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Abstract

Tests for the cointegrating rank of a vector autoregressive process are considered which allow
for possible exogenous shifts in the mean of the data generation process. The break points are
assumed to be known a priori. It is proposed to estimate and remove the deterministic terms
such as mean, linear trend term and a shift in a first step. Then systems cointegration tests
are applied to the adjusted series. The resulting tests are shown to have known limiting null
distributions which are free of nuisance parameters and do not depend on the break point.
The tests are applied for analyzing the number of cointegrating relations in a German money

demand system.
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1 Introduction

Many economic time series exhibit breaks or shifts in their levels which are not consistent
with standard types of data generation processes (DGPs). Such breaks are often caused
by exogenous events that have occurred during the observation period. For example, the
German unification has caused shifts in a number of macroeconomic time series such as Gross
National Product (GNP) and measures of the money stock. In this example the timing and
the reasons for the shifts are known. In other situations neither the timing nor the fact
whether a shift actually has occurred are known at the outset of an analysis.

Corresponding to the various different types of structural changes and problems related
to them there is an extensive literature dealing with the consequences of structural shifts
for estimation and testing procedures in univariate and multivariate time series models as
well as in regression models for time series variables (see, e.g., Hackl & Westlund (1989) for
a large number of references to the earlier literature). In particular, in many studies testing
for unit roots and breaks in univariate time series is considered. Examples are Perron (1989,
1990), Perron & Vogelsang (1992), Rappoport & Reichlin (1989), Zivot & Andrews (1992),
Banerjee, Lumsdaine & Stock (1992), Amsler & Lee (1995), Ghysels & Perron (1996) to
name just a few. In these papers different assumptions regarding the DGP are made. For
instance, the break point may be known or unknown, it may be a shift in the level of a series
or it may be a break in the deterministic trend component. Structural shifts in the context
of cointegration analysis are considered, e.g., by Hansen (1992), Gregory & Hansen (1996),
Campos, Ericsson & Hendry (1996) and Johansen & Nielsen (1993) among others. In all
these papers, except Johansen & Nielsen (1993), tests for cointegration are discussed in a
single equation framework. In contrast, Johansen & Nielsen (1993) study the consequences of
structural breaks in a systems context and derive likelihood ratio (LR) tests for the number
of cointegrating relations in a system of variables.

The overall message from these studies is that structural breaks can distort standard
inference procedures substantially and, hence, it is necessary to make appropriate adjust-
ments if structural shifts are known to have occurred or are suspected. If there is just one
break point in the observation period it may be tempting to analyze the two regimes before
and after the shift separately. This may, however, result in a substantial loss in efficiency

and/or power. Therefore procedures that take structural changes into account by adjusting



the inference methods are often preferable to eliminating parts of the sample.

In this study we will consider the problem of how to test for the number of cointegrating
relations in a system of variables if some of them have a shift in the mean at a known time
point. This situation is relevant, for instance, in the aforementioned case of German data
if the sampling period covers the German unification. Assuming that the DGP is a finite
order vector autoregressive (VAR) process with a shift in the mean, tests for the number of
cointegrating relations will be proposed with an asymptotic null distribution which is free
of nuisance parameters and does not depend on where the break point has occurred. In
this respect our tests contrast with the tests analyzed by Johansen & Nielsen (1993) whose
asymptotic null distribution depends on when the shift has occurred. If the break point
is assumed to be known this does not necessarily mean that the tests depend on unknown
nuisance parameters. [t means, however, that new critical values have to be obtained for
each specific situation. Even if just a few new observations become available generating new
critical values will generally be necessary in order to perform the tests. In contrast, the
tests proposed in the following have a known asymptotic distribution which does not depend
on the break date so that no new simulations are required. Tables with critical values are
available elsewhere in the literature. Moreover, our test can be adopted for time series with
more than one shift in the mean or to series with individual outlying observations.

The idea underlying our new tests is to estimate and remove the deterministic parts
including the shifts in a first step and then perform a test for the cointegrating rank on the
adjusted series. The deterministic part of the DGP may, in fact, include a linear time trend
in addition to shifts in the mean term. Similar ideas were used by Amsler & Lee (1995) in
unit root tests in the presence of structural breaks and by Liitkepohl & Saikkonen (1997)
and Saikkonen & Liitkepohl (1997) to construct tests for VAR processes with deterministic
linear trends and without structural shifts. Since we will refer to the latter two articles
several times in the following we will abbreviate them as L&S and S&L, respectively.

The structure of the paper is as follows. In the next section the DGP is precisely specified
and the assumptions underlying our analysis are laid out. The estimation of the parameters
of the deterministic parts is discussed in Section 3 and the cointegration tests are presented
in Section 4. An example based on a German money demand system is given in Section 5

and conclusions follow in Section 6. The proofs of our theorems are provided in Appendix



A and the sources of the data used in the empirical example are given in Appendix B.

The following general notation is used. The lag and differencing operators are denoted by
L and A, respectively, that is, for a time series or stochastic process y; we have Ly, = y;_q
and Ay, = y; — y;—1. The symbol I(d) denotes an integrated process of order d, that is,
the process is stationary or asymptotically stationary after differencing d times while it is
still nonstationary after differencing just d — 1 times. Convergence in distribution or weak
convergence is signified by % The maximal eigenvalue, the trace and the rank of the
matrix A are denoted by A4, (A), tr(A) and rk(A), respectively. Moreover, || - || denotes
the Euclidean norm. If A is an (n x m) matrix of full column rank (n > m) we denote an
orthogonal complement by A, so that A, is an (n X (n — m)) matrix of full column rank
and such that A’A; = 0. The orthogonal complement of a nonsingular square matrix is zero
and the orthogonal complement of a zero matrix is an identity matrix of suitable dimension.
An (n x n) identity matrix is denoted by I,,. LS, GLS and RR are used to abbreviate least
squares, generalized least squares and reduced rank, respectively. LR and LM test are short
for likelihood ratio and Lagrange multiplier test. DGP stands for data generation process
and ECM abbreviates error correction model. A sum is defined to be zero if the lower bound

of the summation index exceeds the upper bound.

2 The Model

Suppose an observed n-dimensional time series y; = (yig, ..., yu) (t =1,...,T) is generated

by the following mechanism:
Yi = po + pat + dodos + 01dyy + x4, t=1,2,..., (2.1)

where p; and ¢; (2 = 0,1) are unknown (n x 1) parameter vectors, dy; and dy; are dummy

variables defined as

]_, t:TO

d()t == (22)
0, t£T,
and
0, t <1y
dlt - , (23)
1, t>T,



that is, dy; is an impulse dummy and dy; is a step dummy variable. These terms allow to
take into account sudden changes in the mean of the process which occur, for instance, in
German macroeconomic time series at the time of the reunification.

The term z; is an unobservable error process which is assumed to have a VAR(p) repre-
sentation,

Ty = All‘t,1 + -+ Apxtfp + &¢. (24)

Here the A; are (nxn) coefficient matrices and, for simplicity, we assume that z, = 0 for ¢ <0
and £, ~ NID(0, ), that is, the £, are independent, identically distributed (i.i.d.) Gaussian
vectors with zero mean and covariance matrix €2. The normality assumption is made here
for convenience although it could be replaced by an i.i.d. assumption and sufficient moment
conditions. The assumption regarding the initial values is also a convenient simplification.
The asymptotic results derived later remain valid if the initial values are assumed to be
from a fixed probability distribution which does not depend on the sample size. The usual
error correction form of (2.4), obtained by subtracting x; ; from both sides of (2.4) and

rearranging terms, is given by

p—1
Aa:t = H.’L’t_l + Z Fijt—j +é&, t=p+ l,p + 2, ce ey (25)
j=1
where I = —(I, —A;—---— Ay and I'; = —(4;u+---+4,) (j=1,...,p—1) are (nxn)

matrices.
We assume that z; is at most I(1) and cointegrated with cointegrating rank r. This
implies in particular that the Granger representation theorem of Johansen (1995, Chapter

4) is assumed to hold. Hence, the matrix IT can be written as
II=af, (2.6)

where o and 8 are (nxr) matrices of full column rank. As is well-known, 'z, and Az, are

then zero mean (asymptotically) stationary processes. Moreover, defining

p—1
\If:In—Fl—---—Fp_1:In+ZjAj+1
7=1
and C' = (. (/, VB3, ) 1/, we have

t
1 =CY ¢gi+6& t=12..., (2.7)

J=1



where & is a zero mean (asymptotically) stationary process.
Now we consider the dummy variables dy; and dy;. We assume the values of the integers
Ty and 1) are known a priori and, if y; is observed for ¢ = 1,...,7, then Ty < T and
Ty <T. The case Ty = 17 is possible unless 1Ty = 17 = T'. We exclude this latter possibility
by assuming 77 < T'— p. It is also convenient to assume that 7, > p and 77 > p and,
furthermore, that
1

lim T = with 0<a; <1. (2.8)

T-r00
In other words, the break point 77 may be thought of as occurring at a fixed proportion of
the full sample size even if an asymptotic analysis is performed where T"— oco. Alternatively,
the break may be viewed as having occurred a fixed number of periods before the end of
the sample period. In the latter case a; = 1. These assumptions for the integers 7 and
T, are not restrictive from a practical point of view. This is obvious for the aforementioned
inequalities. Condition (2.8) may look somewhat restrictive because it implies that the jump
in the dummy d;; is not allowed to take place at the beginning of the sample so that, for
example, 77 would be only slightly larger than p. This would mean that the parameters gy
and ¢y would became asymptotically indistinguishable. However, this problem can readily
be handled by redefining d;; so that it takes the value 1 for t < 77 and 0 for ¢ > 17. Then
the inequalities in (2.8) should be changed to 0 < a < 1 and it is easy to see that our
subsequent derivations apply with only minor and fairly obvious modifications. In summary,
the above discussion shows that the jump in the dummy variable d;; can also take place at
the beginning or at the end of the sample but, for ease of exposition, we exclude one of these
two possibilities. Thus, our assumptions about the integers 7 and 7} are quite general and
weaker than in some previous studies, where condition (2.8) is required with 0 < a; < 1.
Finally, note that we assume for convenience and for expository purposes that there is just
one impulse dummy dy; and one step dummy dy;. It is not difficult to see that our results can
be adopted to models with any number of (linearly independent) impulse dummies and step
dummies. Moreover, our results can easily be modified to the case where the model contains
only step dummies or impulse dummies. It is also possible to exclude the trend term from
the model, that is, u; = 0 may be assumed a priori. This case will be briefly discussed later

OIl.



For our analysis it is convenient to define the lag polynomial

ALy = I, —AL—---—ALP
(2.9)
= LLA-TIL-T4WAL—---—T, jALF!
and notice that the relation between the two representations is given by
A=L+af +1
A]:FJ_F]—17 j:2,,p_1, (210)

Ap - —Fp,1

where II is expressed as in (2.6). Multiplying (2.1) by A(L) yields

p—1 p
Ay = vo+ut+ 1y + '21 I'j Ay j + dodoy — '21 Ajdodo—j
j= j=

p—1
+51Ad1t — Z FjélAdl,t—j — H(Sldl,t—l +é&, t=p+ 1,p + 2, cee,
j=1

where vy = —Ilpg + (¥ + II)py and v; = —IIyy. To be able to write this model in a simpler

form, define
507 j: 0
Yoj = )
_Aj(SO: J = ]-7"'7p
and
617 .]:

—Fjél, ]:1,,])—1

Ty =
Using (2.6), we can then write

Ay = v+a(Byer—7(t—1) = 0dy; 1) + jz_:i LAy
+j§070jd07tj +:§:’Yled17t]‘ + &4, t=p+1,p+2,..., (2.11)
where v = —Ilpo + Yy, 7 = B'py and 6 = ('6,. Notice that here Ad,, ; is an impulse
dummy which takes the value one at ¢ =1} + j and zero elsewhere.

Equation (2.11) specifies an ECM for the observed series y;. We shall use this form of
the model to obtain first stage estimators for the parameters of the error process x;, that is,
fora, 8,1 (j=1,...,p—1) and . Some remarks on the ECM (2.11) and the estimation
of its parameters are therefore in order. Using equation (2.10) and the definitions it can

first be seen that a conventional RR regression cannot be used to obtain the ML estimators

because there are nonlinear restrictions between the parameters in (2.11). To obtain the



above mentioned first stage estimators we shall simply ignore these restrictions. This should
not cause any great loss of efficiency because the restrictions occur in coefficient vectors of
impulse dummies only. Before computing the estimators one should check, however, that
the dummy variables on the right-hand side of (2.11) are linearly independent. Since both
do; and Ad;; are impulse dummies it is possible that some impulse dummies appear twice
in (2.11) and can be combined. This, of course, has no effect on the estimation of the
parameters «, 3, ['; and €2 which are of interest at this point. For simplicity, we assume that
all dummy variables in (2.11) are linearly independent. The assumption p < T3 < T —p
guarantees that there cannot be linear dependencies between the step dummy d,;, ; and
the impulse dummies. Such linear dependencies could be eliminated by excluding impulse
dummies so that the assumption 77 < 1'—p is actually not needed here. However, it appears
convenient later (see the proof of Theorem 3.1) and is therefore imposed because assuming
Ty < T — p seems harmless from a practical point of view.

In the framework of our model we are interested in testing whether the assumption made
for the rank of the matrix II is correct. In other words, for some prespecified rank ry, we

wish to consider testing the null hypothesis
Hoy(ro) : tk(IT) = ry  ws.  Hy(ry) : rk(II) > 7. (2.12)

In this context it turns out to be very useful to make explicit use of the assumption that
the DGP is of the form (2.1). As will be seen later, it is then possible to obtain tests with
convenient asymptotic properties. As mentioned in the introduction, our formulation of the
model allows to estimate the deterministic part of the DGP first and then apply cointegration
tests to the process adjusted for deterministic terms. In the next section estimators of the
parameters of the deterministic part will be presented and the cointegration tests will be

considered in Section 4.



3 Estimating the Parameters of the Deterministic Part
of the Model

We shall estimate the parameters p; and §; (i = 0,1) in (2.1) by using a feasible GLS

approach similar to that in S&L. To derive the estimator we define

1 for t>1 t for t>1
Qor = and 1y = .
0 for t<0 0 for t<0

Multiplying (2.1) from the left by A(L) gives
A(L)y, = Hogpio + Hugpn + Kopdo + K161 + &4, t=12,..., (3.1)

where the y,; are set to zero for t <0, Hy = A(L)a; and K;; = A(L)dy, i =0,1. As in S&L

we also define the matrix
Q=2 a(a/Qta) Y2 ay (o), Qay) V2 (3.2)

with the property QQ' = Q~!. Premultiplying (3.1) by Q' transforms the covariance matrix
of the error term to an identity matrix so that, as required in GLS estimation, we have a
transformation which results in a (multivariate) regression model with standard properties of
the error term. As will be discussed later, the above transformation is not the only possibility
but it appears convenient when asymptotic properties of the estimators are derived.

To make the above transformation feasible, suitable estimators of the parameters «, [,
I'; (j=1,...,p—1) and  are needed. Such estimators can be obtained by a RR regression
of (2.11) in the way discussed in the previous section. These estimators are denoted by
&, B, fj and ). Substituting them for the corresponding theoretical parameters in (2.10)
gives estimators for the coefficient matrices A;. Denoting these estimators by flj we can
define A(L) =1, — AL —-- — fipr and, furthermore, H;, = A(L)ait and K;; = A(L)dit
(i = 0,1). Note that A(L) satisfies the cointegrating restrictions. Thus we are able to
construct a feasible analog of (3.1). Moreover, a suitable estimator of the matrix @) can be
readily obtained by forming &, from & and replacing €2, o and o in the definition of () by
their estimators. If Q is used to denote the resulting estimator of ) we can finally introduce

the multivariate auxiliary regression model
Q'A(L)yt = Q'Hoypio + Q' Hyypi + Q' Koido + Q' K1401 + 1y, t=1,...,T. (3.3)

8



The LS estimators of the parameters p; and ¢; will be denoted by ji; and 6; (¢ = 0,1),
respectively. They are used in the next section to obtain tests for the cointegrating rank.
It is, of course, apparent that the estimator 50 which estimates the coefficient vector of the
impulse dummy dy; cannot be consistent. From S&L it is also clear that the estimator fig
is generally not consistent although it is consistent in the direction of 3, that is, f'fiy is a
consistent estimator of 5'py. On the basis of this result it is to be expected that the consis-
tency property of the estimators 6, are similar to those of fto provided T"— 1T} — oo. The
asymptotic properties of the estimators ji; and o; are given in the following theorem whose
proof requires suitable consistency results of the estimators @, 5’, f‘j and €. These results

are first stated in the following lemma.

Lemma 3.1. Suppose the assumptions made in Section 2 hold and the null hypothesis
Hy(rp) is true. Suppose further that if (2.8) holds with a; = 1 then 7" — T} either tends to
infinity or converges to a finite constant. Define the (infeasible) estimators f; = B(&') !
and Ge = af'€, where & = (B/8)'8. Then fe = B+ O,(T 1), ar = a + O,(T/?),
[, =0;+0,(T7?) (j=1,....,p—1) and Q = Q 4 O,(T~'/?). O

The lemma is proven in the Appendix. The results are similar to those one obtains from
a model without dummy variables. They can be used to show that the same consistency
properties apply with any normalization of the estimators (cf. Johansen (1995, p. 184)). In
the present context the normalization does not matter, however, since we use the estimators
& and B in situations which are invariant to a particular normalization. Now we can state
the properties of the estimators of the parameters of the deterministic part of (2.1). Again

the proof is given in the Appendix.

Theorem 3.1. Under the conditions of Lemma 3.1,

B (o — po) = Op(T/?) (3.4)
»51(/10 - No) = Op(l) (3-5)
(81— 61) = Op((T' = T1)7'/?) (3.7)



B —61) = 0,(1) (3.8)
B — 1) = Op(ng/Q) (3.9)
TY23 (fu — ) —5 N(0, BL.CQC"BL) (3.10)

Here C' = 3, (/W) o/, as before and all quantities converge jointly in distribution upon

appropriate standardization. O

The properties of the estimators jip and ji; are entirely similar to those obtained by S&L,
Theorem 1. Whereas ji; is consistent, the same is not true for fig. The latter is consistent
only in the direction of 5 and not in the direction of 5. However, even in the direction of 5
the estimator iy is bounded in probability and this property turns out to be sufficient for our
purposes. As to the estimators &0 and 31, the obvious inconsistency of the former is implied
by (3.6) while (3.7) and (3.8) show that the asymptotic behavior of the latter is similar to
that of figp when T'— T} — oo or, in other words, when information on the parameter ¢; in
the direction of f increases with the sample size. A general conclusion of (3.7) and (3.8) is
that the estimator 31 is never consistent in the direction of 4, and it can also be inconsistent
in the direction of g if T'— T} does not go to infinity. As in the case of jiy, from our point
of view it is important that the estimator 5, is bounded in probability, particularly in the
direction of 3. We will now discuss how these estimators can be used in constructing tests

for the pair of hypotheses in (2.12).

4 Test Procedures

When the estimators fi; and 0 (i = 0,1) are available one can form a sample analog of the
series x; as
Ty =Y — flo — fut — 80d0t - 81d1t

and use it to obtain LM type or LR type test statistics for the hypothesis Hy(r) in the same
way as in L&S and S&L. The LM type test statistic requires estimators of the parameters «,
[ and €2. The RR regression estimators based on (2.11) and discussed in the previous section
can be used for this purpose. Alternatively, the LR type test statistic may be obtained in
the same way as the usual LR test statistic from the feasible counterpart of the ECM (2.5),

10



that is, it is determined from
p—1
Ay =i+ Y DjAG_j+e, t=p+1,...,T, (4.1)
j=1
where e; is an error term defined explicitly in the appendix. The following general formulation
discusses LM and LR type test statistics obtained in both of the aforementioned ways.
Let &, A and © be any estimators of the parameters «, 8 and €2, respectively, satisfying
the consistency results in Lemma 2.1. Consider the auxiliary regression model

p—1
0\ Ay = @ lyy + p o + ) DjAL_j+def, t=p+1,....T, (4.2)
7=1

where @, = ('2,, o, = B 4; and e = e — o — B)#-1. The LM type test statistic of
S&L is obtained by forming the usual LM test statistic of the multivariate linear model for
the null hypothesis p* = 0 in (4.2). If the usual LR test statistic of the multivariate linear
model is used instead an asymptotically equivalent test statistic is obtained. In general this
test statistic is not the LR test statistic based on (4.1). However, as shown in Saikkonen
& Liitkepohl (1998), this is actually the case if &, 3 and Q are RR regression estimators
based on (4.1). Thus, to be able to use the above general framework to construct the LR
type test based on (4.1) we have to show that the consistency results of Lemma 3.1 hold for
the RR regression estimators of «, f and Q obtained from (4.1). This will be done in the
Appendix. Thus, testing the null hypothesis p* = 0 in (4.2) by conventional methods of the
multivariate linear model gives both the LM type and the LR type tests discussed in S&L.
For convenience the following test statistic assumes a LM type (or Wald type) form but the
LR type form is of course asymptotically equivalent under the null hypothesis.

Following S&L we now introduce the test statistic
LM (r¢) = tr{p* Myy..p" (&', Qéy )71, (4.3)

where p* is the LS estimator of p* from (4.2) and

R T T T 17
Mvv.z — Z @t—lﬁg—l_ Z @t_12£ ( Z Z%ég) Z 2t®£_1

t=p+1 t=p+1 t=p+1 t=p+1

/

with 2, = [a; , : A%} | @ -0 AZj ). S&L also discuss an asymptotically equivalent

variant of the above test statistic obtained by deleting the regressor 4, ; from (4.2). We

11



shall not consider this modification because it was found to give very similar results in small
samples.

The LR type statistic based on (4.1) is obtained in the usual way by solving the general-
ized eigenvalue problem det(IIMII' — AQ) = 0, where II is the LS estimator of II obtained
from (4.1), Q is the corresponding residual covariance matrix and

T T T Lo
Mp= Y a8, — > &.0X, ( 3 AXHAX;l) S OAX, 3,
t=p+1 t=p+1 t=p+1 t=p+1

with AX, = [AZ]_, : -+ A#y_,,,]". Denoting the resulting eigenvalues by A > > A,

the LR type statistic becomes
LR(ro) = zn: log(1 + A;). (4.4)

j=ro+1
Now we can state the following theorem where B(s) is an (n — rg)-dimensional standard

Brownian motion.

Theorem 4.1. If Hy(rg) in (2.12) is true,

LM(ro), LR(ry) —% tr { ( | 1 B*(s)dB*(s)’>, ( | 1 B*(S)B*(s)'ds> - ( | 1 B*(s)dB*(s)’> } ,

where B, (s) = B(s) — sB(1) is an (n — rp)-dimensional Brownian bridge and dB,(s) =
dB(s)—dsB(1) is as in Theorem 2 of S&L and Theorem 5.1 of L&S. Note that [, B, (s)dB,(s)’
abbreviates [j B(s)dB(s)' — B(1) [y sdB(s)' — J; B(s)dsB(1)' + iB(1)B(1)". O

The limiting distribution obtained in Theorem 4.1 is free of unknown nuisance parameters
and actually the same as the one obtained by S&L and L&S in a model without any dummy
variables. Critical values are given in Table 1 of L&S. Thus, in our framework, including
step dummies and impulse dummies in the model and estimating their coefficients has no
effect on the limiting distribution of the cointegration tests. This is very convenient and
contrasts with the LR tests proposed by Johansen & Nielsen (1993). They include dummy
variables in the error correction model for y; and show that in this case the asymptotic
null distribution depends on the break point. Hence, a new set of critical values is required
for each break point. Our theorem extends previous results of S&L who noticed that the
limiting distribution of the corresponding tests for models without dummy variables is not

affected by the limiting properties of the (GLS) estimator of the mean parameter 1.

12



The preceding discussion also suggests that if the a priori restriction p; = 0 is employed
in (2.1) and the GLS estimation of Section 3 as well as the above test procedure are modified
accordingly, the limiting distribution of the resulting test statistic is the same as in a model
without any deterministic terms, that is, the limiting distribution obtained by replacing the
Brownian bridge B, (s) in Theorem 1 by the Brownian motion B(s). This situation was also
studied by S&L and, from the proofs given in the appendix and in that paper, it can be seen
that the above conclusion actually holds. The same result can also be obtained by replacing
the GLS estimator considered in this paper by one proposed by Saikkonen & Luukkonen
(1997). This GLS estimation is similar to the one developed in Section 3 except that the
estimator A(L) is obtained by ignoring the cointegration structure of (2.11) and applying
LS. It should be noted, however, that, to the best of our knowledge, this GLS estimation
has not been studied in a model with a time trend. Further, the modified GLS estimator
discussed at the end of Section 3 explicitly assumes that the estimator A(L) satisfies the
cointegrating restrictions implied by the null hypothesis. Thus, this modification cannot be

applied if an unrestricted LS estimator of A(L) is employed.

5 Illustration: A German Money Demand System

Based on a single equation analysis of Wolters, Terdsvirta & Liitkepohl (1998), Liitkepohl &
Wolters (1998) construct a small macroeconomic model to investigate the channels of German
monetary policy. They build a vector error correction model for M3, GNP, an inflation rate,
an interest rate spread variable and import price inflation. In a demand relation for M3,
GNP is a proxi for the transactions volume, the inflation rate and the interest rate spread
are opportunity cost variables and the import price inflation is included as a measure for
the real exchange rate to account for the openness of the German economy. The variable
M3 is used to measure the money stock because it is the target variable of the Deutsche
Bundesbank in executing its monetary policy. The interest rate spread and the import price
inflation variables turned out to be stationary whereas the other three variables were found
to be I(1) in the aforementioned studies. Therefore we shall focus on M3, GNP and the
inflation rate in the following and investigate the number of cointegration relations among

these variables.
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We use quarterly, seasonally unadjusted data for the period 1975(1) to 1996(4) as in
Liitkepohl & Wolters (1998). The initial period was chosen because the Bundesbank started
its policy of monetary targeting in 1975. Specifically the following variables are used: m,
represents the logarithm of real M3, gnp; is the logarithm of real GNP and p; is the logarithm
of the GNP deflator, hence, Ap, is the inflation rate which will be used here. In other
words, the vector of variables considered in the following cointegration analysis is y;, =
(my, gnpy, Apg)'. The data sources are given in Appendix B. The variables are plotted in Fig.
1. Obviously, m; and gnp, have clear shifts in the third quarter of 1990. These shifts are
due to the German reunification. Note that, although the political reunification took place
in October 1990, the monetary unification occurred already on July 1, 1990. Since then all
variables refer to the unified Germany and, hence, the shift in the third quarter of 1990 is
quite natural.

If the full sample is to be used in the cointegration tests, the structural shifts in 1990 have
to be taken into account. Therefore Liitkepohl & Wolters (1998) and Wolters, Terdsvirta &
Liitkepohl (1998) include a shift dummy d;; = 0 until the second quarter of 1990 and d; = 1
afterwards. They also include an impulse dummy dy; = 1 in 1990(3) and 0 elsewhere. We
will use these dummy variables in our analysis as well. Because m; and gnp; potentially
have a deterministic trend term we also include a linear trend as in our original model (2.1).
In addition to the deterministic terms included in that model we also need seasonal dummy
variables here because our data are not seasonally adjusted and have quite pronounced
seasonal components (see Fig. 1). As noted in Johansen (1991), seasonal dummy variables
do not have an impact on the asymptotic behaviour of LR cointegration tests and it is easy
to see that the same is true for the LM type tests considered in the previous section. In the
following we will estimate the parameters associated with the seasonal dummy variables by
the GLS procedure described in Section 3 for the other parameters of the deterministic part
of the model. Then y; is adjusted for all deterministic terms including the seasonal terms to
get T;.

In Table 1 the results of various cointegration tests are provided. They are based on
models of order p = 2 which was also used by Wolters, Terdsvirta & Liitkepohl (1998).
Therefore the first two values of our time series are used as presample values. In addition

to tests for the full period, we also give results for the pre-unification period using data up
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Table 1. Cointegration Tests for German Macroeconomic Data (my, v, Apy).

critical values® | 1975(3) - 1990(2) (T = 60) | 1975(3) - 1996(4) (T = 86)

Hy | 90% 9% | LR LM | LR LM
ro=0]2590 2847 |50.25 96.16 | 73.14 133.69
ro=1]13.80 1592 | 2.61 1.11 | 10.15 3.46
ro=2| 543  6.83| 0.24 0.72 | 2.79 2.89

) from Table 1 of L&S

to 1990(2) only. In these tests the dummies d;; (i = 0,1) are not included. Obviously, one
cointegration relation is found regardless of the observation period. Moreover, for common
significance levels both versions of the tests clearly reach the same conclusion regarding the
cointegrating rank. Still it is pleasing that the new tests enable us to use the full sample

information.

6 Conclusions

In this study we have proposed and applied tests for the cointegrating rank of a system of
variables in the presence of structural shifts. Under the assumption that the break point is
known a priori it is suggested to estimate the deterministic part of the DGP first, subtract
the estimated deterministic part from the original series and then perform standard systems
cointegration tests for the adjusted series. We have considered LR and LM type tests in this
context and find that they have asymptotic null distributions which are tabulated elsewhere
in the literature and do not depend on the break point. Hence, the tests are conveniently
applied without the need for simulating new critical values. For illustrative purposes, the
tests are applied to a system of German macroeconomic variables which may be thought of

as a money demand system.
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Appendix A. Proofs

A.l Proof of Lemma 3.1

We shall first demonstrate that assuming the true values of y; and ¢;, denoted by ,ul(o) and

550), respectively, to be zero (i = 0,1) does not imply a loss of generality. To this end, write

fort>p+1,

A(L)(ys — po — puat — Sodoy — 61dyy)
= A(L) [y — (o — 1§”) — (1 — i)t — (8 — 6 )doy — (61 — 61 )df]
p—1
= A.’L’t - O[ﬁ,xt_l - Zl Fijt—j
J:

+af (o — pd) + af (py — p)(E = 1) = (g — piV)

p
—(80 — 6§”)doy + ,Zl A;(00 — 8§”)do;
J:

p—1
— (6, — 8N Adyy + a6y — 6 )dy 4y + X (0 = SNAdy ;.
J:

This shows that by a linear reparameterization we can transform (2.11) to a form in which
y; is replaced by x; and the true values of all parameters related to deterministic variables
are zero. This reparameterization is of course infeasible but it can be used in theoretical
derivations and, in particular, to study asymptotic properties of RR regression estimators of
a, 3,I'; and €. Thus, we can proceed by assuming that the true values of ji; and d; are zero
so that in (2.11) the true values of v, 7,6 and -;; are all zero.

Next we introduce some notation. Define

, /
X, = {ytfl t—1: dl,t—l] )
!
Zhy = [1 PAY e Ay{t—pﬂ] ’
ZZt = [dOt MIRIEIEIN dO,tfp . Adlt Lt Adl,tfp-%—l],)

and set Z; = [Z}, : Z},]'. Then we can write equation (2.11) as

Ayy=a)' X, +®Z +¢e;,, t=p+1,p+2,.., (A.1)
where ' = [ : —7: —f] and ® = [y : @] with &3 =[v: 'y : -+ : [py] and ®o = [0 :
I %p Y10 ¢ -t Y1p—1)- The RR regression estimators of «, 1 and € can be obtained as

follows. Define

T
S’L] - N_l Z R’itR;'tJ 7’7] = 07 17

t=p+1

16



where N = T — p and Ry and R;; are the LS residuals obtained by regressing Ay, and
X, on Z;, respectively. As is well known, the RR regression estimator of ¢ is based on the

eigenvectors corresponding to the r largest eigenvalues of the determinantal equation
IAS11 — 510559 So1| = 0 (A.2)

(e.g., Johansen (1995, Chapter 6) or Liitkepohl (1991, Appendix A.14)). When the RR
regression estimator of ¢ is available those of a and () are obtained by replacing v by
its estimator in the formulas Sp;t(¢'S119) ™" and Spg — Se1¢0(¢'S114) 1" S1g, respectively.
Recall that we have assumed that all impulse dummies in (2.11) are linearly independent so
that Sy is nonsingular and the above estimators are well defined.

In the same way as in the proof of Lemma 13.1 of Johansen (1995) we now transform

the equation (A.2). To this end, we define the matrix

BT PEL(B BT 0 0
Ar=10 0 Tt 0
0 0 0  TYV2/(T —T)"?

Pre- and postmultiplying (A.2) by A’. and Ar, respectively, gives
det()\AITSllAT — A,TSH)S&}S(HAT) =0. (AS)

The eigenvalues of (A.2) and (A.3) are identical and the eigenvectors of (A.3) are obtained
from those of (A.2) by premultiplying by Az'. The next step is to study the weak limit of
(A.3). For ease of exposition and without loss of generality, we shall assume that the initial
values of x; are such that 'z, and Az, are stationary.

We shall demonstrate next that
Soo = 5’00 + 0p(1) and SOIAT == 5’01AT + 0p(1), (A4)

where 5’00 and 5’01 are analogs of Sy and Sy, respectively, obtained by omitting Zs; from
(A1) (ice., Z; = Zy;). To show (A.4), denote D} = diag[N~*/2I : I] where the partition is
conformable to that of Z, = [Z],, Z},]'. Then note that

T
D' Y ZZDp' = diaglE(Zu2y,) - 1), (A.5)

t=p+1
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where the expectation is well defined because y; = x; by assumption. This result is a
straightforward consequence of the definitions and well-known properties of stationary pro-
cesses. Notice that (A.5) holds even if the time points 7 and 7} are not fixed because

T2 max;<;<p Az = 0,(1). The same line of reasoning also gives

T
N=Y2 5N Ay ZiDFt 25 [E(AxZy,) : 0] (A.6)
t=p+1
Because
T T T -1 T
Soo=N""> AyAy,— N> Awz | Y ZiZ] > ZAy, (A7)
t=p+1 t=p+1 t=p+1 t=p+1

the first equality of (A.4) follows from (A.5) and (A.6).

T
To justify the second equality in (A.4), we consider the matrix N~'2D;t > Z,X!/Ay,
t=p+1
where X[ Ay consists of four components analyzed separately below. First note that

T E(ZyalB)
N7T'2DIY ST Zy, B ! , (A.8)

t=p+1 0

where the convergence follows in the same way as in (A.6). Next we have

T
T N32 5 Zya,_BL
NT'DE' Y Zyi B = spr T (4.9)
=i 0p(1)

where the order result follows from the definition of Z5; and the well-known fact that
T~ maxj<i<r B 21 = 0,(1). Similarly,
r N Y (1—1)Zy
N3EDE S (t-1)Z, = t=p+1 : (A.10)
of1)

Finally, we have

T _T —1/2N—1/2 I 7
( 1) > 1t

T
(T - Tl)_l/QD:FI Z Zydy gy = qEZTH—l
t=p+1 (T — TI)—l/2 S oy
t=T1+1

T
(T—=T)72NY2 30 2y
— t=T1+1 , (A.11)

o(1)
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where the term O(1) converges either to zero (if T'— T} — 00) or to a positive constant (if
T —T, — ¢ < 00). Now, since Sy; A7 is obtained by replacing Ay; with X]Az in (A.7), the
second equality in (A.4) can be obtained from (A.5) - (A.11).

From (A.4) we can conclude that the asymptotic behaviour of the latter matrix in (A.3)
is similar to that in the conventional model without any dummies. Thus, in the same way
as in Johansen (1995, p. 158, 180) we find that

Zp0S00 Zop 0

AlS10S50 St Ay 2 : (A.12)
0 0

where ¥4y and Xy are conditional covariance matrices defined by

Az, Yoo 2o
Cov Azy_1, ., Axyp_piy | = o

B, Y0 Ygg
Next we have to consider the asymptotic behaviour of the matrix A/.S;;A;. For this
purpose we note that
B'Yi—1
T=V2(BLBL) " By

Tt —1)

()" s

where y; = x; can be assumed. It appears convenient to analyze separately the cases where

a; <1and a; =11in (2.8).

u <l

If a; < 1 then the term O(1) in (A.11) can be changed to o(1) and we have A’.S1;Ar =
A’TS’HAT—l-op(l) with S;; defined by omitting Z, in the same way as in Sy and Sy;. Because
we may assume that y, = x, the weak limit of A’TS’HAT can be obtained by arguments similar
to those used in the conventional case (see Johansen (1995, p. 158, 180)). It is first easy to
check that the matrix A’TS’UAT is asymptotically block diagonal with the (r x r) block in
the upper left hand corner converging in probability to Xgz. To obtain the weak limit of the
lower right hand corner, let W(s) be an n-dimensional Brownian motion with covariance

matrix €2, denote by I(-) the indicator function and let [¢] be the integer part of ¢. From the
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multivariate invariance principle we then find that

T_1/25’LI[TS]—1 BS_CW(S)
TY(Ts] - 1) | & s “aG(s), (A.14)
() 2 dy s 1 (1—a) V2I(s > ay)

where convergence is in the Skorohod topology of D|0,1]. Hence, we can conclude that

AX g5 0

AALS Ap 4 L
0 ASG(s)G(s)ds
0

, (A.15)

where G(s) = G(s) — }G(u)du (cf. Johansen (1995, p. 158 and 180)).

Now, let 1) = [Bé, —0%, —f)' be the (normalized) RR regression estimator of ¢ described
above (A.2). In the same way as in Johansen (1995, p. 180) we can then use (A.12) and
(A.15) to conclude that

I, I,
B T1/2 2 1
A7l = B Be _ 0p(1) 7 (A.16)
= 0p(1)
L _(%)1/29, i | op(1) i

where the first equality follows from the definitions of A7 and . This shows that the esti-
mators f, 7 and  are consistent of orders 0,(T~2), 0,(T~") and 0,(1), respectively. (Recall
that the true values of 7 and € are zero.) From these results it is further straightforward to
show that @, I'; and Q are also consistent (cf. Johansen (1995, p. 181)). Before strengthen-
ing the above consistency results to the required form we shall obtain similar intermediate

results in the case a; = 1.

a1=1

Recall that (A.12) holds even if a; = 1 but the previous derivation of (A.15) fails because the
limit in (A.14) is not defined. To find the weak limit of A%.S1; Ay in this case, we consider
again (A.13) and note that the second sample moments between the last component of

A’ X, and the remaining ones converge to zero in probability. To demonstrate this, note for
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example that

T
E HNl(T — 1) Y Blpadie

t=p+1

T
< NYT-T)M? L E| 5 e

T
const - N“YT —Ty)~Y2 3 t1/2
t=T1+1

< const - N~YT — T0)~Y2TY2(T — 1)

< const - (—T}TI)I/2 =o(1)

IN

when 71 /T — 1. This shows that the second sample moments between the second and
last components of A.X,; are of order 0,(1). The other cases can also be handled in a

straightforward manner so that the arguments used to obtain (A.15) now yield

Yss 0 0
T 1
NU S AL XA -5 | 0 [ Gi(5)Ga(s)ds 0 |, (A.17)
t=p+1
0 0 1

where G(s) ((n —r + 1) x 1) is defined by the first n — r + 1 components of G(s). Using
(A.5) and (A.8) - (A.11) we next note that
T T Lor
N~ Y ApX.Z ( 2 ZtZ£> Y ZX{Ar

t=p+1 t=p+1 t=p+1

T
Z1 X Ay (A.18)
+

t=p+1

-1 I i i I i o
t=p+1

t=p+1

T T
+N_1 Z A’TXtZét Z ZZtXéAT_'_Op(]-)'

t=p+1 t=p+1
From (A.8) - (A.11) it can be seen that the elements of the second matrix on the r.h.s.
converge to zero in probability except the one in the lower right hand corner which converges
to ¢?, say, the limit of the squared norm of the term O(1) in the last expression of (4.11). On
the other hand, arguments similar to those used to show the asymptotic block diagonality
of the term on the Lh.s. of (A.17) can be used to show that the elements in the last row
and last column of the first term on the r.h.s. of (A.18) converge to zero in probability while
the remaining elements converge in probability to the same limits as in a model without any
dummy variables. Because A’.S1;Ar is the difference between the Lh.s. of (A.17) and the

Lh.s. of (A.18) the above discussion as a whole in conjunction with (A.17) shows that

A5 0 0
1 _ _
MLSHAr 5 | 00 AL G(s)Gy(s)ds 0 : (A.19)
0
0 0 A1 = )
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where G1(s) = Gy(s) — JJ Gi(u)du. (Notice that 1 — ¢? > 0 because it is the limit of the
residual variance in a regression of [T'/(T — Tl)]l/Zst,l on Zy and because these variables
are linearly independent by assumption.) Thus, since we still have (A.12) the only difference
between the present case (a; = 1) and the previous one (a; < 1) is that the weak limit of
AA!.S1 A differs from its previous counterpart obtained in (A.15). This, however, does not
affect the arguments used to derive (A.16) which therefore hold in the present context as
well. This implies that Bg and 7 are consistent of the same orders as previously but, since
T,/T — 1 nothing can be concluded about the consistency of 6. Fortunately, however, the
consistency of g, fj and Q can still be proved in the same way as before. To see this, note
that a¢ and fj can be obtained by LS from the auxiliary regression model
- p—1
Ay, = ap AL Xy + v+ > DAy + $2 2o, + error, t=p+1,...,T, (A.20)
j=1
where 9y = Az'ip. Since Az'p = [I, : 0], ¢y is a consistent estimator of A7'¢) [see (A.16)].
This consistency result and our previous results about the second sample moments of the
variables in the auxiliary regression model (A.20) can be used to prove the consistency of
the estimators ¢ and f‘j (and also 7). After this the consistency of Q can be proved in a
standard fashion. Details of these derivations are straightforward and therefore omitted.
To complete the proof we have to establish the stated orders of consistency. Define
T be
Ur = T2/37! ((n—r+2)xr).
(T — T1)1/2§’

We shall first show that Up = O,(1) which implies that (3 — ) = O,(1). Define the
((n+2) x (n—r+2)) matrix

LB B 0 0

Br = 0 T2 0
T
0 0 T

and notice that the matrix Ar can be written as Ar = [b: T-Y2By] with b= [3' 0 0]".
Since Uy is formed by the last n — r + 2 rows of TY2A (¢ — 1) it follows from the above
definitions that (cf. Johansen, 1995, p. 179)

W —1p =T7'BUy. (A.21)
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As in Johansen (1995, p. 182) one obtains the first order conditions for ¢ as
dﬁQil(S()l - 6[57,/;,511) — 0

Define next

T
Sa=T" Z éRy, = So — at)'Syy
t=p+1

where &; is the LS residual in the regression of €; on Z;. Thus, the first order conditions can

be expressed as (cf. Johansen (1995, p. 182))
0= Q1 (Ser — @e(th — ¥)' Sy — (& — a)¥'Shy)
or, postmultiplying by Br and using (A.21),
0= & Q '(SeBr — acUR[T ' BpS1Br] — (G — a)¢'S1i Br). (A.22)

Recall that we can assume that ¢'X, is zero mean stationary and the matrix 7-'/2By is
formed by the last n — r 4+ 2 columns of A;. Using these two facts it is straightforward to
check that ¢'S11 By = Op(1) both when a; < 1 and a; =1 in (2.8). Thus by the consistency
of & the last term on the right-hand side of (A.22) is of order O,(1). By similar arguments
one can show that S.1 By = Op(1) (cf. the derivation of (A.12)), so that Uy = O,(1) follows if
the matrix in brackets in (A.22) converges weakly to a positive definite limit. This, however,
follows from (A.15) (when a; < 1) and (A.17) (when a; = 1) and the definition of the matrix
By. Thus we have proved that f¢ = 8+ O,(T™1).

Since Uy = O,(1) implies that ¢, in (A.20) is a consistent estimator of Az'¢ of order
Op(Tfl/ 2) the remaining orders of consistency are straightforward to establish by considering
the LS estimators obtained from (A.20). First note that here the vector Zy; can be ignored
and that using arguments similar to those previously used it can be seen that the matrix of
second sample moments of the other regressors converges in probability to a positive definite
limit. Thus, it suffices to check that the second sample moments between the regressors and
the error term are of order O,(N~'/2). Since the error term equals g, — a(p — A7 ) Ap X,
where 9 — Agtp = O,(T~/?) this can be readily seen. This completes the proof of Lemma
3.1. O

Remark A.1 (i) From the proof it is also possible to derive the limiting distributions of

ae and Bg and thereby similar results for other normalizations. The limiting distribution of
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B¢ is mixed normal but its explicit form differs for the cases a; < 1 and a; = 1 (cf. (A.15)
and (A.17)).

(ii) From the proof it can also be seen that 7—7 = O, (T%/?) and §—0 = O, (T —T,)/?).
Since 7 = 'py and 0@ = [5'0, these results may be viewed as RR analogs of (3.9) and (3.7).

A.2 Proof of Theorem 3.1

Since all relevant quantities will be invariant to normalizations of & and 3 we can assume
that some kind of normalization has been imposed so that, by Lemma 3.1, we can also
assume that @ = a + O,(T~/?) and § = 5+ O,(T1).

Using the definitions we first note that explicit forms of the variables H;, and K; (1=0,1)
in (3.3) are given by

I, t=1
~ t—1 .
HOt— In_ A]J t:27 D )
7j=1
_OZBIJ t:p+17 JT
In, t=1
~ t—1 N
Hlt: tIn— Zl(t—])AJ, t:2,,p .
J:

¥ — (t—1)ap, t=p+1,...,T

(0, t<T
) L, t=T,
KOt_ 7 . . ’
_AJJ t:T0+]7 ]Zlaap
(0, t=Ty+p+1,...,T
(07 t<T1
- In; t:Tl
Klt: t—T1 . .
In_szy t:T1+1,,T1+p—]_
7=1
| —ap, t=Ti+p,...,T

The proof is based on ideas similar to those used in the proof of Theorem 1 of S&L.

Define

T 0
11 = 712 B’L(Sl
T3 Lo
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and

Yo 5,61
v || P
12 - - =
Yos B
L Yos | L Blﬂl J

We shall first obtain asymptotic properties of the LS estimator of the “parameters” v, and
7, and then use Theorem 1 of S&L to derive the stated results. To express (3.3) in terms of

7, and v, we transform the variables }NIZ-t and Kit accordingly and define

Fiy = Q' Ky,
Fioe = Q'K (BLBL) 7Y
Fia = QIﬁOtBL(BlBJ_)71
and
Fyy = Q'K B(B'B) ™
Fope = Q'HyS(B'8) 7
Fyy = Q'HyB(B'5) ™!
Foy = Q'Hy B (B BL) ™
Then setting F}; = [Fm : Floy Flgt] and Fy = [Fm : Fygy t Flgy Fw] we can write (3.3) as

Czt = Q’A(L)yt = Fltll + FQtlz + T, = 1, e ,T. (A23)

From the definitions it follows that Fy, takes nonzero values only for a fixed number of time
indices t.
We shall next study the sums of cross products between Fj, and the error term n; which

is identical to its counterpart in S&L. Thus,

= Q/5t - Qld(ﬁ —B) w1 — Q (& — ),3 Ti_q1 — Q Z [j)Az,_;. (A.24)

Using this expression, Lemma 3.1 and the above mentioned property of Fy; it can be seen

that

!

Z e = Op(1). (A.25)

For Fy, the corresponding result is
T ~
Y'Y Fyme = Oy(1), (4.26)
t=1
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where Y. = diag[(T — T1) Y21 : T=Y2[ : T=3/2] : T=Y2]] and the partition is conformable
to that of Fy. To justify (A.26), note first that for Fyor, Fisy, Foy the result is obtained
directly from (A.5), (A.6) and (A.7) of S&L, respectively. When (2.8) holds with a; < 1,
(A.26) can be justified for Fy1, in the same way as for Fyy, because Fyy, = FQQ,t_Tﬁl for
t > T; and zero for t = 1,...,7, — 1. If (2.8) holds with a; = 1, the desired result can be
obtained by using arguments similar to those used to obtain (A.17).

The next step is to study the moment matrix related to the auxiliary regression model
(A.23). By the definitions and Lemma 3.1 it is clear that Z%FZI F{tﬁlt converges in probability.
The limit is block diagonal because F]_gt is orthogonal to Fm and Fm. The lower right hand
block, related to Fis, is positive definite, as discussed in S&L. That the upper left hand
block is positive definite can also be seen easily. If T # 1} this is obvious by the definitions
of Fiy; and Fygy. If Ty = Ty and A, # 0 the same conclusion is again obvious. If 4, =0
but A, ; # 0 the situation is reduced to the preceding one so that repeating this argument
it can be seen that the upper left hand block of Zthl F{tﬁu and hence the whole matrix
converges in probability to a positive definite limit.

To analyze the other parts of the above mentioned moment matrix, we first assume that
a; < 1in (2.8). Using the definitions and Lemma 3.1 it is then straightforward to check
that T,;' L, Fétﬁlt = 0,(1) so that, upon appropriate standardization, the moment matrix
is asymptotically block diagonal. In order to study the matrix Y,' S, FQ’tFZtT}l we first
1Q'a and Fhy = QU3 (B F1) L. As in S&L we can proceed by assuming that the above
expressions of Fyy, and Fyy hold for all ¢ and also that Fyy, is replaced by —(t - 1)@’07.
Furthermore, since Fy,; = 0 for t < Ty and Fy = —Q’ddlt for t > T1 + p, we can act as if
Fy; = —Q'ady; would hold for all . Thus, we have

~ - -/

—(T — Tl)il/ZdIlet —(T — Tl)il/Q&,let
T T _T*l/Zde _T*l/leQ
TS By By Xt =S N . + 0p(1)
=1 =1 ~T=32(t - 1)&'Q ~T=32(t - 1)&'Q
| —TRBA)TIAYQ | | —TTVABLAL) TALYQ

Er® A er ® A
e (A.27)
ep @ Ay Agy
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Here the notation is defined as follows. First, as in S&L,

Ay = aQa

A = Ay =aQ BB BL)

and o

Agy = (BL8) 1ALWQ BL(B L) !
= AyAiAy,+ BT

where

o
I

FLAL(@ L) Qan (B an) LA
_ BCacrhs
with C' = B, (&, ¥f3,)'& . The matrix Ey is defined by

- T -

1 (LTI T % (i-1)
t=1T1+1
T
By = ()12 1 T X (t-1)
. . t;l
rorrotye £ goy refeen  Tegeoy
I t=Tr+1 t=1 = )

while the vector er is the second column of Er, that is,

/

er = l(T ;T1>1/2 1772 lté(t - 1)

It is not difficult to check that the matrix E7 is nonsingular and has a nonsingular limit.
From the definitions it also follows that epE;" = [0 : 1 : 0] and epE;'er = 1. Using
these facts and Lemma 3.1 it is straightforward to show that the matrix in (A.27) converges
in probability to a positive definite limit. Hence we can conclude that when a; < 1 in
(2.8) the standardized moment matrix of the auxiliary regression model (A.23) converges in
probability to a positive definite limit which in conjunction with (A.25) and (A.26) shows
that 4, and 9,, the LS estimators obtained from (A.23), satisfy

¥, =7, +0p(1) and Yp(§, —7,) = Op(1). (A.28)

Now consider the case where a; = 1 in (2.8) and notice that the reasoning leading to
(A.27) is still valid. However, now the first row of the matrix Er is of the form [1 : o(1) :
o(1)] and the result Y;'>%  F3 F, = 0,(1) does not necessarily hold. (It still holds if
T — T} — o0). Anyway, it follows from the above that the standardized moment matrix of

the regressors in (A.23) converges in probability and the limit can fail to be nonsingular only
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due to linear dependencies between th and Flt. From the definitions one can readily check
that this is not possible. Thus, since (A.25) and (A.26) also hold in the present context we
again have (A.28).

Since the LS estimates 7 and 7, are obtained by replacing the parameters y; and o;
in the definitions of v, and 7, by the LS estimators fi; and 5; respectively, it immediately
follows from (A.28) that ji; = O,(1) and &; = O,(1) (i = 0,1). From this and Lemma 3.1
one obtains (3.4) - (3.9) in the same way as in the proof of Theorem 1 of S&L. For example,
(3.7) follows from

B0 —61) = B'(61 = 61) = (B = B)' (0 = 1) = Op((T = T) ?) + O,(T7).

To complete the proof, we have to establish (3.10). If (2.8) holds with a; = 1 then the
LS estimator 7,, is asymptotically equivalent to the GLS estimator of v, studied in S&L.
The reason is that then the standardized moment matrix of (A.23) is asymptotically block
diagonal between [FY,, : Fis, : F3,,]' and the other regressors (see the justification of (A4.28)).

Thus it suffices to consider the case a; < 1. Then the standardized moment matrix between

Fy, and Fy, is asymptotically block diagonal and from our previous derivation it follows that
-1

T
T:Fl Z letnt + Op(l)-

t=1

Yr(i, - 2,) = (Y L FFuT)
We have to calculate the last n — 1 rows of the inverse here. For this purpose we apply the
well-known formula for the partitioned inverse to the last matrix in (A.27). Since e E' =
[0:1:0] and €} E; ep = 1 this yields (cf. S&L)
T -1 * * * ok
(rymmtr) -0 T e
=1 0 —BAy A7 0 B
where the blocks denoted by “x” are not needed and the partition on the r.h.s. conforms to
the four estimators 4, (i = 1,...,4). From the definitions and the above equations it now

follows that we have again reduced the problem to that considered in S&L, proof of Lemma

A.2, so that (3.10) is obtained from that paper and thus the proof is complete. O

A.3 Proof of Theorem 4.1

We shall only give an outline of the proof because details are similar to those in S&L and

L&S. First note the identity
&= a0 — (fio — o) — (i — pa)t — (o — So)dor — (1 — 61) (A.29)
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which, in conjunction with the assumed consistency properties of the estimators B, & and
Q as well as the consistency results of the estimators fi; and &; (i = 0,1) obtained from

Theorem 3.1, will be central in the subsequent derivations. Using these arguments one can

show that
T
Nil Z 2152?2 = E(ZtZQ) + Op(].), (ASO)
t=p+1
N3/2 Z 2,0, = 0p(1) (A.31)
t=p+1
and

-2 7T o ~1
N=2 2 impt1 V10

=717 ZtT:erl[ﬂl«’rt—l — B (i — po) (t = D][BLaer — B (fir — p)(t — 1)]" + 0p(1),
(A.32)

where z; = [z} 8 : Awy ;i ...: Axy ] and the first term on the r.h.s. of (4.32) converges
weakly to [ B,(s)B.(s)'ds. These results can be justified in a straightforward manner by
using (A.29) and the consistency properties of the associated estimators. To give a heuristic
explanation note that L&S and S&L obtain (A.30) - (A.32) in a model without any dummy
variables. In that case the effect of the estimator fiy on the Lh.s. of (A.30) - (A.32) is
asymptotically negligible. Thus, when a; < 1 in (2.8) the properties of the estimator &; are
similar to those of jiy so that it should be clear that the effect of the estimator o1 on the Lh.s.
of (A.30) - (A.32) is also asymptotically negligible. For the impulse dummy dy; this is clear
in any case because d — dy = O,(1). When a; = 1 in (2.8) the step dummy d;, behaves very
similarly to the impulse dummy dy; which explains (A.30) - (A.32) in this case. A formal
justification is obtained by using arguments similar to those used to justify (A.17).

Next note that the error term e, in (4.1) has the representation

ee = e—af (T —x 1)+ ATy — Azy — Z?;i Lj(AZyj — Azy_j)
= e+ af'(fo— po) + B (fin — pa)(t — 1) — Wi — )

+af'(dg — do)do—1 + (5o — 60)Ador — X-0_1 T'j(8g — 60) Ady—;

+af (01 — 01)drg 1 + (61 — 01)Adyy — X% T(01 — 01) Ady .

The part of the last expression not involving dummy variables appeared in L&S and S&L
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where it was shown that in this case

NS e dy
= N alBiry = B — m) (t = D][earCBL — (fu — ) Bu)(BL8L) 8L ¥ ay

+0p(1)
(A.33)

Using (A.29) and the consistency properties of the involved estimators it can similarly be
shown that (A.33) holds in the present context. A heuristic explanation can again be ob-
tained by observing that the effect of the estimator fiy on the Lh.s. of (A.33) is asymptotically
negligible so that, given the properties of the estimators 50 and 51, the same happens also
when the impulse dummy dy; and the step dummy dy; are included in the model.
Transforming the above expressions of e, in the same way as in (A.31) of L&S and arguing

as in (A.30) - (A.33) it can also be shown that

T
N7V2 N Zier'a, = 0y(1). (A.34)

t=p+1
Thus, from (A.30) - (A.34) it follows that we have reduced the problem to that in L&S and
S&L so that the stated limiting distribution can be obtained in the same way as in these

papers. O

To see that the RR regression estimators of «, § and €2 based on (4.1) have the consistency
properties stated in Lemma 3.1, we first note that results entirely similar to those in Lemma
A.3 and A.4 of S&L also hold in the present context. In the former case we have to show
that the asymptotic behaviour of the second sample moments of f'z;, Az, and [’ z; are
similar to those of f'z;, Ax; and ' z; except that the weak limit of the matrix of second
sample moments of 3 &, is the same as was obtained in (A.32). Using (A.29) and Theorem
3.1 it is straightforward to show that this is the case and, since the estimation of py did not
affect the previous results, this is also fairly obvious by the heuristic argument used above.
In the case of Lemma A.4 of S&L we have to show that the second sample moments between
(@18 : Az} .] and e, in (4.1) are of order O,(T~?) (i = 1,...,p) while the second sample
moments between ' %, and e, are of order Oy(1). Using the representation of e; given
above and the same arguments as in the preceding case it can be seen that also this result

holds in the present context. After this we can show that the RR regression estimators of «,
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[ and 2 based on (4.1) have the desired properties. The argument is the same as in Lemma

A5 of S&L or Lemmas 13.1 and 13.2 of Johansen (1995) (or in the proof of Theorem 3.1).

Appendix B. Data Sources

Seasonally unadjusted quarterly data for the period from the first quarter of 1975 to the
fourth quarter of 1996 (88 observations) were used for the following variables taken from the
given sources. The data refer to West Germany until 1990(2) and to the unified Germany

afterwards.

Price index: GNP deflator (1991 = 100) from Deutsches Institut fir Wirtschaftsforschung,
Volkswirtschaftliche Gesamtrechnung. The variable p is the logarithm of the price

index.

M3: nominal monthly values from Monatsberichte der Deutschen Bundesbank; the quarterly

values are the values of the last month of each quarter. The variable m is log M3 —p.

GNP: real ‘Bruttosozialprodukt’ quarterly values from Deutsches Institut fur Wirtschafts-
forschung, Volkswirtschaftliche Gesamtrechnung. The variable y is log GNP —p.
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