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SIMULATION BASED METHODS OF MOMENTS

IN EMPIRICAL FINANCE

Roman Liesenfeld and J�org Breitung

� Introduction

The estimation of unknown parameters generally involves optimizing a criterion function

based on the likelihood function or a set of moment restrictions Unfortunately� for many

econometric models the likelihood function and�or the relevant moment restrictions do

not have a tractable analytical form in terms of the unkown parameters rendering the

estimation by maximum likelihood �ML� or the generalized method of moments �GMM�

infeasible This estimation problem typically arises in situations� where unobservable vari�

ables enter the model nonlinearly� leading to multiple integrals in the criterion function�

which cannot be evaluated by standard integration methods Prominent examples for

such econometric models in the �eld of �nancial econometrics are continous�time models

for the evolution of stock prices or interest rates and discrete�time stochastic volatility

models for the dynamics in the volatility of �nancial data

Until recently� estimation problems due to the lack of some tractable criterion function

were often circumvented by using approximations of the model with criterion functions

simple enough to evaluate An alternative solution in such situations that has received

increased attention over the last few years� favoured by the permanently growing computer

power� are estimation procedures that use Monte Carlo simulation methods to compute

an otherwise intractable criterion function� Seminal for the development of this type of

estimation procedures were the contributions of McFadden ������ and Pakes and Pollard

������ who introduced the Method of Simulated Moments �MSM� for a cross�sectional

context This approach� which was extended to time�series applications by Lee and Ingram

������ and Du�e and Singleton ������� modi�es the traditional GMM estimator by using

moments computed from simulated data of the model rather than the analytical moments

Like the GMM estimator� the MSM estimator is consistent and asymptotically normal

when the number of observations tends to in�nity� and is asymptotically equivalent to

GMM if the number of simulations approaches in�nity However� in a fully parametric

�It is worth noting that Monte Carlo simulation methods themselves have already been used for a
long time in the Bayesian econometrics for evaluating posterior distributions� see e�g� Kloek and van Dijk
�������






model one can expect that MSM� just as GMM� is ine�cient relative to procedures based

on the likelihood due to the arbitrary choice of moment restrictions This issue is addressed

by the indirect inference estimators proposed by Gouri�eroux� Monfort and Renault �������

Bansal� Gallant� Hussey and Tauchen ������ ����� and Gallant and Tauchen �����a�

These approaches which represent extensions of MSM introduce an auxiliary model in

order to estimate the parameters of the model of interest The �rst version of indirect

inference as proposed by Gouri�eroux� Monfort and Renault ������ employs the parameters

of the auxiliary model to de�ne the GMM criterion function� whereas in the second

version as suggested by Bansal� Gallant� Hussey and Tauchen ������ ����� and Gallant

and Tauchen �����a� the scores of the auxiliary model generate the moment restrictions

used in the GMM criterion function Since in both procedures the GMM criterion is

an intractable function in terms of the parameters of interest� simulations are used to

evaluate it Both indirect inference estimators are consistent and asymptotically normal

as the number of observations tends to in�nity and approach the fully e�cient estimator

if the auxiliary model is appropriately chosen Speci�cally� if the auxiliary model is based

on the semi�nonparametric model of Gallant and Nychka ����	�� as proposed by Gallant

and Tauchen �����a�� one may hope that the loss of e�ciency of the indirect inference

estimator is small

The purpose of this chapter is to give a selective review of MSM and indirect inference

which represent simulation based methods of moments� and to discuss their applications

to models for �nancial data Besides these moment based simulation approaches� a variety

of other simulation estimators are proposed in �nancial econometrics including simulated

maximum likelihood �Danielsson and Richard ������ and Richard and Zhang ����	���

and Markov�Chain Monte�Carlo procedures �Jacquier� Polson and Rossi ������ and Kim�

Shephard and Chip ������� Surveys on these likelihood�oriented simulation methods are

given by Ghysels� Harvey and Renault ������ and Shephard ������

This chapter is organized as follows In section 
 we outline the estimation context

and give some examples The MSM and the indirect inference estimator are discussed in

sections � and �� respectively Section � reviews the semi�nonparametric auxiliary model

and in section � we address selected practical issues concerning the application of these

estimators Section 	 concludes

� General Setup and Applications

Let yt� t � �� � � � � T denote an n�dimensional vector of observable dependent variables and

xt is a k�dimensional vector of observable strongly exogenous variables For expositional

convenience it is assumed that yt and xt are stationary The nonlinear dynamic model is

characterized by the conditional density h��ytjzt�� where zt � �y�t��� � � � � y��� y��� x�t� � � � � x����
is the vector of conditioning variables and the initial conditions are represented by y� We

want to estimate the p�dimensional parameter vector � from the model

�



M �� fh�ytjzt� ��� � � �g� where � denotes the parameter space The true value ��
is a unique value of � such that h��ytjzt� � h�ytjzt� ��� In the following� we use h��� as a
generic notation for all density functions

The estimation of �� is generally based on the likelihood function LT ��� �QT
t�� h�ytjzt� �� or on moment restrictions based on a set of moments such as E�ytjzt�
or E�yty

�
tjzt� Here we are interested in cases where the likelihood function or the relevant

moments have an intractable form� rendering ML estimation or method of moments esti�

mation infeasible Nevertheless� we assume that the model allows us to simulate values of

the process fytg given some value of the parameter vector � and the initial conditions y�
For dynamic models with lagged endogenous variables two di�erent simulation schemes

may be possible �see� Gouri�eroux and Monfort ������ p �	�� If the model admits a reduced

form yt � ��zt� �t� ��� where �t is an error term stochastically independent of zt and with

a known distribution independent of �� simulated random variables y
�r�
t ���� �r � �� � � � � R�

from the distribution h�ytjzt� �� can be generated as follows Arti�cial random variables
�
�r�
t from the distribution of �t are generated and used to calculate

y
�r�
t ��� � ��zt� �

�r�
t � ��

for the observed values of zt � �y�t��� � � � � y
�
�� y

�
�� x

�
t� � � � � x

�
��
� and some value of the pa�

rameter vector � For a large number of replications R� the empirical distribution of

the simulated values y
�r�
t ���� �r � �� � � � � R� approximates the conditional distribution

h�ytjzt� �� for every t Since the simulations are performed conditionally on the ob�

served lagged endogenous variables� this simulation scheme is called conditional simu�

lations The second approach� termed path simulations� is to generate simulated val�

ues of yt conditionally on simulated lagged endogenous variables� ie conditionally on

z
�r�
t ��� � �y

�r�
t�����

�� � � � � y
�r�
� ���

�� y��� x
�
t� � � � � x

�
��
�� using some kind of recursion For large R�

the empirical joint distribution of y�r�� ���� � � � � y
�r�
T ���� �r � �� � � � � R� approximates the

distribution h�y�� � � � � yT jx�� � � � � xT � ��
In order to motivate the estimation context addressed here� we discuss in the following

some examples from �nancial econometrics�

Example �� Discrete�time stochastic volatility model

The standard discrete time stochastic volatility �SV� model proposed by Taylor

������ ����� and others is given by

yt � expfw�
t �
gut ���

w�
t � � � �w�

t�� � �	t � t � �� � � � � T � �
�

where yt is the observable return of a �nancial asset and w
�
t is the unobservable log

volatility The error processes ut and 	t are mutually and serially independent with

�As in most applications in �nancial econometrics� a time series framework is used� Examples for
cross	sectional applications are given by Gouri
eroux and Monfort ������ ����� and Stern �������
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known distributions In accounting for the observed autocorrelation in the variance

of �nancial time series� this SV model represents an alternative to the ARCH and

GARCH speci�cations proposed by Engle ����
� and Bollerslev ������ Since the

latent log volatility w�
t enters the model in a nonlinear fashion� the conditional den�

sity h�ytjzt� �� with � � ��� �� ��� and zt � �yt��� � � � � y�� y��� does not have an explicit
analytical form To obtain the �marginal� likelihood function associated with the

observable variables� the latent variables are �integrated out� from the joint distribu�

tion of y�� � � � � yT � w
�
�� � � � � w

�
T denoted by h�y�� � � � � yT � w

�
�� � � � � w

�
T j�� This distribu�

tion can be factorized as h�y�� � � � � yT � w
�
�� � � � � w

�
T j�� �

QT
t�� h�ytjw�

t � ��h�w
�
t jw�

t��� ���

where h�ytjw�
t � �� is the conditional density of the returns given the log volatility

and h�w�
t jw�

t��� �� denotes the conditional density of the log volatility given its past

value Hence� for a given initial value of the log volatility w�
� the marginal likelihood

has the following form

LT ��� �
Z
� � �

Z TY
t��

h�ytjw�
t � ��h�w

�
t jw�

t��� �� dw
�
� � � � dw

�
T �

For this T �dimensional integral no closed�form solution exists� nor can standard

numerical methods be applied to evaluate it making ML estimation infeasible Fur�

thermore� even if the standard SV model can be estimated by GMM using uncon�

ditional moments such as E�jytj�� E�y�t � or E�y�t y�t���� GMM is relatively ine�cient�

especially� if the persistence parameter � is close to one �see� eg Jacquier� Polson

and Rossi ������ and Andersen and S�rensen ������� However� the SV model given

by ��� and �
� de�nes a simple data generating process which allows to generate

values from the joint distribution h�y�� � � � � yT j�� implied by the model using path
simulations Note though that conditional simulations from h�ytjyt��� � � � � y�� �� ap�
pear to be infeasible since the SV model does not admit an explicit expression of

the reduced form in terms of lagged endogenous variables yt � ��yt��� � � � � y�� �t� ��

Example �� Stochastic di�erential equations

Consider the following scalar stochastic di�erential equation�

dvt � a�vt� ��dt� b�vt� ��dWt � � � t � N � ���

where a�vt� �� and b�vt� �� are the drift and the di�usion function� respectively� and

Wt is a Brownian motion Such continuous�time processes are often used to model

stock prices and interest rates However� in practice the variables are observable

only at some discrete �possibly equispaced� points Hence� the observable variables

yt� �t � �� � � � � T � are given by yt � vt�� for some  
 �� where the time interval

between two observations is �t� t �  � For arbitrary drift and di�usion functions�

the distribution of the observable variables generally does not have a closed form

�



expression A closed�form can be obtained only for some special drift and di�u�

sion functions As an example� consider the square root process proposed by Cox�

Ingersoll and Ross ������ to model the evolution of interest rates�

dvt � ��� � ��vt�dt� ��
p
vtdWt �

This stochastic di�erential equation implies a joint distribution of the observable

variables y�� � � � � yT given by
QT

t�� h�ytjyt��� ��� where h�ytjyt��� �� is a non�central
��distribution However� for more complicated speci�cations the conditional den�

sity h�ytjyt��� �� and� in general its moments� do not have a tractable form since
h�ytjyt��� �� appears as a multiple integral �see� eg Gouri�eroux and Monfort ������
p ��f�� This motivates the use of alternatives to standard ML and GMM estima�

tors An example for a speci�cation with an intractable density h�ytjyt��� �� is the
following generalisation of the Cox�Ingersoll�Ross model�

dvt � ��� � ��vt�dt� ��vt
��dWt �

which is proposed by Chan� Karolyi� Longsta� and Sanders ����
�

To simulate values of the observable discrete�time variables according to a continous�

time model� one can use a discrete�time approximation� for example� the Euler

approximation If the time interval between two observations �t� t �  � is divided

into subintervals of length � � the corresponding Euler approximation of ��� becomes

vt�k� � vt��k���� � � a�vt��k���� � �� �
p
� b�vt��k���� � ��	t�k � k � �� 
� � � � �

where 	t�k is an i�i�d�N��� �� random variable If the time interval � is su�ciently

small� this approximation can be used to simulate values from h�y�� � � � � yT j�� ac�
cording to yt � ��yt��� �t� ��� where �t � �	t��� � � � � 	t���� �

� is the vector of error terms

The common feature of Examples ��� and �
� is that �partially� unobservable processes

enter the model nonlinearly� making criterion functions commonly used for estimation

intractable Further examples for this estimation context in �nancial econometrics are

the continous�time stochastic volatility models of Hull and White ����	� and Chesney

and Scott ������� the market microstructure model proposed by Forster and Viswanathan

������� the dynamic equilibrium model for asset prices estimated by Bansal� Gallant�

Hussey and Tauchen ������ and the multifactor latent ARCH models of Diebold and

Nerlove ������ and Engle� Ng and Rothschild ������

� The Method of Simulated Moments �MSM�

Consider a dynamic model with a well de�ned reduced form yt � ��zt� �t� �� allowing us to

simulate values of yt from h�ytjzt� �� for observed values of the conditioning variables zt �

�



�y�t��� � � � � y
�
�� y

�
�� x

�
t� x

�
t��� � � � � x

�
��
� We will focus on the m�dimensional moment function of

the form

��yt� zt� �� � s�yt� zt�� ��zt� �� � ���

with m � p and where s�yt� zt� is a function on the data and ��zt� �� is the theoretical

counterpart de�ned as

��zt� �� � E��s�yt� zt�jzt��
Here E���jzt� indicates that the expectation is computed with respect to the density
h�ytjzt� �� and ��zt� �� represents conditional moments as� for example� E��ytjzt� or E��yty

�
tjzt�

The index is dropped if the expectation is taken with respect to the true process� ie�

E � E��  We assume that for �� the empirical moment condition

E���yt� zt� ���jzt� � � for all t

is satis�ed Let f�yt� zt� ��� � B�zt�
���yt� zt� ���� where B�zt� is some nonlinear matrix

function on zt� then the corresponding set of unconditional moment restrictions is given

by �see� eg Newey �������

E�f�yt� zt� ���� � � for all t �

If the expression ��zt� �� cannot be computed analytically� it may be approximated

using simulation methods Since ��zt� �� is the expectation value of s�yt� zt� evaluated

with respect to h�ytjzt� ��� a natural unbiased estimator for ��zt� �� is given by

!�R�zt� �� �
�

R

RX
r��

s�y
�r�
t ���� zt� � ���

where y
�r�
t ���� �r � �� � � � � R� are simulated random variables drawn from the distribution

h�ytjzt� �� for the observed values of zt The natural estimator of ��zt� �� given in equa�
tion ��� results from sampling data using h�ytjzt� �� However� this estimator may have
undesirable properties For example� it may not be di�erentiable with respect to � or

it may have a large variance Therefore� alternative methods of estimating ��zt� �� such

as importance sampling procedures were proposed to obtain an estimator with improved

properties �see� eg Gouri�eroux and Monfort ������ and Stern ����	��

If the natural Monte Carlo estimator ��� is used to estimate the moment restrictions

the method of simulated moments �MSM� estimator for �� is obtained by minimizing the

criterion function

!�RMSM � argmin
�

�
TX
t��

fR�yt� zt� ��

��
A

�
TX
t��

fR�yt� zt� ��

�
���

where

fR�yt� zt� �� � B�zt�
��s�yt� zt�� !�R�zt� ���

	



and A denotes an appropriately chosen positive de�nite weight matrix If the simulation

sample size R tends to in�nity� !�R�zt� �� converges almost surely to E��s�yt� zt�jzt� and
the MSM estimator equals the corresponding GMM estimator However� as the sample

size T tends to in�nity� the MSM estimator is consistent for any �xed R � � as long as
di�erent random draws are used across t �cf McFadden ������� The reason for this is

that for the estimator !�RMSM the simulation error is �averaged out� by using the mean of

!�R�zt� ��� �t � �� � � � � T �

The fact that the MSM estimator is consistent for any R � � should not be taken as
an indication that R is irrelevant for the asymptotic properties of !�RMSM as T �� This
becomes clear from considering the asymptotic distribution of the MSM estimator� which

results as T ����!�RMSM � ���
d��N��� avar�!�RMSM�� The asymptotic covariance matrix of

!�RMSM � as it results from the fact that ff�yt� zt� ���g is by construction serially uncorrelated
with identical distributions� has the form �see� Gouri�eroux and Monfort ������ p 
���

avar�!�RMSM� � "
��
� "�"

��
� �

�

R
"��� D�A var�f�y

�r�
t ����� zt� ����AD"

��
� � �	�

where

D � E

�
B�zt�

����zt� ���

���

�
"� � D�AD

"� � D�A var�f�yt� zt� ����AD �

The lower bound of the asymptotic covariance matrix obtained for R � � is given by

the asymptotic covariance of the corresponding GMM estimator "��� "�"
��
�  However�

the asymptotic covariance matrix of the MSM estimator contains� compared to that of

the GMM estimator� an additional component which is due to the variation in the Monte

Carlo estimates of the moment restrictions This additional Monte Carlo sampling vari�

ance vanishes as the simulation sample size increases and the MSM estimator attains the

e�ciency of the corresponding GMM estimator

The asymptotic optimal weight matrix which minimizes the asymptotic covariance of
!�RMSM for a given set of moment restrictions is�

A� � �var�f�yt� zt� ���� �
�

R
var�f�y

�r�
t ����� zt� �����

�� �

For this optimal choice of the weight matrix the asymptotic covariance matrix of the MSM

estimator is avar�!�RMSM� � �D
�A�D�

��

The MSM estimator given above is based on conditional moments of the function

s�yt� zt� given zt � �y
�
t��� � � � � y

�
�� y

�
�� x

�
t� x

�
t��� � � � � x

�
��
� A necessary requirement for using

such conditional moments for MSM estimation� is that the model admits a well de�ned

reduced form yt � ��zt� �t� �� in terms of exogenous and lagged endogenous variables in or�

der to perform conditional simulations from h�ytjzt� �� These conditional simulations are

�



necessary to obtain unbiased estimates for ��zt� �� based on estimators such as that given

in equation ��� However� for models which include unobservable variables nonlinearly as�

for instance� the SV model in Example �� a reduced form in terms of lagged endogenous

variables is generally not available Hence� in such cases the MSM estimation based on

conditional moments given lagged endogeneous variables is infeasible In those situations�

we may use restrictions based on moments conditional only on exogenous variables or for

pure time series models restrictions derived from unconditional moments Such an MSM

approach for pure time series applications has been proposed by Du�e and Singleton

������� and has been applied by Forster and Viswanathan ������ and Gennotte and Marsh

������ for estimating a market microstructure model and a dynamic asset pricing model�

respectively

This unconditional version of the MSM estimator is based on am�dimensional moment

function of the form

f�yt� � � � � yt�l� �� � s�yt� � � � � yt�l�� ���� � t � �� � � � � T � ���

where ���� represents the unconditional expectation value E��s�yt� � � � � yt�l�� The corre�

sponding set of moment restrictions is given by E�f�yt� � � � � yt�l� ���� � � These restric�

tions include moments such as E��yt� and E��yty
�
t� as well as cross order moments of the

form E��yty
�
t�i� If yt���� �t � �� � � � � R� denotes a simulated path from the distribution

h�y�� � � � � yRj�� implied by the model� the MSM estimator based on these unconditional

moments is obtained by

!�RMSM � argmin
�

�
�

T

TX
t��

s�yt� � � � � yt�l�� !�R���
��
A

�
�

T

TX
t��

s�yt� � � � � yt�l�� !�R���
�
�

where

!�R��� �
�

R

RX
t��

s�yt���� � � � � yt�l���� �

The matrix A denotes the weight matrix and !�R��� is an unbiased Monte Carlo estimator

for ���� As the moment function ��� derived from the dynamic model h�ytjzt� �� is
expected to be serially correlated the asymptotic optimal weight matrix is given by

A� � � lim
T��

�varf �p
T

TX
t��

s�yt� � � � � yt�l�g���� �

Since s�yt� � � � � yt�l� is independent of the parameter � and independent of the simulated

values yt���� the matrix A� can be estimated by procedures discussed in chapter � How�

ever� like the MSM estimator based on conditional moments� the MSM estimator using

unconditional moments is consistent and asymptotically normally distributed as T tends

to in�nity Speci�cally� the asymptotic distribution for the optimal weight matrix A� re�

sults as T ����!�RMSM � ���
d��N��� avar�!�RMSM��� with avar�

!�RMSM� � ��� ���R���D
�A�D�

��

and D � E����������
�� �see� Du�e and Singleton ������� The factor �� � ���R�� in

the asymptotic variance accounts for the additional variation of the estimator due to the

Monte Carlo sampling variance which vanishes as R tends to in�nity

�



� Indirect Inference Estimator

The MSM approach is used to optimize a GMM criterion function� which is too compli�

cated to be computed analytically Another possible approach as proposed by Gouri�eroux�

Monfort and Renault ������� is to use a criterion function derived from an auxiliary� pos�

sibly misspeci�ed model and to recover the structural parameters of the original model

from the parameter estimates of the misspeci�ed model Unfortunately� the relationship

between the auxiliary and the structural model is too complicated to admit an explicit

solution Therefore� simulation techniques are employed to determine the �nal estimates

Another view of the indirect inference estimator as followed by Gallant and Tauchen

�����a� is that the derivatives of the criterion function for the auxiliary model �usually

the log�likelihood function� can be used as a moment function for a GMM procedure

Thus� the scores of the Quasi�ML procedure of the possibly misspeci�ed auxiliary model

are the moments to be matched by a GMM approach Hence� in this context the auxil�

iary model is also termed score generator However� if the indirect inference estimator is

combined with some #exible data dependent choice of the auxiliary model� the resulting

estimator can be expected to be more e�cient than a GMM procedure based on an ad�hoc

selection of the moments For this reason� an indirect inference estimator based on such

a #exible auxiliary model is called E�cient Method of Moments �EMM�

Consider a dynamic model characterized by h�ytjzt� �� which allows us to simulate
values of yt using path simulations but with intractable criterion functions commonly

used for estimation Furthermore� let M� � fh��ytjzt���� � � $g denote the auxiliary
model with the q�dimensional vector of auxiliary parameters �� where q � p� that is� the

auxiliary model has at least as many parameters as � The model is misspeci�ed� if there

exists no parameter vector �� such that h��ytjzt� � h��ytjzt���� However� it is assumed
that the auxiliary model has some tractable criterion function � here� the log�likelihood �

allowing us to estimate � For example� if we are interested in estimating the SV model in

Example �� a possible auxiliary model may be a GARCH model which is relatively easy

to estimate by ML compared to the SV model

The Quasi�ML estimate of � is computed by maximizing the criterion functionQ�Y�X��� �

T��PT
t�� log h

��ytjzt��� with Y � �y�� � � � � yT � and X � �x�� � � � � xT �� that is

e�T � argmax
�

Q�Y�X��� �

The �rst order condition is that the score vector�

g�Y�X��� �
�Q�Y�X���

��
�
�

T

TX
t��

� log h��ytjzt���
��

���

is equal to zero An important concept linking the structural parameters � with the

auxiliary parameters �� is the so�called binding function � � b��� �see� Gouri�eroux and

Monfort ������ p �	�� The binding function is obtained from the solution of the equation

��



E�g�Y�X� b���� � �� where the expectation value is evaluated with respect to the joint

distribution h�Y�Xj�� implied by the structural model
%From White ������ it is known that the estimates e�T converge in probability to the

pseudo�true value given by �� � b���� Hence� if � and � are of the same dimension and if

it is assumed that there exists an inverse function b������ it is possible to obtain an indirect
inference estimator for �� as !�T � b���e�T � The practical problem is� however� that usually
the function b��� is unknown and must be evaluated using Monte Carlo simulations

Therefore� we generate R simulated paths y
�r�
� ���� � � � � y

�r�
T ���� �r � �� � � � � R� from the

distribution h�y�� � � � � yT jx�� � � � � xT � �� for observed values of the exogenous variables For
every of these simulated paths we obtain an estimate of the vector of auxiliary parameters

denoted by e��r�T ��� Then the unkown binding function b��� can be approximated by

!bR��� �
�

R

RX
r��

e��r�T ����

If b��� is replaced by !bR��� we can construct a simulated minimum distance estimator as�

b�RMD � argmin
�

�e�T � !bR�����A�e�T � !bR����� ����

where A is a positive de�nite weight matrix This indirect inference estimator suggested by

Gouri�eroux� Monfort and Renault ������ searches for a value of �� for which simulated data

from the structural model approximate the properties of the observed data summarized

by the estimate e�T as close as possible
As the sample size T tends to in�nity� the indirect inference estimator is consistent

and asymptotically normal for any �xed R � � �see� Gouri�eroux� Monfort and Renault
������� Furthermore� the asymptotic optimal weight matrix is given by

A� � J�I
��
� J� �

where

J� � lim
T��

E
�
��Q�Y�X����

�����

�
I� � lim

T��
var

�p
Tg�Y�X����� E�

p
Tg�Y�X����jX�

�
�

For this optimal choice of the weight matrix the asymptotic distribution of the mini�

mum distance estimator ���� is obtained as T ����b�RMD � ���
d��N��� avar�b�RMD��� where

the asymptotic variance of b�RMD is given by avar�b�RMD� � �� � ���R���B�A�B�
�� with

B � �b�������
� �see� Gouri�eroux� Monfort and Renault �������

The second approach for deriving an indirect estimate from the auxiliary model sug�

gested by Gallant and Tauchen �����a� is to use the moment conditions implied by the

scores of the auxiliary model

E g�Y�X� b����� � � � ����

��



Using path simulations from the structural model to approximate E�g�YT � XT � b����� the

GMM estimation procedure based on the scores of the auxiliary model results as

b�RGT � argmin
�

!gR��� e�T ��A !gR��� e�T � � ��
�

where

!gR��� e�T � � �

R

RX
r��

�

T

TX
t��

� log h��y
�r�
t ��� j z�r�t ����

e�T �
��

����

is the simulated score function which approximates the moment conditions ���� and A is a

positive de�nite weight matrix For this estimator the asymptotic optimal weight matrix

is given by A� � I���  Notice that the score vector ��� for the observed data and the

estimate e�T is equal to zero as implied by the �rst order condition Hence� the estimatorb�RGT searches for a value of �� for which simulated data from the structural model mimic
this �rst order condition

Both estimators b�RMD and
b�RGT are derived from similar principles although the crite�

rion function is di�erent Indeed Gouri�erioux� Monfort and Renault ������ show that both

approaches yield asymptotically equivalent estimators as T tends to in�nity Thus� the

choice between these estimators is a matter of computational convenience As far as this

is concerned the following should be considered As is usual for nonlinear optimization

problems� estimations based on b�RMD and
b�RGT are performed with iterative optimization

algorithms However� at every iteration step of the optimization with respect to �� the

parameter based estimator b�RMD requires �secondary� optimizations to estimate the auxil�

iary parameters �� whereas the score based estimator b�RGT requires only one optimization
concerning � Furthermore� the estimator b�RMD� using the optimal weight matrix A��

requires an estimate of J� based on the Hessian matrix which is not necessary for the

estimator b�RGT  On the other hand� for the computational e�ciency of the score based
estimator b�RGT � it is necessary that the score vector of the auxiliary model ��� is available
in an analytical form which is not essential for the parameter based estimator

The asymptotic e�ciency of the indirect inference estimators depends on the poten�

tial of the auxiliary model to approximate the true process In fact� if h�ytjzt� ��� �
h��ytjzt� b����� in some neighborhood of ��� the structural model is �smoothly embedded
within the score generator� �see� Gallant and Tauchen �����a��� and it follows that the

indirect inference estimator is asymptotically e�cient However� in principle two di�erent

approaches to select an appropriate auxiliary model �or score generator� exists The �rst

approach is to search for an auxiliary model that is able to mimic the salient features

of the structural model� and that is as close as possible to it For the SV model �see

Example ��� for instance� such a candidate model may be a GARCH speci�cation since

the predictions concerning the stochastic behavior of the returns resulting from a GARCH

model and the SV model are very similar The second approach as advocated by Gal�

lant and Tauchen �����a� is a data dependent choice of the auxiliary model Speci�cally�

they propose to adopt a #exible� possibly nonparametric� score generator which can be

�




expected to capture any dynamic and distributional feature of the observed data Such a

data dependent procedure associated with the term EMM is considered in the following

section in greater detail

� The SNP approach

To achieve a high level of e�ciency for the indirect inference estimator� Gallant and

Tauchen �����a� suggest to use the class of semi�nonparametric �SNP� models of Gallant

and Nychka ����	� for constructing the score generator As shown by Gallant and Long

����	�� these SNP models can be expected to capture the probabilistic structure of any

stationary and Markovian time�series

The SNP model as applied by Gallant and Tauchen �����b�� Andersen and Lund ����	��

and Gallant� Hsieh and Tauchen ����	� to various �nancial time series can be represented

by the following conditional density�

h�q�ytjzt��q� �
�P�ut� zt��� ��ut��jdet�St�jZ

�P�v� zt��� ��v�dv
� ����

Here zt � �y
�
t��� � � � � y

�
t�l�

� and �q is a q�dimensional parameter vector The n�dimensional

vector ut is obtained from a standardization of yt� ie� ut � S��
t �yt��t�� where �t and St

are a location and a scale function� respectively The density function of a multivariate

normal distribution with mean zero and unit covariance matrix is denoted by ����� and
P�ut� zt� is a polynomial in ut with coe�cients depending on zt The integration constantR
�P�v� zt��� ��v�dv ensures that h�q�ytjzt��q� integrates to unity
The parametrizations of the location function� the scale function� and the polynomial

are as follows To accommodate the dynamic structure in the mean� the location function

is the conditional mean of vector autoregression given by

�t � b� �
l�X
i��

Biyt�i � ����

To capture the dynamics in the variance� the following ARCH�type scale function is

applied�

vech�St� � c� �
lSX
i��

Cijyt�i � �t�ij � ����

where vech�St� is the vector containing the �n�n � ���
� distinct elements of St and

jyt�i � �t�ij indicates the elementwise absolute value Alternative scale functions applied
by Andersen and Lund ����	� and Andersen� Chung and S�rensen ������ are based on

corresponding GARCH�type speci�cations In order to account for non�Gaussianity and

dynamic dependencies of the standardized process ut the normal density ���� is expanded
using the square of the polynomial

P�ut� zt� �
kuX

j�j��

a��zt�u
�
t � ��	�

��



where u� �
Qn

i�� u
�i
i and j�j � Pn

i�� j�ij The parameter ku denotes the degree of the
polynomial and controls the extent to which h�q�ytjzt��q� deviates from the normal density
For ku � � the density function h

�
q�ytjzt��q� reduces to that of a normal distribution To

achieve identi�cation� the constant term of the polynomial is set equal to � To allow

for deviations from normality to depend on past values of yt� the coe�cients a��zt� are

polynomials in zt given by

a��zt� �
kzX

j�j��

a��z
�
t �

where z� �
Q�n�l�

i�� z�ii and j�j �
P�n�l�

i�� j�ij For kz � � the deviations from the shape of a
normal distribution are independent from zt

Summing up� the leading term of the SNP model� obtained for ku � kz � �� is a

Gaussian VAR�ARCH speci�cation depending on the lag lengths l� and lS This leading

term captures the heterogeneity in the �rst two moments The remaining features of

the data such as any remaining non�normality and possible heterogeneity in the higher�

order moments are accommodated by an expansion of the squared Hermite polynomial

P�ut� zt�� ��ut� controlled by ku and kz To estimate the parameter vector �q� whose

dimension is determined by l�� lS� ku� and kz� the ML method can be used For this

purpose� the integration constant of the SNP model ���� can be computed analytically by

applying the recursive formulas for the moments of a standard normal distribution �see�

eg Patel and Read ����
��

If the dimension of the SNP model q increases with the sample size T � the Quasi�ML

estimate of the SNP model h�q�ytjzt��q� is under weak conditions an e�cient nonparamet�
ric estimate of the true density h��ytjzt� �see� Fenton and Gallant �����a�b�� Furthermore�
Gallant and Long ����	� show that the indirect inference estimator with the SNP model

as the score generator �or EMM estimator� attains the asymptotic e�ciency of the ML

estimator by increasing the dimension q However� how to determine the adequate spec�

i�cation of the SNP model� ie to select l�� lS� ku and kz� remains a di�cult problem

In most practical applications �see eg Gallant� Rossi and Tauchen ����
�� Gallant and

Tauchen �����b� and Tauchen ����	�� the dimension q of the SNP model is successively

expanded and the model selection criteria of Akaike ���	�� or Schwarz ���	�� are used to

determine a preferred speci�cation Then� in order to prove the adequacy of the Schwarz�

or Akaike�preferred speci�cation� diagnostic tests based on the standardized residuals are

conducted

� Some Practical Issues

In many cases the application of simulation techniques require an immense amount of

computer power and thus some care is necessary when implementing the simulation pro�

cedures In this section we therefore address some practical problems and report im�

��



plications of recent Monte Carlo studies concerning the properties of simulation based

estimators

��� Drawing Random Numbers and Variance Reduction

In most applications the simulation based estimator is obtained by optimizing the criterion

function using an iterative algorithm At every iteration step the criterion function must

be estimated via simulations given the current parameter values For the convergence of

such an algorithm� it is important to use common random numbers at every iteration step

for evaluating the criterion function With regard to the reduced form yt � ��zt� �t� ��

of the model to be estimated� the use of common random numbers means that for every

value of � during the iterative optimization procedure� the same set of simulated random

variables f��r�t g is used to generate simulated values of yt which enter the criterion function
If at each iteration step new values of �t were drawn� some extra randomness would be

introduced and the algorithm would fail to converge �see� eg Hendry �������

As shown above� the overall variance of simulation based estimators consists of two

components The �rst component represents the variance of the estimator if it was based

on the exact criterion function and the second component is the Monte Carlo sampling

variance arising because the criterion function is evaluated by simulations The �rst

component is irreducible whereas the second component can be made arbitrarily small

by increasing the simulation sample size Unfortunately� this often leads to an enormous

increase in computing costs However� there exists a number of techniques developed for

reducing the Monte Carlo sampling variance without increasing the computing costs� for

instance� the antithetic variates and control variates procedures

The idea of the antithetic variates procedure as applied� for example� by Andersen

and Lund ����	� for an indirect inference estimator is as follows If we want to estimate

a quantity � by simulations� here for example� the moment conditions ����� we construct

two estimates for these moment conditions according to the estimator ����� say !�� and !���

that are negatively correlated Then the average �
�
�!���!��� has lower variance than either

of the two individual estimates Assuming that the error term �t in the reduced form of

the model has a symmetric distribution around zero� negatively correlated estimates of

moment conditions � can be produced by using a set of simulated values f��r�t g for !��
and the same set of simulated values but with the opposite sign� ie f���r�t g� for !��
The additional computing costs of these procedure are negligible and the reduction of the

Monte Carlo sampling variance may be considerable as reported by Andersen and Lund

����	�

The control variates technique� as applied by Calzolari� Di Iorio and Fiorentini ������

for indirect inference� uses two components for the �nal Monte Carlo estimate of the

quantity of interest � The �rst component is the natural Monte Carlo estimate for �

denoted by !��� and the second component is an estimate &� created from the same set

��



of simulated random numbers as !�� with known expectation and a positive correlation

with !�� Then the �nal estimate of � based on the control variate &� is given by !� �

�!��� &���E�&�� Under suitable conditions� the variance of !� is considerably smaller than
that of the natural estimator !�� Speci�cally� Calzolari� Di Iorio and Fiorentini ������

adjust the parameter based indirect inference estimator by control variates created from

the di�erence �!�� e�T �� where e�T is the estimate of the auxiliary parameter � based on the
observed data and !� is an estimate of � using simulated data from the auxiliary model

These simulated data are generated using e�T as the parameter vector and the same set of
simulated random numbers as for the indirect inference procedure ifself Based on Monte

Carlo experiments� they show that the indirect inference estimator combined with control

variates and applied to continuous�time models �see Example 
� reduces the Monte Carlo

sampling variance substantially compared to the simple indirect inference estimator

��� The Selection of the Auxiliary Model

Indirect inference has been applied to a variety of models for �nancial time series In the

following we discuss strategies used to select an auxiliary model �or score generator�

A data dependent choice of the auxiliary model based on an expansion of the SNP

model ���� has been followed by Gallant and Tauchen �����b�� Tauchen ����	� and An�

dersen and Lund ����	� to estimate continuous�time models for interest rates� as the

Cox�Ingersoll�Ross and Chan�Karolyi�Longsta��Sanders speci�cation �see Example 
�

The same approach is used by Gallant� Hsieh and Tauchen ����	� for the estimation of

discrete�time SV models �see Example �� for interest rates� stock returns and exchange

rates In these applications the dimension q of the SNP auxiliary model determined

by model selection criteria as those from Akaike ���	�� and Schwarz ���	�� is typically

quite high� resulting in a multitude of auxiliary parameters and hence in a large number

of moments Speci�cally� it turns out� that an expansion of the scale function as that

in equation ���� is necessary to accomodate for the typically observed conditional het�

eroscedasticity of �nancial time series and that the expansion of the polynomial ��	� is

important to capture� for instance� the typically leptokurtic distribution of �nancial time

series not accomodated by a time varying scale function and possible asymmetries of this

distribution

More simple auxiliary models which are close to the structural model� resulting in a

comparable number of auxiliary parameters as structural parameters� are chosen in the

applications of Broze� Scaillet and Zakoian ������ and Engle and Lee ������ To estimate

the Cox�Ingersoll�Ross and Chan�Karolyi�Longsta��Sanders speci�cation for interest rates

Broze� Scaillet and Zakoian ������ use auxiliary models based on simple discrete�time

Euler approximations of the corresponding continuous�time model Engle and Lee ������

apply GARCH speci�cations as auxiliary models to estimate continuous�time SV models

for exchange rates� interest rates and stock returns

��



However� the data dependent SNP approach to select an auxiliary model is motivated

by asymptotic arguments indicating that this approach ensures a high level of e�ciency

of the indirect inference estimator when the maintained structural model is true Clearly�

if the structural model is true� a simple auxiliary model very close to it in the sense

that it re#ects all salient features of the structural model can also be expected to ensure

a high level of e�ciency Nevertheless� the data dependent SNP approach seems to be

more adequate if we are interested in detecting possible misspeci�cations of the structural

model based on corresponding speci�cation tests� which are not discussed here�

��� Small Sample Properties of Indirect Inference

The theory of the indirect inference estimator� as developed by Gouri�eroux� Monfort and

Renault ������� Gallant and Tauchen �����a� and Gallant and Long ����	�� is based on

asymptotic arguments This raises the question on the �nite sample properties of the

indirect inference estimator A comprehensive Monte�Carlo study of the performance of

EMM in �nite samples is conducted by Andersen� Chung and S�rensen ������ Specif�

ically� they use the stochastic volatility model �see Example �� to compare EMM with

GMM and likelihood�based estimators and to address the adequate parametrization of the

auxiliary model Their key �ndings are that EMM provides� independent of the sample

size� a substantial e�ciency gain relative to the standard GMM procedure Furthermore�

the likelihood�based estimators are generally more e�cient than the EMM procedure� but

EMM approaches the e�ciency of the likelihood�based estimators with increasing sample

size� as it is consistent with the asymptotic theory of the EMM estimator Finally� they

�nd evidence that score generators based on an over�parametrized SNP model lead� es�

pecially in smaller samples� to a substantial loss of e�ciency Speci�cally� they show that

the substitution of an ARCH�type scale function in the SNP model as given in equation

���� by a GARCH�type speci�cation� improve the e�ciency of the EMM estimator In

fact� this substitution reduces the number of parameters which are necessary to capture

the autocorrelation in the variance as implied by the SV model

� Conclusion

In recent years� simulation�based inference procedures have become popular in particu�

lar in empirical �nance This is due to the complexity of standard models implied by

latent factors or continuous�time processes� for example This chapter reviews di�erent

approaches based on a GMM criterion function for the estimation of the parameters

The MSM approach is the simulated counterpart of the traditional GMM procedure and

is applicable if the theoretical moments cannot be computed analytically However� in

�For speci�cation tests based on indirect inference� see e�g� Gouri
eroux� Monfort and Renault �������
Tauchen ������ and Gallant� Hsieh and Tauchen �������

�	



many applications it is not clear how to choose the moment conditions In nonlinear

models the structure implies restrictions on a wide range of moments and� therefore� it is

di�cult to represent the main features of the model using a few moment conditions In

such cases it seems attractive to employ a simple auxiliary model which approximates the

main features of the structural model However� in most cases� the relationship between

the parameters of the auxiliary model and the parameters of interest is too complicated

to admit an explicit solution Hence� simulation techniques are applied to evaluate the

binding function linking the parameters of interest with the parameters of the auxiliary

model Two asymptotically equivalent approaches for such an indirect infererence frame�

work are available Gouri�eroux� Monfort and Renault ������ employ a minimum distance

procedure whereas Gallant and Tauchen �����a� use the scores of the auxiliary model as

the moment condition to be matched by a �simulation�based� GMM procedure

Since the e�ciency of an indirect inference procedure crucially depends on the potential

of the auxiliary model to approximate the model of interest� it seems attractive to use

#exible nonparametric models as score generators Such estimation procedures are known

as EMM estimators in the literature and seem to be a fruitful and a promising �eld of

future research
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