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Abstract

We develop a nonparametric estimation theory in a non�

stationary environment� more precisely in the framework of

null recurrent Markov chains� An essential tool is the split

chain� which makes it possible to decompose the times series

under consideration in independent and identical parts� A

tail condition on the distribution of the recurrence time is

introduced� This condition makes it possible to prove weak

convergence results for series of functions of the process de�

pending on a smoothing parameter� These limit results are

subsequently used to obtain consistency and asymptotic nor�

mality for local density estimators and for estimators of the

conditional mean and the conditional variance� In contra�

distinction to the parametric case� the convergence rate is

slower than in the stationary case� and it is directly linked

to the tail behaviour of the recurrence time�
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�

� Introduction

Work on nonparametric estimation has so far with very few exceptions been carried
out in a stationary strongly mixing framework �see e�g� Robinson
 ����
 Masry and
Tj�stheim
 ����
 and references therein�� Recently asymptotics for processes with long
range dependence have been covered �Robinson
 �����
 but still no systematic theory
exists for a nonstationary situation�

The main purpose of this paper is to try to �ll this gap by establishing a nonpara�
metric estimation theory that can be used in a nonstationary environment� Clearly the
collection of all nonstationary processes is much too wide
 but in our opinion an appro�
priate framework for working with such problems is the class of null recurrent Markov
chains
 or possibly regime models including null recurrent states� It is true that this
requires the model to be stated as a Markov chain
 but this is a mild restriction� The
random walk model and many of the related unit�root processes belong to this class
�Myklebust et al
 ����a�
 and
 more importantly
 nonlinear processes are not excluded�

With the single exception of the work by Yakowitz ������ on consistency of nearest
neighbour estimates
 as far as we know
 the estimation theory of null recurrent pro�
cesses has been con�ned to the parametric case� Asymptotics of parametric �usually
non�time series� models have been treated by H�pfner ����

 ���	�
 H�pfner et al
����
�
 Kasahara �����
 ���	
 �����
 Touati ����
�
 and we will exploit some of their
techniques� For two early contributions in this �eld we refer to Darling � Kac ������
and Kallianpur � Robbins ����	�� However
 there are important di�erences between
the parametric and nonparametric situations� A parametric estimate is strongly in�u�
enced by the large values of the process
 and for unit�root processes super�e�ciency is
obtained with a faster rate of convergence than in the stationary case� In contradistinc�
tion
 a nonparametric estimator depends heavily on observations which are con�ned to
a neighbourhood of a given point
 and the rate of convergence turns out
 not unexpec�
tedly
 to be slower than in the stationary case� This means that series with large or
very large sample sizes are required�

Long series are becoming increasingly available
 e�g� in �nance and econometrics�
There is therefore also a practical motivation behind our work� The particulars of
this motivation are much the same as for the stationary case� it is desirable to have
greater �exibility in the initial stage of modelling than that o�ered by a �xed parametric
or semiparametric model
 for example using nonparametric estimates as a guide in
choosing a parametric �linear or nonlinear� model� Since the present paper is directed
towards establishing a theory
 speci�c practical aspects are not discussed
 and we refer
to Myklebust et al �����a� for some examples and details on practical implementations�
We would like to mention very brie�y potential implications for econometric time series
modelling
 though
 since such series are often thought to be nonstationary� The kind
of nonstationarity that has been built into the parametric econometric modelling has
overwhelming been of linear unit�root type leading to ARIMA models and
 in the
multivariate case
 to linear cointegration models� For such models a very considerable
body of literature exists �cf� the review papers by Stock
 ���	
 Watson
 ���	 and
the book by Johansen
 ������ Asymptotic distributions are typically non�normal and
the parameter estimates are super�e�cient �Dickey � Fuller
 ����
 Johansen
 ������



	 � INTRODUCTION

The need for models combining features of nonlinearity and nonstationarity has been
emphasized �see e�g� Granger and Hallman
 ����
 Granger
 ����
 Aparicio � Escribano

�����
 but once more no systematic estimation theory exists� Again
 we believe that
the class of null recurrent processes constitutes an adequate framework for posing such
problems� The technique used in this paper is general
 and although we focus on
nonparametric estimation
 it is in principle possible to develop an analogous theory
covering nonlinear and nonstationary parametric time series models� Finally
 it should
be mentioned that there are challenging and interesting connections to attempts having
been made to construct a nonlinear cointegration theory� We look at some of these in
Myklebust et al �����a��

There are a number of open problems and possibilities for further research� These
are related to exploratory problems such as those examined by Tj�stheim and Auestad
����	�
 Masry and Tj�stheim ������ and Hjellvik et al ������
 but there are also many
hard problems connected with the basic estimation theory itself� A few of the latter
ones are looked at in Myklebust et al �����b��

Since our paper draws quite heavily on Markov theory for recurrent chains
 we start
in Section � by stating some main facts stemming from that theory� Much of the
material is based on the book by Nummelin ����	�
 but since
 to our knowledge
 it has
not been utilized before in the context of nonparametric estimation
 it has been included
to make the paper more self�contained� In fact
 we consider the merger of the recurrence
theory of Markov chains � in particular use of the split chain � and the asymptotic theory
of sums depending on a smoothing parameter to be a main contribution of the paper�
This synthesis is achieved in Section �� Applications to nonparametric estimation of an
invariant density and conditional mean�variance functions are given in Section 	
 where
we derive consistency and asymptotic normality of these estimates in a null recurrent
situation� Some details of the technical derivations are relegated to two appendices�



�

� Markov theory

��� Notation

We adopt the notation used by Nummelin ����	�� We denote by fXt� t � �g a ��
irreducible Markov chain on a general state space �E� E� with transition probability P �
The sigma algebra of measurable sets
 E
 is countably generated and we assume that �
is maximal in the sense that if �� is another irreducible measure then �� is absolutely
continuous with respect to �� We denote the class of non�negative measurable functions
with ��positive support by E�� For a setA � E we writeA � E� if the indicator function
�A � E�� The chain is Harris recurrent if for all A � E�

P�SA �� j X� � x� � � where� SA � minfn � ��Xn � Ag � �����

In the following fXt� t � �g will always be assumed to be ��irreducible Harris recurrent�
The chain is positive recurrent if there exists an initial probability measure such that
fXt� t � �g is strictly stationary
 and the process is null recurrent otherwise�

If � is a non�negative measurable function and � is a measure
 then the kernel ���
is de�ned by

� � ��x�A� � ��x���A�� �x�A� � �E� E� �
If K is a general kernel
 the function K�
 the measure �K and the number �� are
de�ned by

K��x� �
Z
K�x� dy���y�� �K�A� �

Z
��dx�K�x�A�� �� �

Z
��dx���x� �

Sometimes we write ���� instead of ��� The convolution of two kernelsK� and K� gives
another kernel de�ned by

K�K��x�A� �
Z
K��x� dy�K��y�A� �

Due to associative laws the number �K�K�� is uniquely de�ned� If A � E and �A
is the corresponding indicator variable
 then K�A�x� � K�x�A�� The kernel I� is
de�ned by I��x�A� � ��x��A�x� �and I��x� dy� � ��x��x�dy� where �x is the Dirac
Delta measure at the point x�� We abbreviate the identity function �E by �� We let
Gdr � ff � �Er� Er� �� �Rd�B�Rd�g where B�Rd� is the class of Borel sets on Rd� If
r � � or d � �
 we drop the subscript or superscript�

We de�ne a � � E� to be small if there exists a measure �
 a positive constant b
and an integer m � � so that

Pm � b� � � � �����

If � satis�es ����� for some �
 b and m
 then � is a small measure�



� � MARKOV THEORY

��� Basic conditions and the split chain

A fundamental fact for ��irreducible Markov chains is the existence of a minorization
inequality �Nummelin ���	
 Th� ��� and Prp� ���
 pp� ������� there exists a small
function s
 a probability measure � and an integer m� � � so that

Pm� � s� � � �����

It creates some technical di�culties to have m� 	 �
 and it is not a severe restriction
to assume m� � �� Therefore
 unless otherwise is stated
 in the sequel we assume that
the minorization inequality

P � s� � �����

holds
 where s and � are small and ��E� � �� In particular
 this implies that � �
s�x� � �� x � E� If ���	� holds
 then the pair �s� �� is called an atom �for P��

We illustrate what the minorization inequality means in the case of a nonlinear
autoregressive process�

Example ��� Assume that

Xt �
�
X�� when t � ��
f�Xt��� 	 Zt� when t � �

where fZt� t � �g are iid random variables with zero mean and with density 
 with
respect to the Lebesgue measure on E � R� Assume that the function f is bounded on
compact sets and infx�C 
�x� is strictly positive for all compact sets C� The transition
probability is given by

P �x� dy� � p����y j x�dy def
� 
�y � f�x��dy

and the n step transition function is P n�x� dy� � p�n��y j x�dy where

p�n��y j x� �
Z
p�n����y j u�
�u� f�x��du� n � � � ���
�

Let C be a compact set with positive Lebesgue measure� De�ne ���y� � infx�C 
�y �
f�x��� a �

R
���y�dy� � � a����� s � a�C � Then

P �x� dy� � �C�x����y�dy
� s�x���dy�

where ��dy� � ��y�dy and ��E� � �� Thus ���	� is satis�ed �

In the nonparametric estimation theory an important role will be played by the split
chain
 which can be constructed once the minorization condition is ful�lled� It permits
splitting the chain into separate and identical parts which are building blocks in the
subsequent analysis�

We introduce an auxiliary chain fYtg
 where Yt can only take the values 
 and ��
The split chain
 fXt� Yt� t � �g is de�ned on an extension of the basic probability space



��� Basic conditions and the split chain �

so that � � E 	 f�g is a proper atom� The simplest description of this construction
is given by an algorithm� Let eE � E 	 f�� �g and eE the corresponding extension of E�
De�ne

�y�x� � s�x�y 	 �� � s�x����� y� �
�
s�x�� y � ��
�� s�x�� y � �

�����

with s as in ���	�� For each �xed y � f�� �g
 �y is a function de�ned on E� For an

arbitrary measure � and an arbitrary function f 
 de�ned on �E� E� let e� and ef denote
the extension to � eE� eE� given by

ef �x� y� � f�x��y�x��e��dx� fyg� � ��dx��y�x� �

Let

Q�x�A� �
�
�� s�x�

����
P �x�A�� s�x���A�

�
��s�x� � �� 	 �A�x���s�x� � ��

and

�y�x�A� � ��A�y 	Q�x�A���� y� �
�
��A�� y � ��
Q�x�A�� y � ��

���
�

By ���	� the kernel �y is a probability kernel on �E� E� for each �xed y�

Let � denote an arbitrary initial distribution on E 
 let FY
�� be the trivial sigma

algebra and de�ne f�Xt� Yt�� t � �g by

P�X� � A� � ��A��
P�Yt � y j FX

t 
 FY
t��� � �y�Xt�� t � ��

P�Xt � A j FX
t�� 
 FY

t��� � �Yt���Xt��� A�� t � �� �����

where FX
t and FY

t are the 
�algebras generated by fXj� j � tg and fYj � j � tg�
We observe that the distribution of f�Xn� Yn�� n � �g is determined by �
 P and
�s� �� � We use IP� as generic symbol for the distribution of the Markov chain with
initial distribution �
 and the corresponding expectation is denoted by IE�� If the actual
expressions involved are independent of �
 then we may drop the subscript�

Lemma ��� The split chain de�ned by ����� is a Markov chain with state space eE�
initial distribution e� and transition probability function eP given by

eP��x�� y��� �dx� fyg�� � �y��x�� dx��y�x� � �����

The set � � E 	f�g is a proper atom for this chain� i�e�� eP ��x� y�� �� is independent of
�x� y� when �x� y� � �� The X� marginal process of the compound chain has the same
properties as the original chain� moreover

IP�Xt � A j FX
t�� 
 FY

t��� � P �Xt��� A� � ������

Proof� See Nummelin ����	
 p� �� and Th�	��
 p� ����



� � MARKOV THEORY

The compound chain is e��irreducible
 aperiodic and Harris recurrent �cf� Nummelin

���	
 Ch� 	�	��

The distribution of f�Xt� Yt�� t � �g given by ����� can be written

IPe��X� � dx�� Y� � y��X� � dx�� Y� � y�� � � � �Xk � dxk� Yk � yk� � � ��

� e��dx�� fy�g��y��x�� dx���y��x�� � � � �yk���xk��� dxk��yk �xk� � � � � ������

We simplify the notation and write IP� to denote this distribution� If � � �x we write
IPx which is the conditional distribution of �Y�� f�Xt� Yt�� t � �g� given that X� � x�

If the initial distribution is equal to ���x� y�
 i�e� Y� � �� X� � x arbitrary
 then

IP��X� � dx�� Y� � y�� � � � �Xk � dxk� Yk � yk� � � ��

� ��dx���y��x�� �y��x�� dx���y��x�� � � � �yk���xk��� dxk��yk�xk� � � �
� IP��X� � dx�� Y� � y��X� � dx�� Y� � y�� � � � �Xk � dxk��� Yk � yk��� � � ���������

Let 
 be a non�negative measurable function de�ned on �E 	 f�� �g��� Then by ������

IE�

h

�X�� Y�� � � ��

i
� IE�

h

�X�� Y�� � � ��

i
� IE��
� � ������

��� The invariant measure

In a general null recurrent chain fXtg no marginal distribution function exists that can
be estimated nonparametrically� There is a generalization of the distribution function
in the invariant measure
 however�

Let � � �� � minfn � �� Yn � �g and S� � minfn � �� Yn � �g� Since
fS� � ng � f�n��j�� �Yj � ��� Yn � �g and f� � ng � fS� � ng � fY� � �g
 it follows
from ������ �cf� Nummelin ���	
 p� ��� that

IPx�� � n� � �P � s� ��ns�x�� n � ��
IP��S� � n� � ��P � s� ��n��s� n � � � ������

De�ne �s by

�s�A� � �s�A � IE�

h S�X
n��

�A�Xn�
i
� A � E � ����
�

Then by ����	�
 ����� and ������

�s�A� �
�X
n��

IE�

h
�A�Xn���S� � n�

i
�

�X
n��

��P � s� ��n���A

� �Gs���A ������

where



��� The invariant measure �

Gs��
def
�

�X
n��

�P � s� ��n � ����
�

This means that �s � �Gs�� and by ����	� �s�s� � IP��S� � ��� Since the split chain
is Harris recurrent


Gs��s�x� � IPx�� ��� � � � ������

Thus �s�s� � �� From ������ we get

Gs�� � I 	Gs��P �Gs��s� � ������

which implies that �s � �sP � Thus �s is an invariant measure� The results stated below
can be found in Nummelin ����	��

Remark ��� If � is another invariant measure then � � ��s��s �p� ���� The invariant
measure �s is equivalent to �� �s�C� � � for all small sets C and it is 
��nite �Prp�
����� p� �	��

The chain is positive recurrent if and only if �s�E � � �p� �
�� In the positive

recurrent case �
def
� �s��s�E is the unique stationary probability measure for fXtg� In

the latter situation� when the initial distribution of X� is given by �� fXtg will evolve
as a strictly stationary process having � as its marginal distribution�

Remark ��� It is seen from ������ that fXtg is positive recurrent if and only if IE�S� �
��

It is seen from Remark ��� that although the representation of �s given by ������
does depend of the atom �s� ��
 the measure �s itself is independent of � and only
depends on s through a constant�

We may extend � to the compound chain by e�s�dx� fyg� def
� �s�dx��y�x�
 and we

have e� � e� eP �

Suppose that the original chain has a proper atom �� Let s � �� and � � P� �
P ��� ��� Then P �x� dy� � ���x�P �x� dy� � s�x���dy�� Hence ���	� is satis�ed and all
the formulae in this sub�section are still true if we de�ne the auxiliary process fYtg by
Yt � ���Xt�� It is common to denote Gs�� by G� in this case�

����� A more general split chain

If m� 	 � in �����
 then the m��step chain fXtm�g satis�es ���	� with transition prob�
ability Pm� and �s� �� is an atom for this chain� The corresponding de�nitions of Gs��

and �s are given by

Gm��s�� �
�X
t��

�Pm� � s� ��t� �s � �Gm��s�� � ������



�
 � MARKOV THEORY

But �s is still the unique invariant measure for the original chain which satis�es �s�s� �
��

��� Notation for functions in several variables

It is necessary to extend the notation of the preceding sub�sections to functions of
several variables� All integrals involved will be assumed to be well�de�ned�

Recall that for g � G�
 �s�g� � R
�s�dx�g�x� and �cf� ������ and �������

Gs��g�x� �
Z
Gs�� �x� dy�g�y� � IEx

h �X
n��

g�Xn�
i
�

We introduce a useful transformation from Gr to G��

De�nition ��� Let r � �� and let g � Gr� For r � � and r � � we de�ne eIg�x� dy���� �
P �x� dy�g�x� and eIg�x� dy���� � P �x� dy�g�x� y�� respectively� For r 	 � let

eIg�x� dy��r� � Z
P �x� dx�� � � � P �xr��� dy�g�x� x�� � � � � xr��� y� ������

where the integration is with respect to x�� � � � � xr�� and whenever the right hand side is
well�de�ned� Furthermore� de�ne eg � eIg� � ������

Since Gr�� 
 Gr for g � Gr��
 when r � � we can write eIg�x� dy��r� � eIg�x� dy��r �
��P � An interpretation of eg is given by

IEx

h
g�X��X�� � � � �Xr���

i
� eIg��x� � eg�x� ������

and

IEx

h �X
j��

g�Xj �Xj��� � � � �Xj�r���
i
� Gs�� eg�x� ������

which is easily veri�ed �cf� ������ and �������� The right hand sides of ������ and ����	�
can be seen as convenient and compact ways of writing the conditional expectations on
the left hand side� In the following we omit r in eIg�x� dy��r��

If g � G � G� then eIg � IgP and eg � IgP� � g� In order to reduce the notation
further we extend �s to ��r��Gr by

�sg
def
� �seg �

Z
�s�dx��P �x�� dx�� � � � P �xr��� dxr�g�x�� � � � � xr�� g � Gr � ����
�

We also extend the Lp spaces generated by �s


Lp
r��s�

def
�
n
g � Gr� kgkpp��s def

� �s eIjgjp� ��
o
� p � ������ r � � � ������

If we de�ne e�s�r�dx�� � � � � dxr� � �s�dx��P �x�� dx�� � � � P �xr��� dxr�
 then Lp
r��s� �

Lp�e�s�r��
All of the notation in this sub�section is trivially extended to Gdr �
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��� Regularity concepts

We wish to formulate the regularity conditions to be stated in Section � and 	 in terms
of standard Markov chain concepts
 and we therefore include the de�nition of a special
function and the concept of a f �regular measure� Theorem ��� will be used repeatedly
in Section ��

De�nition ��� Let f be a non�negative measurable function� de�ned on E� which is
�s�integrable� The kernels fVA� A � E�g are de�ned by

VAf�x� � IEx

h SAX
n��

f�Xn�
i
�

where SA � minfn � �� Xn � Ag� Let � be a �nite measure on E and g � L�
r��s��

The measure � is g�regular if eIjgj� is ��integrable and �VA eIjgj� is �nite for all A� The

function g is special if g � Lr��s��L�
r��s�� sup

eIjgj� is �nite and supVA eIjgj� is �nite for
all A� The set D � E� is a special set if �D is a special function�

To indicate that the restrictionm� � � in ����� can be relaxed we state the following
theorem for a general m�� In this paper it will only be used with m� � �
 however�

Theorem ��� �Nummelin ���	
 Prp� ����
 p� �
�� Assume that fXtg is aperiodic� Let
g � L�

r��s� and �m� � I	P 	 � � � 	Pm���� A �nite measure � is g�regular if and only
if �Gm��s���m�

eIjgj� is �nite� Assume that sup eIjgj� is �nite and g � Lr��s� � L�
r��s��

Then g is a special function if and only if supGm� �s���m�
eIjgj� is �nite� In particular�

for r � � all small functions are special�

Remark ��� Nummelin ���

� only treats r � �� but since eIjgj� is a non negative
function in one variable� the extension of the theorem to r 	 � is trivial� However� the
condition that sup eIjgj� is �nite is in general a weaker condition than sup jgj �� when

r 	 �� In particular� even if g satis�es that sup eIjgj� and �sjgj are �nite� higher order
moments of jgj with respect to �s�x��P �x�� dx�� � � � P �xr��� dxr��� may not be �nite�

��� ��null recurrence and tail behaviour of recurrence times

To carry asymptotic theory through we need a regularity condition for the tail behaviour
of the distribution of the recurrence time S�� Since this condition is crucial for most of
what we are doing
 we introduce it in a rather general way and then specialize to the
case when ���	� holds�
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A positive function L de�ned on �a���
 where a � �
 is slowly varying at in�nity
�Bingham et� al� ����
 p� �� if

lim
x��

L��x�

L�x�
� � for all � 	 � and for all x � �a��� � ����
�

De�nition ��� The Markov chain fXtg is ��null recurrent if there exists a small non�
negative function h� an initial measure �� a constant � � ��� �� and a slowly varying
function Lh so that

IE�

h nX
t��

h�Xt�
i
� �

��� 	 ��
n�Lh�n� ������

as n���

Remark ��� If L and L� are two slowly varying functions at in�nity� then they are said
to be equivalent if limx�� L�x��L��x� � �� In all of our application of slowly varying
functions they are only unique up to equivalence� Hence� when ������ is true� without
any loss of generality we assume that Lh is normalized �Bingham et� al� � ��
�� pp
��� 	
�� i�e�� the function x�Lh�x� is strictly increasing and continuous in the interval
�x���� for some x��

Let

G�n� �
nX
t��

P t � ������

The left hand side of ������ can be written as �G�n�h� We �rst prove that for a �xed
parameter � ������ is actually a global property shared by all non�negative special
functions�

Lemma ��� Assume that fXtg is ��null recurrent and aperiodic� Let �s� �� be a �xed
atom� Then we can �nd an Ls so that for all special functions f the asymptotic relation
������ holds with Lf � �s�f�Ls where �s is de�ned by ����
��

Proof� Let � and h be given by De�nition ��� and the atom �s� �� be �xed� Let

Ls
def
�

Lh

�sh
� ������

Using a null recurrent ratio limit theorem �Nummelin
 ���	
 Cor� ����i�
 p� ���� and
������


�G�n�h

�G�n�s
� �s�h��� 	 o���� � ������

Using ������ again and the above expression
 it follows that

�G�n�s � �

��� 	 ��
n�Ls�n� � ������



��� �	null recurrence and tail behaviour of recurrence times ��

Let f be a given special function� Then by ������ with f instead of h and by ������ it
follows that

�G�n�f � �

��� 	 ��
n��s�f�Ls�n� � ������

�

Remark ��� If the atom �s� �� in ���	� is changed to �s�� ��� then �cf� Remark ��� �

�s� �
�s

�s�s��
� Ls� � �s�s

��Ls � ������

The asymptotic expression ������ is closely connected to the Tauberian theorem
�Feller
 ����
 p� 		���

Let fdn� n � �g be any non�negative sequence and let d�r� �
P�

n�� r
ndn be �nite

when jrj is less than one� Moreover� let L� be slowly varying and � � ������ Then

nX
k��

dk � �

��� 	 ��
n�L��n��� d�r� � ��� r���L�

� �

�� r

�
����
�

when n�� and r � ��� respectively� If fdng is monotone and � 	 �� then each of the
conditions given by ������ is equivalent with

dn � n���

����
L��n� � ������

If ���	� is true
 the Tauberian theorem can be used to show that then the concept of
��null recurrence implies a regularity condition for the tail behaviour of the distribution
of the recurrence time S��

Theorem ��� Assume ���	� is true� Then fXtg is ��null recurrent if and only if

IP��S� 	 n� �
�

��� � ��n�Ls�n�

�
� 	 o���

�
� ����
�

Remark ��	 If ������ is true� then it is not di�cult to show that

supfp � �� IE�S
p
� ��g � � �

Thus� even though IE�S� �� for a null recurrent process� if ���	� and ������ hold� then
IE�S

p
� is �nite for p small enough� For an ordinary random walk � � ��� �Kallianpur

and Robbins� ���
� and hence IE�S
p
� � � for � � p � ���� Some other examples of

��null recurrent processes are given in Myklebust et al ����
a��
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Proof of Theorem ���� Let G�r� �
P�

k�� r
kP k and Gs�� �r� �

P�
k�� r

k�P � s � ��k�
Then by ������ and ������ �with � � � and L� � Ls�
 ��null recurrence is equivalent
with

�G�r�s � ��� r���Ls

� �

�� r

�
� ������

We have Bn
def
� IP��S� 	 n� � ��P � s���n�� If ������ holds
 then by ������ and ������

�with � � �� � and L� � L� � ��Ls�

B�r�
def
�

�X
k��

rkBk � �Gs���r�� � �� � r����L�

� �

� � r

�
� ������

Let bn � IP��S� � n�
 wn � IP��Yn � �� for n � � and b� � �
 w�
def
� � and de�ne the

corresponding generating functions w�r� and b�r�� By a �rst entrance decomposition

wn � IP��Yn � �� S� � n� 	
n��X
k��

IP��Yn�k � ��IP��S� � k�

�
nX

k��

wn�kbk� n � � ������

which shows that fwng is an undelayed renewal sequence corresponding to the increment
sequence fbng� By ���	
� we get w�r� � � 	 w�r�b�r�� Since bn � Bn�� � Bn when
n � �
 we �nd that b�r� � � �B�r��� � r�� Hence

w�r� �
�

B�r���� r�
� ������

By ����� and ������ we �nd that wn � IP��Yn � �� � IE�

h
s�Xn���

i
� �P n��s when

n � �� This gives
w�r� � � 	 r

h
�G�r�s

i
� ������

Combining ���	�� and ���	�� we �nally obtain

� 	 r
h
�G�r�s

i
�

�

��Gs���r����� � r�
�

This identity in conjunction with ������ and ������ show the equivalence� �

��� Weak limits for the number of regenerations

We assume aperiodicity and that ���	� and ������ hold in this section� We also assume
that Ls is normalized in the ��null case which implies that the function

u�z�
def
� z�Ls�z�� z � R� ������

is strictly increasing in the interval �z���� for some z�� Let

v�z� � u�����z� � inffs� u�s� 	 zg �
Then v�u�z�� � u�v�z�� � z for all z � �z�����



��� Weak limits for the number of regenerations ��

A weak limit result can be derived from ������� Let T �n� denote the complete
number of regenerations in the time interval ��� n�
 i�e�


T �n� �
�
maxfk� �k � ng� if �� � n�
�� otherwise


������

where

�k �

�
inffn � ��Yn � �g� k � ��

inffn 	 �k���Yn � �g� when k � ��
����
�

Then IE�

h
T �n�

i
� IE��

Pn
j�� Yj� �

Pn��
k�� �P

ks
 and it follows by ������ �with h � s�


IE�

�
T �n�

u�n�

�
�

�

��� 	 ��
	 o��� � ������

In some respects T �n� corresponds to the total number of observations for a positive
recurrent process
 and it plays a crucial role in the asymptotics of Section � and 	� Our
next task is to derive a functional limit theorem for T �n��

Let D����� denote the space of right continuous real valued functions with �nite
left hand limits
 i�e� this is the space of cadlag functions de�ned on ����� �cf� Appendix

B�� We write
LD������� for weak convergence in D����� and

fd�� for convergence of �nite
dimensional laws� A Levy process is a stochastic process with stationary independent
increments and sample paths in D������ Consider the process

S��z�t�
def
�

�

v�z�

�zt�X
k��

��k � �k���� t � ������ z � R� � ����
�

where �zt� is the integer value of zt
 i�e� the largest integer not exceeding zt�
By ������ �cf� Bingham et� al�
 ����
 p� �	�� it follows that

S��z
fd��
z

S� � ������

where S� is the one�sided stable Levy process de�ned by the marginal characteristic

function E�expfi	S��t�g� � expfi	
�tg for 
 � R and t � ������ Moreover
 �cf� Kasahara


���	�

S��z
LD�������

z
S� � ������

The Mittag Le�er process �cf� Kasahara
 ���	� with parameter �
 M� �
fM��t�� t � �g is de�ned as the inverse of S�� It is a strictly increasing continuous
stochastic process
 and the characteristic functions describing the marginal distributions
are given by

IE
h
expfi	M��t�g

i
�

�X
k��

�i
t��
k

��� 	 k��
� 
 � R� t � � � ���
��
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An alternative description is given by

E�Mm
� ���� �

m�

��� 	m��
� m � �� M��t�

d
� t�M���� � ���
��

We need the continuous extension of T �n�� Let

Tn �
nT ��nt��

u�n�
� t � �

o
� ���
��

The next theorem establishes a weak limit result
 which will be of use in the asymp�
totic theory to be established in the sequel�

Theorem ��� Let � be any initial measure� Assume that ������ holds� Then

IE�

h
T �n�

im � nm�Lm
s �n�

��� 	m��
���
��

and

Tn
LD�������

n
M� � ���
��

Proof� Let eT �n� � nX
k��

Yk� ���

�

then
T �n� � � eT �n� � ���� eT �n� 	 �� � ���
��

The normalized continuous version is also denoted by eTn� It has the same properties as
Tn� By Lemma A�� in Appendix A we can write

IE�

h eT �n�im �
mX
k��

X

�	m�k

�
m

�

�
Jn�k�
 ���

�

where �m�k � f� � ���� � � � � �k� � N k
��
P
�i � mg for k � �
 and where

Jn�k�
 �
nX

h���

n�h�X
h���

� � �
n�h�� ��� �hk��X

hk��

E�

h
Y 
�
h�
Y 
�
h��h�

� � � Y 
k
h�� ����hk

i

�
nX

h���

n�h�X
h���

� � �
n�h�� ��� �hk��X

hk��

wh� � � � whk � wh � IP��Yh � �� � ���
��

We can write Jn�k�
 � Jn�k since ������ shows that this quantity is independent of �� Let

Jk�r�
def
�

�X
n��

Jn�kr
n� r � ��� �� � ���
��

Then it can be shown from ������
 ������ and ���	�� that
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�X
n��

Jn�kr
n �

�X
n��

nX
h���

n�h�X
h���

� � �
n�h�� ��� �hk��X

hk��

wh� � � � whkr
n

�
�X

h���

�X
n�h�

n�h�X
h���

� � �
n�h�� ��� �hk��X

hk��

wh� � � � whkr
n

�
�X

h���

�X
h���

� � �
�X

hk��

wh� � � � whk

�X
n��

rn�h�� ��� hk

� w�r��w�r� � ��k��r��� r���

� wk�r��� � r����� 	 o����

and hence

Jk�r� � wk�r��� � r��� � �� � r��k���Lk
s

� �

� � r

�
������

as r � ��� From ������
 ������ with � � k� 	 �
 L� � Lk
s 
 since fJn�k� n � �g is a

monotone sequence in n
 ����
� implies

Jn�k � nk�Lk
s �n�

��� 	 k��
�

uk�n�

��� 	 k��
������

as n��� Inserting ������ into ������ gives

IE�

h eT �n�im � mX
k��

� X

�	m�k

�
m

�

��
nk�Lk

s �n�

��� 	 k��
� ������

and since �m�m � f�g � f��� � � � � ��g and
�
m
�

�
� m� �cf Lemma A��
 Appendix A�
 we

�nally get by ������ that

IE�

� eT �n�
u�n�

�m
� m�

��� 	m��
������

and ������ is proved�
We turn to the proof of ����	�� By the method of moments and ����
� we �nd that

for each t eTn�t� d��
n

M��t� �

However
 it is di�cult to establish a functional weak convergence from the marginal
convergences since M� is not a Levy process� In order to prove ����	� it is an advantage

to use a continuous index� i�e�
 Tz�t�
def
� T ��zt���u�z�� By ���	�� and the proof of

Theorem B�� of Appendix B with S� � A in that proof


S
����
��z

LD�������
z

M�� where S
����
��z �t� � inffx� S��z�x� 	 tg � ������

In the rest of the proof we omit the index � and write Sz � S��z and S����
z � S

����
��z �

To prove ����	� it is su�cient to prove that

sup
��t�K

jTz�t�� S����
z �t�j � oP ��� ����
�
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for all �nite K� Assume that �� � � without loss of generality� Then

f
nX

j��

Yj 	 mg � f�m � ng� f
nX
j��

Yj � mg � f�m 	 ng � ������

Let � 	 �� From ���	�� and ������ we get

fS����
u�z� �t� � �g � fSu�z���� 	 tg

� f��u�z��� 	 ztg
� f

�zt�X
j��

Yj � �u�z���g
� fTz�t� � u���z��u�z���g

and in the same way we get

fS����
u�z� �t� 	 �g � fSu�z���� � tg

� fTz�t� � u���z��u�z���g �
Let �� � ��� �� be arbitrary� Then for �� � ��


f�� � S
����
u�z� �t� � ��g � f���� � ��� � S

����
u�z� �t� � ��g

� fu���z��u�z������ ���� � Tz�t� � u���z��u�z����g
which gives

jTz�t�� S
����
u�z� �t�j � ��� � ��� 	 ���� 	

�

u�z�
when S

����
u�z� �t� � ���� ��� � ����
�

Let � 	 � be given� For all s we have

P
�
sup
t�K

jTz�t�� S
����
u�z� �t�j 	 �

�
� P

�
sup
t�K

jTz�t�� S
����
u�z� �t�j 	 �� sup

t�K
S
����
u�z� �t� � s

�
	P

�
sup
t�K

S
����
u�z� �t� � s

�
�

By ����	�

lim
s��

lim
z��

P
�
sup
t�K

S
����
u�z� �t� � s

�
� � �

Hence for all � 	 � we can choose s� so large that

P
�
sup
t�K

S
����
u�z� �t� � s�

�
� �

for all z large enough� For �xed � 	 �
 we can choose ��� � � � � �L
 z�
 �� with �� � � and
�L � s� so that maxk��k�� � �k� � ���
 �� � s��� ��� and z� 	 v������� Then by ������

P
�
sup
t�K

jTz�t�� S
����
u�z� �t�j 	 �� sup

t�K
S
����
u�z� �t� � s�

�
� �� z 	 z�

and therefore
P
�
sup
t�K

jTz�t�� S
����
u�z� �t�j 	 �

�
� �� z 	 z� � ������



��
 Regeneration and some strong laws ��

The function u is unbounded continuous and strictly increasing in an interval �x����
and therefore by ����	�


sup
t�K

jS����
z �t�� S

����
u�z� �t�j � oP ��� �

Hence ������ implies �������
�

��	 Regeneration and some strong laws

The decomposition result of Lemma ��	 and the strong law of Lemma ��� are both key
elements in the asympotic theory of Section � and 	�

Lemma ��� Assume that ���	� holds and let �k be de�ned by ���	��� Thenn�
�k � �k��� X�k����� � � � � �X�k

�
� k � �

o
������

are iid random elements which are independent of �X�� Y���

Proof� This is true since � � E 	 f�g is a proper atom for the split chain �cf�
Nummelin ���	
 p� ����

�

The regeneration method is essential in decomposing the sum

Sn�g� �
nX

j��

g�Xj � � � � �Xj�r��� � ���
��

with g � Gdr � Sums of this type will be needed in the nonparametric analysis� Let
fUk� k � �g
 U�n� be de�ned by

Uk �

	

�

�
P��

j�� g�Xj � � � � �Xj�r���� when k � ��P�k
j��k���� g�Xj � � � � �Xj�r���� when k � ��Pn
j��T �n��� g�Xj � � � � �Xj�r���� when k � �n�

���
��

Lemma ��� Assume that ���	� holds and that g � Gdr for r � �� Then

Sn�g� � U� 	 VT �n� 	 U�n�� Vn �
nX

k��

Uk� V� � �� ���
��

where fUk� k � �g is a �r � ���dependent stationary sequence� which is independent of
the initial distribution of the Markov chain� We have for k � ��

�Uk� Uk���
d
� L�

nS����X
j��

g�Xj � � � � �Xj�r����
S����X

j�S������

g�Xj � � � � �Xj�r���
o

d
� L�

n ��X
j��

g�Xj � � � � �Xj�r����
��X

j�����

g�Xj � � � � �Xj�r���
o

���
��
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where L� denote the distribution of f�Xn� Yn�� n � �g with initial distribution � �cf�

�����
 ������� and S��k� � minfn 	 S��k � ��� Yn � �g and S����� def
� ��

Proof� This is a consequence of Lemma ��� and of ������ �cf� Nummelin ���	
 p�
�����

�

We note that U� has the same distribution as one of the Uk�s
 k � �
 when � is the
initial measure� We use the notation

Ug � U� ���
��

when this is the case� From ������
 ����	� and ������ we have

�g
def
� �sg � IEUk � IE�Ug� k � � � ���

�

Assume that Ug has a �nite covariance matrix� The asymptotic covariance matrix for
n����

Pn
k�� Uk
 given by

�g � lim
n��

Var
�
n����

nX
k��

Uk

�
�

r��X
h���r���

�U �h�� ���
��

is important in a central limit theorem for Sn�g�� Here �U is the autocovariance function
for the stationary process fUk� k � �g� When g real�valued
 we write 
�

g � �g� We
note that if A is a d� 	 d dimensional matrix
 then

UAg � AUg� �Ag � A�gA
�� ���

�

where A� is the transposed of A�

More explicit expressions for �g
 
�
g and �g when r � � are given in Appendix A


Lemma A�� and Lemma A���

We need a result of general character�

Lemma ��� Let fXn� n � �g and fTk� k � �g be stochastic sequences de�ned on a
common probability space where Tk � N� Assume that Tk � � a�s� and let X denote
a stochastic variable which may be in�nite with positive probability� If Xn � X a�s�
then XTk � X a�s�

Proof of Lemma ���� Let � be a �xed outcome so that xn � Xn��� converges to�
wards x � X��� and tk � Tk��� goes to in�nity� Then the subsequence fxtkg converges
to x� Since this is true for all � outside a null set
 the assertion is true� �



��
 Regeneration and some strong laws ��

Lemma ��	 Assume that ���	� holds� Let r � �� g � Gdr and kgk � L�
r��s�� and let the

process have an arbitrary initial distribution �� Then

Sn�g�

T �n�
a�s���
n

�s�g� � ���
��

Proof� Assume that d � � and g � �� By ������ we can write Sn�g� � U� 	 VT �n� 	
U�n�� Since g � � we get

VT �n� � Sn�g� � U� 	 VT �n��� �

By the de�nition of U�
 f� � �g � fU� � �g� From ������
 IPx�� � �� � �� Hence
IP��jU�j � �� � �� The convergence result in ������ is then a consequence of Lemma
��� and the strong law of large numbers for �r����dependent stationary variables� The
rest of the proof is obvious since a general component of g can be written as a di�erence
between two non�negative g�functions� �

Corollary ��� Assume that ���	� holds� Let the process have an arbitrary initial dis�
tribution �� Let g � Gdr � g � L�

r��s� and �s�g� be non�zero� If ������ is true� then

Sn�g�

n�Ls�n�
d��
n

�s�g�M���� � ���
��

Moreover� let g� � L�
r��s� and �s�g�� �� �� Then

Sn�g�

Sn�g��
a�s���
n

�s�g�

�s�g��
� ������

Proof� By ����	� and ������ it follows that

Sn�g�

n�Ls�n�
�

�
Sn�g�

T �n�

��
T �n�

n�Ls�n�

�
d��
n

�s�g�M���� ������

when �s�g� is �nite� The last part is a consequence of

Sn�g�

Sn�g��
�

�
Sn�g�

T �n�

��
Sn�g��

T �n�

���
�

�

Remark ��� If C � E�� the number of times the process is visiting C up to the time
n is denoted by

TC�n� �
nX

k��

�C�Xk� � Sn��C� � ������

From ������ we have that TC�n��T �n�
a
s
� �s�C � In contrast to T �n�� the variable TC�n�

is observable� and it is essential in stating applicable versions of the limit theorems of
Section � and 	�
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Remark ��
 Corollary ��� shows that there is essentially only one limit variable
M����� i�e�� if g � �g�� g�� is a two dimensional vector in ������� then the weak limit is
degenerate�

Remark ��� If fXtg is positive recurrent with � as its unique stationary probabil�
ity measure then � � ��s��s and g � � is ��integrable� It follows by Lemma ���
that T �n��n � T �n��Sn��E�

a
s
� ���s��� � ��s�� and consequently by the same lemma
TC�n��n� ��C� a�s��

��
 A central limit result

We assume aperiodicity
 that ���	� is ful�lled and that g � Gd� � i�e�
 g is a function of
two variables� The latter restriction is not essential but simpli�es notation�

In Theorem ��	 we state without proof a central limit result for null recurrent
Markov chains� In Section � this result is proved and at the same time extended to
include a smoothing parameter� The reason for stating Theorem ��	 separately is that it
is intimately connected with the concepts developed in the present section
 and that it
is more transparent than the general result� Also we give conditions on g �Lemma ����
guaranteeing the �niteness of the variance parameter in the central limit expression�
These conditions will be referred to in Section �� We use the standard Euclidean norm
kgk � �

Pd
i�� g

�
i �x� y��

��� for g � Gd� � We start with the following equivalences for d � ��

Lemma ��� Let g � G� and Ug be given by ����	�� Then the following conditions are
equivalent

IE�U
�
jgj �� � ������

g � L���s� � L�
���s� and �s eIjgjGs��

eIjgj� �� � ������

The measure �s eIjgj is eIjgj��regular and g � L���s�� ����
�

Proof� This is straightforward using Theorem ��� for ����	� and ������
 and Lemma
A�� of Appendix A and its proof for ������ and ����	��

�

Remark ���� Note that

�s eIjgjGs��
eIjgj� � IE�

h �X
n��

jgj�X��X��jgj�Xn�Xn���
i
�



��� A central limit result ��

Remark ���� If g is a special function then by De�nition ���� Lemma ��� and Theorem
���� ������ is ful�lled�

Theorem ��� Let g � Gd� and assume that kgk satis�es ����	� and �g is positive
de�nite� If fXng is null recurrent and satis�es ������ then�

�q
T �n�

n
Sn�g�� T �n��g

o
�

T �n�

n�Ls�n�

�
d��
n

�
����
g Z� M����

�
������

where Z � N ��� I� is of dimension d� and where Z is independent of M����� A formula
for �g is given by �A��	� in Appendix A� The result is true for any initial probability
distribution �� If fXng is positive recurrent� then ������ is true with � � �� Ls�n� � ��s�
and M���� � ��

Proof� By Corollary ���
 Corollary ��	 and Remark ��� we can easily deduce the
result�

�

Remark ���� The statement of the normality part of ������ does not depend explicitly
on the parameter �� Note that the proof of the positive recurrent part does not use the
condition ������� Indeed� � � � does not belong to the allowable range of values in
�������

Theorem ��� Assume that the conditions in Theorem ��	 are true and �sg � �� If
there exists another atom �s�� � �� �cf� ���	�� then

��
g � �s��s��g ����
�

where ��
g is de�ned by �A��	� in terms of �s�� ��� � In particular if �s � �s� then ��

g � �g�

Proof� Let C � E� so that �s�C is �nite� Let TC be de�ned as in ������� Then by
Lemma ��� and Theorem ��	

Sn�g�

T
���
C �n�

�

�
T �n�

TC�n�

����
Sn�g�

T ����n�
� �����s �C � ����

g Zn 	 op���

where fZng converges in distribution towards Z � N ��� I�� Since the left hand side
of this equation is independent of the actual atom we get by a corresponding �primed
�right hand side that

�����s �C � ����
g � �

����
s� �C � �����

g �

Since �s � ���s� �s��s� 
 the theorem follows�
�

A similar simple transformation formula when �sg �� � does not exist�
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� Asymptotics with a smoothing parameter

In this section some asymptotic results are derived for partial sums of gh�Xt� � � � �Xt�r���
where h � hn is a design parameter which is assumed to be a function of n
 the number
of observations� In our applications in the next section hn is the bandwidth rate in a
nonparametric estimation problem� We assume aperiodicity and ���	��

��� Basic notation

We assume that a regeneration sequence f��� �� � � �g is de�ned on the same probability
space as the Harris recurrent Markov process fXtg so that �k � �k � �k�� for k � �

are iid� Let gh � Gdr and de�ne fUh�kg by ������ and Uh
def
� Ugh by ����	�� The random

variables fUh�k� k � �g are �r��� � dependent� We assume that the pair �s� �� satis�es
���	� with a corresponding invariant measure �s so that �sgh � IE�Ugh � To ease notation
we �rst specialize to the scalar case where d � �� A multivariate extension is given in
Corollary ��	�

The mean �h
def
� �gh and the variance parameter
 
�

h
def
� 
�

gh
are de�ned by ������

and ������ with d � �� We write 
�
Uh

� Var�Uh�
 �C�h � �h��s�C and 
�
C�h � 
�

h��s�C �

We de�ne Wh � 
��h �Uh � �h� and in the same way fWh�k� k � �g and 
Wh
� 
��h 
Uh�

As in Section �
 let

Sn�gh� �
nX

j��

gh�Xj � � � � �Xj�r��� �

Recall that u�n� � n�Ls�n�
 T �n� is de�ned by ���		� and TC�n� by �������
We use c�� c�� � � � as a sequence of generic constants in our proofs� All primed versions

of U 
 W 
 etc� refers to g�h � jghj in the scalar case� If gh � Gdr with components gi�h

then g�h has components jgi�hj
 and as before kghk is the standard Euclidean vector norm
of gh in Rd�

Finally if fang and fbng are two real�valued strictly positive sequences
 then we
write an �� bn if an � o�bn��

��� Basic conditions

Subsets of the following conditions will be used� They are of general nature
 but it
will be shown in the next section how they can be used to obtain speci�c and explicit
conditions in the asymptotics of nonparametric estimation� The conditions are stated
for d � �� a modi�cation to d 	 � is given in Corollary ��	�

R�� The expectation �jghj and the variance 
�
Ujghj

are �nite for each h�

R�� lim
h��

h
�
gh
	 ��



��� Basic conditions ��

R�
�� lim

h��
h
�

Ujgh j
� ��

R�� There exists �nite numbers � and �� so that

�gh � �	 o���� �jghj � �� 	 o��� as h � ��
R�

�� h����jghj � o��� as h � ��
R��

�� h�jghj � O��� as h � ��
R���

� � R� holds and �gh � � 	O�h���

R
� IE� jUgh � �ghj�m � dmh
��m�v for some m � �
 dm 	 � and for a v � f�� �g�

R�� 
��gh 
jghj � O����

R�� 
��gh 
Ugh � O����

R
� jghj satis�es R�
 R
 and R��

R�� The Markov process satis�es the tail condition ������
 or it is positive recurrent�

R�
�� �

def
� supfp � �� IE�S

p
� ��g 	 ��

R�� For some � 	 �
 m 	 �
 v � f�� �g
 h��n �� n��m��
 �m � �m� v����m� ��
 and

where � is determined by an appropriate tail condition on the distribution of S��

R�
�� The sequence fhng satis�es R� with �m � ��m� v����m� �� and m 	 ��

R��
�� h��n � o�u�n�� where u is de�ned in ���	���

R�� There exists a function g� so that jghj � h��g�� IPx�Ug� ��� � ��

R�
�� If fhng satis�es R��

� then hnU
�
hn�� � OP ��� where U �

h�� �
P�

j�� jgh�Xj� � � � �Xj�r���j�
R��� The set C in TC is special�

Remark ��� Since � 	 � in R�� this condition implies R��
��

Remark ��� From the de�nitions we have

��r � ����
�
gh
� 
�

Ugh
� 
�

Ujgh j
	 ��jghj� 
�

jghj
� 
�

Ujghj
� ��r � ����jghj

and

�
jghj

� 
�
gh
� ��r � ����jghj �

Remark ��� We have


��gh 

�
Ugh

� 
��gh f
�
jghj

	 ��r � ����jghjg

which shows that R�� R
�
� and R� imply R��

Remark ��� If both limh�� h

�
gh

and limh�� h

�
jghj

exist as �nite positive numbers� then

R� and R� are ful�lled� If in addition R�
� holds� then also R� is true� An important

example results if
h
�

jghj
� h�sg

�
h 	 o��� � h
�

gh
	 o��� �����

and limh�� h

�
jghj

exists as a �nite positive number�
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Remark ��� If R�
� holds then�

h
�
gh

�
�r��X
k��

IE�

h
Uh�rUh�k

i
	 o���� �����

and if R� and R�� hold then h
�
gh��C�h�C

� h
�
gh

	 o����

Remark ��	 If R� and R
 hold

IE��W
�m
h � � �h
�

h�
�mhmIE��Uh � �h�

�m � d�mh
�m�v �

If R�
� holds� then R
 is equivalent with IE��U

�m
h � � d��mh

��m�v �

Remark ��� Application of R�� requires that one is able to specify a special set for a
given process fXtg� However� note that �cf� Nummelin ��

� pp� ��� 
�� compact sets
are small� and hence special� under quite wide assumptions� For Example ��� it su�ces
that 
 is equivalent with the Lebesgue measure�

��� Properties of the number of regenerations

In Section ��� we alluded to the link between the number of regenerations T �n� and the
total number of observations n� The next lemma shows that the tail condition ������
gives the connection between the two�

Lemma ��� If R� holds� then n��� �� T �n� �� n��� a�s� for all � 	 �� This is also
true for TC�n�� The lower bound requires only R�

��

Proof of Lemma ���� By Remark ��� it follows that R� implies R�
�� Let � � ��� ��

and de�ne p � � � ���� By R�
�
 IE�S

p
� � � for all � 	 � which again entails that

k���pS��k�� � a�s� �cf� Chow � Teicher
 ����
 p� ���� where S��k�
def
�
Pk

j����j��j����
Let � be an outcome so that this holds� Then there exists a �nite constant c � c��� so
that S��k� � ck��p for all k and by this relation
 when �� � �


T �n� � maxfk�S��k� � ng � maxfk� ck��p � ng �
hnp
cp

i
�

Hence for this outcome the lower bound is satis�ed for T �n�� If �� 	 � some minor
modi�cations of this argument are needed�

To prove the upper bound we assume R�� Then
 for all � 	 �
 we have by the
Markov inequality and the convergence of all moments of T �n��u�n� given by ������
that

IP�

�
T �n� � �n���

�
� ��mfu�n��n���gmIE

n
T �n��u�n�

om � Cmn
�m���� m � � �



��� Weak limits ��

Choosing m 	 ���� 
 the upper bound is implied by the Borel Cantelli Lemma�
Since TC�n��T �n� converges with probability one to �s�C� the two variables must

have the same bounds of this type�
�

Remark ��
 Lemma ��� shows that b� def
� lnfTC�n�g� ln�n� is a strongly consistent

estimator for � if R� is ful�lled� Due to the slow convergence rate it is of limited
practical use�

We need to evaluate the di�erence in growth of TC�n���s�C� and T �n��

Lemma ��� Assume R��� Then for all p � ����� �� we have

T ��p�n�
n
T���n�TC�n�� �s�C�

o
� o��� a�s� �����

and for all � 	 ��

P
�
���s �C�TC�n� �� �T �n�� �T p�n�� i�o�

�
� � � �����

Proof of Lemma ���� Without loss of generality we may assume that �s�C� � ��
De�ne Uk with g � �C in Lemma ��	� Then

TC�n� � Sn��C� � U� 	 VT �n� 	 U�n� �

By a result of Marcinkiewicz�Zygmund �Chow � Teicher
 p� ����
 n�p�Vn�n�� � a�s�
By Lemma ��� we have T�p�n��VT �n� � T �n�� � o��� a�s� The correction terms U� and
U�n� can be ignored since n�p�Vn�� � Vn� � o��� a�s�� Hence T�p�n��TC�n� � T �n�� �
o��� a�s�
 which implies both ����� and ���	�� �

��� Weak limits

Following ������ we denote the process fT ��nt���u�n�� t � �g by Tn and likewise for
TC�n� The standard Brownian motion de�ned for t � � is denoted by B
 and B �M�

denotes fB�M��t���� t � �g� Weak convergence in Dd����� is written LDd����� �cf�
Appendix B��

We can now state our main theorem and three corollaries
 whose proofs are given
at the end of this sub�section�

Theorem ��� Assume that R�� R�� R
��
�� R
 with m � � and v � f�� �g� R��R� and R�

�

hold� Then� with

�n�hn�t� � u�����n�
��hn �S�nt��ghn�� �hnT ��nt���� ���
�

�
�n�hn� Tn

� LD��������
n

�
B �M��M�

�
� B and M� are independent� �����



�� � ASYMPTOTICS WITH A SMOOTHING PARAMETER

Corollary ��� Assume that gh � g� If R� and R� hold and 
�
g 	 �� 
�

jgj 	 �� then �����
holds�

Remark ��� Corollary ��� implies the scalar version of Theorem ��	 since ����	� im�
plies R��

De�nition ��� If fXng and ffXng are random elements of Dd����� they are said to
be equivalent if the di�erence converges weakly to the zero�process� If fXng converges
weakly in Dd����� to the zero�process� then we say that fXng is negligible�

Corollary ��� Assume all conditions in Theorem ��� are true and that R��
� is

strengthened to R�
� and in addition R�� holds� Then� with �C�n�hn�t� � u�����n�
��hn

�S�nt��ghn���C�hnTC��nt���� the sequences f
�
�n�hn � Tn

�
g and f

�
�C�n�hn� TC�n��s�C

�
g are

equivalent�

The next corollary is used in the proof of Theorem 	�	�

Corollary ��� If R�� R
�
�� R

�
�� R�� R

��
� and R�

� hold� then

u�����n�hn
����S�nt��ghn�� �hnT ��nt���

is negligible� If also R�� holds� we can replace �hnT ��nt�� by �C�hnTC��nt���

Remark ���� In general we have that �C�n�hn � u�����n�
��hn S�nt��gh � �C�h�C� and
�s�gh � �C�h�C� � ��

The proof of Theorem ��� consists of several lemmas� Let the sequence fhng be
chosen according to R�� De�ne qn � hu�����n� so that hn � qu�n�� Then by R�
 q

��
n ��

n�m�

By Lemma ��	 we can write

Sn�gh� � Uh�� 	 VT �n��h 	 Uh��n� ���
�

where jUh��n�j � U �
h��n� � U �

h�T �n��� and Vn�h �
Pn

k�� Uh�k�

The array fUh�k� � � k � �nt�g ful�lls a functional CLT when we neglect the de�
pendence on the sequence of stochastic stopping times �k� This is not a surprise since
the sequence is �r � �� � dependent�



��� Weak limits ��

Lemma ��� Assume that R�� R�� R
 with m � �� R� hold and that q��n �� n�m�

�m � �m� v����m� ��� Then Qn�qn

LD�������
n

B where

Qn�h�t� � n����
�nt�X
k��

Wh�k� t � � � �����

Proof of Lemma ���� The proof is based upon an ordinary mixing array CLT and
a tightness argument� Let t be �xed� By the de�nition of W and R�
 R
 with m � �

Remark ��� and the condition on the rate of fqng
we have

n�m
�nt�X
k��

IE�W �m
qn�k� � d�mt n

��m���q��m�v�n � o��� � �����

Thus the array satis�es a Liapounov condition� Since IE�Q�
n�qn

�t�� � t��	 o���� we have

by an appropriate CLT �Bergstr�m
 ����
 Th� �
 p� ���� that Qn�qn�t�
d��
n

N ��� t�

for all t� Using a standard argument
 the same CLT and the fact that Qn�qn has
asymptotically independent increments �cf� Billingsley
 ����
 pp� ������
 we �nd that

Qn�qn
fd��
n

B � ������

It remains to prove tightness� Without loss of generality we can assume that r � ��
De�ne

�ih��k�j � �ij�hWh��k�i� � � i� j � �� k � �� ������

where �h � ����
��Wh
and �ij is the Kronecker symbol� Note that �h � O��� by R��

Next
 de�ne

Qi
n�t�

def
� n����

�nt�X
k��

�iqn�k � �qnn
����

��nt�i����X
k��

Wqn��k�i� i � �� � �

Now
 the marginal arrays f�iqn�kg consist of independent variables� By ����� and

an ordinary multivariate CLT we have that ����
� is ful�lled for Qi
n� If �i

n�s� t�
def
�

IEfQi
n�t��Qi

n�s�g� satis�es
 for all �xed t� 	 �


lim
���

lim
n

sup
s�t�
jt�sj��

�i
n�s� t� � � ������

then Qi
n

LD�������
n

B
 i � �� � by standard theory �Pollard
 ���	
 Th� ��
 p� �
	�� Now


using R� and jt� sj � �


�i
n�s� t� � c�n

����qn�njt� sj	 ��IE�fW �
qng � c�jt� s	 ��nj � c
�� 	 �n����

which shows that ������ holds� Hence fQi
n� i � �� �g are tight in D������ Since B

is a continuous process and Qn�qn � ���qn
P�

i��Q
i
n and ���h is bounded
 by R� we can

conclude that fQn�qng is tight �cf� Jacod � Shiryaev
 ����
 p� ����� �

The next lemma takes care of the edge terms�



�
 � ASYMPTOTICS WITH A SMOOTHING PARAMETER

Lemma ��� Assume R�� R�� R
��
�� R�� R
 with m � � in R
� R�� R� and R�

� are true�
Then f�n�hng� de�ned in ������ is equivalent to fZn�hng where

Zn�h�t� � u�����n�
T ��nt��X
k��

Wh�k � ������

Proof of Lemma ��	� By ����� we have with Uh���t� �
P��	�nt�

j�� gh�Xj� � � � �Xj�r���

Uh��n��t� � Uh���nt�� that it is enough to show that

�h�n�t�
def
� u�����n�
��h

n
Uh���t� 	 Uh��n��t�

o
� u�����n�
��h Uh���t� 	 u�����n�
��h Uh��n��t� ������

is negligible� By R�
 R� and R�
�

ju�����n�
��hn Uhn���t�j � fhnu�n�hn
�
hng����hnU �

gh
� oP ��� ����
�

independent of t� Hence we can neglect this term� Assume now that gh is replaced by
jghj in the de�nition of Uh��n� in the primed versions� Then since Tn��nt�� � Tn�t�u�n�


jUh��n��t�j � U �
h�T ��nt���� � 
�hW

�
h�T ��nt���� 	 ��h

� 
�hu
����n�

n
Q�
u�n��h�Tn�t� 	 ��u�n�� �Q�

u�n��h�Tn�t��
o
	 ��h �

������
The tail condition R� guarantees that Tn has a speci�ed asymptotic distribution�

By the continuous mapping theorem
 R

 R� and Lemma ���
 �n�t�
def
� Q�

n�qn
�t 	

��n� �Q�
n�qn

�t� is negligible� Again by the continuous mapping teorem with the map�
D������ �� D����� given by �a� b� �� a � b
 the process �n �Tn converges to zero� This
gives

u�����n�
��hn jUhn��n����j � f
��hn 
�hng��u�n� � Tn� 	 fu�n�hn
�
hnhng����hn��hn

LD�������
n

�

����
�
due to R�
 R

��
�
 R� and R�� �

We wish to be able to replace Tn by TC�n
 which is a function of the original chain
fXtg�
Lemma ��� Assume that R� is true� Then TC�n��s�C is equivalent with Tn�

Proof of Lemma ���� Assume without loss of generality that �s�C� � �� It is

enough to prove that supt�t� �n�t� � op��� where �n�t�
def
� jTn�C�t��Tn�t�j for all t�� Let

� � � � � and n� � n������� We have supt�n� �n�t� � u���n�
n
TC�n�� 	 T �n��

o
� oP ���

and when t � n�


sup
n��t�t�

�n�t� �
n
Tn�t��

o
sup

n��t�t�

n
T����nt��

�
TC��nt��� T ��nt��

�o
�

n
Tn�t��

o
sup
m
n�

n
T���m�

�
TC�m�� T �m�

�o
� oP ���



��� Weak limits ��

since TC�n��T �n� converges to �s�C with probability one by Remark ���� �

Proof of Theorem ���� By Lemma ��	 we can neglect the edge terms and it is
enough to consider �Zn�hn � Tn� � �Qu�n��qu�n� �Tn� Tn�� The proof is completed by Lemma
���
 Theorem ��� and Theorem B�� in Appendix B with �Bn� An� � �Qu�n��qu�n�� S��n�


A���� � M� in that theorem� The process S��n is de�ned in Section ��� by ���	��� By

the proof of Theorem ��� we have that S����
��n and Tn are equivalent stochastic processes�

�

Proof of Corollary ���� We proceed to the simpli�ed situation in which there is no
bandwidth involved and the Uk�s are independent of n and strictly stationary� The
existence of the fourth order moment in the proof of Lemma ��� is super�uous
 Lemma
��	 is still true
 and hence the conclusion is true�

�

Proof of Corollary ���� To prove the equivalence
 note that

�C�n�hn�t���n�hn�t� � 
��hn �hnu
�����n�

n
TC��nt���

��
s �C�� T ��nt��

o
� fhn
�

hng����h���n �hn
�n�t��

where �n�t�
def
� u�����n�
��

n
S�nt���C��s�C�� T ��nt��

o
and 
� is de�ned by ������ with

d � � and with g � �C��s�C � By R��
 R� is ful�lled for g � �C��s�C � By the

previous corollary �n�t�
LD�������

n
B �M�� Since h���n �hn � o��� by R�

�
 it follows that

�C�n�hn��n�hn

LD�������
n

�� By Lemma ���
 we have that TC�n��s�C� and Tn are equivalent�
�

Proof of Corollary ���� Let

e�n�hn � u�����n�hn
����S�nt��ghn�� �hnT ��nt��� �

First assume that r � �
 i�e�
 independence� Choose fhng according to R��
�
 let hn � qu�n�

and analogous to �����


eQn�t� � fnq��n g����
�nt�X
k��

�Uqn�k � �qn� �

Then
IEf eQn�t�g� � n��qn�nt�


�
Ugqn

� t
h
qn


�
Ujgqn j

	 qn�
�
jgqn j

i
�

and using R�
� and R�

�

sup
t�K

IEf eQn�t�g� � o��� � ������

Since eQn is a normalized sum of independent variables we can conclude that f eQg is
negligible �cf� Pollard
 ���	
 p �
	�� This is also true when we replace gh by jghj�

The edge e�ects are tackled in a similar way as in the proof of Lemma ��	� We have

�hn�n�t� � u�����n�h���n Uhn���t� 	 u�����n�h���n Uhn��n��t� �



�� � ASYMPTOTICS WITH A SMOOTHING PARAMETER

The �rst term is of order oP ��� uniformly with respect to t using R��
� and R�

�� For the
second term

u�����n�h���n jUh��n��t�j � u�����n�h���n

n
�U �

h�T ��nt���� � ��h� 	 ��h
o

�
n eQ�

u�n��h�Tn�t� 	 ��u�n��� eQ�
u�n��h�Tn�t��

o
	 u�����n�h���n ��h

� �u�n��Tn�t�� 	 u�����n�h���n ��h�

where �n�t�
def
� j eQ�

n�qn
�t 	 ��n�j 	 j eQ�

n�qn
�t�j� By the preceding calculations we can

conclude that

sup
t�t�

�n�t� � oP ��� �

Thus the process �n � Tn is negligible �cf� the proof of Theorem ����
 and we have that
the edge e�ects can be ignored�

Hence it is su�cient to look at

eZn�h�t� � u�����n�
T ��nt��X
k��

h����Uh�k � �h��

since e�n�hn is equivalent to eZn�hn � But

eZn�hn �t� �
eQu�n��qn�Tn�t���

and eQu�n��qn � Tn is easily shown to be negligible from the �rst part ot the proof�

If r 	 � then we can write eQ as a �nite sum of sums of independent variables and
use Remark ����

�

Theorem ��� Assume that R�� R�� R
�
�� R
 with m � � and v � f�� �g� R��R�� R

�
� and

R�� are true� Then

T
���
C �n�
��C�hn

n
T��
C �n�Sn�gh�� �C�hn

o
d��
n
N ��� �� � ������

If R���
� holds and h��n � n������ then �C�hn can be replaced by �C � ���s�C �

Proof of Theorem ���� Denote the left hand side of ������ by �n�hn � We have that

�n�hn � ��s�C����
n
TC�n��u�n�

o����
�C�n�hn���� By Lemma ���
 Theorem ��� and Corol�

lary ��� the main portion of the statements follows� Assume that R���
� holds then

T
���
C �n�h���n j�C�hn � �C j � c�fTC�n�h�ng��� � oP ��� �

�

A multivariate extension of Theorem ��� and Theorem ��� is also useful� We use
the notation �c�h � �gh��s�C �



��� Weak limits ��

Corollary ��� Let gh � Gdr � Assume that kghk and the process fXtg satisfy R�� R��
R�

�� R
 with m � � and v � f�� �g� R��R�� R
�
�� R��� In addition we assume that

limh�gh � �� ������

for some positive de�nite matrix �� and

k�ghk��
�
kghk

� O��� � ������

Then ������ holds with 
��C�hh replaced by �
����
C�hn � and the limit is the d�dimensional stand�

ard multivariate normal distribution� Moreover� a multivariate extension of ����� holds
where B is replaced by a d�dimensional Brownian motion�

If R���
� holds and h��n � n������ then �C�hn can be replaced by �C �

Proof of Corollary ��	� Analogous to ����� and ����	� we de�ne

�n�ghn
�t� � u�����n������

ghn
�S�nt��ghn�� �hnT ��nt���� ������

and
�gh�n�t�

def
� u�����n������

gh

n
Ugh���t� 	 Ugh��n��t�

o
� ������

Now since jgi�hj � kghk we have jUgi�h j � Ukghk for i � �� � � � � d� Using this inequality

we �nd that kUghk � d���Ukghk and

k�gh�n�t�k � d���k�ghk����
kghk�kghk�n�t� � ������

From the conditions assumed in the corollary it follows that the conditions in Theorem
��� for kghk are satis�ed� In particular this implies that �kghnk�n is negligible� Together
with ������
 ������ and ����	� this implies that k�ghn �nk is negligible�

We have thus shown that �n�ghn
is equivalent with Zn�ghn

de�ned by

Zn�gh�t� � u�����n�
T ��nt��X
k��

Wgh�k� Wgh�k
def
� �����

gh

�
Ugh�k � �gh

�
� Qu�n��qu�n��Tn�t��

where Qn�qn is de�ned by ������ It is enough to prove that

a�Qn�qn

LD�������
n

a�B� �a � Rd� ����
�

where a� means the transposed of a� Let fh � b�hgh where bh � �h�gh�
����a� Then

�fh � b�h�gh � 
�
fh

� h��kak� �
Moreover


a�Qn�qn � n����
�nt�X
k��

h���h����a������
gh

�
Ugh�k � �gh

�

� kakn����
�nt�X
k��


��fh

�
Ufh�k � �fh

�
� kakQf

n�qn� say
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where Qf
n�qn is de�ned by ����� with Wh�k � Wfh�k� We have by R�
 R

�
� and R
 for kghk

that
IE�W �m

fh�k
� � 
��mfh

IE
h
b�h�Ugh � �gh�

i�m
� 
��mfh

IE
h
kbhk�mkUgh � �ghk�m

i
� 
��mfh

kbhk�mIE
h
kUgh � �ghk�m

i
� c�


��m
fh

kbhk�m
h
IEkUghk�m 	 k�ghk�m

i
� c�


��m
fh

kbhk�m
h
IE�U�m

kghk
� 	 ��mkghk

i
� c



��m
fh

h���m�v�

� c�h
mh���m�v�

� c�h
��m�v� �

We have also used that kbhk is bounded with respect to h� in fact it follows from ����
�
that limkbhk� � kak�� where � denotes the spectral radius of ���

� � Hence the analogue
of ����� is satis�ed and ������ is proved using the method of proof of Lemma ���� By
����
�
 ������
 R�

� and Remark ��� we have that
 R�
 R�
 R
�
�
 R
 with m � �
 R� �R
 and

R�
� are ful�lled for fh� Hence Theorem ��� can be applied to fh and by a Cram r�Wold

argument the �rst statement of the corollary is proved�
Moreover
 we easily get the multivariate extension of Theorem ��� claimed in the

second statement of the corollary� let Bd denote a d�dimensional Brownian motion� It
is enough to prove that�

a��n�hn� Tn
� LD��������

n

�
kakB �M��M�

�
� B and M� are independent
 ������

since a�Bd has the same distribution as kakB� But ������ follows from ������ and the
proof of Theorem ����

The last statement of the corollary is proved as in the proof of Theorem ����
�

Remark ���� Proceeding as in Corollary ��� and Remark ���� Theorem ��	 can now
be derived as a special case of Corollary ��	�

��� Consistency

Weak consistency may be deduced from the asymptotic distributional limit�

Corollary ��� Suppose that all the conditions in Theorem ��� are ful�lled� that R�
� is

strengthened to R� and in addition that R�� holds� Then

T��
C �n�Sn�ghn� � �C�hn 	OP

�
T
����
C �n�
hn

�
� �C 	 oP ��� � ����
�



��� Consistency ��

Proof� From de�nitions
 Sn�ghn� � TC�n��C�hn 	 �C�n�hn���u
����n�
hn and the �rst

line of ������ follows from Corollary ���� The last statement is achieved by R�
 R� and
Lemma ����

�

It is more di�cult to obtain strong consistency�

Theorem ��� Assume that R�� R
 with m 	 �� R�
�� R�

�� and R� hold� Then
T��
C �n�Sn�ghn� converges with probability one towards �C �

The proof starts with a lemma�

In order to obtain strong consistency with a deterministic bandwidth we require
that the rate is related to the lower bound of the sequence fT �n�g�
Lemma ��	 Assume that q��n �� n�m�� with �m as in R�� and that R
 holds with an
m 	 �� Let

Sl�p
r
def
�

�

lp	 r � �

lp�r��X
k��

Uql�k� �l� p� r� � N

�� r � ��� l� � ������

Then
lim
jlpj��

sup
��r�l

jSl�p
r � �qlj � o��� a�s� � ������

Proof of Lemma ���� By the Borel�Cantelli lemma it is enough to show thatP�
l��

P�
p��

Pl
r�� IE�Sl�p
r � �ql�

�m ��� By �r � �� � dependence and R



IE�Sl�p
r � �ql�
�m � c��lp	 r � ���mIE�Uql � �ql�

�m � c��lp�
�mq

���m�v�
l

� c
p
�ml�fm���m�����m�v�g

which gives

�X
l��

�X
p��

lX
r��

IE�Sl�p
r � �ql�
�m � c�

�X
l��

l�fm�����m�����m�v�g ��

since m� �� �m��m� v� � �� �

Proof of Theorem ���� Let fhng be �xed� Recall that �hn � �C�s�C � Without loss
of generality we may assume that hn � qu��n� where u��n� � �n���� for an � 	 � and
fqng satis�es the rate inequality given by Lemma ���� We use the representation of
Sn�ghn� given by ����� for each n� By Lemma ���
 T �n�� u��n� a�s� � Let t � T �n�

l � u��n�
 p � �t�l�
 r � t� lp 	 � so that t � lp	 r � �� � � r � l� Then




T �n���VT �n��hn � �hn



 �







 �

lp	 r � �

lp�r��X
k��

Uql�k � �ql







 � jSl�p
r � �qlj �



�� � ASYMPTOTICS WITH A SMOOTHING PARAMETER

By Lemma ��� and R�
 T �n���VT �n��hn converges to � with probability one �cf� the
proof of Lemma ����� The arguments also show that T �n���VT �n����hn converges to �
with probability one� Hence Uh��n� is negligible� By R� we get rid of Uhn�� since

jT���n�Uhn��j � fhnT �n�g��Ug� � o��� a�s�

using that Ug� is �nite a�s� and hnT �n� � n������T �n� � � a�s� by Lemma ���� Since
TC�n��T �n� � �s�C 	 o��� a�s�
 the proof is �nished�

�

It turns out that consistency results are easier to obtain with a stochastic bandwidth
sequence
 although weak limits are considerable harder in this case�

Theorem ��� Assume that R�� R
 with m � �� R�
� and R� are satis�ed� If q��n �

� n�m�� where �m � �m � �����m � v� then T��
C �n�Sn�gHn� converges almost surely

towards �C where Hn � qTC�n�

Proof� Neglecting the edge terms
 it is enough to show that

T��
C �n�VTC�n��qTC�n�

a�s���
n

�C �

By Lemma ��� this convergence is implied by

n��Vn�qn
a�s���
n

�C �

But the latter is proved by R

 the Markov inequality and the Borel�Cantelli Lemma
since X

n

n�mq��m�v
n �� �

�



��

� Asymptotics for some nonparametric statistics

The objective of this section is to extend nonparametric kernel estimation from the
traditional stationary case �see e�g� Robinson
 ����� to the null recurrent case�

We assume aperiodicity and ���	�� In addition we assume that the state space
E � R so that Xt is one�dimensional� All of these conditions can be relaxed� The
bandwidth h � hn is assumed to satisfy hn � � and with no loss of generality we
also assume that hn � �� Let K� R � R be a kernel function and for a �xed x let
Kx�h�y� � h��K��y�x��h�
 Nx�h� � fy� Kx�h�y� �� �g and Nx � Nx���� In our context
a locally bounded function will be taken to mean bounded in a neighbourhood of x and
a locally continuous function is continuous at the point x� Without loss of generality
we may assume that this neighbourhood equals Nx
 and that local continuity implies
local boundedness� This is so since Nx�h� � x � hN�� Again
 we use c�� c�� � � � as a
sequence of generic constants in our proofs�

The following condition is always assumed�

K�� The kernel K is non�negative

R
K�u�du �� and

R
K��u�du ���

Subsets of the conditions listed below are used according to need
 where the point
x is �xed�

K�� The support of the kernel
 N�
 is contained in a compact set�

K�� The kernel is bounded and Nx is a special set�

K
� The kernel is normalized so that
R
K�u�du � ��

K�� The kernel satis�es
R
uK�u�du � ��

P�� The invariant measure �s has a locally bounded density ps�

P�� The density ps is locally continuous�

P
� The density ps possesses locally continuous partial derivatives of a given

speci�ed order�

P�� The density is locally strictly positive
 i�e�
 limy�x ps�y� 	 ��

P�� For all fAhg � E so that Ah � � when h � �

limh�� limy�x P �y�Ah� � ��

P
� The tail condition ������ holds
 or the chain is positive recurrent�

P�
� �
def
� supfp � �� IE�S

p
� ��g � � 	 ��

T�� The set C in TC is a special set�

Remark ��� The conditions K��K� are regularity conditions for the kernel� The �rst
three P�conditions represent di�erent levels of smoothness for a local density of �s�
The last one of these is used to get rid of a bias term� In order to have a strictly
positive asymptotic variance� P� is necessary in some cases� It turns out that a sort of
uniform local continuity property for the transition probability is needed in some weak
limit theorems� This is expressed by P�� The tail condition ������ is crucial for weak
limits in the null recurrent case�



�� � ASYMPTOTICS FOR SOME NONPARAMETRIC STATISTICS

To ease notation
 as in Section ��� and Appendix A
 we will restrict ourselves to
functions contained in Gdr with r � �
 and in the following ��
 � are arbitrary functions
in Gd� and Gd
 respectively� Our �rst lemma shows that the condition K� in conjunction
with local boundedness for a function in one variable ensure �niteness of moments� For
functions of two variables the appropriate local boundedness also depends upon global
properties� i�e�
 local boundedness of e�� depends upon global properties of P and ���

Let

gh�u�w� � Kx�h�u����u�w�� �� � Gd� � �����

and Sn�gh� �
Pn

t�� gh�Xt�Xt���� Our discussion is restricted to statistics based on
Sn�gh�� Recall that

eI���y� dz� � P �y� dz����y� z�� e���y� � eI����y� � Z
P �y� dz����y� z� � �����

As before
 when we write e���y�
 the integral in �	��� is implicitly assumed to exist� Also

note that ke��kp �
neIk��k��op�� when p � �� Lemma ��	 leads to the decomposition

of Sn�gh� in a sum of Uh�k�s which are strictly stationary
 ��dependent and marginally
distributed as

Ugh �
�X

j��

Kx�h�Xj����Xj �Xj���� �����

with � as its initial measure�
If ���u�w� � ��u�
 i�e�
 � � Gd
 then e�� � ��

Lemma ��� Let gh be given by �	��� with gh � G�� Assume K�� K�� P�� let m � � and
de�ne �m � eIj��j�m�� Assume that �m is locally bounded� If m � �� then corresponding
to R
 in Section ��

IE�U
�m
jghj

� d�mh
��m�v �����

with v � �� Without P� the above inequality still holds but with v � �� Moreover�
�jghj � O��� and h
�

jghj
� O����

Proof of Lemma 	��� Without any loss of generality we assume that �� � G� and
�� � �� We use the simple inequality �r� � � 	 ��m� when r � �m� To show �	�	�
 by
Theorem A�� in Appendix A
 it is enough to consider

J
def
� �Gs��

eI
g
��
h

� � �Gs��
eIg�r
h
�

where r � �m
 �i � � and
P
�i � �m
 and where g � � implies that �Ig � eIg with �Ig

de�ned by �A����� Now
 by K�
 K� and the local boundedness of �m


eIg�r
h
� � K
r

x�h�� 	 �m� � c�K

r
x�h � c�h

�
r�Nx �



��

By K�
 De�nition ��� and Theorem ��� with m� � �
 the function Gs���Nx is bounded
so that

Gs��
eIg�r
h
� c
h

�
r� �

Hence
 using K� and the fact that �Gs�� � �s


J � c�h
�
Pr

j��

j�sK


�
x�h � c�h

��m�v

where v � � by P�� The proof of the statements concerning �jghj and h
�
jghj

is similar

albeit simpler�

�

Next we introduce our nonparametric estimators� If the invariant measure �s has a
density ps
 we de�ne pC � ps��s�C which is the normalized density relative to the set
C
 i�e�


R
A pC�x�dx � �C�A � �s�A��s�C � The density pC does not depend upon s as is

easily veri�ed from the non�uniqueness property stated in Remark ��� of Section ����
By analogy with the ordinary kernel estimator for a density in the positive recurrent

case
 an estimator for pC is de�ned by

bpC�x� � bpC�n�h�x� � T��
C �n�

nX
t��

Kx�h�Xt� � ���
�

Let � � Gd� Note that P��x� � IE
h
��Xt� j Xt�� � x

i
is the conditional mean of ��Xt�

at the point x� A kernel estimator for the conditional mean function P� is given by

bP��x� � bP�n�h�x� � n nX
t��

Kx�h�Xt�
o��n nX

t��

��Xt���Kx�h�Xt�
o
� �����

The corresponding conditional variance function is given by

V � � P �� � �� � P� � P� � ���
�

If we replace the two terms of the right hand side of �	��� by estimates de�ned by �	���

we obtain a conditional variance estimator bV ��x�� Moreover
 �	��� coincides
 and �	���
essentially coincides
 with respectively the Nadaraya � Watson estimator and the kernel
estimator in the positive recurrent case
 since then TC�n��n� ��C a�s��

The next lemma is central in establishing the properties of the above estimates�
It gives conditions for convergence of �gh and �gh� It turns out that the asymptotic
variance is independent of �gh� �The tensor symbols involved are de�ned just prior to
Lemma A�� in the Appendix��

Lemma ��� Let gh�u�w� � Kx�h�u����u�w� where �� � Gd� � Assume that K�� K�� P��
P� are true� eIk��k�� is locally bounded and eI���� eI������ are locally continuous� Then

�gh � ps�x�e���x�nZ K�u�du
o
	 o���� �����

�gh � ps�x� eI�������x�nZ K��u�du
o
	 hAh 	 hA�

h 	 o���� �����
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where Ah � �s eIgh �Gs��
eIgh�� If hAh � o���� then h�gh � h�Ugh

	 o���� If e���x� � � or
P� and P� are true� then hAh � o���� If ���u�w� � ��w� � P��u� then

h�gh � ps�x�V ��x�
Z
K��u�du	 o��� � ������

If ���u�w� � ��u� and ��x� � �� then h�gh � o����

Proof� By P�
 P�
 K�
 the continuity of eI��� and Bochners Lemma �cf� Wheeden
� Zygmund
 ����
 Ch� ��
 �	��� easily follows�

By �A��	� we have

�gh � �s�gh � gh� 	Ah 	A�
h �Bh �B�

h

where

Bh �
�

�
��sgh � �sgh� 	 �sgh � �ss � gh��

with g� de�ned in �A��� and Ah is expressed above� Again by P�
 P�
 K�
 the continuity
of eI���
 and Bochner�s Lemma


�sgh � �sIKx�h

e�� � ps�x�e���x� Z K�u�du	 o��� �

The term �ss � gh�� can be treated likewise and hence hBh � o���� Similarly
 we have

h�s�gh � gh� � ps�x� eI�������x� Z K��u�du	 o���

and �	��� follows�
By the multivariate extension of �A��� and �A��� we have that

�Ugh
� �s�gh � gh� 	Ah 	A�

h � ��� �gh�� �� � �gh�
� � �gh � �gh �

If hAh � o���
 then by �	��� and �	��� it follows that

h�Ugh
� ps�x�V ��x�

Z
K��u�du	 o���

so that h�gh � h�Ugh
	 o����

We can write

hAh � �sIKx�h

eI�� � �h� �h
def
� Gs��hIKx�h

e�� �
By K�
 Theorem ��� with m� � � and the local boundedness of eIk��k
 we have

k�hk � c� and it follows that khAhk � O���� If e���x� � �
 then sup k�hk � o���
since supy�Nx�h� ke��k�y� � o��� by the local continuity of e��
 and hence khAhk � o����

Assume that P� and P� are true� Then
 since eIk��k� is locally bounded and since K�

holds

kGs��hIKx�h

e���z�k � Gs��c��Nx�h��z� � c�Gs���z�Nx�h�� �



	�

This gives

khAhk � c


Z
�s�dy�Kx�h�y�

Z
P �y� dz�k���y� z�kGs���z�Nx�h��

� c


Z
ps�y�Kx�h�y�

�Z
P �y� dz�k���y� z�kGs���z�Nx�h��

�
dy�

and by the Cauchy Schwartz inequality


� c�

Z
ps�y�Kx�h�y�

�Z
P �y� dz�k���y� z�k�

����

�Z
P �y� dz�

h
Gs���z�Nx�h��

i�����

dy

� c�

Z
ps�y�Kx�h�y�

neIk��k���y�o���
�Z

P �y� dz�
h
Gs���z�Nx�h��

i�����

dy

� c�

Z
ps�x	 hu�K�u�

neIk��k���x	 hu�
o���

�Z
P �x	 hu� dz�

h
Gs���z�Nx�h��

i�����

du

and again by the Cauchy Schwartz inequality
 P�
 and the local boundedness of eIk��k�

� c�

�Z
ps�x	 hu�K�u�

Z
P �x	 hu� dz�

h
Gs���z�Nx�h��

i�
du

����

and by K�
 Theorem ��� with m� � �
 and P�


� c


�Z
K�u�

Z
P �x	 hu� dz�Gs���z�Nx�h��du

����

������

At this stage we need the following fact�Z
N�

�X
n��

P n�x	 hu� fxg�du � �� ������

which follows from P� since

� � �s�fxg�
�

Z
�s�dz�P

n�z� fxg�
�

Z
Nx�h�

�s�dz�P
n�z� fxg�

�
Z
Nx�h�

ps�z�P
n�z� fxg�dz

�
Z
N�

ps�x	 hu�P n�x	 hu� fxg�hdu
� hf inf

y�Nx�h�
ps�y�g

Z
N�

P n�x	 hu� fxg�du �

Let
��z� � lim

h��
Gs�� �z�Nx�h��� �h�z� � Gs���z�Nx�h��� ��z� �
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Then by K� and Theorem ��� with m� � �
 the functions � and �h are bounded and

�z� lim
h��

�h�z� � �� ��z� �
�X
n��

�P � s� ��n�z� fxg� �
�X
n��

P n�z� fxg� � ������

By �	���� we get

khAhk� � c�

Z
K�u�

Z
P �x	 hu� dz���h�z� 	 ��z��du �

By �	����
 �	����
 K� and K�
Z
K�u�

Z
P �x	 hu� dz���z�du � c�

�X
n��

Z
N�

P n�x	 hu� fxg�du � � �

Let � 	 � and Ah � f�h 	 �g then by P�
 limh�� supy�Nx�h� P �y�Ah� � �
 which gives

khAhk� � c��	 o���

where c� is independent of �� Hence khAhk � o����
If ���u�w� � ��w� � P��u� then e�� � �
 eI�������x� � V ��x� and e���x� � �� Thus

�	��
� is true� The last statement of the theorem is trivial to prove� �

The next result is designed to take care of the edge e�ect due to the initial measure
as stated in R��

Lemma ��� Let gh�u�w� � ���u�w�Kx�h�u� where �� � Gd� � Assume K�� K� and thateIk��k� is locally bounded� Then jghj � h��g�� where

IPy�Ug� ��� � �� g��u�w�
def
� k��k�u�w�fsupKg�Nx�u� � ������

Proof� We have Ug� �
P�

j�� g��Xj�Xj��� and

IEy�Ug�� � Gs�� eg��y�� eg��y� � �Nx�y� � eIk��k��y� �
Hence
 using K�
 eg� is a special function
 and by Theorem ���
 Gs�� eg� is bounded and
�	��	� holds� �

We are now in a position to state and prove the main results in this section� The
�rst two theorems give conditions for consistency
 and the last two theorems deal with
weak convergence�

Theorem ��� Let � 	 �� Assume K��K
 and P�� P�� P�
 and h��n �� n����� or hn �
qTC�n� where q��n �� n������ Then bpC is a strongly consistent estimator of pC at the
point x�



	�

Proof� We have bpC�x� � T��
C �n�Sn�gh� with gh � Kx�h� By �	��� and Lemma 	��

with �� � �
 R
 holds for all m � �
 R�
� is ful�lled since �m in this condition approaches

��� when m � �� By Lemma 	��
 K� and K

 �gh � ps�x� 	 o���� By Lemma 	��
and P�
 R� is true� The condition R�

� is implied by P�

� We use �� � � in Lemma

	�� to verify R�� We conclude that the conditions in Theorem ��� are ful�lled when
hn is deterministic
 and equally the conditions in Theorem ��	 when the bandwidth is
stochastic�

�

Theorem ��� Let � 	 � and m 	 �� Assume K��K
� P�� P�� P�� P
�

� Pk�k�m is locally

bounded and P�� Pk�k are locally continuous� h��n �� n��m�� with �m � �m������m���
or hn � qTC�n� with q��n �� n�m�� and �m � �m� �����m � ��� Then bP� is a strongly
consistent estimator of P� at the point x�

Proof� In this case we have bP��x� � T��
C �n�Sn�gh��bp��C �x� with gh�u�w� �

��w�Kx�h�u�� The previous theorem together with P� guarantees that the denominator
converges almost surely to pC�x� 	 �� Hence it is enough to consider the numerator�
By Lemma 	�� with e�� � eI�� � P� and K

 �gh � ps�x�P��x� 	 o���� By Lemma
	�� moments of jghj up to order �m can be used and R
 holds� The condition R� is
satis�ed by Lemma 	�� since eIk�k� � Pk�k is assumed to be locally bounded� The rest
of the conditions in Theorem ��� and Theorem ��	 are veri�ed in a similar way as in the
previous theorem
 and the numerator converges with probability one to pC�x�P��x��

�

Theorem ��� Let � 	 �� Assume K�� K�� P�� P�� P�� P
 and T�� If h��n �� n����
then

T
���
C �n�h���n

nbpC�x��pC�x����C�Kx�hn��pC�x��
o

d��
n
N ��� pC�x�

Z
K��u�du� � ����
�

Without the conditions P� and P� we still have that

T
���
C �n�
��C�hn

nbpC�x�� pC�x�� ��C�Kx�hn�� pC�x��
o

d��
n
N ��� �� � ������

where 
C�h is de�ned in Section ��� with gh � Kx�h� and where

h
�
C�h �

Z
pC�x	 hu�K��u�du

	�
Z
pC�x	 hu�K�u�

nZ
PGs���x	 hu� dy�K�h���y � x��

o
du	 o��� � ����
�

If K� and P
 holds with order 	� then the bias term �C�Kx�hn� � pC�x� of �	���� and
�	���� is negligible if h��n � n������

Proof� We need to verify the conditions of Theorem ���� We have �� � � which is
trivially bounded
 and the support of gh � Kx�h is a special set by K�� The conditions
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in Lemma 	�� are ful�lled for m � �
 and in particular Lemma 	�� then implies that R�

and R
 hold for m � � and v � �� Moreover
 the condition on the bandwidth means
that R� is true with v � �� The conditions R� and R�� are implied by P
 and T�� By
P� and K�
 K�


�jghj � �gh � �sKx�h � f sup
u�Nx

ps�u�g
Z
K�u�du ��

which implies R�
�� Since gh � �
 it follows by Remark ��� that R� and R� are true� If

K�
 K� and P�
 P� hold
 then since Ah � �
 reasoning as above for �jghj by the proof of
Lemma 	�� with �� � �
 limh
�

gh
	 �� Hence R� and R
 are true� By Lemma 	�� with

�� � �
 R� is true� Moreover
 R�
 R� imply R�
�� The conditions in Theorem ��� are then

ful�lled and �	���� is true�
The asymptotic expression for 
�

C�h given by �	���� follows from Lemma A�� in
Appendix A and the �rst part of the proof of Lemma 	���

If also P� and P� hold
 by Lemma 	��


�sgh � ps�x� 	 o���

h
�
g � ps�x�

Z
K��u�du	 o��� � ������

Thus �	���� holds�
It remains to consider the bias term� By K� and P


�C�Kx�hn�� pC�x� �
Z
�pC�x	 hu�� pC�x��K�u�du

�
n d

dx
pC�x�h

oZ
uK�u�du	O�h��

� O�h�� �

Hence R���
� holds
 and by Theorem ��� the bias term is negligible when h��n � n������

�

Theorem ��� Let � 	 � and �x�y� � P��y� � P��x�� Assume K�� K�� K�� P�� P��
P��P
� Moreover� assume that P�� V � are locally continuous� V ��x� is positive de�nite
and Pk�k�m is locally bounded for some m � �� If h��n �� n���� thenn

hn
nX
t��

Kx�hn�Xt�
o���n bP��x�� P��x� � �s�x �Kx�hn

�sKx�hn

o
d��
n
N ��� V ��x�

Z
K��u�du� �

������
If K� and P
 hold with order 	 and P� possesses continuous derivatives of second
order� then the bias term �s�x �Kx�hn��sKx�hn is negligible if h��n � n������

Proof� Denote the left hans side of �	���� by �n�hn � Since bP��x� is a ratio
 we get
some additional bias terms�

Let �p�h � �sKx�h
 ���h � �sIKx�h
�x� Now


��Xt��� � f��Xt���� P��Xt�g	 �P��Xt�� P��x�� 	 P��x�

��Xt���Kx�h�Xt� � gh�Xt�Xt��� 	 �x�Xt�Kx�h�Xt� 	 P��x�Kx�h�Xt� ������



	�

where gh�u�w� � ���w� � P��u��Kx�h�u�� This gives

bP��x� � P��x� � S��n �Kx�h�
n
Sn�gh� 	 Sn��x �Kx�h�

o
� ������

The last term on the right hand side represents the bias� It contains a stochastic

quantity
 and we want to replace it by a deterministic bias term� Let ah
def
� ���p�h���h�

Then

bP��x� � P��x� � ah � S��n �Kx�h�
n
Sn�gh� 	 Sn��x �Kx�h�� ahSn�Kx�h�

o
� S��n �Kx�h�

n
Sn�gh� 	 Sn�fh�

o
� ������

where
fh � ��x � ah� �Kx�h � ������

We note that �gh � � and �fh � �� Now
 we can write

�n�h � ��
n�h 	��

n�h ������

where

��
n�h �

nbpC�x�o����T����
C �n�h���Sn�gh�

��
n�h �

nbpC�x�o����T����
C �n�h���Sn�fh� � ����
�

and where C is a purely auxiliary set chosen such that T� holds� Then conditions are
ful�lled for the second part of Theorem 	�� 
 and thus �	���� and �	���� imply

bpC�x� � �CKx�hn 	 oP ��� � ������

Hence bpC�x�� pC�x� in probability� The function fh can be written as

fh�y� �
�
P��y� � P��x�� ah

�
�Kx�h�y� �

The next step consists in applying Corollary ��� to fh in order to show that ��
n�h in

�	��	� can be neglected�
Since P� is locally continuous it follows that ah � o��� and

sup
y�Nx�h�

kP��y�� P��x� � ahk � o��� � ����
�

Moreover
 fh and eIfh�fh are locally continuous and special functions by K� and �sfh � ��
By Lemma A�� �cf� A���� we have that


�
kfhk

� �skfhk� 	 ��sIkfhkPGs��kfhk	 ���kfhk

and by local continuity of P�
 K�
 P� and the Lebesgue dominated convergence theorem


�kfhk �
Z
ps�x	 hu�kP��x	 hu�� P��x�kK�u�du 	 o��� � o��� �

By �	���� and K�


sup
z
Gs��hkfhk�z� � c� sup

z
Gs���z�Nx�h�� � c��
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and it follows that

h�sIkfhkGs��kfhk � c��kfhk � o���

h�skfhk� � c

n
sup
z
hkfh�z�k

o
�skfhk

� c��kfhk � o��� �

By Remark ��� we can infer that kfhk satis�es R�
 R�
�
 R�

�� By Lemma 	�� with
���u�w� � P��u� � P��x� � ah it follows that R� is true for fh� The conditions R�

and R��
� of Corollary ��� are trivially veri�ed� Hence the conditions in this corollary are

true for each component of fh
 and it follows from Lemma ��� and ��� that

T
����
C �n�h���n Sn�fhn� � op��� � ������

Hence by �	��	�
 �	���� and �	����


�n�hn � ��
n�hn 	 oP ��� ������

It remains to verify that the conditions in Corollary ��	 are ful�lled for ��
n�hn

�
In the present case we have that gh�u�w� � ���u�w�Kx�h�u� with ���u�w� � ��w� �

P��u�� By Jensen�s inequality kP�k�m � Pk�k�m which gives that

eIk��k�m� � �mPk�k�m

because

eIk��k�m��x� � Z
P �x� dy�k���x� y�k�m

� IEx

h
k���X��X��k�m j X� � x

i
� IEx

hn
k��X��k	 kP��X��k

o�m j X� � x
i

� �m��
n
IEx

h
k��X��k�m j X� � x

i
	 IEx

h
kP��X��k�m j X� � x

io
� �m��

n
Pk�k�m�x� 	 kP�k�m�x�

o
� �m��

n
Pk�k�m�x� 	 Pk�k�m�x�

o
� �mPk�k�m�x� �

Hence the conditions in Lemma 	�� are ful�lled since the right hand side of the above
inequality is by assumption locally bounded� Thus kghk satis�es R�
 R

�
� and R
 �with

m � � and v � ���
Likewise
 since P�
 P �� � �� are continuous at the point x and e�� � P� � P� � �


the conditions in Lemma 	�� are ful�lled� In particular �	��
� holds and

h�gh � pC�x�V ��x�
Z
K��u�du	 o��� � ������

SinceAh � � for kghk
 by Lemma 	�� applied to kghk we have that R� holds for kghk
 and
by �	��
� it follows that ����
� and ������ are ful�lled with �� � pC�x�V ��x�

R
K��u�du�

Further
 the conditions R� � R� are easily veri�ed for kghk� We use Lemma 	�� to verify



	�

R� for kghk� By our choice of the set C
 we have that T�
 R�� hold� Thus the conditions
in Corollary ��	 hold and �	���� follows�

The bias term is negligible if

n nX
t��

Kx�h�Xt�
o���

h���n






�s�x �Kx�hn

�sKx�hn






 � oP ��� �

Introducing the set C as in �	����
 by P� this is equivalent with

T
���
C �n�h���n






�s�x �Kx�hn

�sKx�hn






 � oP ��� �

Assume that h��n � n������ Then from Lemma ��� and Lemma ���

h�nTC�n� � o��� a�s� �

Hence it is enough to verify that

h��





�s�x �Kx�h

�sKx�h






 � O��� �

Assume without loss of generality that d � �� Then by a Taylor expansion we can write

ps�x	 hu� � ps�x� 	 hR��x� hu� h�� sup
h��

sup
y�N�

jR��x� y� h�j ��

and

P��x 	 hu� � P��x� 	 h
d

dx
P��x�u	 h�R��x� hu� h�� sup

h��
sup
y�N�

jR��x� y� h�j �� �

This gives

�s�xKx�h �
Z
�s�dy��P��y�� P��x��Kx�h�y�

�
Z
ps�x	 hu��P��x	 hu�� P��x��K�u�du

� ps�x�
Z
�P��x	 hu�� P��x��K�u�du

	
Z
huR��x� hu� h��P��x	 hu�� P��x��K�u�du

� ps�x�h
d

dx
P��x�

Z
uK�u�du	O�h��

	h�
d

dx
P��x�

Z
u�R��x� hu� h�K�u�du	O�h
�

� O�h�� �

Hence the theorem is proved�

�
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Remark ��� Note that the set C only plays an auxiliary role in the proof of Theorem
	�	� Actually� we might have used T �n� instead of TC�n�� This is in contradistinction to
Theorem 	��� where C is an essential part of the theorem and its proof� The convergence
rate in both theorems is �T �n�h����� or equivalently �TC�n�h������ and it reduces to the
familiar rate �nh����� in the positive recurrent case� Some examples of Markov models
�both linear and nonlinear� satisfying the assumptions of Theorem 	�� and Theorem 	�	
are given in Myklebust et al ����
a�� where we also report on simulation experiments
checking the validity of the two theorems�



	�

A Appendix

In this appendix we derive an expression for 
�
g and �g given by ������� We also give

formulae for higher order moments� We assume ���	� and aperiodicity�

Lemma A�� Let g � G��
g��u� �

Z
��dz�g�u� z� �A���

and
���g� � �s�g

��� ��g�s�sg�� 	 ��g � �A���

Then

�
g � �� 	 �

n
�s eIgGs�v eg � ��g

o
� �A���

Proof� The notation is in accordance with Lemma ��� with initial measure � so that
U� has the same distribution as U�
 and the process fUk� k � �g is stationary� We have
�� and �� de�ned by ���	��� The variables U� and U� are given by ������� We de�ne

Zj � g�Xj �Xj���� eZj � eg�Xj� �

Recall that �g � IE�U� � �sg� Let Aj � ��Yj � ��
 Bj�j�k �
Qj�k��
s�j As when k � �

and Bj�j � �
 Bj � B��j� Then ���� � j� � Bj is FY
j���measurable and

U� �
�X
j��

BjZj � �A���

Let gl�x� � IEx

h
��Y� � l�Z�

i

 �l�x� � IEx

h
��Y� � l�Z� � PS�

k�� Zk

i
for l � �� � and

� � �� 	 ��� By �A�	� and since BjBj���k � BjAjBj���j���k
 we can write

U�
� �

�X
j��

BjZ
�
j 	 �

�X
j��

BjAjWj

Wj
def
� Zj

�X
k��

Bj���j���kg�Xj���k �Xj���k� � �A�
�

By ����
�
 IE�AjWj j FX
j 
 FY

j��� � ���Xj� and using �A��� we obtain

IE��U
�
� � � �sg

� 	 ��s�� � �A���

Let U�� �
P����

j�� Zj and U�� � g�X���X������ Then U� � U�� 	 U�� and U�� is inde�
pendent of U�� Representations for the variables are given below
 where we have used
that ���� � j� � Bj�� �Aj� and ���� � j 	 � 	 k� �� � j� � Bj���Aj�Bj���j���k


U�� �
�X
j��

BjAjZj

U�� �
�X
j��

Bj���Aj�Zj

U� �
�X
j��

Bj���Aj�
�X
k��

Bj���j���kZj���k � �A�
�
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This gives U��U� �
P�

j��Bj�� � Aj�Wj and by ����
� IE��� � Aj�Wj j FX
j 
 FY

j��� �
���Xj�� Thus IE��U��� � �sg� and IE��U��U�� � �s��� Hence

IE��U�U�� � IE��U���IE��U�� 	 IE��U��U��

� �sg� � �sg 	 �s�� � �A���

Combining �A��� and �A���
 and using ������ and the one�dependence of the process
fUk� k � �g we get


�
g � E��U

�
� � 	 �E��U�U��� �IE��U��IE��U��

� �sg
� 	 ��s�� 	 ��s�� 	 ��sg� � �sg � ��sg � �sg

� f�sg� � ��
sgg	 ��s� � ��sg � f�sg � �sg�g

� �sg
� � ��

sg � ��sg � �ssg� 	 ��s� � �A���

where we have used that g� � sg� with g� de�ned by �A��� so that �sg��sg� � �s�sg���
From

S�X
j��

Zj �
�X
j��

B����jZj�� �A����

we obtain IEx

nPS�
k�� Zj j FX

� 
 FY
�

o
� Gs�veg�x� which gives with the aid of ����
� that

��x� � IEx

n
g�X��X��Gs�v eg�X��

o
� �s� � �s eIgGs�veg � �A����

�

If g�x� y� � g�x� then g� � g since ��E� � � and �s�g�� � �s�sg�� The expression
for 
�

g simpli�es to


�
g � �s�g

��� ��
s �g� 	 ��sIgPGs��g � ��s�g��s�sg� � �A����

We note that if �s�g� � � then 
�
g � �s�g�� 	 ��s��� which is in accordance with

Nummelin����	
 p ����� However
 his conditions are di�erent since he assumes that
g � G and at the same time avoids m� � ��

In the multivariate case we also need an expression for the asymptotic covariance
matrix� In order to have a compact notation we will use a d dimensional kernel� Recall
that eIg�x� dy� � P �x� dy�g�x� y�� g � �g�� � � � � gd�

� � Gd� �A����

and note that if f � �f�� � � � � fd�� � Gd then eIg�f�u� is the matrix f eIgifj�u�� � � i� j �
dg� Moreover
 eIg�g is de�ned by replacing g in �A���� with g � g� We also use the
standard Euclidian norm kgk � �

Pd
i�� g

�
i �x� y��

����

Lemma A�� Suppose g � Gd� then

�g � �s�g � g� 	Ag 	A�
g �Bg �B�

g �A����

where

Ag � �s eIg �Gs�veg� Bg �
�

�
��sg � �sg� 	 �sg � �ss � g� � �A��
�



��

Proof� Let ga � a�g where a � Rd� By ������ it is enough to show that 
�
ga � a�ga

��

We have �s�g�a� � a��s�g � g�a
 eIga � a� eIg
 Gs��
eIga � a�Gs��

eIg and

eIga �Gs�v ega � a�� eIg �Gs�veg�a
with corresponding results for all parts of �A��	�� Thus 
�

ga � a��ga
 and the lemma
follows by comparing to �A��� and �A�����

It is of interest to �nd expression of higher order moments of U � We start with the
following lemma which is well�known
 but is stated for completeness�

Lemma A�� Let fakg be a real sequence and let �m�r � f� � ���� � � � � �r� �
N r

��
P
�k � mg for r � �� Then

n nX
k��

ak
om

�
mX
r��

X

�	m�r

�
m

�

�
Jn�r�
 �A����

where
�
m



�
� �

Qr
j�� �j��

��m� and

Jn�r�
 �
X

��j��j�� ����jr�n

a
�j� � � � a
rjr

�
nX

h���

n�h�X
h���

� � �
n�h�� ��� �hr��X

hr��

a
�h� � � � a
rh�� ����hr � �A��
�

Proof� Let N n��
m � f� � N n���

Pn
j�� �j � mg
 ��

m�r � f� � Nn��
m ��fj� �j 	

�g � rg and C� � fj� �j 	 �g� Then
 since N n��
m � �mr���m�r and

�
m
�

�
is a symmetric

function of ���� � � � � �n�

n nX
k��

ak
om

�
X

��Nn��
m

�
m

�

�
a��� � � � a�nn

�
mX
r��

X
��	�m�r

�
m

�

�
a��� � � � a�nn

�
mX
r��

X
��	�m�r

�
m

�

� Y
j�C�

a
�j
j

�
mX
r��

X

�	m�r

�
m

�

� X
��i��i�� ����ir�n

rY
j��

a

j
ij �

�

Let
�Ig�x� dy� � �P � s� ���x� dy�g�x� y� �A����

then refering to the notation of the proof of Lemma A�� we can write

�� � �IgGs�� eg� �� � � eIg � �Ig�Gs�� eg� � � eIgGs�� eg �A����
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and
g� � �Ig�� g� � � eIg � �Ig��� g� 	 g� � eIg� �

Our next result gives an exact description of an arbitrary central moment of U � This
is subsequently applied to give bounds of a given moment�

Theorem A�� Let g � G� and let Ug �
P�

j�� g�Xj �Xj���� Let m � �� Then

IE�U
m
g �

mX
r��

X

�	m�r

�
m

�

�
�Gs��

�Ig�� � � � Gs��
�Ig�r��Gs��

eIg�r� �A����

in the notation of Lemma A��� The right hand side of �A��
� is well�de�ned if it is
�nite when Ug is replaced by Ujgj� If g�x� y� � f�x�h�y�� then �Ig � If �P � s� ��Ih and
�A��
� simpli�es�

Remark A�� When m � � we get

IE��U
�
g � � �s eIg�� 	 ��s �IgGs��

eIg�� �A����

which coincides with the right hand side of �A����

Proof� Since Ug �
P�

j��Bjg�Xj�Xj���
 we can apply Lemma A�� with aj �
Bjg�Xj �Xj��� and n � �� We can apply this lemma with n � � since we assume
that IE�Ujgj� is �nite and therefore

�X
j��

Bjjgj�Xj �Xj���� �� a�s� �

Let r � m
 � � �m�r be �xed and let gs�x� y� � g
s�x� y�
 Zs
j � gs�Xj �Xj���
 for

s � �� � � � � r� De�ne Jk � Jr�
�k for k � �� � � � � r


Jk
def
�

�X
h���

�X
h���

� � �
�X

hk��

Bh�� ��� hkZ
r�k��
h�

� � � Zr
h��h�� ����hk

�
�X

h���

Bh�Ah�Z
r�k��
h�

W
�k���
h��� � when k � �
 �A����

where according to the above Zr�k�� � g
r�k�� �Xj�Xj��� and where

W
�k���
h�

def
�

�X
h���

�X
h���

� � �
�X

hk��

Bh��h��h�� ����hkZ
r�k��
h��h�

� � � Zr
h��h�� ����hk

� �A����

Let

�k�x�
def
� exJk� k � �� � � � � r

�k�x�
def
�

�
IExg

r�X��X��� when k � �
IExA� g

r�k���X��X���k���X��� when k � �� � � � � r�
�A����



��

By calculation we �nd that

�k �

	�� eIgr�� if k � ��

�Igr�k���k���� if k � �� � � � � r�
�A��
�

From �A���� and �A��	� we get

E
n
W

�k���
h��� j FX

h��� 
 FY
h�

o
� �k���Xh����� k � �� � � � � r� �A����

and by �A����
 �A���� we obtain

�k � Gs���k� k � �� � � � � r� �A��
�

which gives by �A����

�k �

	��
eIgr�� if k � ��

�Igr�k��Gs���k��� if k � �� � � � � r

�A����

and
IE��Jr� � ��r � �Gs���r � �s�r � �A����

The equation �A���� is of the form

�k � Kr�k���k��� k � �� � � � � r� Kj
def
� �IgjGs�� � j � �� � � � � r � �

hence
�r � K�K� � � � Kr����

� �Ig�Gs��
�Ig�Gs�� � � � �Igr��Gs��

eIgr� � �A����

The proof is �nished by �A���� and �A��
� and by Lemma A�� since

IE�U
m �

mX
r��

X

�	m�r

�
m

�

�
� IE�Jr�
�r �

�

Corollary A�� If
supGs��

eIjgj� 	 supGs��
eIjgjm� �� �A����

then IE�U
m
jgj is �nite� The assumption �A���� holds if eIjgj� and eIjgjm� are special functions

or if g is a bounded special function�

Proof� Note that � � �Ijgj � eIjgj and using the simple inequality jgjj � jgj	 jgjm� � �
j � m
 it follows from �A���� that both supGs��

eIjgjk and supGs��
�Ijgjk� � � are �nite

for k � �� � � � �m�
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Let the notation be as in the proof of Theorem A�� and let c denote an upper bound
for the left hand side of �A����� Then for

�r � �Ijgj��Gs�� � � � Gs��
�Ijgj�r��Gs��

eIjgj�r�
we have

�s�r � c � �s�r�� � cr �

By �A���� and Theorem A�� the �rst part is established� If g is bounded and special
then by Theorem ���

supGs�v
eIjgjj� � fsup jgjgj�� supGs�v

eIjgj� ��� j � �� � � � �m

and �A���� is ful�lled� The same is true if eIjgj� and eIjgjm� are special functions�
�



��

B Appendix

A very brief summary of the properties of Dd�����
 the space of all Rd�valued functions
de�ned on R� which have left limits and are right continuous �cadlag�
 is given below�
We refer to Jacod � Shiryaev�����
 p �������� for a complete description of this space

and the concept of weak convergence of stochastic processes with sample paths herein�

The topology of Dd����� is de�ned by the Skorokhod J��metric which may be
described in the following way� A time change � is a strictly increasing continuous
bijection of R�� A sequence fxng � Dd����� converges to x if and only if there exists
a sequence of time changes f�ng so that both fxn � �ng and f�ng converges locally
uniformly �uniformly on compact sets� towards x and ��t� � t� If x happens to be
continuous
 then convergence of fxng to x is locally uniform convergence without any
time changes� The space Dd����� with the J��metric is a Polish space �separable and
complete�� The 
��eld induced by the projection maps coincides with the Borel 
�
�eld induced by the J��metric� This means that if � � f��t�� t � R�g is a collection of
random vectors in Rd de�ned on some common probability space
 and each sample path
is cadlag
 then � is stochastic process with values in Dd������ If f�ng is a sequence

of stochastic processes with values in Dd����� then �n
LDd�������

n
� if the corresponding

sequence of induced measures converges weakly to P�
 where P���� � P �� � ��� We have
�nite dimensional convergence if for each �nite set F 
 �����
 the vector sequence
f�n�t�� t � Fg converges in distribution to the vector f��t�� t � Fg� The sequence f�ng
is C�tight if f�ng is tight and all limits points of fPng charges only Cd�����
 the space
of all continuous Rd�valued functions
 i�e�
 Pn�Cd������ � � for all n� In particular
 if
�n converges weakly to a �
 which has continuous sample paths
 then f�ng is C�tight�

The inverse of a function f is denoted by f ����� For x � D����� and x increasing

we de�ne x�����t� � inffs� x�s� 	 tg� If x is strictly increasing
 then x���� is continuous
and nondecreasing�

Theorem B�� For each n let �Bn� An� be a pair of stochastic processes which are cad�
lag� where An is non�negative and nondecreasing� Let B denote a Brownian motion
de�ned for t � R� and let A denote a strictly increasing non�negative process with in�

dependent increments� A��� � � and with no �xed jumps� Assume that Bn

LD�������
n

B

and An

LD�������
n

A� Then

�Bn� An� A
����
n �

LD��������
n

�B�A�A
����� �B���

where B is independent of �A�A����� and

�A����
n � Bn �A����

n �
LD��������

n
�A����� B �A����� � �B���

For all � 	 ��
A����
n �

Bn �A����
nq

A
����
n

���A
����
n �

�
LD��������

n

�
A���

B �A����

p
A����

���A
�����

�
�B���
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where ���x� � �����x�����x � �� 	 ��x 	 ��� If we let �� � � and put ��� equal to �
then still �nite dimensional convergence holds� In this case we have for each �xed t that
the limit vector is distributed as �A�����t�� Z� where Z is a standard normal variable
independent of A�����t��

Proof� By assumption fBng is C�tight and fAng is tight� Hence f�Bn� An�gis tight
�cf� Jacod � Shiryaev
 ����
 Cor� ����
 p� ����� If �B�� A�� is a limit point for this

sequence
 then necessarily B� d
� B and A� d

� A� But since A is strictly increasing
 B �

and A� are independent �cf� Kasahara
 ���	�� Hence �B�� A�� � �B�A��

The map given by a �� a���� is continuous when a � C def
� fx� x is strictly increasingg�

By the continuous mapping theorem we �nd that A����
n converges weakly to A���� since

A � C� Now
 f�A����
n � An�g is tight since fA����

n g is C�tight and fAng is tight� Again by
the same argument it follows that f�Bn� A

����
n � An�g is tight which implies �B���� The

map �b� x� �� b�x is continuous at all points where b is continuous and x is non�negative�
Again
 by the continuous mapping theorem we can conclude that �B��� is true� The
reasoning is similar for �B��� where the function �� guards against a discontinuity at
zero� By Jacod � Shiryaev�����
 Prp� ���	
 p� ���� we have that �B��� implies �nite

dimensional convergence when �� is not present� Let ��t� � B�A�����t���
q
A�����t��

Since B�s��
p
s � Z for all s 	 �
 and since B and A���� are independent
 we have that

��t� � Z for all t 	 ��
�
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