng, S. & Perron, P. (1995). Unit root tests in ARMA models with data-dependent methods for the
selection of the truncation lag, Journal of the American Statistical Association 90: 268—281.

Osterwald-Lenum, M. (1992). A note with fractiles of the asymptotic distribution of the maximum
likelihood cointegration rank test statistics: Four cases, Ozxford Bulletin of Economics and
Statistics 54: 461-72.

Perron, P. & Campbell, J. (1993). A note on Johansen’s cointegration procedure when trends are
present, Empirical Economics 18: T77-789.

7



Phillips, P. (1995). Fully modified least squares and vector autoregression, Econometrica 63: 1023
1078.

Phillips, P. (1996). Econometric model determination, Econometrica 64: 763-812.

Phillips, P. & Ouliaris, S. (1990). Asymptotic properties of residual-based tests for cointegration,
Econometrica 58: 165-193.

Poskitt, D. (1996). On the determination of cointegrating structure via canonical correlations,
mimeo, Australian National University.

Quintos, C. (1998a). Analysis of cointegration vectors using the GMM approach, Journal of Econo-
metrics 85: 155—-188.

Quintos, C. (1998b). Fully modified vector autoregressive inference in partially nonstationary
models, Journal of the American Statistical Association 93(442): 783-795.

Rahbek, A. (1994). The power of some multivariate cointegration tests, Preprint 6, Department of
Theoretical Statistics, University of Copenhagen.

Rahbek, A. & Mosconi, R. (1998). The role of stationary regressors in the cointegration test,
Preprint 1, Department of Theoretical Statistics, University of Copenhagen.

Reimers, H. (1991). Analyse kointegrierter Variablen mittels vektorautoregressiver Modelle, Physica-
Verlag, Heidelberg.

Reimers, H. (1992). Comparisons of tests for multivariate cointegration, Statistical Papers 33: 335~
359.

Reinsel, G. & Ahn, S. (1992). Vector AR models with unit roots and reduced rank structure:
Estimation, likelihood ratio test, and forecasting, Journal of Time Series Analysis 13: 353—
375.

Saikkonen, P. (1992). Estimation and testing of cointegrated systems by an autoregressive approx-
imation, Econometric Theory 8: 1-27.

Saikkonen, P. & Liitkepohl, H. (1997). Trend adjustment prior to testing for the cointegrating rank
of a VAR process, Discussion Paper 84, SFB 373, Humboldt-Universitat zu Berlin.

Saikkonen, P. & Liitkepohl, H. (1998a). Testing for the cointegrating rank of a VAR process with
an intercept, Discussion Paper 51, SFB 373, Humboldt-Universitiat zu Berlin.

Saikkonen, P. & Liitkepohl, H. (1998b). Testing for the cointegrating rank of a VAR process with
structural shifts, Discussion Paper 82, SFB 373, Humboldt-Universitat zu Berlin.

Saikkonen, P. & Liitkepohl, H. (1999). Local power of likelihood ratio tests for the cointegrating
rank of a VAR process, Econometric Theory, forthcoming.

Saikkonen, P. & Luukkonen, R. (1993). Testing for a moving average unit root in autoregressive
integrated moving average models, Journal of the American Statistical Association 88: 596—
601.

Saikkonen, P. & Luukkonen, R. (1997). Testing cointegration in infinite order vector autoregressive
processes, Journal of Econometrics 81: 93-129.

Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics 6: 461-464.

78



Seo, B. (1998). Statistical inference on cointegration rank in error correction models with stationary
covariates, Journal of Econometrics 85: 339-385.

Shin, Y. (1994). A residual-based test of the null of cointegration against the alternative of no
cointegration, Econometric Theory 10: 91-115.

Snell, A. (1999). Testing for r versus r — 1 cointegrating vectors, Journal of Econometrics 88: 151—
191.

Stock, J. & Watson, M. (1988). Testing for common trends, Journal of the American Statistical
Association 83: 1097-1107.

Toda, H. (1994). Finite sample properties of likelihood ratio tests for cointegrating ranks when
linear trends are present, Review of Economics and Statistics 76: 66-79.

Toda, H. (1995). Finite sample performance of likelihood ratio tests for cointegrating ranks in
vector autoregressions, Econometric Theory 11: 1015-1032.

Van Giersbergen, N. (1996). Bootstrapping the trace statistic in VAR models: Monte Carlo results
and applications, Ozford Bulletin of Economics and Statistics 58(2): 391-408.

Yang, M. & Bewley, R. (1996). On cointegration tests for VAR models with drift, Economics
Letters 51: 45-50.

Yap, S. & Reinsel, G. (1995). Estimation and testing for unit roots in a partially nonstationary
vector autoregressive moving average model, Journal of the American Statistical Association
90: 253-267.

79



