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IMAGE DENOISING� POINTWISE ADAPTIVE APPROACH
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Mohrenstr� ��� ����� Berlin

and
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Abstract� The paper is concerned with the problem of image denoising for the
case of grey�scale images� Such images consist of a �nite number of regions with
smooth boundaries and the image value is assumed piecewise constant within
each region� New method of image denoising is proposed which is adaptive �as�
sumption free� to the number of regions and smoothness properties of edges�
The method is based on a pointwise image recovering and it relies on an adap�
tive choice of a smoothing window� It is shown that the attainable quality of
estimation depends on the distance from the point of estimation to the closest
boundary and on smoothness properties and orientation of this boundary� It is
also shown that the proposed method provides a near optimal rate of the edge
estimation�

�� Introduction

One of the main problem of image analysis is the reconstruction of an image �a pic�
ture� from noisy data� It has been intensively studied last years� see e�g� the books
of Pratt ������� Grenander ����	� ������ Rosenfeld and Kak ����
�� Blake and
Zisserman ������� Korostelev and Tsybakov ������� There are two special features
related to this problem� First� the data is two�dimensional �or multidimensional��
Second� the image is usually composed of several regions with rather sharp edges�
Within each region the image preserves a certain degree of uniformity while on the
boundaries between the regions it has considerable changes� This leads to the edge
estimation problem�

���� Mathematics Subject Classi�cation� �	G
�� Secondary �	G	
�
Key words and phrases� edge� image� pointwise adaptive estimation� rate of estimation�

regression� averaging window� testing window �
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A large variety of methods has been proposed for solving the image and edge
estimation problem in di�erent contexts� The most popular methods of image esti�
mation are based on the Bayesian approach for certain parametric image modeling
technique� see Haralick ������ Geman and Geman ������� Ripley ������ among
other� Some nonparametric methods based on penalization and regularization have
been developed in Titterington ������� Shiau� Wahba and Johnson ����	�� Mum�
ford and Shah ������� Girard ������
The edge detection methods mostly do not assume any underlying parametric

model� Methods based on kernel smoothing with a special choice of kernels have
been discussed in Pratt ������� Marr ����
�� Lee ������� Huang and Tseng �������
M�ller and Song �������
Tsybakov ������ evaluated the optimal rate of nonparametric estimation of an

image when it possesses the structure of a boundary fragment� The method allows
a direct image estimation and it applies both for regular �equidistant� and random
design� It is also computationally straightforward� The only inconvenience for
practical applications is that it assumes an image of a special structure and some
information about the image contrast is required� This method leads also to a
suboptimal rate of edge detection �n�� log n���� �
A general asymptotic minimax theory of edge estimation has been developed in

Korostelev and Tsybakov ������� For instance� they showed that linear methods are
not optimal for images with sharp edges� Imposing some smoothness restrictions
on the boundary� they found the minimax rate n�������� of edge estimation� �
being the degree of edge smoothness� and constructed rate�optimal estimators for
images with the structure of a boundary fragment� The proposed methods are
essentially nonlinear and they involve column�wise change�point analysis�
In the present paper� we propose another approach which is based on direct

image estimation at each design point� We apply a simple linear estimator which
is the average of observations over a window selected in a data�driven way� Then
we study which accuracy of edge estimation is provided by this procedure� In spite
of the fact that linear methods are only suboptimal in edge estimation� the results
of this paper show that a non�linearity which is incorporated in the linear method
by an adaptive choice of an averaging window allows to get a near optimal quality
of edge recovering�
The presented approach can be viewed as one more application of the idea

of pointwise adaptive estimation� see Lepski ����� ���
�� Lepski� Mammen and
Spokoiny ������� Lepski and Spokoiny ������� Spokoiny ����	�� In the last paper
a pointwise adaptive procedure was applied to estimate a function with heteroge�
neous smoothness properties� allowing� for instance� jumps or jumps of derivatives�
The methods based on pointwise �or local� adaptation are especially fruitful in
situations where a complex object like a function with heterogeneous smoothness
properties admits a simple description in a small neighborhood of each point and
the procedure� being applied at this point� adapts exactly to the underlying local
structure� In essence� the procedure searches for a largest local vicinity of the point
of estimation where the local structural assumption �ts well to the data�
We now apply this idea to the problem of image estimation� We focus on the

case of piecewise constant images i�e� we assume that the image consists of a �nite
number of regions and the image value is constant within each region� The image is
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observed with noise on a regular grid in the unit square and we estimate the image
value separately at each design point via a data�driven choice of the averaging
window� The bene�t of this approach is that it is very general in nature and it
does not require to specify the number of regions� di�erence between values of the
image function f for di�erent regions or regularity of each edge� Moreover� this
method can be applied to estimate any function which can be well approximated
by a constant function in a local vicinity of each point�
We consider the regression model

Yi � f�Xi� � �i� i � �� � � � � n� �����

where Xi � ��� ��d � i � �� � � � � n � are given design points and �i are individual
independent random errors� Below we will suppose that �i � i � �� � � � � n � are i�i�d�
N ��� ��� with a given noise level � �
Next we suppose that the cube ��� ��d is split into M regions Am � m �

�� � � � �M each of them is a connected set with an edge �boundary� Gm � The
function f is assumed constant within each region Am � i�e�

f�x� �
MX
m��

am��x � Am� ���
�

where a�� � � � � aM are unknown constants� The problem is to estimate the image
function f�x� or� equivalently� to estimate the values a�� � � � � aM and to decide
for each point Xi what the corresponding region is�
The idea of the proposed method is quite simple� We search for a maximal

possible window U containing x� in which the function f is well approximated
by a constant� Further this constant is taken as the resulting estimate� Of course�
the choice of the considered class of windows plays the key role for such an approach�
We will discuss this problem a little bit later� Now we suppose for a moment that
we are given a class U of windows U � each of them being a subset of the unit
cube ��� ��d containing the point of interest x� � By NU we denote the number of
design points in U � The assumption that f is constant in U leads to the obvious

estimator bfU of f�x�� which is the mean of observations Yi over U �
To characterize the quality of the window U we calculate the residuals �U�i �

Yi � bfU and we test the hypothesis that these residuals �U�i can be treated within
the window U as a pure noise� Finally the procedure selects the maximal �in
number of points NU � window for which this hypothesis is not rejected�
The paper is organized as follows� In the next section we present the procedure�

Section � contains the results describing the quality of this procedure� In Section �
we specify the general results to the case of an equidistant design and discuss the
problem of edge estimation in this context� Section � contains some simulated
examples� The proofs are mostly deferred to Section 	�

�� Estimation Procedure

Let data Yi�Xi � i � �� � � � � n obey model ������ We will estimate f�x�� for a given
x� � Typically x� is a design point i�e� the image is recovered at the same points
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where it is observed� Note� nevertheless� that the procedure applies in general for
any point x� and can be used for image interpolation as well�
Given a family of windows U and U � U � set NU for the number of the points

Xi falling in U �

NU � �fXi � Ug�
We will suppose that NU � 	 for each U � U � We assign to each U � U the

estimator bfU of f�x�� by

bfU�x�� � bfU �
�

NU

X
U

Yi�

Here the sum over U means the sum over design points in U �

Our adaptation method is based on the analysis of the residuals �U�i � Yi � bfU �
We introduce another family V�U� of windows V � each of them is a subwindow
of U � i�e� V � U � We require only that NV 
� �fXi � V g � 	 for all
V � V�U� � One example of the choice of the families U and V�U� for the case of
the equidistant design is presented in Section ��
By CU we denote the cardinality of V�U� �

CU � �V�U�� �
���

and by C� the value

C� � max

�
�U � max

U�U
CU

�
�

For each V � V�U� set

TU�V �
�

�U�VNV

X
V

�U�i �
�

�U�VNV

X
V

�Yi � bfU � � bfV � bfU
�U�V

where
P

V means summation over the index set fi 
 Xi � V g and �U�V is the

standard deviation of the di�erence bfV � bfU �
��
U�V � ��NU �NV

NUNV
� ���N��

V �N��
U ��

De�ne now

�U�V � � �jTU�V j � t��

where

t� �
p

	� � 	 logC� �
�
�

and � is some constant which determines the probability of wrong classi�cation�
We say that U is rejected if �U�V � � for at least one V � V�U� i�e� if �U � �

with

�U � sup
V �V�U�

�U�V � �

�
sup

V �V�U�

jTU�V j � t�

�
�
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The adaptive procedure selects among all non�rejected U from U one which max�
imizes NU � bU � argmax

U�U
fNU 
 �U�V � � for all V � V�U�g�

If there is more than one non�rejected set U attaining the maximum� then any of
them can be taken� Finally we setbf �x�� � bf

bU�x
�� � bf

bU �

�� The main results

Below we describe some properties of the proposed estimation procedure and state
the result about the corresponding accuracy of estimation�
Let x� be a given point� Our target is the image value f�x�� � In the sequel

we assume that x� is from region Am for some m � M � Of course� the number
m � as well as the total numbers of regions M and the structure of each region are
unknown�
We also suppose we have a family U of windows containing x� and for each

U � U a family of testing subwindows V�U� �
Our results are stated using the notion of an �ideal� window U� from U � Namely�

let U� stand for the largest �in the number of design points� window from U which
is contained in Am � It is also assumed that this set is not empty� Otherwise we
set simply U� � � and NU� � � �
To state the results about the quality of estimation by our adaptive procedure�

we need some conditions on the families U and V�U� � U � U �

�U� �
�U��� every set U from U contains x� �
�U�	� there is an integer number K such that for every U�U � � U � the inter�

section U � U � contains a testing window V � V�U� with

NV � K�

�U��� Let U� be the maximal window from U which is contained in Am � Let
then U � U be such that NU � NU� � If the di�erence UnAm does not
contain any V � V�U� with NV � K � then there is a V� � V�U� such
that V� � Am and

NV� � NU�		�

The choice of the constant K in �U�	� will be discussed later�

Remark ���� Condition �U�	� from the above did not appear in the univariate case�
see Spokoiny ����	�� but it is rather essential in the multivariate situation� This
can be illustrated by the following example� Let the point of interest x� lie in A�

but near the boundary with another region� say A� � Let also there be two windows
U� and U� from U such that all design points from U� are in A� and almost
all design points from A� except x� are in A� � Both these window with a large
probability will not be rejected and if� in addition� NU� � NU� � then the procedure

selects U� rather than U� � This will lead to a inconsistent estimator bf �x�� � a�
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obtained by averaging over U� � We shall see that condition �U�	� does not allow
such a situation�
Conditions �U��� and �U�	� rely only on the structure of the set U of considered

windows whereas condition �U��� rely also on the properties of the edge of the
region Am containing x� � This condition can be commented in the following way�
Let U� be an �ideal� window and let U be another window such that NU � NU� �
This means that U is �large� compared with U� � If the di�erence UnAm is small
in the sense that it does not contain any testing window V with NV � K � then
the intersection U � Am is large in the sense that it contains a window V with
NV � NU�		 �

Now we are in a position to state the main result�

Theorem ���� Let the image function f�x� be piecewise constant� see ���	
� Let
some K � � be �xed and let conditions �U��� through �U��� be satis�ed� Let also

C� � max

�
�U � max

U�U
�V�U�

�
and t� �

p
	� � 	 logC� � If x� � Am and if for all m� 	� m � it holds

jam � am� j � �t�K����� �����

then

P f

���� bf �x��� f�x��
��� � 	� �NU�		����� t�

�
� �e���

���� The accuracy of estimation

The result of Theorem ��� guarantees a reasonable quality of estimation only in
the case when the �ideal� window U� is su�ciently large� In particular� if there is
no window in U contained in the same region Am as x� � then this result does not
apply� From the other side� if x� is an internal point of the region Am and if the
region is comparable in size with the whole square ��� �� � then typically there are
large windows with of order n points inside� that is� NU� 
 n � Therefore� inside
each �large� region� the proposed procedure estimates the image value with the rate
n���� up to some logarithmic term� Finally� if x� lies near the boundary of the
region Am � then the size of U� depends on the distance of x� to the boundary of
Am and on the smoothness properties of this boundary� The same is valid for the
quality of estimation� More detailed discussion can be found in Section ����
The notion of an �ideal� window U� � U��x� can be regarded as a multi�

dimensional analog of the notion of a local smoothness characteristic� cf� Lepski�
Mammen and Spokoiny ������� Lepski and Spokoiny ������ or Spokoiny ����	��
Donoho and Johnstone ����	� used the notion of an �oracle� to explain a similar
thing� Indeed� if we knew from an oracle the �ideal� window U� � then we de�ne
our estimate by averaging over U� � This estimate can also be called �ideal� or
�oracle� estimate� Our main results claim that our procedure is locally adaptive in

the sense that it delivers the same rate of accuracy N
����
U� �up to a log�term� as if

the �ideal� windows were known�
Now we shortly discuss the choice of the parameter K entering in condition

�U�	� and ������ First we mention that the value C� is typically of order nr with
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some positive r � Therefore� the value t� �
p
	�� 	 logC� is of order

p
log n � If

the image contrasts am � am� are all of order � � then it follows for K from �����

K � constant �� log n�

Therefore� K has to be of logarithmic order but its choice depends on the noise
level and on the image contrast� For more discussion see also Section ����� and
Section ��

�� The case of an equidistant design

In this section we specify our procedure and results to the case of a regular equidis�
tant design in the unit square ��� ��� � We also discuss the problem of edge estima�
tion�
Suppose therefore that we are given n design points X�� � � � �Xn with Xi �

�Xi���Xi��� � ��� ��� � Without loss of generality we may assume that
p
n is an

integer and denote 
 � n���� � Now each design �or grid� point Xi can be repre�
sented in the form Xi � �k�
� k�
� with nonnegative integers k�� k� �
As above� we consider the problem of estimating the image value at a point x�

by observations Y�� � � � � Yn described by the model equation ������ In this section
we restrict ourselves to estimation on the grid� i�e� we suppose additionally that
x� is a grid point�
We begin by describing one possible choice of the set of windows U � Then

we specify the result of Theorem ��� to this case and consider the problem of
edge estimation� Then we compare our results with the existing results from the
literature�

���� An example of the set of windows

Our procedure involves two external parameters K and D � The integer K enters
in condition �U�	� and in Theorem ��� and we have to ensure in our construction
that the number of design points in the intersection of every two windows of the
constructed family is at least K � The parameter D controls the maximal size of
the considered windows�
Let� given an integer d � � � Qd be the axis�parallel square with the centre

at x� and with side length 	d
 � 
 being n���� � Obviously Qd contains exactly
�	d���� design points� First we describe all windows associated with this square�
Denote for every two di�erent design points Xi � Xj by L�Xi�Xj� the straight
line passing through these points� If Xi and Xj belong to Qd � then this line splits
the square into two parts� We de�ne Ud�L as one of them which contains x� � For
a formal description� we represent the line L by the equation aTLx� bL � � where
aL is a vector in R� and bL is a real number� Then the sign of the expression
aTLx� bL determines the position of a point x w�r�t� the line L � In particular� all
the points from the same side of L have the same sign for this quantity� Now we
set

Ud�L � fx � Qd 
 sign�a
T
Lx� bL� sign�a

T
Lx

� � bL� � �g�
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x1 (x delta)

x2
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lta
)

12 14 16 18 20

20
22

24
26

28

x0

U4,L

Q4/ U4,L L

Figure �� Q� and one selection of UL for x � ��
� 	�
��

see Figure ��
This de�nitions means that the points lying on the line L are also included in

Ud�L � For the sequel� it is convenient to identify two windows Ud�L and Ud�L� if
they contain the same subset of design points from Qd � We then de�ne a set Ud
of windows associated with the square Qd by

Ud � fUd�L � �Lg�
In other words� we obtain the family Ud considering splits of the square Qd into
two parts and taking each time the largest from these two� Clearly the equivalent
de�nition is

Ud � fUd�L � L � L�Xi�Xj�� Xi�Xj � Qdg�
We also denote by eUd the set of all splits including the smallest parts too�eUd � fUd�L � QdnUd�L � L � L�Xi�Xj�� Xi�Xj � Qdg�
The total number of windows in eUd can be very roughly estimated by �	d����		 �
Very roughly we de�ne our set U as the union of Ud with di�erent d � But we

have also to provide condition �U�	� � and for this it is required to restrict slightly
this class� Given a line L � denote by L� the parallel line passing through x� � so
that L� � fx 
 aTL�x� x�� � �g � By Kd�L we denote the number of design points
in Qd between L and L� �

Kd�L � fXi � Ud�L 
 sign�aTL�Xi � x��� sign�aTL�xL � x��� � �g
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where xL denotes an arbitrary point on L � Note that the points lying on both
lines L and L� are included� This de�nition is illustrated in Figure 
� Finally we
set

Ud�K � fUd�L � Ud 
 Kd�L � Kg�
Lemma ���� The intersection of every two windows from Ud�K contains at least
K design points�

Proof� Let Ud�L� and Ud�L� be two windows from Ud�K corresponding to some lines
L� and L� respectively� Let also L�� be the parallel to L� line passing through
x� �
For each grid point Xi we denote by Xs

i the symmetric to Xi point w�r�t� x� �
see Figure 
� Now we may use the simple fact that if Xi lies between L� and L�� �
then Xs

i belongs to Ud�L� � and that either Xi or Xs
i belongs to Ud�L� �

x0

xi

xs
i

L1

L’1 L2

Figure �� L� L� and L��

For every window U from Ud�K we de�ne a family of testing windows Vd�U� in a

similar manner� Namely we take all windows V from eUd which are contained in
U � and also all di�erences UnV �

Vd�U� � fV or UnV 
 V � eUd� V � Ug�
Next we introduce a set D of all considered d �values� This set is a subset of the

index set f�� 	� � � � �Dg and hence it contains at most D elements� Now we de�ne

U � UD�K �
�
d�D

Ud�K
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For every U from Ud and each d� � d � let Ud� � U �Qd� � Then we set

V�U� �
�

d��D�d��d

Vd��Ud���

For the above de�ned set U � condition �U��� is ful�lled by construction� Now we
are checking �U�	� �

Lemma ���� The sets U and V�U� � U � U � ful�ll �U�	� �

Proof� Let U � Ud�L and U � � Ud��L� be two windows from U � Without loss of
generality we may assume that d � d� � Otherwise� if for instance d� � d � we take
U ��Qd instead of U � � We also restrict ourselves to the most interesting case when
the lines L and L� do not intersect within Qd � Then by construction V � U �U �

is a testing window from V�U� and by Lemma ��� it contains at least K design
points�

It is obvious that the total number of windows in U � UD�K is bounded by

DX
d��

�	d � ���		 � �	D � ��		��

and the same is valid for the cardinality of every V�U� with U � U � Therefore
C� � �	D � ��		�� � Hence the value t� from �
�
� can be roughly estimated as
follows�

t� �
p

	� � 	 logC� �
p

	�� �� log�	D � ���

Further we discuss the properties of the estimate bf �x�� corresponding to the pre�
viously described sets U and V�U� � U � U �
We begin with the very simple situation when the point of interest x� lies inside

a homogeneous region Am � We will see that such a situation the value f�x�� is
estimated with the rate n���� up to a logarithmic term�

Theorem ���� Let the point x� belong to a region Am together with the square

Q��x
�� �

�
x 
 maxfjx� � x��j� jx� � x��jg � �

	
�

Let also K satisfy the condition

K � ��t������ �����

with  � maxfjam � am� j� m� 	� mg and

t� �
q

	� � �� log�	n������ ���
�

If D � Cn���� with some positive constant C � � � then

P f

�
j bf �x��� f�x��j � 	�t��	Cn�������

�
� �e���

This result is a corollary of Theorem ���� It su�ces to note that the window
U coinciding with the square QD belongs to the family U and it is contained in
Am � Hence NU� � NU � �D� � Note also that here x� should not necessary be a
grid point�

Remark ���� It is worth to mention that in this situation much simpler methods
apply as well� see e�g� Tsybakov �������
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���� The accuracy of estimation near an edge

Now we are going to apply Theorem ��� to the case when the point of interest x�

lies near an edge of the corresponding region� First we illustrate the importance of
a careful estimation near an edge by the following

Example ���� Let A be a circle inside the unit square with a radius r � � � We
do not suppose that the center of this circle is at a grid point� The radius r may
be also arbitrary� We set � � C	n with some constant C � � and consider a
band of width � near the edge of A � Note that this width is essentially smaller
than the grid step 
 � n���� � if C is not too large� The Lebesgue measure
of this band is about 	� r � � so� for the uniform random design� the number of
design points inside this band would be in mean about 	� r �n � 	� r C � It
can be shown by using the arguments from the theory of continuous fraction� see
Khintchine ������ or Lemma ��
 below� that under the equidistant design� we have
essentially the same �in order� number of design points inside this band� On the
other side� it is well known� that the quality of estimation near an edge is especially
important by visualization� This is illustrated in Figure �� Even single errors in
image segmentation are visible and they lead to a signi�cant deterioration of the
image� see e�g� Figure ��

Figure �� Band of width � � ��
 around a dislocated circle of radius ���
� The
band contains �� points �	�r�n � ������

Let x� belongs to a region Am and lies near its the edge G with another region
Am� � We assume also that this edge is regular in the sense that it can be well
approximated by a straight line in some small vicinity of the point x� �
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Figure �� Ball of radius ���
 on a grid �left� and same ball with 
 misspeci�ed
pixels near the edge�

Without loss of generality we may assume that the edge G can be parametrized
in a neighborhood of the point x� by the equation x� � g�x�� with some di�er�
entiable function g and that jg��x���j � � � �Otherwise another parametrization
of the form x� � g�x�� is to be used�� Now the image function f at least in a
neighborhood of the point x� can be represented in the form

f�x� �



am� � x � Am� � fx� � g�x��g�
am � x � Am � fx� � g�x��g�

�����

The distance from x� to the edge G of Am can be characterized by the value
g�x���� x�� � see Figure ��

am

am’U2,L

U3,L

Figure �� Optimal sets Qd and Ud�L for 	 points x��
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In the next result we suppose that the edge function g is smooth in the sense
that it belongs to the H�lder class ���� P � with some parameters � � ��� 	� and
P � � � This means that g ful�lls the condition

jg��s�� g��t�j � P js� tj�� �s� t�
We consider the properties of the estimate bf�x�� for this situation assuming that
the value D is su�ciently large and D � f�� 	� � � � �Dg �
Theorem ���� Let the image function f�x� be of the form ����
 in a neighborhood
Q��x�� of the point x� with some positive � � � and let a grid point x� belong
to Am � The function g describing the edge G is supposed to be in the Hlder
class ���� P � � Let K and t� satisfy the conditions ����
 and ���	
� If D ful�lls
D � �n��� and

D � d� 
�
h
n

���
������ �K	P �

�
���

i
�

�a� being the integer part of a � and if the distance g�x���� x�� satis�es

g�x���� x�� � 	P
�

��� �n	K��
�

��� �

then

P f

�
j bf�x��� f�x��j � 	�t�d���

�
� �e���

���� Edge estimation

Now we shortly discuss the problem of edge estimation� Note that the above
described procedure is assigned for estimating the image function f and there is no
edge estimation subroutine� Nevertheless� in the case of an image with the structure
of a boundary fragment� the procedure estimates the value f�x�� consistently and
even with some rate if the point x� is bounded away from the edge with the

distance of order ���n� � �n�� log n�
�

��� � The minimal distance between the point
x� and the edge G which is su�cient for consistent estimation of f�x�� can be
regarded as the accuracy of edge estimation� Indeed� due to Theorem ��
 we get
a consistent image estimation outside of the �band of insensitivity� of the width of
order ���n� and this estimator can be used for edge restoration�
Now we aim to compare this accuracy with the earlier results on edge estima�

tion� The problem of the edge estimation was considered in details in Korostelev
and Tsybakov ������� They have shown that the rate of edge estimation criti�
cally depends on the smoothness properties of the function g de�ning the edge�
In particular� if g belongs to a H�lder class ���� �� � then the accuracy of edge

estimation� being measured in the Hausdor� metric� is �n	log n��������� � We see
that our procedure provides essentially with the same rate� Note meanwhile� that
Korostelev and Tsybakov ������ stated their results under a random or jittered
design� see p��
 there� Under the regular design� the rate of edge estimation is
equal to the grid step 
 � n���� � Korostelev and Tsybakov ������ p����� This can
be illustrated by the following example� if the edge G is a straight horizontal line�
then for any shift of this line within an interval between two neighbor grid lines� we
have the same distribution on the space of observations and hence the accuracy of
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estimation cannot be better �in rate� than n���� � Only assuming a random design�
the above mentioned improving in the rate of edge estimation is possible�
We proceed under the regular design but we estimate the value of the image

at a grid point� We see that this fact also allows us to get a better accuracy of
estimation ���n� � �n	 log n��������� with � � ��� 	� �
The result of Theorem ��
 delivers some additional information about depen�

dence of the quality of edge estimation on the noise level � � the image contrast 
and the orientation of the edge G described by the value z � g��x��� �

������ Accuracy versus noise level and image contrast

We see from the result that for consistent estimation� the required distance from

the point of interest x� to the edge G should be of order �n��K P ��
�

��� � This
expression depends on the noise level � only through K which must ful�ll K �
C���� log n with some constant C � We see that when the noise level increases
the quality of edge recognition decreases by the factor ��������� � Another possible
description of this in�uence is to say that increasing in the noise level is equivalent
to increasing the grid step n���� by the factor ��� �
All this remains valid for dependence of the quality of estimation on the value

of image contrast  
� maxfjam � am�j�m� 	� mg � The only di�erence is that this
dependence is with another sign� when the contrast increases the quality increases
as well� ad wise versa� Both these issues are in accordance with the one�dimensional
case �Spokoiny ���	� and with similar results for a random design �Mammen and
Tsybakov ������

����
� Accuracy versus edge orientation

The previous results are completely analogous to the existing results on image
recognition for a random design� cf� Korostelev and Tsybakov ������� Now we
discuss shortly a problem which appears only for the regular design� Namely it
is a dependence of the quality of edge estimation on the edge orientation� This
orientation is characterized by the value z � g��x��� � By inspecting the proof
one can see that the quality of estimation depends critically on the quality of
approximation of z by rational numbers with bounded denominators� It follows
from the result that the worst case leads just to the above indicated rate� At the
same time� if z is a rational number� z � p	q � with a bounded q � or if z is very
close to such a rational number� then the quality of estimation can be improved�
We present one result in this spirit restricting ourselves to the case of a rational z �

Theorem ���� Let the image function f�x� be of the form ����
 in a neighborhood
fx 
 jx � x�j � �g of the point x� with some positive � � � and let a grid point
x� belong to Am � The function g describing the edge G is supposed to be in the
Hlder class ���� P � and additionally z 
� g��x��� � p	q with some integer p � q �
Let K and t� satisfy the conditions ����
 and ���	
� If D ful�lls

Kq � D � �n���
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and if the distance g�x���� x�� satis�es

g�x���� x�� � P �Kqn������� �����

then

P f

�
j bf�x��j � 	�t��Kq���

�
� �e���

As a corollary of this result we conclude that an edge with a rational �e�g� with
horizontal or vertical� orientation can be estimated with the rate �n�� log n����

which approaches n�� for � � 	 �

������ Rate optimality

The next natural question is about the optimal rate of edge estimation� Korostelev
and Tsybakov ������ show that the rate ���n� � �n	 log n��������� cannot be
improved for the case of a random design� But this lower bound does not apply for
the case of estimation at design points with a regular design� The next assertion
shows that the accuracy ���n� cannot be essentially improved uniformly over the
class of all boundary fragments in the case of a regular design as well�
From Theorem ��� we know that some improvement in the accuracy of edge

estimation is still possible for images with a special orientation� We will see that
the accuracy delivered by our procedure is at least near optimal in this situation
too�
Let some grid point x� be �xed and let an image have the structure of a smooth

boundary fragment �at least locally near the point x� � with an edge G determined
by a function g � g�x�� from the H�lder ball ���� �� with � � ��� 	� � The function
g determines the image function fg with fg�x� � ��x� � g�x��� for x � �x�� x�� �
We stand also G � Gg for the corresponding edge i�e� G � fx 
 x� � g�x��g �
We are interested in the minimal distance between the point x� and the edge G

which allows a consistent estimation of f�x�� for image functions f of the form
fg with g from ���� �� �

Theorem ���� Let K�D be integers and let z � p	q be a unreducible rational
number with � � p � q � Let then �n stand for

�n � minfn����q��� �qKn������g�
Then there exist a constant � � � depending only on � and two functions g� and
g� from ���� �� such that g���x

�
�� � z � g���x

�
�� � z �

g��x
�
�� � x�� � ��n � g��x

�
�� � x�� � ��n � �����

and such that for any estimator ef
P g�

�
j ef�x��� fg��x

��j � �		
�
� P g�

�
jef�x��� fg��x

��j � �		
�
� c� ���	�

where c is some positive number depending only on K �

Remark ��
� If we apply this theorem with a small q � then we get the lower bound
for the result of Theorem ���� Maximizing �n with respect to q leads to the choice
q � K��������n������������ and to the lower bound �n � �K	n�������� coinciding
in order with the upper bound from Theorem ��
�
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�� Simulation results

The simulation results presented in this section are based on an implementation of
the proposal for U and V�U� given in Section ���� In the algorithm we restrict the
splits L by aTL � �a��L� a��L� with jai�Lj � q�� where the parameter q� allows to limit
the complexity of the procedure� We use q� � � � The algorithms starts with d � �
although not all theoretical assumptions are ful�lled for this case� We also take
D � �	 � This means that the maximal considered windows for each point contains
	� � 	� � 	� design points� The theoretical recommendation �
�
� for the choice
of the important parameter t� � entering in the description of the method� turns
out to be far too conservative� In our calculations t� � � gives reasonable results�
Besides an illustration of the feasibility of our approach� there are three main

aspects we intend to study by our simulation� These are the in�uence of the
signal�noise ratio and the dependence of bias and variance of the estimates from
orientation and curvature of the function g used in the local parametrization of
the edge� To study these aspects we use two simple images both characterized
by a boundary function g of constant curvature� Image � contains � � � pixel
�
 � �	�� with values � and  for pixels inside and outside of a circle with radius
�	
 centered in the image� Image 
 is constructed similarly containing �� pixels
�
 � �	��� and using a circle of radius 	�
�
Figure 	 displays results of the reconstruction of distorted images for three sit�

uations� In each row the left image shows the distorted original� the central image
gives the estimate obtained by our algorithm and the right image shows the size of
the set bU�x�� used for each pixel� Note the dependence between location of x� with
respect to the boundary and size of U�x�� which clearly illustrates the adaptivity
of our procedure�
For both images � and 
 we conducted a small simulation study of size nsim � ����

The distorted images are generated by adding Gaussian errors to the images� We
use four values for the standard deviation � � ��	�� � � �	�� � � �� and � � �
corresponding to signal�noise ratios of �� �� 	 and �� respectively� All results are
obtained specifying the parameters as D � �� q� � � and t� � �� We summarize
the results of the simulation in terms of bias and variance of the estimate� For a
given point x� due to the symmetric situation� both statistics mainly depend on
the distance d�x� xc� of x to the center xc of the image�
Figure � illustrates the dependence of bias and standard deviation of the es�

timates from d�x� xc� for image � �upper row� and image 
 �lower row� for the
di�erent values of �� We restrict the presentation to the interesting region near the
boundary� Both bias and standard deviation are negligible outside these regions� In
general� for a gridpoint x� � Am� bias depends on the probability P �bU�x�� � Am��
being neglegible if this quantity is small� Variance depends on the mean size ofbU�x�� and again on P �bU�x�� � Am�� In case of � � ��	� for most x� all U�x�� � Am

are rejected� resulting in a vanishing bias for interior points even near the boundary�
Note that for both images and � � �� bias and variance of the estimate are

very small for all points x with d�x� xc� � �	
 and d�x� xc� � 	�
� respectively�
Additionally� for � � � bias and variance can be reduced in the outer regions by
simply increasing D� see also Figure 	�
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Figure �� Distorted images� estimates and size of selected sets U for three situ�
ations� First row� circle of radius �	
� signal�noise ratio 	� estimate with D � �
and q� � �� Second row� circle of radius 	�
� signal�noise ratio 	� estimate with
D � � and q� � �� Third row� circle of radius 	�
� signal�noise ratio �� estimate
with D � �	 and q� � ��

For d�x� xc� � �	
 and d�x� xc� � 	�
 we observe the e�ects of orientation and
curvature of the boundary g� Curvature of g mainly restricts the size of possible
sets U�x�� inside the circle� therefore leading to poorer results near the boundary
g and for image ��
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Figure �� Estimated bias and variance for image � �circle of radius �	
� upper
row� and image 
 �circle of radius 	�
� lower row� as functions of the distance from
the center� Signal to noise ratio equal to �� �� 	 and ��

We also observe the e�ect of expansion from the side of a larger region w�r�t�
the smaller one� this means that the interior points near the boundary can be
estimated as � This leads to the negative bias inside� The in�uence of orientation
is re�ected in the roughness of the bias curves� showing smaller values for preferable
orientations�
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Proofs

In this section we present the proofs of Theorem ��� through ����

���� Proof of Theorem ���

We begin with some preliminary results� An �ideal� window for estimating f�x��
coincides clearly with the region Am containing x� � Hence the idea of the proposed
procedure is to select adaptively the largest window among the considered class U
which is contained in Am � A necessary property of every such procedure is to
accept each window contained in Am with a high probability� Our �rst result
shows that the previously described procedure possesses this properties�

Proposition ���� Let x� � Am for some m � �� � � � �M and let U � U be such
that U � Am � Then

P f ��U � �� � e���

Proof� Let some U with the property U � Am be �xed and let V � V�U� � The
function f is constant on U and hence on V � Using the model equation ����� we
obtain

TU�V � ���U�V

�
�

NV

X
V

�i � �

NU

X
U

�i

�
�

Obviously we have EfTU�V � � � Recall now that the factor �U�V was de�ned as

the standard deviation of the stochastic term of the di�erence bfV � bfU � Hence
EfT

�
U�V � � � Since TU�V is a linear combination of Gaussian variables �i � TU�V

itself is Gaussian with zero mean and the unit variance i�e� standard normal� Now

P f �jTU�V j � t�� � expf�� � logCUg � e��C��
U �

This estimate and condition �
��� allow to bound the probability of rejecting U in
the following way

P f��U � �� �
X

V �V�U�

P f �jTU�V j � t�� � CUe
��C��

U � e���

The next statement can be viewed as a complement to Proposition ���� We con�
sider now the case of a �bad� window containing two non�intersecting subwindows
V� and V� with di�erent values of the image function f � The result says that such
a window will be rejected with a high probability�

Proposition ���� Let U � U and let V�� V� � V�U� be such that the function f
is constant within each Vj �

f�x� � aj� x � Vj� j � �� 	�

Denote

sV��V� � �
q
N��
V�

�N��
V�
�



�� POLZEHL� J� AND SPOKOINY� V�G�

If

ja� � a�j � ��U�V� � �U�V� � sV��V�� t
� �����

with ��
U�V � ��N��

V �N��
U � � then

P f ��U � �� � e��	C��

Remark ���� In view of the trivial inequalities �U�V � �N
����
V and

q
N��
V�

�N��
V�

�
N

����
V�

�N
����
V�

� condition ����� is ful�lled if

ja� � a�j � 	�t�
�
N

����
V�

�N
����
V�

�
� ���
�

Proof� By de�nition

P f ��U � �� � P f��U�V� � �U�V� � ���

Next� the event f�U�V � �g means jTU�V j � t� or equivalently

j bfU � bfV j � �U�V t
��

This yields

j bfV� � bfV�j � ��U�V� � �U�V��t
��

Now using the fact that V� � V� � � � we get the following decomposition� cf� the
proof of Proposition ����bfV� � bfV� � a� � a� �N��

V�

X
V�

�i �N��
V�

X
V�

�i � a� � a� � s�������

where ���� is a standard normal random variable� Therefore�

P f��U � �� � P �ja� � a� � s�������j � ��U�V� � �U�V��t
��

� P �s���j����j � ja� � a�j � ��U�V� � �U�V��t
�� �

Using the condition of the proposition� we obtain

P f ��U � �� � P �j����j � t�� � e���logC
�

� e��	C�

and the assertion follows�

We need one more result concerning the situation when a window U from U is
not entirely contained in Am but there is its subwindow V which is in Am �

Proposition ���� Let x� � Am � U � U and let V from V�U� be such that

V � Am � If �U�V � � � then the di�erence j bfU � f�x��j can be estimated in the
following way� for any z � �

P

�
j bfU � f�x��j � �N

����
V �z � t��� �U�V � �

�
� expf�z�		g�

Proof� The event f�U�V � �g means that j bfU � bfV j � �U�V t
� � Therefore�

j bfU � amj � j bfU � bfV j� j bfV � amj � �U�V t
� � j bfV � amj�

Next� �U�V � �N
����
V and � � ���N

���
V � bfV � am� is a standard Gaussian random

variable� see the proof of Proposition ���� This gives

P f

�
j bfU � f�x��j � �N

����
V �z � t��� �U�V � �

�
� P �j�j � z� � expf�z�		g
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as required�

Now we turn directly to the proof of Theorem ���� First of all� since U� is
contained in Am � due to Proposition ��� the window U� will be rejected only with
a very small probability� namely

P f ��U� � �� � e���

Since obviously for every z � � by Proposition ���

P f

�
j bf�x��� f�x��j � z� �U� � �

�
� P f ��U� � �� � e��

it su�ces to consider only the situation when U� is accepted i�e� �U� � � �

Let window bU be selected by the procedure� Then �
bU � � and� under the case

of �U� � � � by de�nition of bU �

N
bU � NU��

Next� due to condition �U�	� � there is a subwindow V in bU � U� with at least

K design points which is therefore contained in Am � If bU contains also another
subwindow V � with NV � � K which lies outside Am � then we observe by Propo�
sition ��
� see also Remark ���� that the probability to accept bU is very small�
Namely� let U � be the subset in U of all U with this property� Then

P f��bU � �� �
X
U�U �

P f ��U � �� �
X
U�U �

e��	C� � e���

and arguing as above we reduce our consideration to the case when bUnAm does
not contain any such V � � Let U �� be the subset in U of all windows U with the
last property� By condition �U��� � for each U � U �� � there is V � V�U� such that

V � bU � Am and NV � ���NU� � We denote this V by V �U� � The de�nition ofbU ensures that �
bU�V � � and we conclude using Proposition ��� with z � t�

P f

�
j bf

bU � f�x��j � 	��NU�		�����t�
�

� 	e�� �
X
U�U ��

P f

�
j bfU � f�x��j � 	�N

����
V �U�t

�� �U�V �U� � �
�

� 	e�� �
X
U�U ��

e���logC
�

� 	e�� � C�e���logC
�

� �e��

and the assertion follows�

���� Proof of Theorem ���

The statement of this theorem is a direct application of Theorem ���� The main
problem is to verify that there is a window U in UD�K with at least d�� points
which lies in A � Then automatically NU� � d�� �
Let z � g��x��� � We known that jzj � � � To be more de�nitive� we suppose

that � � z � � � The case of a negative z can be considered in the same way� We



�� POLZEHL� J� AND SPOKOINY� V�G�

denote also

� � �n	K���������P �������

and y � x�� �� �

Lemma ���� For all x� with jx� � x��j � 
d�

y � z�x� � x��� � g�x���

Proof� The smoothness condition g � ���� P � implies for all h � �

sup
jtj�h

��g�x�� � t�� g�x���� zt
�� � Ph� �

Therefore

g�x�� � t� � g�x��� � zt� P h� � y � zt��� P h�

for all jtj � h � Now we apply h � 
d� and the assertion follows because of

P h� � P �
d��
� � P �������

�

�K

� �

��� � ��

Now we de�ne the required window U using the line L passing through �x��� y�
with the angle z � For this line we have the equation

x� � y � z�x� � x����

By Lemma ��� this line lies under the curve G at least within the square Qd� � Now
we de�ne U as the window from Ud� corresponding to the line L � U � Ud� �L �
Obviously this window is a subset of Am and it remains only to check that

Kd�L � K � Then we have U � Ud� �K � U �
We use the following technical

Lemma ���� Let z be any number with � � z � � � Then for every positive
number v there is a rational number p	q with � � p � q � v such that

jzq � pj � v���

Proof� Suppose without loss of generality that z is an irrational number from the
interval ��� �� � Denote by �pk	qk�k�� the sequence of rational numbers which gives
the best rational approximation of z � see Khintchine ������� It can be de�ned as
a sequence of continued fractions� we begin with r� � z�� and de�ne inductively
nk � brk��c � rk � �rk�� � nk��� for k � �� 	� � � � � then pk	qk can be described as
the following continued fraction

pk
qk

�
�

n� �
�

n� �    �

nk�� �
�

nk

�

This approximation has the following properties� Khintchine ������ Section ���������z � pk
qk

���� � �

qkqk��
� �����
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Given a number v � denote

k� � maxfk 
 qk � vg
so that qk��� � v � By ������ jzqk� � pk� j � �	qk��� � �	v and the assertion
follows�

We now apply this lemma with z � g��x��� taking �rst vK � d�	K � Let pK� qK
be the corresponding numbers with p � q � d�	K such that

jqKz � pK j � K	d� �

If it holds also

jqKz � pK j � �K � ��	d�

then we set qK�� � qK and pK�� � pK � Otherwise there are other qK�� and
pK�� with the properties pK�� � qK�� � d�	�K � �� and

jqK��z � pK��j � �K � ��	d� �

We continue in this way taking each time either �pk��� qk��� � �pk� qk� or de�ning
a new pair �pk��� qk��� with the properties pk�� � qk�� � d�	�k � �� and

jqk��z � pk��j � �k � ��	d� �

k � K � ��K � 	� � � � � � � By construction all pairs �pk� qk� verify pk � qk � d�
and

jqkz � pkj � K	d� �

Denote now for every k � �� � � �K

X�k� �



�x�� � qk
� x

�
� � pk
�� if qkz � pk�

�x�� � qk
� x
�
� � pk
� otherwise�

Obviously all X�k� are grid points� Moreover� since pk � qk � d� � we have
X�k� � Qd� � We aim to show that all X�k� lie between L and L� where L� is the
line with the equation x��x�� � z�x��x��� � Suppose for simplicity that qkz � pk
and check X�k� � Ud� �L � Indeed

x�� � pk
 � y � z�x�� � qk
 � x��� � � � �pk � qkz�
 � �� 
K	d� � �

which means exactly that X�k� is under the line L and therefore� X�k� � UL �
Further

x�� � pk
 � x�� � z�x�� � qk
 � x��� � 
�pk � zqk� � �

and hence X�k� is over L� as required� The case of qkz � pk can be considered in
the same way�
We have checked that U � Ud� �L is in U and at the same time U � Am � This

means that the set of windows from U with these properties is not empty and the
�ideal� window U� satis�es NU� � NU � d�� �
Since the set Am has the structure of a boundary fragment within the square

jx � x�j � � � and since all the considered windows from U lie inside this square
�because D � �n��� �� condition �U��� is clearly ful�lled� Now we may apply
Theorem ��� which leads exactly to the desirable statement�
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���� Proof of Theorem ���

The proof of this results can be derived along the same line as the proof of The�
orem ��
 and is even simpler� Indeed� we may take the line L passing through
x� with the angle z � p	q � Then this line passes also through the design points
X�k� � �x�� � kq� x�� � kp� for all integer k � Then the interval between the points
X��K� and X�K� on this line contains at least 	K �� design points and therefore
the window Ud�L with d � Kq is in U � The condition ����� provides that this
window is also in Am and we end up similarly to Theorem ��
�

���� Proof of Theorem ���

Di�erent methods for obtaining the lower bound results in edge estimation are
presented in Korostelev and Tsybakov ������� We cannot apply these methods
directly since they are developed for a random design and we operate with the
regular design� But we follow the same route and we therefore present only a
sketch of the proof concentrating on the points speci�c for our situation�
Let some � from the interval ��� 	� and some integers K�D be �xed� Let also

z � p	q be a unreducible rational number with p � q � D � Set

h � minfqK
� �
	q����g�
where 
 � n���� �
Let now � be a smooth function satisfying the conditions

�a� � is symmetric and nonnegative�
�b� ���� � sup

t
��t� and � � ���� � � �

�c� � is compactly supported on ���� �� �
�d� � belongs to the H�lder ball ���� �� �

Denote

�h�t� � h���t	h��

Then �d� ensures that �h � ���� �� for all h � � � Next� set

g��x�� � �x� � x���p	q � �h���		

g��x�� � �x� � x���p	q � �h���		 � �h�x� � x����

Each function gk determines the boundary fragment Ak with the edge Gk �

Ak � fx � �x�� x�� 
 x� � gk�x��g�
Gk � fx � �x�� x�� 
 x� � gk�x��g� k � �� 	�

Set also

B � A�nA� � fx � �x�� x�� 
 g��x�� � x� � g��x��g�
Below we make use of the following technical assertion�

Lemma ���� The following assertions hold

�i� g�� g� � ���� �� and g���x
�
�� � g���x

�
�� � q	p �

�ii� jg�x���� x��j � �h� for some � � � depending on � only�
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�iii� The number N of design points in the set B is at most 	K � � �

N � �fXi � Bg � 	K � ��

Proof� Assertions �i� and �ii� are obvious� We comment on �iii� �
Let L be the line passing through x� with the angle z � i�e� L is described by the

equation x��x�� � z�x��x��� � We �x also two points x� � �x���Kq
� x���Kp
�
and x� � �x�� � Kq
� x�� � Kp
� on this line� Since h � qK
 � then the interval
passes exactly through 	K � � design points� We intend to show that there is no
other design points in B that implies the assertion in view of property �c� of � �
Let x � �x�� x�� be a design point with coordinates �x���q�
� x���p�
� such that

p�	q� 	� p	q � To verify that x 	� B � it su�ces to check that

jp�
 � q�
p	qj � j�h�q�
�� �h���		j�

Since p�	q� 	� p	q � then

jp� � q�p	qj � q��jp�q � q�pj � q��

and hence jp�
� q�
p	qj � 
	q � In view of �b� � we have �h�x��x��� � �h��� � h�

and by de�nition of h we have h� � 
	q and �iii� follows�

Denote fk�x� � ��x 	� Ak� � ��x� � gk�x��� for x � �x�� x�� � k � �� 	 � Note

that f��x�� � � and f��x�� � � � Now for any estimator ef �x��
R 
� P �

�
j ef�x��j � �		

�
� P �

�
j ef�x��� �j � �		

�
� E�

n
�

�
jef�x��j � �		

�
� Z�

�
jef�x��� �j � �		

�o
�����

where Ek stands for Egk � k � �� 	 � and Z � dP�	dP� � It is easy to show

that the optimal decision ef�x�� for the latter two�point problem is of the formef�x�� � ��Z � �� and hence

R � E���Z � �� � P ��Z � ���

Next� making use of the model equation ����� we get the following representation
of the likelihood Z �

Z � exp



���

X
B

�i � N���

	



where the sum over B means the sum over design points Xi falling in B and the
random errors �i are normal N ��� ��� � If we set

� �
�

�
p
N

X
B

�i�
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then Lemma ���� �ii� and �iii� implies that � is under P� a standard normal random
variable and

P ��Z � �� � P �

�
exp

n
���

p
N� � ���N		

o
� �

�
� P �

�
� � ���

p
N		

�
� P �

�
� � ���

p
K		

�
� �� �

�
���

p
K		

�
� �

where � is the Laplace function and the required assertion follows�
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