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NONPARAMETRIC ESTIMATION IN NULL RECURRENT

TIME SERIES
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Department of Mathematics, Johannes Bruns gt.12, 5007 Bergen, Norway

17th May 1998

Abstract

We develop a nonparametric estimation theory in a non-
stationary environment, more precisely in the framework of
null recurrent Markov chains. An essential tool is the split
chain, which makes it possible to decompose the times series
under consideration in independent and identical parts. A
tail condition on the distribution of the recurrence time is
introduced. This condition makes it possible to prove weak
convergence results for series of functions of the process de-
pending on a smoothing parameter. These limit results are
subsequently used to obtain consistency and asymptotic nor-
mality for local density estimators and for estimators of the
conditional mean and the conditional variance. In contra-
distinction to the parametric case, the convergence rate is
slower than in the stationary case, and it is directly linked
to the tail behaviour of the recurrence time.

Key words and phrases. Nonstationary time series mod-
els, null recurrent Markov chain, nonparametric kernel es-
timators, split chain.
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1 Introduction

Work on nonparametric estimation has so far with very few exceptions been carried
out in a stationary strongly mixing framework (see e.g. Robinson, 1983, Masry and
Tjostheim, 1995, and references therein). Recently asymptotics for processes with long
range dependence have been covered (Robinson, 1997), but still no systematic theory
exists for a nonstationary situation.

The main purpose of this paper is to try to fill this gap by establishing a nonpara-
metric estimation theory that can be used in a nonstationary environment. Clearly the
collection of all nonstationary processes is much too wide, but in our opinion an appro-
priate framework for working with such problems is the class of null recurrent Markov
chains, or possibly regime models including null recurrent states. It is true that this
requires the model to be stated as a Markov chain, but this is a mild restriction. The
random walk model and many of the related unit-root processes belong to this class
(Myklebust et al, 1998a), and, more importantly, nonlinear processes are not excluded.

With the single exception of the work by Yakowitz (1993) on consistency of nearest
neighbour estimates, as far as we know, the estimation theory of null recurrent pro-
cesses has been confined to the parametric case. Asymptotics of parametric (usually
non-time series) models have been treated by Hoépfner (1990, 1994), Hopfner et al
(1990), Kasahara (1982, 1984, 1985), Touati (1990), and we will exploit some of their
techniques. For two early contributions in this field we refer to Darling & Kac (1957)
and Kallianpur & Robbins (1954). However, there are important differences between
the parametric and nonparametric situations. A parametric estimate is strongly influ-
enced by the large values of the process, and for unit-root processes super-efficiency is
obtained with a faster rate of convergence than in the stationary case. In contradistinc-
tion, a nonparametric estimator depends heavily on observations which are confined to
a neighbourhood of a given point, and the rate of convergence turns out, not unexpec-
tedly, to be slower than in the stationary case. This means that series with large or
very large sample sizes are required.

Long series are becoming increasingly available, e.g. in finance and econometrics.
There is therefore also a practical motivation behind our work. The particulars of
this motivation are much the same as for the stationary case: it is desirable to have
greater flexibility in the initial stage of modelling than that offered by a fixed parametric
or semiparametric model, for example using nonparametric estimates as a guide in
choosing a parametric (linear or nonlinear) model. Since the present paper is directed
towards establishing a theory, specific practical aspects are not discussed, and we refer
to Myklebust et al (1998a) for some examples and details on practical implementations.
We would like to mention very briefly potential implications for econometric time series
modelling, though, since such series are often thought to be nonstationary. The kind
of nonstationarity that has been built into the parametric econometric modelling has
overwhelming been of linear unit-root type leading to ARIMA models and, in the
multivariate case, to linear cointegration models. For such models a very considerable
body of literature exists (cf. the review papers by Stock, 1994, Watson, 1994 and
the book by Johansen, 1995). Asymptotic distributions are typically non-normal and
the parameter estimates are super-efficient (Dickey & Fuller, 1979, Johansen, 1995).



4 1 INTRODUCTION

The need for models combining features of nonlinearity and nonstationarity has been
emphasized (see e.g. Granger and Hallman, 1991, Granger, 1995, Aparicio & Escribano,
1997), but once more no systematic estimation theory exists. Again, we believe that
the class of null recurrent processes constitutes an adequate framework for posing such
problems. The technique used in this paper is general, and although we focus on
nonparametric estimation, it is in principle possible to develop an analogous theory
covering nonlinear and nonstationary parametric time series models. Finally, it should
be mentioned that there are challenging and interesting connections to attempts having
been made to construct a nonlinear cointegration theory. We look at some of these in
Myklebust et al (1998a).

There are a number of open problems and possibilities for further research. These
are related to exploratory problems such as those examined by Tjgstheim and Auestad
(1994), Masry and Tjgstheim (1997) and Hjellvik et al (1998), but there are also many
hard problems connected with the basic estimation theory itself. A few of the latter
ones are looked at in Myklebust et al (1998b).

Since our paper draws quite heavily on Markov theory for recurrent chains, we start
in Section 2 by stating some main facts stemming from that theory. Much of the
material is based on the book by Nummelin (1984), but since, to our knowledge, it has
not been utilized before in the context of nonparametric estimation, it has been included
to make the paper more self-contained. In fact, we consider the merger of the recurrence
theory of Markov chains — in particular use of the split chain — and the asymptotic theory
of sums depending on a smoothing parameter to be a main contribution of the paper.
This synthesis is achieved in Section 3. Applications to nonparametric estimation of an
invariant density and conditional mean/variance functions are given in Section 4, where
we derive consistency and asymptotic normality of these estimates in a null recurrent
situation. Some details of the technical derivations are relegated to two appendices.



2 Markov theory

2.1 Notation

We adopt the notation used by Nummelin (1984). We denote by {X;, t > 0} a ¢-
irreducible Markov chain on a general state space (F,E) with transition probability P.
The sigma algebra of measurable sets, £, is countably generated and we assume that ¢
is maximal in the sense that if ¢’ is another irreducible measure then ¢’ is absolutely
continuous with respect to . We denote the class of non-negative measurable functions
with ¢-positive support by ET. For a set A € £ we write A € £ if the indicator function
14 € ET. The chain is Harris recurrent if for all A € €T

P(Sa<oo| Xo=2)=1 where, Sy=min{n>1:X, € A}. (2.1)

In the following { X;, ¢t > 0} will always be assumed to be ¢-irreducible Harris recurrent.
The chain is positive recurrent if there exists an initial probability measure such that
{X;, t > 0} is strictly stationary, and the process is null recurrent otherwise.

If n is a non-negative measurable function and X is a measure, then the kernel @ A
is defined by
n@ Az, A) =n(x)A(A), (x,A)€(EE).

If K is a general kernel, the function K7, the measure AK and the number Ap are

defined by

Kn(:z;):/[((x,dy)n(y), MK (A) :/)\(d:z;)[((x,A), )\n:/)\(d:p)n(:p).

Sometimes we write A(7n) instead of An. The convolution of two kernels K7 and K gives
another kernel defined by

K Ky(x, A) = /Kl(:rf,dy)Kz(y,A) :

Due to associative laws the number AK; Ky is uniquely defined. If A € £ and 14
is the corresponding indicator variable, then K14(x) = K(x,A). The kernel I, is
defined by I,(x,A) = n(z)la(x) (and [,(x,dy) = n(x)é.(dy) where 6, is the Dirac
Delta measure at the point ). We abbreviate the identity function 1z by 1. We let
Gl ={f: (E". &) (RYB(RY)} where B(R?) is the class of Borel sets on R?. If
r=1or d=1, we drop the subscript or superscript.

We define a € €T to be small if there exists a measure A, a positive constant b
and an integer m > 1 so that

P >bne ). (2.2)

If X satisfies (2.2) for some 7, b and m, then X is a small measure.
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2.2 Basic conditions and the split chain

A fundamental fact for ¢-irreducible Markov chains is the existence of a minorization
inequality (Nummelin 1984, Th. 2.1 and Prp. 2.6, pp. 16-19): there exists a small
function s, a probability measure v and an integer mg > 1 so that

P™>s5@uv. (2.3)

It creates some technical difficulties to have my > 1, and it is not a severe restriction
to assume mgo = 1. Therefore, unless otherwise is stated, in the sequel we assume that
the minorization inequality

P>s@uv (2.4)

holds, where s and v are small and v(F) = 1. In particular, this implies that 0 <
s(x) <1, x € E. If (2.4) holds, then the pair (s,r) is called an atom (for P).

We illustrate what the minorization inequality means in the case of a nonlinear
autoregressive process:

Example 2.1 Assume that

X, — {Xm when t = 0;
" f(Xec1)+ 2y, whent >1

where {Z;, t > 0} are iid random variables with zero mean and with density ( with
respect to the Lebesque measure on £ = R. Assume that the function [ is bounded on
compact sets and infoec ((x) is strictly positive for all compact sets C'. The transition
probability is given by

Pz, dy) = pD(y | 2)dy < ((y — f(x))dy

and the n step transition function is P™(x,dy) = p™(y | )dy where

Py L) = [Py (= f@)du, 02 (2.5)

Let C be a compact set with positive Lebesque measure. Define po(y) = infec ((y —
f(@), a= [poly)dy, p=a"'po, s =alc. Then

P(x,dy) = 1c(x)po(y)dy
= s(z)r(dy)

where v(dy) = p(y)dy and v(FE) = 1. Thus (2.4) is satisfied .

In the nonparametric estimation theory an important role will be played by the split
chain, which can be constructed once the minorization condition is fulfilled. It permits
splitting the chain into separate and identical parts which are building blocks in the
subsequent analysis.

We introduce an auxiliary chain {Y;}, where Y; can only take the values 0 and 1.
The split chain, {X;, Y;,t > 0} is defined on an extension of the basic probability space



2.2 Basic conditions and the split chain 7

so that o = I/ x {1} is a proper atom. The simplest description of this construction
is given by an algorithm. Let £ = F x {0,1} and &£ the corresponding extension of £.
Define

wla) = sty + (1= stap(t -y = {7 V2 (26)

with s as in (2.4). For each fixed y € {0,1}, n, is a function defined on E. For an

arbitrary measure A and an arbitrary function f, defined on (£, &) let X and f denote
the extension to (K, £) given by

 Jlay) = @),
X(de. {y}) = Ad)n, ().

Oy, A) = v(A)y + Qz, A)(1 —y) = { Zféfg), z _ (1)

By (2.4) the kernel ©, is a probability kernel on (F, &) for each fixed y.

Let A\ denote an arbitrary initial distribution on F , let FY, be the trivial sigma
algebra and define {( Xy, Y;),t > 0} by

P(Xo € A) = AA),
P(Y, =y | FEVF) = n(Xe), t=0;
P(Xt € A | Ft)il N Fz?il) = ®Yt—1(Xt—17A)7 t Z 17 (28)

where F7 and F} are the o-algebras generated by {X;, j < ¢} and {Y;, j < t}.
We observe that the distribution of {(X,,Y,), n > 0} is determined by A, P and
(s,v) . We use P, as generic symbol for the distribution of the Markov chain with
initial distribution A, and the corresponding expectation is denoted by E,. If the actual
expressions involved are independent of A, then we may drop the subscript.

Lemma 2.1 The split chain defined by (2.8) is a Markov chain with state space E,
initial distribution A and transition probability function P given by

P((0,0) (d, {y})) = Oy (0. der )y () (2.9)

The set « = E x {1} is a proper atom for this chain; i.e., P((x,y),-) is independent of
(x,y) when (x,y) € a. The X- marginal process of the compound chain has the same
properties as the original chain, moreover

P(X, € A|FX v F ) =P(Xi, A). (2.10)

Proof: See Nummelin (1984, p. 61 and Th.4.2, p. 62).
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The compound chain is %—irreducible, aperiodic and Harris recurrent (cf. Nummelin,

1984, Ch. 4.4).

The distribution of {(X¢,Y:), t > 0} given by (2.8) can be written

PX(XO € dro, Yo =90, Xy €da,Yr = y1,.. ., Xi € dap, Yy = yp, .. )
= )\(dl‘o, {yO})G)yo (l’o, dl’l)nyl (1’1) o ®yk—1 (xk—h dl'k)nyk (xk) e (211)

We simplify the notation and write Py to denote this distribution. If A = é, we write
P, which is the conditional distribution of (Y, {( X3, Y2),t > 1}) given that Xy = «.
If the initial distribution is equal to é6,(x,y), i.e. Yo =1, Xo = @ arbitrary, then

Po(Xy € day,Yr =y1,..., Xy €dag, Y = yi, .. .)
= V(dxl)nlﬂ(xl) ®y1($1,dl‘2)ny2($2) ®yk_1($k—1ad$k)77yk($k)
= PU(XO € dl’l,% = yl,Xl € dl’z,}/l = Y25... ,Xk € dl’]ﬂ_l,ifk = Yk4+1y- - )(212)

Let ( be a non-negative measurable function defined on (£ x {0,1})*. Then by (2.12)

o [C(X1,Ya, )] = B [C(X0, Yo, . 0)] = Bu(C) . (2.13)

2.3 The invariant measure

In a general null recurrent chain {X;} no marginal distribution function exists that can
be estimated nonparametrically. There is a generalization of the distribution function
in the invariant measure, however.

Let 7 = 7, = min{n > 0: Y, = 1} and S, = min{n > 1: Y, = 1}. Since
{So =n} ={NZ}(Y; =0), Y, = 1} and {r = n} = {S, = n} N {Ys = 0}, it follows
from (2.11) (cf. Nummelin 1984, p. 63) that

P.(r=n)= (P—s®@v)"s(x), n>0,

P,(So=n)= v(P-—s@v)"'s, n>1 . (2.14)
Define 7, by
Sa
mo(A) = mla = Eo Y 1a(X,)], A€€. (2.15)
n=1

Then by (2.14), (2.8) and (2.11)

mo(A) = i_ojl B [1a(X)1(S0 > n)]

= Z v(P—s® V)”_llA
n=1

= v, 14 (2.16)

where
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Gow TS (P —sv)". (2.17)

n=0

This means that 73 = v(, and by (2.14) 74(s) = P,(S, < 00). Since the split chain
i1s Harris recurrent,

Gsps(x) =Pyt <o0)=1. (2.18)
Thus 74(s) = 1. From (2.17) we get

Gsp=14+G,P—Gs 500 (2.19)

which implies that 7, = 7, . Thus 7, is an invariant measure. The results stated below
can be found in Nummelin (1984).

Remark 2.1 [f 7 is another invariant measure then 7 = w(s)ws (p. 73). The invariant
measure w5 is equivalent to ¢, m(C) < oo for all small sets C' and it is o-finite (Prp.
5.6., p. 72).

The chain is positive recurrent if and only if 7,1y < oo (p. 68). In the positive

recurrent case © = 75/ 75l is the unique stationary probability measure for {X;}. In
the latter situation, when the initial distribution of Xo is given by =, {X;} will evolve
as a strictly stationary process having © as its marginal distribution.

Remark 2.2 [t is seen from (2.15) that { X} is positive recurrent if and only if E, S, <
00.

It is seen from Remark 2.1 that although the representation of 7, given by (2.16)
does depend of the atom (s,v), the measure x; itself is independent of v and only
depends on s through a constant.

def

We may extend 7 to the compound chain by 7,(dz,{y}) 7s(dx)n,(x), and we

have # = 7 P.

Suppose that the original chain has a proper atom a. Let s =1, and v = P, =
P(a,-). Then P(x,dy) > 1,(x)P(x,dy) = s(a)v(dy). Hence (2.4) is satisfied and all
the formulae in this sub-section are still true if we define the auxiliary process {Y;} by
Y: = 1,(X}). It is common to denote (75, by G in this case.

2.3.1 A more general split chain

If mg > 1 in (2.3), then the mg-step chain { Xy, } satisfies (2.4) with transition prob-
ability P and (s,v) is an atom for this chain. The corresponding definitions of G,
and 7, are given by

Gmo,s,y = Z(Pmo —s5® y)t7 s = meO’S’U . (2‘20)

t=0
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But ; is still the unique invariant measure for the original chain which satisfies 74(s) =

1.

2.4 Notation for functions in several variables

It is necessary to extend the notation of the preceding sub-sections to functions of
several variables. All integrals involved will be assumed to be well-defined.

Recall that for g € Gi, 75(g) = [ 7s(dx)g(x) and (cf. (2.15) and (2.17))

Cangle) = [ Guule,dy)gly [Zg )

We introduce a useful transformation from G, to G;.

Definition 2.1 Letr > 1, and let g € G,. Forr =1 and r = 2 we define jg(x,dy)(l) =
P, dy)g(x ) and I,(x, dy)( )= P(x,dy)g(xz,y), respectively. For r > 2 let

(x,dy)(r /P x,dxy) - Ple,_1,dy)g(a, 22, . . 201, y) (2.21)

where the integration is with respect to x4, ..., x._1 and whenever the right hand side is
well-defined. Furthermore, define
g=1,1. (2.22)

Since G,y C G, for g € G,_y, when r > 2 we can write I,(z,dy)(r) = I,(z,dy)(r —
1)P. An interpretation of g is given by

By [9(Xo, X1, Xo2)| = L1 (2) = g(x) (2.23)
and
I, [Z_: 9(X; Xjpr, - Xjpe)| = Gaud(e) (2.24)

which is easily verified (cf. (2.15) and (2.17)). The right hand sides of (2.23) and (2.24)
can be seen as convenient and compact ways of writing the conditional expectations on
the left hand side. In the following we omit r in [,(x, dy)(r).

If g € G =G then ]~g = I,P and g = [,P1 = ¢. In order to reduce the notation
further we extend 7, to U2,G, by

7o g = /Ws(dxl)P(l'l, deg) -+ Ple,_q,da,)g(xq,...,2,), g€G. . (2.25)

We also extend the LP spaces generated by s,

L) € g € Gllgll ., E milypl < 0o}, pe(0,00), 7 =1, (2.26)
If we define 7, ,(dxy,...,dz,) = 7s(dey)P(a1,dxy) -+ Pla,_1,dx,), then LP(7y) =
LP(Ts).
All of the notation in this sub-section is trivially extended to G<.
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2.5 Regularity concepts

We wish to formulate the regularity conditions to be stated in Section 3 and 4 in terms
of standard Markov chain concepts, and we therefore include the definition of a special
function and the concept of a f-regular measure. Theorem 2.1 will be used repeatedly
in Section 3.

Definition 2.2 Let f be a non-negative measurable function, defined on I, which is
ws-integrable. The kernels {Va, A € £t} are defined by

Vaf(x [Z fX ]

where Sy = min{n > 1, X, € A}. Let X be a finite measure on € and g € L(r,).
The measure X is g- regular if ]|g|1 is A- mtegmble and )\VA]|g|1 is finite for all A. The
Junction g is special if g € L,(75) N L2(7s), sup ]|g|1 is finite and sup VA]|g|1 is finite for
all A. The set D € ET is a special set if 1p is a special function.

To indicate that the restriction mg = 1 in (2.3) can be relaxed we state the following
theorem for a general mg. In this paper it will only be used with my = 1, however.

Theorem 2.1 [Nummelin 1984, Prp. 5.13, p. 80)] Assume that {X,} is aperiodic. Let
g€ Lims) and Apyy =T+ P+ -+ + P01 A finite measure A is g-regqular if and only
if )\Gmms’l,AmO]?gﬂ is finite. Assume that sup ]~|g|1 is finite and g € L,(75) N L3(7s).
Then g is a special function if and only if sup Gmo’s’l,Amoﬂgﬂ is finite. In particular,
for r =1 all small functions are special.

Remark 2.3 Nummelin (1984) only treats r = 1, but since ]~|g|1 is a non negative
Junction in one variable, the extension of the theorem to r > 1 is trivial. However, the
condition that sup Iyl is finite is in general a weaker condition than sup |g| < oo when

r > 1. In particular, even if g satisfies that sup j|g|1 and wg|g| are finite, higher order
moments of |g| with respect to ws(xo)P(xo,dx1) -+ P(x,—2,dx,—1) may not be finite.

2.6 (-null recurrence and tail behaviour of recurrence times

To carry asymptotic theory through we need a regularity condition for the tail behaviour
of the distribution of the recurrence time S,. Since this condition is crucial for most of
what we are doing, we introduce it in a rather general way and then specialize to the

case when (2.4) holds.
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A positive function L defined on [a,o0), where a > 0, is slowly varying at infinity

(Bingham et. al. 1989, p. 6) if

lim L(xz)

=1 forall kK >0 and for all x € [a,00) . (2.27)
eloe L(x)

Definition 2.3 The Markov chain {X,} is g-null recurrent if there exists a small non-
negative function h, an initial measure X, a constant 3 € (0,1) and a slowly varying

function Lj, so that

Eh[égiw)ﬁ)]AJTYI%;EGnﬁLhQQ (2.28)

Remark 2.4 If L and L' are two slowly varying functions at infinity, then they are said
to be equivalent if limyioo L(2)/L/(x) = 1. In all of our application of slowly varying
functions they are only unique up to equivalence. Hence, when (2.28) is true, without
any loss of generality we assume that Ly, is normalized (Bingham et. al. , 1989, pp
15, 24), i.e., the function 2P L, (z) is strictly increasing and continuous in the interval
[20,00) for some xq.

Let
G =3Pt (2.29)

The left hand side of (2.28) can be written as AGh. We first prove that for a fixed
parameter [ (2.28) is actually a global property shared by all non-negative special
functions.

Lemma 2.2 Assume that {X;} is f-null recurrent and aperiodic. Let (s,v) be a fized
atom. Then we can find an L, so that for all special functions f the asymptotic relation

(2.28) holds with Ly = ws(f)Ls where 75 is defined by (2.20).

Proof: Let A and h be given by Definition 2.3 and the atom (s, ) be fixed. Let

def Ln

L, )
wsh

(2.30)

Using a null recurrent ratio limit theorem (Nummelin, 1984, Cor. 7.2(i), p. 131) and
(2.28),

AGO
e = T+ ol(1) (2.31)

Using (2.28) again and the above expression, it follows that

v (n)SN;nﬁ n. .
G T+ 5) Ls(n) (2.32)
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Let f be a given special function. Then by (2.31) with f instead of h and by (2.32) it
follows that |
NG f v —— P2 (f)Ls(n) . 2.
e U0 (233
O

Remark 2.5 [f the atom (s,v) in (2.4) is changed to (s',v") then (¢f. Remark 2.1 )

Ts
= ws(s') Ly ~75(s")Ls . (2.34)

The asymptotic expression (2.32) is closely connected to the Tauberian theorem

(Feller, 1971, p. 447):

Let {d,,, n > 0} be any non-negative sequence and let d(r) = .00 r"d, be finite
when |r| is less than one. Moreover, let Ly be slowly varying and p € [0,00). Then

" 1 , iy 1
kz:%dk ~ " Li(n) <= d(r) ~ (1 —r) Ll(1 = r) (2.35)

when n — oo and r T 17, respectively. If {d,} is monotone and p > 0, then each of the
conditions given by (2.35) is equivalent with

dy ~ 2 Li(n) . (2.36)

If (2.4) is true, the Tauberian theorem can be used to show that then the concept of
fB-null recurrence implies a regularity condition for the tail behaviour of the distribution
of the recurrence time S,.

Theorem 2.2 Assume (2.4) is true. Then {X,;} is f-null recurrent if and only if

1

PolSe > ) = Ry

1+0(1)) . (2.37)

Remark 2.6 [f (2.37) is true, then it is not difficult to show that
sup{p > 0: E,5f <} =4.

Thus, even though E,S, = oo for a null recurrent process, if (2.4) and (2.37) hold, then
E.S? is finite for p small enough. For an ordinary random walk 8 = 1/2 (Kallianpur
and Robbins, 1954) and hence E, S < 0o for 0 < p < 1/2. Some other examples of
B-null recurrent processes are given in Myklebust et al (1998a).
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Proof of Theorem 2.2: Let G(r) = Y52, 7" P* and Gy, (r) = 52, 7% (P — s @ v)F.
Then by (2.32) and (2.35) (with p =  and Ly = L), f-null recurrence is equivalent
with

1
~ (1 =)7L, . 2.
vG(r)s ~ (1 —r) (1 — r) (2.38)
We have B, def Po(So >n) =v(P—s®wv)"l. If (2.37) holds, then by (2.35) and (2.36)
(with p=1—pand Ly = Lo =1/Ls)

B(r) % fj By = vGoy(r)1 ~ (1= 1) Lo( ! ). (2.39)

k=0 1—T'

Let b, = P,(Sa = n), w, = Po(Y, =1) for n > 1 and by = 0, wy 21 1 and define the

corresponding generating functions w(r) and b(r). By a first entrance decomposition

n—1
Wy, = Pa(Yn = 1,Sa Z n) + Z Pa(Yn—k = 1)Pa(5a = k)
k=1
= > wu_gby, n>1 (2.40)
k=0

which shows that {w,} is an undelayed renewal sequence corresponding to the increment
sequence {b,}. By (2.40) we get w(r) = 1 + w(r)b(r). Since b, = B,_1 — B, when
n > 1, we find that b(r) =1 — B(r)(1 —r). Hence

1

w(r) = W ) (2.41)

By (2.8) and (2.13) we find that w, = P,(Y, = 1) = E, [S(Xn_l)] = vP" 's when
n > 1. This gives
w(r) =1+ T[Z/G(T)S] ) (2.42)

Combining (2.41) and (2.42) we finally obtain

1
VG, (r)1](1 —7r)

1+ T[Z/G(T)S] =
This identity in conjunction with (2.38) and (2.39) show the equivalence. O

2.7 Weak limits for the number of regenerations

We assume aperiodicity and that (2.4) and (2.37) hold in this section. We also assume
that L, is normalized in the #-null case which implies that the function

u(z) ¥ 2PL,(2), ze Ry (2.43)
is strictly increasing in the interval [z, 00) for some zo. Let
v(z) = ul™Y(2) = inf{s: u(s) > z} .

Then v(u(z)) = u(v(z)) = z for all z € [z, 00).



2.7 Weak limits for the number of regenerations 15

A weak limit result can be derived from (2.37). Let T'(n) denote the complete
number of regenerations in the time interval [0, n], i.e.,

~ [(max{k: 7x <n}, if71o<n;
T(n) = {0, otherwise, (2.44)
where
inf{n >0:Y, =1}, k=0;
B J (2.45)
inf{n > 7,_1:Y, =1}, when k£ > 1.

Then E, [T(n)] =E.(30_, Y;) = Y52y vP*s, and it follows by (2.28) (with & = s),

Elm - F<11+ﬁ>

+o(l). (2.46)

In some respects T'(n) corresponds to the total number of observations for a positive
recurrent process, and it plays a crucial role in the asymptotics of Section 3 and 4. Our
next task is to derive a functional limit theorem for T'(n).

Let D0, 00) denote the space of right continuous real valued functions with finite
left hand limits, i.e. this is the space of cadlag functions defined on [0, 00) (cf. Appendix

Lo, ) :
B). We write 205 for weak convergence in D0, c0) and & for convergence of finite
dimensional laws. A Levy process is a stochastic process with stationary independent
increments and sample paths in D[0, c0). Consider the process

[+1]
o 1
Sp.(1) Y S(me— 7)), t€[0,00), z€Ry. (2.47)

v(z) i

where [z1] is the integer value of zt, i.e. the largest integer not exceeding zt.

By (2.37) (cf. Bingham et. al., 1989, p. 349) it follows that

Spe %5 (2.48)

where Sg is the one-sided stable Levy process defined by the marginal characteristic
function Elexpt®5:0}] = expli” for ¢ € R and t € [0, o0). Moreover, (cf. Kasahara,
1984)

Lplo,c0
Sp 5 Sp . (2.49)
The Mittag Leffler process (cf. Kasahara, 1984) with parameter 3, M; =
{Mp3(t), t > 0} is defined as the inverse of Sz. It is a strictly increasing continuous

stochastic process, and the characteristic functions describing the marginal distributions
are given by

o . k
E [exp M) = 3~ % (ER, t>0. (2.50)
k=0
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An alternative description is given by

m!

BE(M7(1)) = s " >0, My(t) 2 t°My(1) . (2.51)
We need the continuous extension of T'(n). Let
1, ={ iEn)]), t>0}. (2.52)

The next theorem establishes a weak limit result, which will be of use in the asymp-
totic theory to be established in the sequel.

Theorem 2.3 Let A be any initial measure. Assume that (2.37) holds. Then

m o "L (n)
By [T(n)]" ~ T mA) (2.53)
and
T, "5 Mj (2.54)
Proof: Let .

n) =y Vi (2.55)

then B i B
T(n)=(T(n)—11(T(n)>0). (2.56)

The normalized continuous version is also denoted by T.. Tt has the same properties as
T,. By Lemma A.3 in Appendix A we can write

B, [F(n)]” ZZ()W (2.57)

k=1 LEA, &

where Ay, p = {0 = (l1,...,0;) € ./\/_Ilf: S l; =m} for k > 1, and where

n n—h n—hy— - —hp_1 , , 0
Jngt = D D >, b [th Yiton, o Yaly +hk]
h1=0 ho=1 hp=1
n n—hi n—hy— - —hp_1
h1=0 ho=1 hp=1

We can write J,, ;s = J, 1 since (2.58) shows that this quantity is independent of . Let
r) YN T, rel0,1). (2.59)

Then it can be shown from (2.58), (2.39) and (2.41) that
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o o n n—h n—hy— - —hgp_1
Z‘]mkrn = Z Z Z Z Wy, - Wy, "
n=0 n=0 h1=0 ho=1 hp=1
0o oo n—hi n—hy— - —hp_y
= Z Z Z Z wy, e wp, "
h1=0n=hy ho=1 hp=1
o oo o0 o0
= Z Z Z Why ** Wh, Zrn-l-fu-l-"'hk
h1=0 hy=1 hp=1 n=1

= w(r)u(r) = 171 =)
= w1 =) (14 o(1))

and hence

Je(r) ~ w1 =) e (1) R () (2.60)

as v T 17. From (2.35), (2.36) with p = kB + 1, L1 = L*, since {J,p, n > 1} is a
monotone sequence in n, (2.60) implies
n" L (n) u*(n)

Ik~ T 08) T4 k) (2.61)

as n — oo. Inserting (2.61) into (2.57) gives
- m m\ | n*L¥(n)
E.|T(n ~ —_— . 2.62
ol -2 0 &

and since A, ,, = {1} = {(1,...,1)} and (Tln) = m! (cf Lemma A.3, Appendix A), we
finally get by (2.62) that B

T(n) " m!
E. ~— 2.63
] e 0
and (2.53) is proved.
We turn to the proof of (2.54). By the method of moments and (2.50) we find that
for each ¢

To(t) =5 Mp(t) .

However, it is difficult to establish a functional weak convergence from the marginal
convergences since My is not a Levy process. In order to prove (2.54) it is an advantage

to use a continuous index; i.e., T.() e T([zt])/u(z). By (2.48) and the proof of
Theorem B.1 of Appendix B with Sz = A in that proof,

Sé;l) 'C%O) Mg, where Sé;l)(t) = inf{ax: Sp.(x) > 1}. (2.64)

In the rest of the proof we omit the index # and write S, = S5, and S{-1) = Sé;l).
To prove (2.54) it is sufficient to prove that

sup |T.(t) — S(_l)(t)| = op(1) (2.65)

4
0<Ii<K
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for all finite K. Assume that 7o = 0 without loss of generality. Then
{ZYj>m}:{Tm<n}, {ZYj<m}:{Tm>n}. (2.66)
J=1 7=1

Let n > 0. From (2.47) and (2.66) we get

{SE)() <0} € {Sun(n) > 1}

{Tlu(zym > 2t}
[24]

{22 < [u(z)n]}

i=1

= {T.(t) <u™'(2)[u(z)n]}

and in the same way we get

= {T2(1) 2 ™ (2)[u(z)n]} -

Let ¢ € (0,1) be arbitrary. Then for 1 < 12,

{n <SS <ma} S {m(l—e) < SU () < n2}
C {u™ () u(=)m(l — e)] < To(t) < u™(2)[u(z)n]}

which gives

_ 1 _
WW%%W%%H%ﬂ@WmQ&MWw-@m

Let € > 0 be given. For all s we have

P(sup |T.(t) — Si(_zl))(tﬂ > 6) < P(sup |T.(t) — Si(_zl))(tﬂ > €, sup Si(_zl))(t) < 3)
t<K t<K t<K

+P(su S(_l)t > 5.
(s up Sz (1) )
By (2.64)

lim lim P(sup Si(_zl))(t) > 3) =0.

sToo Z—00 tSI(
Hence for all 6 > 0 we can choose s so large that

P(sup Si(_zl))(t) > 30) <6

t<K

for all z large enough. For fixed € > 0, we can choose ng,...,n5, 21, €, with 5o =0 and
N = so so that maxy (1 — nx) < €/3, @ < s5'¢/3 and z; > v(3¢7!). Then by (2.67)

P(sup |T-(1) = S (0] > & sup ST (1) < ) =0, 2> =

t<K

and therefore

P(sup |T.(t) — Si(_zl))(tﬂ > 6) <6, z> . (2.68)

t<K
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The function u is unbounded continuous and strictly increasing in an interval [, 00)

and therefore by (2.64),
sup |SCV(0) — 8

t<K

Hence (2.68) implies (2.65).

N
O
=
P
o~
R
Il
&)
<
P
-
R

2.8 Regeneration and some strong laws

The decomposition result of Lemma 2.4 and the strong law of Lemma 2.6 are both key
elements in the asympotic theory of Section 3 and 4.

Lemma 2.3 Assume that (2.4) holds and let 7y be defined by (2.45). Then
{(e=mmrs X X0 ) k> 1) (2.69)

are iid random elements which are independent of (Xo, Yo).

Proof: This is true since &« = E x {1} is a proper atom for the split chain (cf.
Nummelin 1984, p. 76).

O
The regeneration method is essential in decomposing the sum
Sn(g)zzg(va'--vXj-l—T—l) . (270)
7=0

with ¢ € G4 Sums of this type will be needed in the nonparametric analysis. Let
{Uk, k > 0}, U,y be defined by

Z;O:O g(va s 7XJ+T—1)7 when & = 0;
Up = Z;l;Tk_1+1 g(va e 7Xj+7°—1)7 when £ > 1; (2.71)
Z?:TT(n)‘l'l 9(Xj, ..., Xj4ro1), when k= (n)
Lemma 2.4 Assume that (2.4) holds and that g € G¢ for r > 1. Then

Sulg) =Uo + Ve + Uy, V=3 Uk, Vo =0, (2.72)
k=1

where {Uy, k> 1} is a (r — 1)-dependent stationary sequence, which is independent of
the initial distribution of the Markov chain. We have for k > 1;

54(0) Sa(1)
(Ukak-I-l) i 'COZ{Z g(va"'vXj+T—1)7 Z g(X] "'7XJ+T—1)}
j:l j:Sa(0)+1

71

,cy{zfjg(xj,...,xm_l), > 9(Xi X))} (2.73)

J=70+1

Il s



20 2 MARKOV THEORY

where L, denote the distribution of {(X,,Y,), n > 0} with initial distribution v (cf.
(2.8), (2.12)) and S, (k) = min{n > So(k—1): Y, =1} and S,(—1) 0.

Proof: This is a consequence of Lemma 2.3 and of (2.71) (cf. Nummelin 1984, p.
135).
O

We note that Uy has the same distribution as one of the Uy’s, & > 1, when v is the
initial measure. We use the notation

g

when this is the case. From (2.15), (2.24) and (2.73) we have

p, € g =EU, =B, U, k>1. (2.75)

Assume that U, has a finite covariance matrix. The asymptotic covariance matrix for
n 2 T0_ Uy, given by

n r—1
Y, = nh_}rgo Var(n_1/2 Z Uk) = Z yu(h), (2.76)
k=1 h=—(r—1)

is important in a central limit theorem for 5, (g¢). Here ;s is the autocovariance function
for the stationary process {Ug, k& > 1}. When ¢ real-valued, we write ng = Y, We
note that if A is a d; x d dimensional matrix, then

Usy = AU,, Y4, = AY, A, (2.77)
where A’ is the transposed of A.

More explicit expressions for p,, ng and ¥, when r = 2 are given in Appendix A,
Lemma A.1 and Lemma A.2.

We need a result of general character:

Lemma 2.5 Let {X,, n > 0} and {7}, k > 0} be stochastic sequences defined on a
common probability space where T, € N, Assume that T, T oo a.s. and let X denote

a stochastic variable which may be infinite with positive probability. If X, — X a.s.
then X7, — X a.s.

Proof of Lemma 2.5: Let w be a fixed outcome so that x, = X,(w) converges to-
wards © = X (w) and t; = Ti(w) goes to infinity. Then the subsequence {x;, } converges
to x. Since this is true for all w outside a null set, the assertion is true. a
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Lemma 2.6 Assume that (2.4) holds. Letr > 1, g € G% and ||g|| € L:(x,), and let the
process have an arbitrary initial distribution \. Then

Sn(g) a.s.
T(m) ms(g) -

(2.78)

Proof: Assume that d =1 and g > 0. By (2.72) we can write S.(¢) = Uy + V() +
Utny. Since g > 0 we get

Vigy < Snlg) < Us + Vigy4a -

By the definition of Uy, {7 < oo} C {Uy < oo}. From (2.18), P,(7 < o0) = 1. Hence
P.(|Uy| < o0) = 1. The convergence result in (2.78) is then a consequence of Lemma
2.5 and the strong law of large numbers for (r-1)-dependent stationary variables. The
rest of the proof is obvious since a general component of g can be written as a difference
between two non-negative g-functions. O

Corollary 2.1 Assume that (2.4) holds. Let the process have an arbitrary initial dis-
tribution \. Let g € G2, g € L} (x,) and 7,(g) be non-zero. If (2.37) is true, then

nfL(i’i) L w(g)Ma(1) (2.79)

Moreover, let g, € LY(7s) and w5(g1) # 0. Then
Sn(9) a.s; ms(9)

Sn(gl) " 75(91) ' (2'80)
Proof: By (2.54) and (2.78) it follows that

Sulg) [ Salg) ) | a4,

L) { T(n) }{n%sm)} o o) Ms(1) (2:81)
when 74(g) is finite. The last part is a consequence of

Sulg) [ Sulg) [ Salg) ™

Salgr) { T'(n) }{ T'(n) } '
O

Remark 2.7 If C' € £T, the number of times the process is visiting C' up to the time
n is denoted by

From (2.78) we have that To(n)/T(n) %5 7,1c. In contrast to T(n), the variable Te(n)
is observable, and it is essential in stating applicable versions of the limit theorems of
Section 3 and 4.
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Remark 2.8 Corollary 2.1 shows that there is essentially only one limit variable
Ms(1); de., if g = (g1,92) is a two dimensional vector in (2.79), then the weak limit is
degenerate.

Remark 2.9 [If {X,} is positive recurrent with 7 as ils unique stationary probabil-
ity measure then © = w(s)ms and g = 1 is w-integrable. It follows by Lemma 2.6
that T(n)/n = T(n)/S.(1g) > 1/7,(1) = 7(s), and consequently by the same lemma
Te(n)/n — 7(C) a.s..

2.9 A central limit result

We assume aperiodicity, that (2.4) is fulfilled and that ¢ € GJ; i.e., g is a function of
two variables. The latter restriction is not essential but simplifies notation.

In Theorem 2.4 we state without proof a central limit result for null recurrent
Markov chains. In Section 3 this result is proved and at the same time extended to
include a smoothing parameter. The reason for stating Theorem 2.4 separately is that it
is intimately connected with the concepts developed in the present section, and that it
is more transparent than the general result. Also we give conditions on ¢ (Lemma 2.7)
guaranteeing the finiteness of the variance parameter in the central limit expression.
These conditions will be referred to in Section 3. We use the standard Euclidean norm
gl = [ZL, g2(x,y)]/? for g € GJ. We start with the following equivalences for d = 1.

Lemma 2.7 Let g € Gy and U, be given by (2.74). Then the following conditions are
equivalent

E,Uf < oo (2.83)
g € Ly(ms) N Li(7ws)  and 7r5]~|g|G57l,j|g|1 < 00 . (2.84)
The measure 7T5]~|g| is ]~|g|1-regular and g € Ly(xs). (2.85)

Proof: This is straightforward using Theorem 2.1 for (2.84) and (2.85), and Lemma

A.1 of Appendix A and its proof for (2.83) and (2.84).
O

Remark 2.10 Note that

7oL G il = E [ 3 191(Xo, X1)lgl (X, Xota)] -

n=0
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Remark 2.11 [f g is a special function then by Definition 2.2, Lemma 2.7 and Theorem
2.1, (2.83) is fulfilled.

Theorem 2.4 Let ¢ € G and assume that ||g|| satisfies (2.84) and X, is positive
definite. If {X,} s null recurrent and satisfies (2.37) then
1 T'(n) d 1/2
Sulg) = T(n)y 1 ) (s, My(1) (2.86)
( T(n){ o ) )

where Z ~ N (0,1) is of dimension d, and where Z is independent of Ms(1). A formula
for ¥, is given by (A.14) in Appendiz A. The result is true for any initial probability
distribution X. If { X, } is positive recurrent, then (2.86) is true with § =1, Ls(n) = 7(s)
and Mg(1) = 1.

Proof: By Corollary 3.1, Corollary 3.4 and Remark 3.9 we can easily deduce the
result.
O

Remark 2.12 The statement of the normality part of (2.86) does not depend explicitly
on the parameter 3. Note that the proof of the positive recurrent part does not use the

condition (2.37). Indeed, § = 1 does not belong to the allowable range of values in
(2.37).

Theorem 2.5 Assume that the conditions in Theorem 2.4 are true and wsg = 0. If
there exists another atom (s',v') (¢f. (2.4)) then

Y = r(s)S, (2.87)
where X}, is defined by (A.14) in terms of (s',v') . In particular if 7, = 7o then ¥, = 3.

Proof: Let C' € €T so that msl¢ is finite. Let T be defined as in (2.82). Then by
Lemma 2.6 and Theorem 2.4

Sulg) _ [T Sula) __ipy sy,
Tcl«/Q(n) _{Tc(n)} Tl/Q(n) =, e 29 Zn + 0p(1)

where {Z,} converges in distribution towards Z ~ N(0, 7). Since the left hand side
of this equation is independent of the actual atom we get by a corresponding “primed
"right hand side that

71_5—1/210 . 251]/2 _ 71_5—/1/210 ] 221/2 ‘

Since 7, = 71'5_,1(3)71'5/, the theorem follows.

A similar simple transformation formula when 7,9 # 0 does not exist.
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3 Asymptotics with a smoothing parameter

In this section some asymptotic results are derived for partial sums of g (X¢, ..., Xipro1)
where h = h,, is a design parameter which is assumed to be a function of n, the number
of observations. In our applications in the next section h, is the bandwidth rate in a
nonparametric estimation problem. We assume aperiodicity and (2.4).

3.1 Basic notation

We assume that a regeneration sequence {79, 7 ...} is defined on the same probability
space as the Harris recurrent Markov process {X;} so that 6y = 7, — 74— for & > 1

are iid. Let g, € G and define {Uy ;} by (2.71) and U, def U,, by (2.74). The random
variables {Up , k > 1} are (r — 1) - dependent. We assume that the pair (s, ) satisfies
(2.4) with a corresponding invariant measure 7 so that 759, = E,U,, . To ease notation
we first specialize to the scalar case where d = 1. A multivariate extension is given in

Corollary 3.4.

The mean pp, aof ftg, and the variance parameter, o} e ngh are defined by (2.75)

and (2.76) with d = 1. We write 0'[2]h = Var(Uy), popn = pin/7sle and Uéh = o} /mslc.
We define W), = o' (Uy, — pz) and in the same way {W 1, k > 1} and ow, = o}, 'op, .
As in Section 2, let

n

Sulgn) = D gn(Xj, oo Xjprma) -

7=0
Recall that u(n) = n’Ly(n), T(n) is defined by (2.44) and Te:(n) by (2.82).
We use ¢, ¢, . .. as a sequence of generic constants in our proofs. All primed versions

of U, W, etc. refers to ¢) = |gn| in the scalar case. If g, € G with components g, ,
then g, has components |g; 1|, and as before ||g;|| is the standard Euclidean vector norm
of g, in R,

Finally if {a,} and {b,} are two real-valued strictly positive sequences, then we
write a, << by, if a,, = o(b,,).

3.2 Basic conditions

Subsets of the following conditions will be used. They are of general nature, but it
will be shown in the next section how they can be used to obtain specific and explicit
conditions in the asymptotics of nonparametric estimation. The conditions are stated
for d = 1; a modification to d > 1 is given in Corollary 3.4.

Ro:  The expectation pj,,| and the variance Ulzﬂg , are finite for each h.
h

Ry: limho? > 0.
1 h—lO 9n
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Rloi

T ha?
1}1%1 hUUlghI = 0.

There exists finite numbers g and g’ so that
frg, = p+o(1), g =p +o(l)ash]O0.
R 20, = o(1) as h | 0.
hptyg,) = O(1) as h | 0.
Rs holds and p,, = u + O(R?).
E, Uy, — g, |*™ < dpp k™2™t for some m > 1, d,,, > 0 and for a v € {0,1}.
Ug_hlalghl = O(1).
O-Q_hlo-Ugh = 0(1).
lgr| satisfies Ry, R3 and Rs.
The Markov process satisfies the tail condition (2.37), or it is positive recurrent.
B Y sup{p > 0: E,S? < o0} > 0.
For some ¢ >0, m > 1, v € {0,1}, A7t << nPm=c §,, = (m —v)"L(m — 1), and
where /3 is determined by an appropriate tail condition on the distribution of 5,.
The sequence {h,} satisfies Rg with ¢,, = (2m —v)™*(m — 2) and m > 2.
k' = o(u(n)) where u is defined in (2.43).
There exists a function go so that |gn| < h7ge, P.(U, < oo)=1.
If {h,} satisfies Rg then h,U; = Op(1) where Uj o =37 [gn(Xj, ..., Xjppo1)l-
The set €' in Ty is special.

Remark 3.1 Since ¢ > 0 in Rg, this condition implies Rg.

Remark 3.2 From the definitions we have

and

-1 _2 2 2 2 2 2 2
(2r = 1) oy, S ov,, S op, gl ol 2 00, (2= Ly,

2 2 2
Tlgnl 2 g — (QT - 1)’u|9h| :

Remark 3.3 We have

0lot, < 0u o+ (2r — Dug, )

which shows that Ry, Ry and Ry imply Rs.

Remark 3.4 If both limy, o hagzh and limy o h0|2gh| exist as finite positive numbers, then
Ry and Ry are fulfilled. If in addition Ry holds, then also Rs is true. An important

example results if

haﬁm = hﬂ'sgi +o(l) = hagzh + o(1) (3.1)

and limy o h0|2gh| exists as a finite positive number.
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Remark 3.5 If R}, holds then,

2r—1
ho? = kz By [Un s Uni] + (1), (3.2)
=1
and if Rs and Ryg hold then ho-gh—MChlc = hagzh +o(1).

Remark 3.6 If Ry and Rs hold
EU(W}?M) = (hafb)_mhmEy(Uh - ,uh)zm <d hT"tV,

If R), holds, then Ry is equivalent with B, (UF™) < d! h=#"+v,

Remark 3.7 Application of Rig requires that one is able to specify a special set for a
given process {X;}. However, note that (¢f. Nummelin 1984, pp. 15, 80) compact sets
are small, and hence special, under quite wide assumptions. For Frample 2.1 it suffices
that ( is equivalent with the Lebesque measure.

3.3 Properties of the number of regenerations

In Section 2.7 we alluded to the link between the number of regenerations T'(n) and the
total number of observations n. The next lemma shows that the tail condition (2.37)
gives the connection between the two.

Lemma 3.1 If Ry holds, then n®~¢ << T(n) << n*¢ as. for all ¢ > 0. This is also
true for To(n). The lower bound requires only R%.

Proof of Lemma 3.1: By Remark 2.6 it follows that R; implies R7. Let € € (0, 3)
and define p = # — ¢/2. By R., E,5? < oo for all € > 0 which again entails that

k=% S5(k) — 0 a.s. (cf. Chow & Teicher, 1988, p. 125) where Sg(k) def sk (1j—Tj-1)-

7=1
Let w be an outcome so that this holds. Then there exists a finite constant ¢ = ¢(w) so
that Sz(k) < ck'/? for all k and by this relation, when 7 = 0,

P
T(n) = max{k: S5(k) < n} > max{k: ck'/? <n} = [n—p] :
c
Hence for this outcome the lower bound is satisfied for T'(n). If 7o > 0 some minor
modifications of this argument are needed.
To prove the upper bound we assume R;. Then, for all n > 0, we have by the
Markov inequality and the convergence of all moments of T'(n)/u(n) given by (2.53)
that

PQ(T(n) > nnﬁ"'e) < n_m{u(n)/nﬁ""e}mE{T(n)/u(n)}m <Con ™ m>1.
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Choosing m > 2¢! | the upper bound is implied by the Borel Cantelli Lemma.
Since Te(n)/T(n) converges with probability one to x4(C') the two variables must

have the same bounds of this type.
O

Remark 3.8 Lemma 3.1 shows that B & In{Tc(n)}/In(n) is a strongly consistent

estimator for 3 if Ry is fulfilled. Due to the slow convergence rate it is of limited
practical use.

We need to evaluate the difference in growth of T(n)/xs(C) and T'(n).

Lemma 3.2 Assume Rig. Then for all p € (1/2,1) we have
1) {17 ()T (n) — 7u(C)} = o(1)  aus. (3.3)
and for all ¢ > 0,

P(x;H(C)Te(n) ¢ [T(n) £ €l™(n)] io.) =0. (3.4)

Proof of Lemma 3.2: Without loss of generality we may assume that =,(C) = 1.
Define U, with ¢ = 1¢ in Lemma 2.4. Then

Te(n) = Su(le) =Uo+ Ve + Uy -

By a result of Marcinkiewicz-Zygmund (Chow & Teicher, p. 125), n™?(V,, —n) — 0 a.s.
By Lemma 2.5 we have T77(n)(Vr(,y — T'(n)) = o(1) a.s. The correction terms Uy and
Uny can be ignored since n™?(V, 41 — Vi) = o(1) a.s.. Hence T7P(n)(To(n) — T'(n)) =
o(1) a.s., which implies both (3.3) and (3.4). O

3.4 Weak limits

Following (2.52) we denote the process {T'([nt])/u(n), t > 0} by T, and likewise for
Tc,,. The standard Brownian motion defined for £ > 0 is denoted by B, and B o Mg
denotes {B[Mg(1))], t > 0}. Weak convergence in D?[0,00) is written Lpapg ) (cf.
Appendix B).

We can now state our main theorem and three corollaries, whose proofs are given
at the end of this sub-section.

Theorem 3.1 Assume that Ro, Ry, R, Rs with m > 2 and v € {0,1}, R4-Rg and R
hold. Then, with

A (1) = w2 (0)0 (Spag g ) — s, T([01])), (3.5)

L 210,00 R
(An,hn, Tn) g (Bo Mg,Mg), B and Mg are independent. (3.6)

n
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Corollary 3.1 Assume that g, = g. If Ry and R; hold and 03 > 0, O'|2g| > 0, then (3.6)
holds.

Remark 3.9 Corollary 3.1 implies the scalar version of Theorem 2.4 since (2.84) im-
plies Ro.

Definition 3.1 If {X,} and {X,} are random elements of D0, 00) they are said to
be equivalent if the difference converges weakly to the zero-process. If {X,} converges
weakly in D[0,00) to the zero-process, then we say that {X,} is negligible.

Corollary 3.2 Assume all conditions in Theorem 3.1 are true and that R} is
strengthened to Ry and in addition Ryig holds. Then, with Ac 1, (1) = u_l/z(n)agnl

(Stq(ghn) — e pa T ([nt])), the sequences {(Amhn, Tn)} and {(Athn, Tan/ﬂ'slc)} are

equivalent.

The next corollary is used in the proof of Theorem 4.4.
Corollary 3.3 If Ry, R}, R}, Rz, Ry and Rg hold, then
a0 (St (g1, ) — o, T([1])

is negligible. If also Ryig holds, we can replace wy,, T([nt]) by pcn, To([nt]).

Remark 3.10 /n general we have that Ac,p, = u_l/z(n)ag:S[m](gh — penle) and
7s(gn — penle) = 0.

The proof of Theorem 3.1 consists of several lemmas. Let the sequence {h,} be

chosen according to Rg. Define ¢, = hu(_1)(n) so that h, = qu(n). Then by Ry, o<
nbm.

By Lemma 2.4 we can write
Sulgn) = Uno + Vryn + U (3.7)
where Uy ()| < Up () S Up gy @0d Vi = 32502, Upge
The array {Unx,1 < k < [nt]} fulfills a functional CLT when we neglect the de-

pendence on the sequence of stochastic stopping times 7;. This is not a surprise since
the sequence is (r — 1) - dependent.
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Lemma 3.3 Assume that Ry, Ry, Ry with m > 2, Rs hold and that ¢;' << n’m,

Lp[0,00)

6 = (m —v) Y m —1). Then Q,.,, — B where

[rt]

Qua(t) =023 Wi, t>0. (3.8)

k=1

Proof of Lemma 3.3: The proof is based upon an ordinary mixing array CLT and
a tightness argument. Let ¢ be fixed. By the definition of W and Ry, R3 with m > 2,
Remark 3.6 and the condition on the rate of {¢,},we have

(]
W ST E(WEL) < dytne st = (1) (3.9
k=1

Thus the array satisfies a Liapounov condition. Since E(Q? (1)) = t(1+0(1)) we have

by an appropriate CLT (Bergstrgm, 1981, Th. 1, p. 161) that Q. ,,(¢) 4, N(0,1)
for all . Using a standard argument, the same CLT and the fact that (), ,, has
asymptotically independent increments (cf. Billingsley, 1968, pp. 68-69), we find that

Quin L 8. (3.10)

It remains to prove tightness. Without loss of generality we can assume that r = 2.
Define
XZh,Qk—j = 5ijnhWh,2k—i7 0 < Zv] < 17 k > 17 (311)

where n;, = 21/201},1 and ¢;; is the Kronecker symbol. Note that 5, = O(1) by Rs.
Next, define

Cwt ), L] .
QL) = ™Ay N =™ YT Wi, 1=0,1.
k=1 k=1

Now, the marginal arrays {Xénk} consist of independent variables. By (3.9) and

an ordinary multivariate CLT we have that (3.10) is fulfilled for Q!. TIf v (s,?) def
E{Q! (t) — Q' (s)}? satisfies, for all fixed #; > 0,

limlim sup (s, 1) =0 (3.12)
610 n s<tgp
li—sl<6

- L 0,00 .
then Q" 2105 B, i = 0,1 by standard theory (Pollard, 1984, Th. 19, p. 104). Now,

n

using Rs and |t — s| <6,

Wl (s,t) < an~'nt (nt —s|+ 2)E W2} < elt —s+2/n| < cs(6+2n71),
which shows that (3.12) holds. Hence {Q°, ¢ = 1,2} are tight in D[0,00). Since B
is a continuous process and (), = nq_nl S, QY and n;' is bounded, by Rs we can

conclude that {Q, .} is tight (cf. Jacod & Shiryaev, 1987, p. 317). O

The next lemma takes care of the edge terms.
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Lemma 3.4 Assume Ro, Ry, RY, Ry, R with m > 2 in R3, Rs, Rg and R are true.
Then {A,h,}, defined in (3.5), is equivalent to {Zn he } where

Zpn(t) =u™(n Z Wi . (3.13)

Proof of Lemma 3.4: By (3.7) we have with Upo(?) = Z;O/B[nt] gn( X, oo, Xjpro1),
Up,()(t) = Up (jng) that it is enough to show that

Snn(t) € w2 () {Uno(t) + Uny (1)}

= w2 (n)o; Who(t) + u_l/Q(n)agth(n)(t) (3.14)
is negligible. By Ry, Rg and R§
000 Vo1 < {heu(m)haod, )Py, = 0p(1)  (3.05)

independent of . Hence we can neglect this term. Assume now that g is replaced by
lgx| in the definition of Uy, (,y in the primed versions. Then since T),([nt]) = T,.(t)u(n),

[Uny(D] < U vyt = TuWha (g1 + N%
= b2 0){ Qi (1) + 1/u(n)) = Qi p(Tul)} + 1
(3.16)
The tail condition R; guarantees that T, has a specified asymptotic distribution.
By the continuous mapping theorem, Rg, Rs and Lemma 3.3, &,() & Q. (& +
1/n) — Q. (1) is negligible. Again by the continuous mapping teorem with the map:
D?*[0,00) +— D[0,00) given by (a,b) — aob, the process &, o T, converges to zero. This
gives

W 0)07 U o)) S 7 Eatey 0 T) + ()0, By 20, 205 0
(3.17)
due to Ry, Ry, Ry and Rs. O

We wish to be able to replace T}, by T¢,, which is a function of the original chain

{Xi}.

Lemma 3.5 Assume that Ry is true. Then Te,/7slc is equivalent with T,.

Proof of Lemma 3.5: Assume without loss of generality that =,(C') = 1. It is
enough to prove that sup,., £a(t) = 0,(1) where &,(1) def |T,,c(t) —T,(t)| for all to. Let

0<6<1and ng =n"19 We have SUDy< Ea(t) < u_l(n){Tc(n‘S) + T(n‘s)} = op(1)
and when t > ng,

stp 5n < {Tuto)} sup {77 ([nt]) (Te([nt) — T([n])) }

< {T (to) } sup {T (TC( ) — T(m))}
= op(l)
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since Te:(n)/T(n) converges to 751¢ with probability one by Remark 2.7. O

Proof of Theorem 3.1: By Lemma 3.4 we can neglect the edge terms and it is
enough to consider (Z,, 4, ,1T,) = (Qu(n),qu(n) oT,,T,). The proof is completed by Lemma
3.3, Theorem 2.3 and Theorem B.1 in Appendix B with (B,, A,) = (Qu(n)ﬂzu(n)v San),
AY = My in that theorem. The process Sg, is defined in Section 2.7 by (2.47). By

the proof of Theorem 2.3 we have that Séjnl) and T, are equivalent stochastic processes.
O

Proof of Corollary 3.1: We proceed to the simplified situation in which there is no
bandwidth involved and the U.’s are independent of n and strictly stationary. The
existence of the fourth order moment in the proof of Lemma 3.3 is superfluous, Lemma
3.4 is still true, and hence the conclusion is true.

O
Proof of Corollary 3.2: To prove the equivalence, note that

Acn (1) = A, (1) = 07 ™ ) { To([nt]))e7(C) = T([n]) }
= {hoo? YTV, oA (1),

where A, () def u_l/z(n)O'_l{S[m](lc/ﬂ'slc) — T([nt])} and o? is defined by (2.76) with
d = 1 and with ¢ = 1¢/7s1lc. By Ry, Ro is fulfilled for ¢ = 1¢/7s1¢. By the

£pI0,00)

previous corollary A, (1) —3~ Bo Mg. Since hY/?u;,, = o(1) by RJ, it follows that

Lp[0,00)

Acnh,—Anp, —> 0. By Lemma 3.5, we have that Tt ,,/75(C) and T,, are equivalent.
O

Proof of Corollary 3.3: Let

Ay =0 ()b (St (i) = pna T([0t])) -

First assume that r = 1, i.e., independence. Choose {h,} according to Rg, let h, = ¢y
and analogous to (3.8),

- [n1]
Qn(t) = {nqgl}_1/2 Z(an7k - IMQn) ‘
k=1
Then ~
E{Qu(1)}” = qulntlot, < t|auoty, |+ quiih,,. ],

and using R} and R},
sup E{Q,(1)}* = o(1) . (3.18)
t<K
Since (), is a normalized sum of independent variables we can conclude that {@} is
negligible (cf. Pollard, 1984, p 104). This is also true when we replace g, by |gn|.
The edge effects are tackled in a similar way as in the proof of Lemma 3.4. We have

S (1) = w2 ()R UL, o(t) + w2 (0) R 2 U, () (1) -
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The first term is of order op(1) uniformly with respect to ¢ using Rg and Rg. For the
second term

w2 )| U oy ()] < u_l/z(n)hl/z{(Uf/LT(nt) LK)+ )
= { @l (Ta(t) + 1fu(n) = @y 1 (TalD)} + w2 (0)hY
< fu<n>(Tn( ))+u‘1/2( Vhr!? i,

where £, (1) et Q" o+ 1 n)] + |C~2%qn(t)| By the preceding calculations we can
conclude that

sup &, (1) = op(1) .

t<tg

Thus the process £, o T, is negligible (cf. the proof of Theorem 3.1), and we have that
the edge effects can be ignored.
Hence it is sufficient to look at

. T ([t
Zp(t) = w2 (n) 7 BV (Upg — pa),

k=1

since A, 1, is equivalent to Z, ;. But

D (1) = Quin) n(Tul1)),

and Qu(n),qn o T, is easily shown to be negligible from the first part ot the proof.

If » > 1 then we can write Q as a finite sum of sums of independent variables and
use Remark 3.2.
O

Theorem 3.2 Assume that Ry, Ry, Ry, Rz with m > 2 and v € {0,1}, Ry-Rs, Ry and

Rio are true. Then
T ()05, {15 (1) Su(gn) — pe, } —— N(0,1) . (3.19)

If Ry holds and h ' > nﬁ/S"’E, then pc p, can be replaced by pe = p/7slc.

Proof of Theorem 3.2: Denote the left hand side of (3.19) by A, 4,. We have that
Aop, = (ﬂ'slc)I/Q{Tc(n)/u(n)}_I/QAQWLR(1). By Lemma 3.2, Theorem 3.1 and Corol-
lary 3.2 the main portion of the statements follows. Assume that R’ holds then

T ()b pep, — pe| < e {Te(n)h3}? = op(1) .
O

A multivariate extension of Theorem 3.1 and Theorem 3.2 is also useful. We use
the notation ., = 3, /7slc.
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Corollary 3.4 Let g, € GY. Assume that ||g|| and the process {X;} satisfy Ro, R,
RS, Rs with m > 2 and v € {0,1}, R4-Rs, Ry, Rio. In addition we assume that

limh¥,, > ¥, (3.20)
for some positive definite matriz Yo and
12, 1 o = O(1) - (3.21)

Then (3.19) holds with Ua}hh replaced by Zalh/n?, and the limit is the d-dimenstonal stand-
ard multivariate normal distribution. Moreover, a multivariate extension of (3.6) holds
where B is replaced by a d-dimensional Brownian motion.

If R holds and h>' > nP/5%< then ucp, can be replaced by pc.

Proof of Corollary 3.4: Analogous to (3.5) and (3.14) we define

A, (1) = w2 (0) S0 (Spg (g,) — g, T([01])), (3.22)

and

Sgnn(t) = w ) ST Ui 0(6) 4 Uy (D)} - (3.23)
Now since |g;n| < |lgn|| we have |Uy, | < Uy, for ¢ = 1,...,d. Using this inequality
we find that ||U,, || < d1/2U||gh|| and

65 (O] < A2 (|80, 172001 gmtn (1) - (3.24)

From the conditions assumed in the corollary it follows that the conditions in Theorem
3.1 for ||g|| are satisfied. In particular this implies that ), .. is negligible. Together
with (3.21), (3.23) and (3.24) this implies that ||6,, .|| is negligible.

We have thus shown that A, ,, is equivalent with 7, ,, ~defined by

_ def
Zn,gh(t) = u 1/2(n) Z ngkv th - E 1/2 (Ugmk - :ugh)
=1

where @), 4, is defined by (3.8). It is enough to prove that

Lpio, D[o,0)

a' Qg aB, Yag R (3.25)

where a’ means the transposed of a. Let f, = b, g, where b, = (hY,,)”"/%a. Then

= Uptig,: o5, =h""al”.

Moreover,
[n1]

a/qun _ n—1/2 Z h1/2h—1/2a/2;h1/2 (Ugh,k . Ngh)

k=1
1/2 [m] 1
= lalln™"2 3 o7 (Ugyr — 15,
k=1

= llall@1,,, say,
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where fobqn is defined by (3.8) with W}, x = Wy, x. We have by Ry, Ry and Rs for ||gx|
that
E(W7T) = o2 B0 (Uy, — pa,)

&

< o7 B bl U, — g, 17"

< o7 P B[ U, — 12"

< o7 ul P BN, 2™+ g, 1127
—2m 2m 2m 2m

< o bl B + ]

S CSO_JTthh—(Zm—v)

< c4hmh—(2m—v)

S C4h_(m_v) .

We have also used that ||by]| is bounded with respect to k; in fact it follows from (3.20)
that lim||b,]|> < ||a||*p where p denotes the spectral radius of ¥3'. Hence the analogue
of (3.9) is satisfied and (3.25) is proved using the method of proof of Lemma 3.3. By
(3.20), (3.21), R; and Remark 3.3 we have that, Rg, Ry, R}, R3 with m > 2, Ry -Rg and
Ry are fulfilled for f,. Hence Theorem 3.2 can be applied to f;, and by a Cramér-Wold
argument the first statement of the corollary is proved.

Moreover, we easily get the multivariate extension of Theorem 3.1 claimed in the
second statement of the corollary: let By denote a d-dimensional Brownian motion. It
is enough to prove that

£D2[0,oo)

(a'Amhn, Tn) — (HaHB 0 Mg,Mg), B and Mg are independent, (3.26)

since a’By has the same distribution as ||a||B. But (3.26) follows from (3.25) and the
proof of Theorem 3.1.
The last statement of the corollary is proved as in the proof of Theorem 3.2.
O

Remark 3.11 Proceeding as in Corollary 3.1 and Remark 3.9, Theorem 2.4 can now
be derived as a special case of Corollary 3.4.

3.5 Consistency

Weak consistency may be deduced from the asymptotic distributional limit.

Corollary 3.5 Suppose that all the conditions in Theorem 3.1 are fulfilled, that R is
strengthened to Ry and in addition that Ryg holds. Then

164 (n)Su(gn,) = pen, +Op (T51/2(n)ahn)
= Hc + OP(l) . (327)
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Proof: From definitions, S,(gn,) = Te(n)pc,n, + Ac7n7hn(1)u1/2(n)ahn and the first
line of (3.27) follows from Corollary 3.2. The last statement is achieved by R;, Rs and
Lemma 3.1.

O

It is more difficult to obtain strong consistency.

Theorem 3.3 Assume that Ry, Rz with m > 2, RL, Ry, and Rg hold. Then
T:'(n)Sn(gn, ) converges with probability one towards uc.

The proof starts with a lemma.

In order to obtain strong consistency with a deterministic bandwidth we require
that the rate is related to the lower bound of the sequence {T'(n)}.

Lemma 3.6 Assume that q;' << ném=¢ with 6,, as in Rs, and that Rs holds with an
m > 2. Let

. 1 Ilp+r—1
SlpTd:fi Z Uqlkv (l b, r )ENiv TE[l,l]. (328)
Ip+r—-1 =
Then
lim sup [Sipr — g = 0(1) aws. . (3.29)
lip|Too 1< <t

Proof of Lemma 3.6: By the Borel-Cantelli lemma it is enough to show that
Do Yt S L E(Sipr — g)¥™ < 00. By (r — 1) - dependence and Rj,

ex(Ip) =g )

E(S1pr — qu)zm <al(lp+r—1)7"EU, — qu)zm <
< 03p—ml—{m—(5m—e)(2m—v)}

which gives

l

Z Z Z E(Sl,p.T o qul)Qm < ¢4 Z l—{m—l—(Sm—e)(Zm—v)} < 00

=1 p:l r=1 =1

sincem — 1 — 6,,(2m —v) > 1. O

Proof of Theorem 3.3: Let {h,} be fixed. Recall that u,, = pewsle. Without loss
of generality we may assume that h, = gy,(,) where ug(n) = [n°7¢] for an ¢ > 0 and
{qn} satisfies the rate inequality given by Lemma 3.6. We use the representation of
Sn(gn, ) given by (3.7) for each n. By Lemma 3.1, T'(n) > ug(n) a.s. . Let t = T(n),
I=wuo(n),p=1[t/l],r=t—Ip+1sothat t=Ip+r—1, 1 <r <[ Then

1 Ip+r—1

‘T(n)_IVT(n)vhn - Iuhn - lp_l_ r— Z Uql k= qul = |Sl7p~7“ - qul| N
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By Lemma 3.6 and Ry, T'(n)™'Vi(u).h, converges to g with probability one (cf. the
proof of Lemma 2.5). The arguments also show that T'(n)™'Vi()41,4, converges to p
with probability one. Hence U, () is negligible. By Rg we get rid of Uy, o since

T~ (n)Up, o] < {hT(n)} U, =o(1) a.s.

using that Uy, is finite a.s. and h,T(n) > n~®=9T(n) T oo a.s. by Lemma 3.1. Since
Te(n)/T(n) =msle + o(1) a.s., the proof is finished.
O

It turns out that consistency results are easier to obtain with a stochastic bandwidth
sequence, although weak limits are considerable harder in this case.

Theorem 3.4 Assume that Ry, Rs with m > 2, RL and Rg are satisfied. If ¢;' <
< nm=¢ where §,, = (m — 1)/(2m — v) then T5'(n)S,(gu,) converges almost surely
towards pc where H, = qr,(n)

Proof: Neglecting the edge terms, it is enough to show that

— a.S.
TCI(n)VTc(n)#JTC(n) - HC -

n

By Lemma 2.5 this convergence is implied by

-1 a.S.
n anqn T) /’LO °

But the latter is proved by Rgs, the Markov inequality and the Borel-Cantelli Lemma
since
Zn—mq—Qm—I—v < o0 .

n
n
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4 Asymptotics for some nonparametric statistics

The objective of this section is to extend nonparametric kernel estimation from the
traditional stationary case (see e.g. Robinson, 1983) to the null recurrent case.

We assume aperiodicity and (2.4). In addition we assume that the state space
E C R so that X, is one-dimensional. All of these conditions can be relaxed. The
bandwidth A = h, is assumed to satisfy h, | 0 and with no loss of generality we
also assume that A, < 1. Let K: R — R be a kernel function and for a fixed z let
Ken(y) =h ' K((y—a)/h), No(h) = {y: Kpn(y) # 0} and N, = N.(1). In our context
a locally bounded function will be taken to mean bounded in a neighbourhood of  and
a locally continuous function is continuous at the point z. Without loss of generality
we may assume that this neighbourhood equals N, and that local continuity implies
local boundedness. This is so since N,.(h) = v & hNy. Again, we use ¢y, cs,... as a
sequence of generic constants in our proofs.

The following condition is always assumed.

Ko: The kernel K is non-negative, [ K(u)du < oo and [ K?*(u)du < oo.

Subsets of the conditions listed below are used according to need, where the point
x is fixed.

Ky:  The support of the kernel, Ny, is contained in a compact set.

K,:  The kernel is bounded and A, is a special set.

Ks:  The kernel is normalized so that [ K(u)du = 1.

K4: The kernel satisfies [ uK (u)du = 0.

Py:  The invariant measure 7, has a locally bounded density p,.

P,:  The density ps is locally continuous.

P3:  The density p,; possesses locally continuous partial derivatives of a given
specified order.

P4 The density is locally strictly positive, i.e., lim, . ps(y) > 0.

Ps:  For all {A,} € € so that Ay | §) when & | 0,
limy, o limy,_, P(y, Az) = 0.

Pg: The tail condition (2.37) holds, or the chain is positive recurrent.

Py 8 dof sup{p > 0: E, S < oo} A1l >0.

Ti:  The set C'in T is a special set.

Remark 4.1 The conditions K1-K4 are reqularity conditions for the kernel. The first
three P-conditions represent different levels of smoothness for a local density of «.
The last one of these is used to get rid of a bias term. In order to have a strictly
positive asymptotic variance, Py is necessary in some cases. It turns out that a sort of
uniform local continuity property for the transition probability is needed in some weak
limit theorems. This is expressed by Ps. The tail condition (2.37) is crucial for weak
limits in the null recurrent case.
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To ease notation, as in Section 2.9 and Appendix A, we will restrict ourselves to
functions contained in G¢ with r» < 2, and in the following &y, ¢ are arbitrary functions
in G and G, respectively. Our first lemma shows that the condition K, in conjunction
with local boundedness for a function in one variable ensure finiteness of moments. For
functions of two variables the appropriate local boundedness also depends upon global
properties; i.e., local boundedness of EO depends upon global properties of P and &.

Let
gh(u7 w) = [(x,h(u)éb(uv w)v 50 € g;l, (41)

and S,(gn) = Yrogn(Xt, Xip1). Our discussion is restricted to statistics based on
Sn(gn). Recall that

Iy (y,dz) = Ply,d=)&(y. 2),  &oly) = I, 1(y) = /P(y,dZ)fo(y,Z)- (4.2)

As before, when we write go(y), the integral in (4.2) is implicitly assumed to exist. Also

- ~ 2
note that ||&]|? = {]H&)Hle}p/ when p > 0. Lemma 2.4 leads to the decomposition

of S,(gn) in a sum of Uy ’s which are strictly stationary, 1-dependent and marginally
distributed as

Uy, = Z Ko n(X5)60(X;, Xjt), (4.3)
=0

with v as its initial measure.

If &o(u,w) = E(u), ie., £ € G4, then fo = £.

Lemma 4.1 Let g, be given by (4.1) with g, € Gz. Assume Ky, Ky, Py, let m > 1 and
define v, = j|£0|2m1. Assume that 1, is locally bounded. If m > 1, then corresponding
to R3 in Section 3,

EUU|2gT:| <d hmEmtv (4.4)

with v = 1. Without Py the above inequality still holds but with v = 0. Moreover,
fig,) = O(1) and hof, | = O(1).

Proof of Lemma 4.1: Without any loss of generality we assume that ¢, € Gy and
&o > 0. We use the simple inequality & < 1 + &™ when r < 2m. To show (4.4), by
Theorem A.1 in Appendix A, it is enough to consider

def 7 7
J = Z/GSl,]zl---Gsy]zrl
9y R

where r < 2m, {; > 1 and }_{; = 2m, and where ¢ > 0 implies that jg < ]~g with jg
defined by (A.18). Now, by K, Ky and the local boundedness of ¢,

Lol < K (14 n) < e Ky < ch ™y,
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By Kj, Definition 2.2 and Theorem 2.1 with mg = 1, the function G, 1, is bounded
so that

Go Lo <esh 1.
? gh

Hence, using Ky and the fact that vG,, = 7,
J < C4h Z] 2 Jﬂ_ [7[1 S csh—Zm-I—v

where v = 1 by P;. The proof of the statements concerning p,,| and h0|2gh| is similar,
albeit simpler.
O

Next we introduce our nonparametric estimators. If the invariant measure 7, has a
density p,, we define pc = p;/7s1¢ which is the normalized density relative to the set
C,ie., [4po(x)de = mcly = msla/msle. The density pe does not depend upon s as is
easily verified from the non-uniqueness property stated in Remark 2.1 of Section 2.3.

By analogy with the ordinary kernel estimator for a density in the positive recurrent
case, an estimator for pe is defined by

Po(@) = Ponn(e) = To (n) 3 Kon(X,) (4.5)

t=0

Let ¢ € G% Note that Pé(x) = E[f(Xt) | Xio1 = :1;] is the conditional mean of £(.X;)

at the point x. A kernel estimator for the conditional mean function P¢ is given by

Pt(z) = Pépp(a {ZAM X)) {Zg (X ) Ko (X0)} (4.6)

The corresponding conditional variance function is given by
VE=PE®E) — PE@ PE. (4.7)

If we replace the two terms of the right hand side of (4.7) by estimates defined by (4.6),
we obtain a conditional variance estimator Vf(:z;) Moreover, (4.6) coincides, and (4.5)
essentially coincides, with respectively the Nadaraya - Watson estimator and the kernel
estimator in the positive recurrent case, since then T¢(n)/n — 7l a.s..

The next lemma is central in establishing the properties of the above estimates.
It gives conditions for convergence of p, and X, . It turns out that the asymptotic
variance is independent of g, . (The tensor symbols involved are defined just prior to
Lemma A.2 in the Appendix).

Lemma 4.2 Let gy(u,w) = K, p(u)o(u,w) where & € Gd. Assume that K, Ky, Py,
Py are true, Ljg, 21 is locally bounded and Ig 1, Igyqe, 1 are locally continuous. Then

pan = po(@)o(){ [ K (wydu} + (1), (4.8)

%, = po(@) Ty /A (u)du} + hAy + hA} + o(1), (4.9)
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where Ay, = 71'5 L Gsy Lo IfhAL = o(1), then hY,, = h¥u,, + o(1). ]fgo(x) =0 or
P4 and Ps are true then hAh =o(1). If &o(u,w) = &(w) — P&(u) then

1S, = ps(e)VE(e /1 w)du + o1) . (4.10)

If éo(u,w) = E(u) and £(x) =0, then h¥,, = o(1).

Proof: By Pi, P,, Ky, the continuity of ]~501 and Bochners Lemma (cf. Wheeden
& Zygmund, 1977, Ch. 9), (4.8) easily follows.
By (A.14) we have

Yo = 7s(gn @ gn) + A + A}, — B, — By,

where

1
5
with g, defined in (A.1) and A is expressed above. Again by Py, Py, Ky, the continuity
of I¢,1, and Bochner’s Lemma,

B = = (759 @ ®sgn) + Tsgn @ TsS - Gy

megn = 7ol o = p(0)ole) [ K (u)du+o(1)

The term 745 - gp, can be treated likewise and hence hB;, = o(1). Similarly, we have

hs(gn @ gn) = ps(x ]go®go /[ u)du + o(1)

and (4.9) follows.
By the multivariate extension of (A.6) and (A.9) we have that

EUgh = ﬂ—s(gh @ gh) + Ah + A/h - (1 ® :ugh) - (1 ® :ugh)/ — Mgy, ® Kgp -

If hA, = o(1), then by (4.8) and (4.9) it follows that

h¥u,, = ps(x)VE(x /[ u)du + o(1)

so that hY,, = hZUgh + o(1).

We can write
hAL = 7ol Tey @ by bn & G bk, & .

By K,, Theorem 2.1 with my = 1 and the local boundedness of j”&)”, we have
|vn]] < ¢ and it follows that ||hAL|| = O(1). If 50(:1;); 0, then sup||vn|| = o(1)
since sup,enr, (1 H&)H( ) = o(1) by the local continuity of &, and hence ||hAz|| = o(1).

Assume that P, and P5 are true. Then, since ]~||50||1 is locally bounded and since K,

holds, B
HGs,uh]B"thO(Z)H S Gs,y021/\/$(h)(2) - CZGS,U(ZaNl’(h)) .
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This gives
1AM < e [ muldy)Kan(y) [ Plysdz)€oly, |Gz, Mol h)

= [ Kt [ Plodolets: NGz Nt L.

and by the Cauchy Schwartz inequality,

<o [ntoest] Pt )

{/ P(y,dz) [GSW(Z,N@,(/@))] 2}l/zaly

1/2

= C4/ps(y)[(x,h(y){ﬂmp1(?J)}1/2{/P(?J,dz) [GS,U(Z7NJ;(}L)):|2} dy
= ¢ [ pole 4+ by K () {1 o h)}

{/P(:z; + hu, dz) [GS,U(Z,Nx(h))]Z}I/Qdu

and again by the Cauchy Schwartz inequality, Py, and the local boundedness of j”&)”z,

1/2

< 05{/p5(:1; + hu)K(u)/P(:L‘ + hu,dz) [GSW(Z,NQU(h))]Qdu}

and by Kj, Theorem 2.1 with mo = 1, and Py,

1/2
< 06{/ K(u) / P(a + hu, dz)Gw(z,Nx(h))du} (4.11)
At this stage we need the following fact:
/N S Po(a + hu, {a})du = 0, (4.12)
0 n=1

which follows from P4 since

0= m({z})
- /rs(dz)P”(z,{x})

> [ P )
= [ PP ()
(x 4+ hu)P"(x + hu, {x})hdu

P
Ny

n dnt (o)} [P b () )

Y

Let
6(z) = 12{516?571,(2,./\/90(/1)), ni(z) = Gs (2, No(h)) — 6(2) .
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Then by Ky and Theorem 2.1 with mg = 1, the functions 6 and n;, are bounded and

Yz lfibll%lnh(z) 10, 6(2) = i_o:(P —s@v)"(z{z}) < i_o: Pz, {x}). (4.13)

By (4.11) we get
1 An|? < C7/K(u)/P(:1; + huy dz)(nn(2) + 6(2))du .
By (4.12), (4.13), Ky and Ka,

/K(u)/P(:L‘ + hu,dz)6(z)du < 082 /No P"(x + hu,{x})du=0.

Let ¢ > 0 and Aj, = {n, > ¢} then by Ps, limy, o SUPyen, (n) £ (¥, Ar) = 0, which gives

IhA]> < ere+ of1)

where ¢; is independent of €. Hence ]LhAhH :~0(1). -
If o(u,w) = E(w) — P&(u) then & = 0, Igge 1(x) = VE(x) and &(x) = 0. Thus
(4.10) is true. The last statement of the theorem is trivial to prove. a

The next result is designed to take care of the edge effect due to the initial measure
as stated in Ry.

Lemma 4.3 Let g, (u,w) = &(u,w) K, 5 (u) where & € Gd. Assume Ky, Ky and that
Lig1 is locally bounded. Then |g)| < h='qo, where

P, (U, <00)=1,  golu,w) © |[&] (v, w){sup K }u, (u) . (4.14)

Proof: We have Uy, = 327_; go(X;, Xj31) and

By (Usy) = GouGo(y)s  Go(y) = 1an () - Tjeon1(y) -

Hence, using K, go 1s a special function, and by Theorem 2.1, GGy, go is bounded and

(4.14) holds. 0O

We are now in a position to state and prove the main results in this section. The
first two theorems give conditions for consistency, and the last two theorems deal with
weak convergence.

Theorem 4.1 Let € > 0. Assume Ki-K3 and Py, Py, Py and h' < nfl2=¢ or h, =
(To(ny where ¢t << n'/?=¢. Then p. is a strongly consistent estimator of po at the
point x.
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Proof: We have p(z) = T5'(n)S,(gn) with g, = K,,. By (4.8) and Lemma 4.1
with & = 1, Rz holds for all m > 1, Ry is fulfilled since &, in this condition approaches
1/2 when m T oco. By Lemma 4.2, Ko and Ks, g, = ps(z) + o(1). By Lemma 4.2
and Py, Ry is true. The condition R’ is implied by P;. We use & = 1 in Lemma
4.3 to verify Rg. We conclude that the conditions in Theorem 3.3 are fulfilled when
h,, is deterministic, and equally the conditions in Theorem 3.4 when the bandwidth is
stochastic.

O

Theorem 4.2 Let € > 0 and m > 2. Assume K;-Ks, Py, Py, Py, Pg, P||E|J*™ is locally
bounded and P&, Pl|E]| are locally continuous, h ' << n®*m=¢ with é,, = (m—2)/(2m—1)
or hy, = qro(my with ¢t << n®7¢ and §,, = (m —1)/(2m —1). Then P¢ is a strongly
consistent estimator of P& at the point x.

Proof: In this case we have ]55(:1;) = Tz '(n)S.(gn)/pc (z) with gn(u,w) =
E(w) Ky p(u). The previous theorem together with P4 guarantees that the denominator
converges almost surely to pc(z) > 0. Hence it is enough to consider the numerator.
By Lemma 4.2 with fg = Il = P¢ and Ks, py, = ps(x)PE(x) + o(1). By Lemma
4.1 moments of |g;| up to order 2m can be used and Rj holds. The condition Rg is
satisfied by Lemma 4.3 since ]~||5||1 = P|||| is assumed to be locally bounded. The rest
of the conditions in Theorem 3.3 and Theorem 3.4 are verified in a similar way as in the
previous theorem, and the numerator converges with probability one to pc(a)PE&(x).

O

Theorem 4.3 Let ¢ > 0. Assume Ky, Ky, Py, Py, Py- Pg and Ty. If b1 << nP~,
then
T () po(2) —pe ()~ (re(Kon,) —pe(2))} = N0, pele /A wydu) . (4.15)
Without the conditions Py and Ps we still have that
1 (m)och, {pe(@) — (7o (Kep,) = pele)) } = N(0,1) . (4.16)
where o¢y, s defined in Section 3.1 with ¢, = K, 5, and where
haéh = /pc z + hu) K*(u)du
—I—Z/pc (x 4 hu) R /PGSU (2 + hu, dy) K (h™' (y — x))}du +o(l). (4.17)

If K4 and Ps holds with order 2, then the bias term wc(Kyp,) — po(x) of (4.15) and
(4.16) is negligible if h;' > nf/5%e,

Proof: We need to verify the conditions of Theorem 3.2. We have {; = 1 which is
trivially bounded, and the support of ¢, = K, is a special set by K. The conditions
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in Lemma 4.1 are fulfilled for m > 1, and in particular Lemma 4.1 then implies that Ry
and Rj hold for m = 2 and v = 1. Moreover, the condition on the bandwidth means
that Rg is true with v = 1. The conditions R7 and Riq are implied by Pg and T;. By
Py and Ki, K,

fign] = tgn = TslKop < {sup ps(u /[& Ydu < oo
ueN ¢

which implies R). Since g, > 0, it follows by Remark 3.3 that R4 and Rjs are true. If
Ky, Ky and Py, P4 hold, then since A > 0, reasoning as above for y,,| by the proof of

Lemma 4.2 with & = 1, li_mhagzh > 0. Hence R; and Rg are true. By Lemma 4.3 with
& =1, Rg is true. Moreover, Rg, Rg imply Rg. The conditions in Theorem 3.2 are then
fulfilled and (4.16) is true.

The asymptotic expression for Uah given by (4.17) follows from Lemma A.l in
Appendix A and the first part of the proof of Lemma 4.2.

If also P, and P5 hold, by Lemma 4.2,

Tsgn = ps(e) +o(1)
hol = ps(a /[ w)du + o(1) . (4.18)

Thus (4.15) holds.

It remains to consider the bias term. By K, and P3
mo(Kap) = pole) = [(pee + hu) = po(e)) K (u)d
d - 2
- {%pc(x)h}/u[&(u)du +O(R?)
= O(Rr?).
Hence R} holds, and by Theorem 3.2 the bias term is negligible when h! > nf/5%e,

a

Theorem 4.4 Let € > 0 and ,(y) = P&(y) — P&(x). Assume Ky, Ky, Ky, Py, Po,
P4,Ps. Moreover, assume that PE, V& are locally continuous, VE(x) is positive definite
and P||£)|*™ is locally bounded for some m > 2. If h;' << nP~¢, then

{hnﬁjols’x,hn(Xt)}l/z{ﬁé(@ — P{(x) - M} —5 N(0, V() / K*(u)du) .

7'('5[(957;“1
(4.19)
If K4 and P3 hold with order 2 and P& possesses continuous derivatives of second
order, then the bias term wsby - Kyp, /75Ky, is negligible if h;l > pf/ote,

Proof: Denote the left hans side of (4.19) by A, ,. Since ]35(:1;) is a ratio, we get
some additional bias terms.
Let ppn = 7Ky hy pypn = 7'('5]]($7h77/)l,. Now,
E(Xe1) = {E( X)) — PE(X)} + (PE(XY) — PE(x)) + PE(x)
(X ) Ko (Xe) = gn( Xy, Xojr) + o X)) Ko n(Xo) 4 PE(2) Ko (Xe) (4.20)
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where gp(u, w) = (£(w) — P&(u)) K, n(uw). This gives

Pg(w) = PE(w) = STH(Kep){ Sulgn) + Sa(ve - Kan) - (4.21)
The last term on the right hand side represents the bias. It contains a stochastic

quantity, and we want to replace it by a deterministic bias term. Let ay dof ,u;}“ud,’h.

Then

P¢(x) = Pé(a) —an = S (Kep) {Sulgn) + Sulths - Kop) = anSu( Ko}

S (K ){ Sulgn) + Sulf) (4.22)
where
fo= (e —an) - Ky . (4.23)
We note that p,, =0 and py, = 0. Now, we can write
A =A%, + A2, (4.24)
where i
A= {pe(@)} IR S (91)

. -1/2_
Aln= {elo)} T RS (4.25)
and where (' is a purely auxiliary set chosen such that Ty holds. Then conditions are

fulfilled for the second part of Theorem 4.3 , and thus (4.16) and (4.17) imply
ﬁc(l') = WC[(x,hn + OP(l) . (426)
Hence po(x) — pc(x) in probability. The function f, can be written as
Fily) = (Pé(y) — P&(x) — an) - Koaly) -

The next step consists in applying Corollary 3.3 to f; in order to show that A?%h in
(4.24) can be neglected.
Since P¢ is locally continuous it follows that a;, = o(1) and

cup | PEy) — PEx) — anl] = of1) (.27
yEN ()

Moreover, f; and jfh@fh are locally continuous and special functions by Ky and 7, f;, = 0.

By Lemma A.1 (cf. A.12) we have that

it < Tl Fll? A 2w Dy PG || Full + Bt g,

and by local continuity of P¢, Ky, Py and the Lebesgue dominated convergence theorem,
Hilfall = /ps(x + hu)||[P{(x + hu) — PE()|| K (u)du + o(1) = o(1) .
By (4.27) and Ko,
sup G h||fill(2) < 1 sup Gl (2, No(R)) < e,
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and it follows that
hrs L s G | frll < captyypy = o(1)
bl full? < eafsup RIS Lol

<
< eapp = o(1) -

By Remark 3.3 we can infer that ||fy]| satisfies Ro, R}, R;. By Lemma 4.3 with
Eo(u,w) = P&(u) — Pé(x) — ayp, it follows that Rg is true for f. The conditions Ry
and Ry of Corollary 3.3 are trivially verified. Hence the conditions in this corollary are
true for each component of f;, and it follows from Lemma 3.1 and 3.2 that

T )28, (F) = 0,(1) (4.28)
Hence by (4.24), (4.25) and (4.28),

Appn = Ay, +o0p(1) (4.29)

It remains to verify that the conditions in Corollary 3.4 are fulfilled for A}%hn.
In the present case we have that g, (u, w) = &o(u, w) Ky p(u) with {(u, w) = €(w) —
P&(u). By Jensen’s inequality || PE||*™ < P||£]|*™ which gives that

Ljgopm 1 < 27 P|IE|P"
because
Tieger1(2) = [ Ple,dy)liéo(w )l
= E; |[l6(Xo, X0)|*" | Xo = 2]
E. [{lleCx)l| + I1PEXI )™ | Xo = o]
2L, (Il )2 | Xo = o] + B [| PECX0) ™ | Xo = 2]}
2Pl (@) + || PEJ () }

2 PE)P™ () + PlENP™ (2)
2" P||€)) > () -

IAIAIAIA

IA

Hence the conditions in Lemma 4.1 are fulfilled since the right hand side of the above
inequality is by assumption locally bounded. Thus ||g.|| satisfies Ro, R} and Ra (with
m=2and v =1).

Likewise, since P¢, P(£ @ ) are continuous at the point  and 50 = P{— PE=0,
the conditions in Lemma 4.2 are fulfilled. In particular (4.10) holds and

1S, = po(x)VE(r) / K2(u)du + of1) . (4.30)
Since Ay, > 0 for ||gx||, by Lemma 4.2 applied to ||gx|| we have that Ry holds for ||¢4||, and

by (4.30) it follows that (3.20) and (3.21) are fulfilled with X = pc(2)VE(z) [ K?(u)du.
Further, the conditions Ry - Rs are easily verified for ||gs||. We use Lemma 4.3 to verify
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Ry for ||gn||. By our choice of the set C', we have that Ty, Ry hold. Thus the conditions
in Corollary 3.4 hold and (4.19) follows.

The bias term is negligible if

775¢x : [(x,hn

— op(1).
T Ko, or(1)

(3 KX} n
t=0

Introducing the set C' as in (4.25), by P4 this is equivalent with

775¢x : [(x,hn

1/2
TC/ (n)h}%/z T K N

= OP(l) .

Assume that A7' > n%/°*¢. Then from Lemma 3.1 and Lemma 3.2
R Te(n) = o(1) as..
Hence it is enough to verify that

775¢x . [(ac,h

h—2
st(wﬁ

= 0(1).

Assume without loss of generality that d = 1. Then by a Taylor expansion we can write

ps(x + hu) = ps(x) + hRy(x, hu, h), sup sup |Ri(z,y,h)| < oo
h<1 yENG

and

d
Pé(x + hu) = P&(x) + hd—Pf(:L')u + h*Ro(x, hu, k), sup sup |Ry(x,y,h)| < oo .
T

h<1 yENy

This gives

mbalen = [ 7dy)(PEy) = PE()Kenly)
_ /ps(:zj + hu)(Pé(x + hu) — PE(x)) K (u)du
= po(e) [(PE( + hu) = PE) K (u)du
+ / huRy (2, hu, R)(PE(e + hu) — PE(2)) K (u)du

= ps(x)h%Pf(x)/u[&’(u)du—l—O(if)

d
+hPPE(a) / W2Ry (e, hu, WK (u)du + O(h?)

= O(hY) .

Hence the theorem is proved.
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Remark 4.2 Note that the set C' only plays an auxiliary role in the proof of Theorem
4.4. Actually, we might have used T'(n) instead of T:(n). This is in contradistinction to
Theorem 4.3, where C' is an essential part of the theorem and its proof. The convergence
rate in both theorems is (T(n)h)~Y% or equivalently (To(n)h)~"%, and it reduces to the
familiar rate (nh)~"% in the positive recurrent case. Some examples of Markov models
(both linear and nonlinear) satisfying the assumptions of Theorem 4.3 and Theorem 4.4
are given in Myklebust et al (1998a), where we also report on simulation experiments
checking the validity of the two theorems.
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A Appendix

In this appendix we derive an expression for ng and ¥, given by (2.76). We also give
formulae for higher order moments. We assume (2.4) and aperiodicity.

Lemma A.1 Let g € G,
gu(w) = [ v(d=)g(u, ) (A1)
and
Y0(9) = ms(9%) = 2pgms(592) + 1y - (A.2)
Then
o2 =0 + 2{m.I,Glnd — 12} . (A.3)

Proof: The notation 1s in accordance with Lemma 2.3 with initial measure v so that
Up has the same distribution as U7, and the process {Uy, k > 0} is stationary. We have
70 and 7, defined by (2.45). The variables Uy and U; are given by (2.71). We define

Zi = 9(X;, Xjn1), Z;=3(X;) .

Recall that p, = E, Uy = 759. Let A; = 1(Y; =0), Bj 4k = Hiif_l A, when £ > 1
and B;; =1, B; = By;. Then 1(7p > j) = B, is fj}/_l—measurable and

Uo=Y BiZ; . (A.4)
7=0

Let gi(x) = E.[1(Yy = DZ)|, vi(x) = B, |[1(Yo = )% - $32y Z] for | = 0,1 and
Y =1+ 1. By (A.4) and since B;Bji14k = B;AjBjt1,j41+k, We can write
U2 = S B, 722 +23 BAW,

i=0 i=0

def —
W; = 7 Z Bjtrjr14k9(Xjprpn, Xjpagr) - (A.5)

k=0
By (2.10), E(A;W; | ij v .7:}/_1) = 1o(X;) and using (A.5) we obtain

E,(UZ) = 79" + 2751 (A.6)
Let Uy = Y% Z; and Uy = ¢(Xry, Xrg11). Then Uy = Uy + Upy and Uy is inde-

pendent of U;. Representations for the variables are given below, where we have used

that 1(7o =) = Bj(l — Aj) and 1(11 > j + 1+ k, 70 = j) = Bj(1 — A;j) By 414k,

U01 - ZB]‘A]‘Z]‘
Uoz= > Bj(1 - A))Z;

U = > Bi(1=A) Y BiyijwienZiirn - (A7)

7=0 k=0
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This gives Ul = 302, Bj(1 — Aj))W; and by (2.10) E((1 — A)W; | F* v FL)) =
1(X;). Thus E,(Usy) = w590 and E,(UpxUy) = 751p1. Hence

E,(UoUy) = E(Un)E,(U1) + E,(UsUy)
= Tefo - TsqG + Tsty . (A.8)

Combining (A.6) and (A.8), and using (2.76) and the one-dependence of the process
{Uk, k> 1} we get

0'; = EU(Ug) —|— QEU(UoUl) - 3EU(U0)EU(U1)

= 71'5g2 + 27w stho 4 2751 + 2Tgo - TG — 3Wsq - Tsg
= {rg® —7lg} + 270 — 27,9 - {79 — 7sgo}

= Tyt — TG — 2T - TeSq, + 2T (A.9)
where we have used that ¢; = sg, with g, defined by (A.1) so that 7,9 — 7590 = 7s(sg, ).
From

Sa 00
Y. Zi =Y BiitiZin (A.10)
7=1 7=0
we obtain Ex{Zfil Zi | Fi¥v .7:3/} = (#5,,g(x) which gives with the aid of (2.10) that
() = B {g(Xo, X1)GouG(X1) ), 7ath = muly Gl (A.11)
O

If g(x,y) = g(x) then ¢, = ¢ since v(E) =1 and 75(¢1) = 7s(sg). The expression
for ng simplifies to

oy = 7s(9") = 7i(9) + 2 I, PGl g — 275(g)7s(s9) - (A.12)

g =

We note that if 7,(g) = 0 then o7 = 7,(¢g*) + 27,(«)) which is in accordance with
Nummelin(1984, p 139). However, his conditions are different since he assumes that
g € G and at the same time avoids mg = 1.

In the multivariate case we also need an expression for the asymptotic covariance
matrix. In order to have a compact notation we will use a d dimensional kernel. Recall
that

L(x,dy) = Pz, dy)g(z,y), g=(91,--..92) € Gy (A.13)
and note that if f = (f1,..., fs) € G% then ]~g @ f(u) is the matrix {];.fj(u), 1<4,5<
d}. Moreover, ]~g®g is defined by replacing ¢ in (A.13) with ¢ @ g. We also use the
standard Euclidian norm ||g|| = [20, ¢?(x, y)]"/2.

Lemma A.2 Suppose g € G then
X, :ﬂ's(g@g)—l—Ag—l—A;—Bg—B; (A.14)

where

~ - 1
A, =ml, @Gy, By = 5(71'59 @ Tsg) + Tsg @ TsS - Gy (A.15)
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Proof: Let g, = a’g where a € R?. By (2.77) it is enough to show that nga = aX,a.
We have 7,(¢2) = d'75(g @ g)a, jga = a’jg, ijga = a’GsJ,jg and
jga @ Gs,vﬁa - a/(jg & Gs,vg)a

with corresponding results for all parts of (A.14). Thus nga = a’'¥,a, and the lemma

follows by comparing to (A.9) and (A.11).

It is of interest to find expression of higher order moments of U. We start with the
following lemma which is well-known, but is stated for completeness.

Lemma A.3 Let {ay} be a real sequence and let A,,, = {{ = ({,...,(,) €
Ni: Yty =m} forr > 1. Then

{Zn: arf’ = >y (?) v (A.16)

k=0 r=14€Am,,

where (') = ([T'—; £;) 7 'm! and
¢ J=1"J

£ ¢
J?’L,T,f = Z a]i o a]:
0<j1<fa < <jr<n
n n—h1 n—hl— _hr—l
= . 4] . Ly
= > > S (A7)
h1=0 ho=1 hr=1

Proof: Let N7t = {a € Nt T8 ja; = m}, AL = {a € NJPU#{5: a; >
0} =r}and C, = {j: o; > 0}. Then, since N"*' = U™ A, . and (TZ) is a symmetric
function of (ag,...,a,)

{éak}m = 2 (Z)ago S

aeNnt!
m
m
— ag an
=3 s (M
r=1a€Al, .
m
m oy
=2 I o
al . !
r=1a€Al, . JEC

Let

ly(x,dy) = (P — s @v)(x,dy)g(z,y) (A.18)

then refering to the notation of the proof of Lemma A.1 we can write

o = 1,Genq, Wy =1, —1,)G,,5, ¢ =1,G,7 (A.19)
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and ~ ~
go=1,1, g =~ 1), go+g=11.

Our next result gives an exact description of an arbitrary central moment of U. This
is subsequently applied to give bounds of a given moment.

Theorem A.1 Let g € Gy and let Uy = 37, (X, Xj41). Let m > 1. Then

EUU.;H = Z Z (?) Z/Gsyl/]vgzl e GS,U]ngr—l Gs,ngzrl (AQO)

r=14EAm,r

in the notation of Lemma A.3. The right hand side of (A.20) is well-defined if it is
finite when Uy is replaced by Uy If g(x,y) = f(x)h(y), then I,=I;(P—s®@uv)l, and
(A.20) simplifies.

Remark A.1 When m = 2 we get
B, (U2) = mylpel + 27, 0,G, 1,1, (A.21)
which coincides with the right hand side of (A.6).
Proof: Since U, = 3772, B;g(X;, X;41), we can apply Lemma A.3 with a; =

B;g(X;,X;+1) and n = co. We can apply this lemma with n = oo since we assume
that I(U),) is finite and therefore

ZBJ|9|(Xj7Xj+1)) < 00 a.s.
7=0

Let 7 < m, { € A,., be fixed and let ¢*(z,y) = ¢"(z,y), 7z = g°(X;, Xj41), for
s=1,...,r. Define J, = J, g for k=1,...,r,

o0 o0 o0
def r—k+1 r
Ji = Z Z Z Byt 2, Ly bt ety

h1=0 hy=1 hp=1
= 3 B, A, Zp7H WY when k> 2, (A.22)
h1=0

where according to the above 77! = gr—k+1(X; X, ;) and where

k—1) def = = = r— 7
WS S ST Bryuthot st Zot L g - (A.23)

ho=0 hy=1 hp=1
Let

br(x) & exdr, k=1,....r
ot [ Erg"(Xo, X1), when k =1

def
¢k($> o { ElsAo gT_k-I—l (Xo, X1)¢k_1(X1), when k = 2, e, T (A24)



By calculation we find that

I1, if k=1,
Yk =19 :
]gr—k+1¢k_11, k= 2,...,7“.

From (A.23) and (A.24) we get
B{WS VN FE GV FL Y = e (Xi), k=2,
and by (A.22), (A.26) we obtain
bp = Gopthy, k=1,....m,
which gives by (A.25)

. {1}1, if k=1;
k:

jgr—k+1 G57l,77/)k_1, k= 2, R
and

EU(JT) = 1/¢7’ = VGS,U¢7’ = 7T577Z)7’ .
The equation (A.25) is of the form

- ~ def ¥ .
¢k :[Xr—k+177bk—17 kZQ,...,T, []‘ = g]GSJ,, ] = 1,...,7“—1

hence

Y, = Ki1Ky -+ K, 1y
G TaGay e TGy Tl
The proof is finished by (A.29) and (A.30) and by Lemma A.3 since

BU =% % (Z‘) Eydrp

r=14EAm,r

Corollary A.1 If ~ ~
sup Gy, Lig|1 + sup G, [jgm1 < o0

33

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

then E, U is finite. The assumption (A.31) holds if]~|g|1 and j|g|m1 are special functions

or if g is a bounded special function.

Proof: Note that 0 < j|g| < j|g| and using the simple inequality |g]’ < |g|+ |g]™, 1 <
J < m, it follows from (A.31) that both sup G57l,]~|g|k and sup G57l,]v|g|k1 < oo are finite

fork=1,...,m.
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Let the notation be as in the proof of Theorem A.1 and let ¢ denote an upper bound
for the left hand side of (A.31). Then for
77Z)7° = j|g|f1 Gs,u e Gs,y]v|g|fr—1 Gs,uﬂgvrl

we have
7T577Z)7’ S C- 7T577Z)7’—1 S c .

By (A.29) and Theorem A.l the first part is established. If ¢ is bounded and special
then by Theorem 2.1

sup Gwﬂgpl < {sup |g|} 7! sup G57Uj|g|1 <oo, j=1,...,m

and (A.31) is fulfilled. The same is true if ]~|g|1 and ]~|g|m1 are special functions.
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B Appendix

A very brief summary of the properties of D?[0, c0), the space of all R%-valued functions
defined on Ry which have left limits and are right continuous (cadlag), is given below.
We refer to Jacod & Shiryaev(1987, p 288-322) for a complete description of this space,
and the concept of weak convergence of stochastic processes with sample paths herein.

The topology of D4[0,0c) is defined by the Skorokhod .J;-metric which may be
described in the following way. A time change X is a strictly increasing continuous
bijection of B, . A sequence {z,} € D?[0,00) converges to x if and only if there exists
a sequence of time changes {\,} so that both {z, o A\,} and {)\,} converges locally
uniformly (uniformly on compact sets) towards x and A(t) = ¢. If # happens to be
continuous, then convergence of {z,} to z is locally uniform convergence without any
time changes. The space D?[0, 00) with the J;-metric is a Polish space (separable and
complete). The o-field induced by the projection maps coincides with the Borel o-
field induced by the Ji-metric. This means that if £ = {{(¢), t € R} } is a collection of
random vectors in B¢ defined on some common probability space, and each sample path
is cadlag, then ¢ is stochastic process with values in D?[0,00). If {£,} is a sequence

c
Do, 00) ¢

of stochastic processes with values in D?[0, c0) then &, if the corresponding

sequence of induced measures converges weakly to P, where P:(-) = P({ € -). We have
finite dimensional convergence if for each finite set F' C [0,00), the vector sequence
{&.(1), t € F'} converges in distribution to the vector {£(), t € F'}. The sequence {£,}
is C-tight if {£,} is tight and all limits points of {P,} charges only ([0, c0), the space
of all continuous R¥-valued functions, i.e., P,(C?[0,00)) = 1 for all n. In particular, if
¢, converges weakly to a ¢, which has continuous sample paths, then {£,} is C-tight.

The inverse of a function f is denoted by f(=Y). For x € D[0, 00) and x increasing,
we define 2(=V(¢) = inf{s: 2(s) > t}. If x is strictly increasing, then (=) is continuous
and nondecreasing.

Theorem B.1 For each n let (B,, A,) be a pair of stochastic processes which are cad-
lag, where A, is non-negative and nondecreasing. Let B denote a Brownian motion
defined fort € Ry and let A denote a strictly increasing non-negative process with in-

£D[0,00
dependent increments, A(0) = 0 and with no fized jumps. Assume that B, o p

and A, E%) A. Then

£ 30<>o
(B, Ay ATD) 257 (B A, ARY) (B.1)

n

where B is independent of (A, ACY) and

L 210,00
(ACD B, o ACDY TR (4D B o A (B.2)

n

For all e >0
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where . (x) = 2220 (x <€) + 1(x > €). If we let . = 1 and put 0/0 equal to 0
then still finite dimensional convergence holds. In this case we have for each fived t that
the limit vector is distributed as (ACV(t), Z) where 7 is a standard normal variable

independent of AV (1).

Proof: By assumption {B,} is C-tight and {A,} is tight. Hence {(B,, A,)}is tight
(cf. Jacod & Shiryaev, 1987, Cor. 3.33, p. 317). If (B, A’) is a limit point for this

sequence, then necessarily B’ 4 Band A’ 2 A. But since A is strictly increasing, B’

and A’ are independent (cf. Kasahara, 1984). Hence (B’, A") = (B, A).

The map given by a — a{=") is continuous when a € C & {: x is strictly increasing}.
By the continuous mapping theorem we find that A=Y converges weakly to A=Y since
A€ C. Now, {(A=D]A,)} is tight since {AC-D} is C-tight and {A,} is tight. Again by
the same argument it follows that {(B,, ALY, A,)} is tight which implies (B.1). The
map (b, ) — box is continuous at all points where b is continuous and « is non-negative.
Again, by the continuous mapping theorem we can conclude that (B.2) is true. The
reasoning is similar for (B.3) where the function . guards against a discontinuity at

zero. By Jacod & Shiryaev(1987, Prp. 3.14, p. 313) we have that (B.3) implies finite
dimensional convergence when . is not present. Let £(t) = B(AD(1))//ACD(1).
Since B(s)/\/s ~ Z for all s > 0, and since B and A" are independent, we have that

E(t) ~ Z for all t > 0.
O
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