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SEMIPARAMETRIC ESTIMATION AND
PREDICTION FOR TIME SERIES CROSS
SECTIONAL DATA *

Olaf Bunke

Department of Mathematics
Humboldt University, Berlin
10099 Berlin

Summary: This paper discusses a methodology which uses time series cross sec-
tional datafor the estimation of a time dependent regression function depending on
explanatory variables and for the prediction of values of the dependent variable.
The methodology assumes independent observations and is based on an adaptive
semiparametric regression estimate depending on the observations from an adaptive
running time window. The adaptation consists in the selection of the length (or
horizon) of such a window together with one of numerous alternative parametric,
nonparametric, additive and semiparametric estimators by minimization of a cross-
validation criterion. In the prediction case the window contains only actual and past
observations. It is shown, how to asses the influence of explanatory variables by gen-
eralized coefficients of determination which are adapted to the special objective of
the statistical analysis. This aspect and our regression methodology is illustrated
in the case of an analysis of stock market returns. An extended semiparametric
methodology is also presented which allows the estimation of additive individual
effects and which may essentially improve a traditional panel data analysis.

* The research for this paper was supported by Sonderforschungsbereich 373 ” Quantifikation und
Simulation ¢konomischer Prozesse” at Humboldt University Berlin. The paper was printed using

funds made available by the Deutsche Forschungsgemeinschaft.



1 Introduction

Statistics is applied in numerous fields of application where the dependence between
variables and corresponding predictions is of central interest. In such problems a
possible dependence on time and also on the special individual, object or sector un-
der observation has to be considered. There is a rich literature on the treatment of
such problems under quite restrictive assumptions, eg. on the application of regres-
sion methods in cross sectoral studies and on the application of time series analysis.
While there are many problems where such methods work successfully, it is well-
known, that the influence of the individuals (or sectors) and of time (simultaneously
with explanatory variables) is not adequately perceived by these methods. This is
the background for the literature on panel data analysis, which assume additive ”in-
dividual” effects (see e.g. Hsiao (1986) and Baltagi (1996)), and on semiparametric
regression models including time as an explanatory variable (see e.g. Engle et al.
(1986) and Bunke (1992)). On the other hand it is also clear, that the assumptions
of fixed individual effects in panel models leaves few (or sometimes none) degrees
of freedom for estimating these effects, while the assumption of random individual
effects is not always adequate for the considered applications.

An example is the analysis of the New York and of the German stock market, where
the dependence of stock returns on different variables connected with firms (the
”individuals”) is of interest, e.g. on the firm market capitalization, its ”beta-value”
and its book-to-market-ratio. The number of firms is large in comparison to the
number of years for which a statistical analysis makes sense (see e.g. Fama and
French (1995) and Bunke, Sommerfeld and Stehle (1997)). In such a situation there
is no hope to get sensible estimates of fixed firm effects as they would be calculated
with a panel data analysis.

This paper is oriented towards methodology (in the spirit and as essential extension
of the procedures in Bunke (1984), Droge (1991), Bunke (1992) and Bunke, Droge
and Polzehl (1995)). It proposes a methodology which leads to sensible estimates of
the regression function, leading to a description of the above mentioned dependences
on explanatory variables and on time. This methodology is based on an adaptive
running time window. The adaptation consists in the selection of the length (or
horizon) of such a window together with one of numerous alternative parametric,
nonparametric, additive and semiparametric estimators by minimization of a cross-
validation estimate of the MSEP (mean square error of prediction). This approach
is described in Section 2., while section 3. presents a modification oriented towards
prediction, where the time window only contains actual and past observations.

An important problem is often the comparison of the influence of different explana-
tory variables and the search for the most influencial.



In section 4 we show how to deal with this problem. We allow for some flexibility
taking into account, that sometimes it will be more informative to know the am-
mount of influence (or equivalently the ”predictive power”) of variables for some
transformation or even for certain qualitative properties of the dependent variable.
In the stock market case, theses properties could be e.g. a "positive” or "highest”
stock return.

A special approach which uses some ideas of the procedures described in section 2.
has already been applied by Mai and Polzehl (1991) in the short term prediction
of electricity demand, while the procedures in their present complex form are now
being applied in the analysis of the German stock market. Some of the results have
been already presented in Bunke, Sommerfeld and Stehle (1997).

The last section 5 is devoted to an extension of our methodology by inclusion of
an assessment of the dependence on the individuals. We combine our adaptive
semiparametric approach with an extension of panel data analysis and for this we
adapt a methodology introduced by Bunke and Castell (1998).

2 An adaptive semiparametric regression proce-

dure
We consider observations of real variables Xy, ..., X, Y with the aim of identifying
a dependence of Y on some of the ”explanatory” variables Xi,..., X} which have
influence on Y. For each moment ¢t € 7 = {1,...,T} we have observations
Litiy - -+ Thtiy Yti

of these variables for individuals (or sectors) indexed by i € N;. In the most general
case are allow different individuals at different moments ¢ (or missing values, if a
fixed class of individuals is considered). Let n; be the number of elements in M.
We assume the vectors zy; := (214, ..., Tgy) to be fixed and the observations yy; to
be realizations of independent random variables Y;; (t € T € N).

Leaving out the independence assumption and allowing for correlations between
individuals or over time requires additional more complex tools than those proposed
in this paper and will be the objective of a forthcoming paper.

We assume the existence of means and variances

(2.1) EYy; = fi(zy) = pi, DYy = o7

The regression functions f; : X — R! | being defined on the range X of the vector
X :=(Xy,...,X}) of explanatory variables and the variances o7 are unknown. We
may also allow the assumption, that the observation vectors (xy;, yy;) are realizations



of independent variables (Xj;, Y3;). We use then a ”conditional approach”, interpret-
ing moments (as in (2.1) and later in (2.3), (2.31)) as conditional moments under
the condition Xy =z (t €T, i € M}).

Note that in the most general case the regression function f;; and the variances afi
should also depend on the individual index ¢ (see section 5), but our time dependent
model (2.1) is still more general than usual time invariant regression models with
homogeneous variance. Although formally there is no difference in the dependence
of the moments of Y;; on t and on ¢, the experiences about dependence on time and
on the values of explanatory variables X1,..., X} in many real situations suggest,
that at least some "smoothness” in such a dependence will be present, that is e.g.
for fixed ¢ small changes in time ¢ and in z; lead to small changes in the moments
i, of. This allows the application of parametric and nonparametric estimates for
p; and o?. A similar assumption about the dependence of a regression function
fw on the index ¢ seems in general not to be sensible. In section 5 we will discuss
alternative assumptions leading to a estimation procedure which also considers the
direct dependence of f;; on i.

We propose two alternative approaches which roughly may be described in the fol-
lowing way:

1. Fitting at each moment ¢ the same semiparametric model M, using the obser-
vations at the moment ¢ and possibly at neighbouring moments t+1,...,t+h
within a "horizon” h. The moments t — 7 are of course excluded, if negative,
as well as the moments ¢+ 7, if larger than 7. The fitting leads to an estimate

AtM’h of f;. The model M is selected from a class M of models, simultaneously
with the horizon h from the class H = {0,1,...7 — 1} of possible horizons.
The selection is performed by minimization of the cross-validation estimate
C(M, H) of the MSEP R(M, h) (means square error for prediction of a vari-
able Y,;, which has the same distribution as Y;; but is independent of the other

variables, Y;; by Yu = ftM'h($ti))i

(2.2) R(M,h) :=n""> S/(M,h),
teT

(2.3) n: = Z nge , Sy(M,h):= Z {‘7? + E|ftM’h(Xti) - ft(Xti)|2}'
teT 1EN:

Obviously the MSEP is identical with the MSE for the estimation of the values
iy of the regression function up to a constant which neither depends on the
model nor on the horizon.

We call this approach shortly ATFR (adaptive time dependendent fitting of a
regression model).



2. Selecting at each moment ¢ a model M, € M together with a time horizon
hy € Hy = {1,..., inf[t — 1,7 — 1]} by minimization of the cross-validation
estimate Cy (M, h) of the MSEP R, (M, h) := n; *S,(M, t) for prediction of Y; :=
(Ya, ..., Yi)'. We call this approach shortly ATMR (adaptive time dependent
model selection based regression). In this approach a possible time evolution
of the true underlying model for f; may be followed. But unfortunately on the
other side the selection of a model at each moment ¢ will only be done based
on the relative few observations within a horizon and therefore possibly lead to
higher variability and larger prediction errors. In the approach 1. the model
selection is based on a criterion C'(M, h) depending in all n observations.

In the following we present the details of the ATFR. The implementation of ATMR
follows the same pattern with the obvious modification given by the use of C} in
place of C' (see (2.9)) as a selection criterion.

The ATFR consists first in fixing for each horizon h € H a class F" = {fM" | M ¢
M} of regression estimators
(2.4) fMuhzZh s F={f|:X = R'Y},
where
(2.5) ZM={z=(t,x,y) |t €T, v € RGN+ o ¢ grith
123
(2.6) m(t,h) = > n,, t, :=max{1,t — h}, tp = min{7,t + h}
T=t,
Given the observations
(27) Ty 1= (l‘tla-"xtnt) y Yt 1= (ytl;-"aytnt) (t € T))
the estimator f M:h Teads to estimates
(2.8) pM . — fM’h(t, Ty sy U7 Yty -0 Y, ) € F
of the regression functions f; and ﬂé‘{[ = AtM’h(xti), of their values py; = fi(zy).
The estimates /1" are based on running time windows 7" := [t,, Z4).

For each pair (¢, 7) we denote in the following by ﬂi‘f’h the estimate fM’h(fUti) of pu; cal-
culated leaving out the observation (x4, y4;), when estimating the regression function
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f, and of its values ;. That is modifying the estimator fM" in the straightforword
way to depend on ¢ and on [m(t,h) — 1]k and m(t,h) — 1 dimensional variables x
and y resp. (see (2.4)and (2.5)).

The second step in ATFR is the simultaneous selection of the horizon h € ‘H and of
an estimator f Mk from F" by minimization of the cross-validation criterion

(2.9) C(M,h) = n="> ny Cy(M,h) ,
teT
Ct(M,h) = nt_l Z |yti—,[~j,é\i/[’h 2 .
1EN;

~

(2.10) CM%h):j%ECMLh)

The ”adaptive” estimator f = f Mk ig then the final estimator leading to estimates

f, of f, (see also (2.8)) and fi,; := f,(x4) of the values of the regression function.

In a real application it could be even more useful to use an estimate f M ’ﬁ, which is
nearly optimal in the sense of relatively small differences C(M, h) — C(M, h), but
which has an especially simple or appealing structure, possibly allowing an inter-
pretation in the field of application. This modification yields e.g. in the analysis
of Bunke, Sommerfeld and Stehle (1997) of the German stock market an estimator
fMhwhich is equivalent to the well known model of Fama and French (1995) for
the N.Y. stock market.

Now we describe the classes F" of estimators fM’h(M € M), in which M charac-
terizes the estimator type, while h determines the number of observations on which
it depends. In principle it would be desirable to include many different types of
estimators into the class M. The following types of estimators may be seen as
proposals already leaing to a very rich and flexible close M, which e.g. has been
useful and sufficient in the successful analysis of the German stock market. But
also a replacement or an extension by other prefered estimators could as well be
allowed, e.g. the inclusion of procedures of CART-type (see Breiman et al. 1994) or
of neural-network-type (see White 1989).

Each class F"* may consist of several subclasses

Frh={f""MeM,}, M={JM,.

1. M;: Parametric estimators

We consider the class M of parametric models M of the form
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(211)  gu(@lp) =I5 [pg(Talan], - .., Tilal; T1B)),

where = (z1,...,2¢) € RF. The function p, in (2.11) is a nonlinear exten-
sion of a polynomial of order ¢ in the possibly nonlinearly transformed variables
Tp =Tilzg] (k=1,...,k):

pg(T1, ..., &k T|D) =

k k
=bo + Z bjljjl + Z bjljojljé [jjljh]

Jji=1 Ji,J2=1

k
(2.12) +oot Y b T T T
J1ye-mjq=1

where T = (Th1,Th2, -, Thks - - -, Th..k,) and where each T; (j = (j1,...,Jr)) is a
transformation from a Box-Cox-type class 7; of four standard transformations:

2 (identical)
(z+a;)"
[(z + d;)/s5]

explc;z]

(213)  Tle] =

In (2.13) we denote by s? the empirical variance of the argument z = Z; ... Z;, in
the transformation 7j:

(2.14) sTi=nT )z — 0Tt Yzl
tyi Li

The constants a;, d;, ¢; in (2.13) may be choosen in such a way, that the nonidenti-
cal transformations are as nonlinear as possible over the range of the corresponding
argument, e.g. as proposed in Droge (1991) or Bunke, Droge and Polzehl (1994).
The variables X, = T}[X,] are transformations of the variables X, (x = 1,...,k)
by transformations 7, from 7.. The transformation 75 is an element of the class
To- Leaving out some (or none) of the terms in the polynomial (2.12), say the
terms with indices in a set J, leads to different models (2.11). These models gy,
are obviously determined by the vector & := (7o, 11, .., Tk, T) of transformations,
the polynomial order ¢ and the index set 7, so that we write M = (£,¢,J). The
set M would be the set of all such M, subject to some convenient restrictions in
order to limit the computational effort and to allow for easier interpretation. This
could be a restriction ¢ < g on the order ¢ and (or) on the number of terms in the
polynomial. E.g. in the stock market analysis of Bunke, Sommerfeld and Stehle
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(1997), the restriction § = 3 and of a maximal number of 12 terms proved to work.
The heuristical background of a model (2.11) is that the regression of the possibly
nonlinearly transformed dependent variable Y = Ty[Y] on transformed explanatory
variables X, ..., X} is approximated by a (possibly nonlinearly extended) polyno-
mial of order q. The choice Ty = T} = ... = T} = identical transformation means
an approximation of the original dependent variable by a polynomial in the original
explanatory variables, but the possibility of nonlinear transformations may lead to
a better approximation and consequently to more accurate estimates of py. The

estimate

(2.15) P = gu(e™")

of the regression function f; is defined by ordinary least squares fitting within the
time window 7" := [t,, 4]

~

(216)  Seara(be™") = min Spara(b),

using the sum of squared deviations corresponding to the window:

ty

(2.17) Searn(®) =D > |yri — gu(@r]b) .

T:£h 1EN

The heuristical background for such an estimate based on the time window is the
following:

If the model gp/(z|b) is used for approximating the regression function f;, there will
be for each t some (”pseudo-true” or ”projection”) parameter value b, with

(2-18) by = argmbin Z E | ft(Xti) - g(Xti | b) |2-
1EN:

If the regression function f; and therefore b; are believed to depend ”smoothly”
on t, then for each fixed t the values b; will not differ much at moments 7 from a
sufficiently narrow window 7,”. The artificial assumption that these values b, are
exactly identical will lead to the LSE by™" of b based on mi(t, h) observations. This
estimator obviously would be better than a LSE based solely on the n, observations
Ty, yu (1 € Ny), if the differences between the pseudo-true values b, are sufficiently
small.



2. M. Nonparametric kernel estimators

We consider possibly transformed kernel estimators fM’h based on a multiplicative
kernel smoothing of the possibly transformed observations Z,;, ,; for 7 € T* de-
fined by different kernel functions K and bandwidths A (see e.g. Hérdle (1990)).
Possibly A = (\1,..., Ax) is used as a vector of bandwidths assigned to the variables
X1,...,X,. We may write M = (K, \ &) with € = (Ty, 14, . .., Tk) and consider the
estimator f;""" = f"[e] of f, defined by

e19) =70 Y X B, e ),

T:Eh 1EN -

20)  EMh(ri)= KM S S KMz i),

7=ty ieENT

k
(2.21) Ké\/[’h(T, i) = H K()\;l | T[] — T[xrri] |)-
k=1
If we restrict the transformations T to the classes 7, (see 1.), the kernels K to a
class of few standard kernels (e.g. Epanechikov, triangular and normal) and A to a
convenient grid A in a finite interval [0, Amax)¥, then we have fixed the set My for
the admitted estimators f*" (M € My).

It is interesting, that in the stock market analysis of Bunke, Sommerfeld and Stehle
(1997) the estimators of this subclass and also of all following subclasses turn out
to be worse (in the sense of cross-validation) than the best in the parametric class
given by My, which is flexible and better interpretable.

3. Mj3: Semiparametric model.

We consider estimates f™ in the semiparametric model

(2.22)  f(2) = hlgm (b)),

where h is assumed to be an unknown smooth ("link”) function, gy, is defined by
(2.11), and M = (K, A\, &, ¢, J). The estimator

(2.23)  f"[a] =AM ga (b))



may be determined adapting the approach of Ichimura (1993), using a ”preliminary
kernel estimate”

~ ih’ ~
(224) W= 3 Y KT i)y

T:§h 1EN:

where

(225)  KMyri) = KM i) S0 Y0 KM ()]

T=t}, iEN, i

(226) K" (7, mi) = KA [y = glan D) ]).
and by least squares
; L > M,h
2.27 b = arg min i— hy z. | 0)] [
(2.27) gmy Tghig\;tly b Lgm(2ri |D)] |

Varying the kernel K the bandwidth A over a grid in [0, A max) and £ as in 1. and
2. determines the class of semiparametric estimators

{fMP | M e My}

4. M,: Additive models

We consider estimators based on models

k k-1

229 1elo) =15 [ D nl) + 2 5 gl )]

k=2 k=1

which are "additive (with second order interaction terms)” for the dependence of the
transformed dependent variable Y on the transformed variables X,. The functions
appearing as components in ¢ = (g1,09,...,0xs_1) are assumed to be smooth.
Leaving out some (or none) of the terms in (2.28) and varying £ = (1y, . .., 1)) leads
to the different transformed additive models fM (% |g)(M € M,).

The vector g of functions in a model f*(x|g) may be estimated for observations
X,;, Y., with T E Th by backfitting (see Hastie and Tibshirani (1990)). We arrive
at estimates ™" and

10



(2.29)

f0) = f(Tfad, - Tl | §7).

5. M: Partially parametric additive models

By M5 we consider the following combinations of the models from M; and My:

(2.30)

fu(alb, g) = Ty o (Dilaa], . Tl TIO)] + 32 9w (Tiln]),

KEKX

where J is the set of indices of the terms excluded in the polynomial p, of order ¢ and
IC characteristizes the variables X, included in the additive part. The estimation of

b, g is done iteratively by backfitting and least squares (see Hastie and Tibshirani
(1990)).
Remark 1.: From the above description of the subclasses M, it is apparent, that our

Remark 2.:

class { fM"|M € M} of estimators contains numerous alternatives of different
forms. Provided that the true regression function f; is not very irregular, it
will be likely, that for each fixed ¢ € T there will be a function of one of the
forms introduced in 1- to 5. which is near to the regression function f; (that
is, there is a small bias or "model error”), so that our adaptive estimatesﬁti of
iy should be relatively accurate, provided the number n; of individuals con-
sidered at each moment ¢ is sufficiently large. The large number of estimators
and the calculation of their values and of corresponding cross-validation cri-
teria for all moments ¢ demand a considerable computational effort, but the
gain in estimation accuracy in comparison to the application of a standard
regression program (say for linear regression with model selection or for addi-
tive regression) would be the reward. As an example for the application of the
procedure in the analysis of the German stock market, where the observation
were of 3 variables for n, = 150 firms during 7" = 22 years, the computation
using an IBM risk 6000 workstation demanded two to three hours.

The minimal cross-validation value C' = C/(M, k) will be a rough estimate of
the MSEP

2 1 N
(2.31)  MSEP(f) = =3 S {02+ E| ji; — i [}
" eT ieN,

for the adaptive estimator f , although obviously it is underestimating it. In
our experience (by simulations in simple situations) often for moderate sample

11



sizes the MSEP(fA)A seems to be only somewaht larger (10 to 20 %) than
the minimal value C, which does not take into account the variability of the
"optimal” M, h caused by their dependence on the observations. But at least

the order of magnitude of the squared prediction errors may be assessed by C.

3 A modified adaptive procedure for prediction

In some applications the objective of the analysis is not the estimation of the re-
gression function but the prediction of the value y; on the basis of the knowl-
edge of the value x4 of the explanatory variables and of the past observations
T, Yri (T < t,i € N;). Then it is possible to use the adaptive procedure of section
2., provided it is properly modified in view of the prediction objective. We have
again two alternative approaches:

1. Prediction by ATFR (PATFR)

The procedure is the same as ATFR, but using only the observations from the time
window ¢ € Hyj, = [max{1,t — h},t — 1] when defining the estimators f*", that is
leaving out variables in (2.5) and (2.8) correspondlng to the moments ¢, +1,.

The predictor of ym will then be g = fM (xm) The horizon h will be restr1cted
toH ={1,2,...,7 —1}. The cross-validation criterion (2.4) for estimator or model
selection is not adequate in the prediction situation and has to be replaced by a
criterion Cr,,, which depends only on observations for moments ¢ up to the moment
T (the "training time interval”), at which the selection of the horizon h and of the
estimator (or equivalently of the predictor) f" has to be done:

(3.1) %(Mm):[f; n]” z;zqu g

After selection of (M, h) minimizing Cr,, the same estimator FMR will be used for

prediction by §,; = fM"(xy) at all further moments ¢ > T,. Sometimes it may be
interesting at the final moment ¢ = 1" to deal with the complete set of data, that is
to take Ty = T, and to know which predictor would have been the best and which
prediction accuracy would have been obtained when the same predictor is used for
all moments ¢t € 7. In such a case it would be convenient to use Cr for the choice
of M and h.

12



2. Prediction by ATMR (PATFR)

This is the modification of ATMR analogous to PATFR. The horizon /; and the esti-
mator fMoPt will be chosen at each moment ¢t € 7 and the adequate cross-validation
criterion would be the corresponding squared prediction error at the previous mo-
ment ¢t — 1:

(3.2) CHM,h) = ()™ D yeeri — g |
1EN; 1

4 Assessing the influence of variables

Usual objectives in the analysis of observations ., y;; of the variables Xy, ... X, Y
at moments ¢ and for individuals or sectors ¢ are the assessment of the influence of
the different explanatory variables X, on Y and the search for the most influencial
variable or for a group of most influencial variables. Correlations or their squares
as coefficients of determination are traditional tools for such an analysis.

In the situation given by the assumptions of section 2. with random variables Xj;
the traditional definition has to be adequately modified. The ("ratio-type-")multiple
coefficient of determination or squared multiple correlation ratio between Y and a
subgroup X* := (Xjy,..., X;) of s explanatory variables (s < k) may be defined in
extension of the usual definition (where 7= n; = 1, see Rao (1973)) by

(4.1) RA(Y;(X,,...,X,) = B,(X*) =1 —

where

(4.2) Ry(f) = ZE Vi — fu(X5) 7,

and

(4.3) falxs) = py = B(Yy| X = af;)

(4.4) fo=f"=n"> EY,.

ti
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The partial coefficient of determination for variables X;,..., X; with s < k is then
defined by

(4.5) R*(Y, (X1, .., Xo) | (Xeqn, oo, Xp)) i=
RQ(Yv (Xla e =Xk)) - RQ(Ya (Xs+1; X ;Xk))

By(X?) = 1— R2(Y, (Xgy1, ..., Xp)

These coefficients of determination Bg(s < h) are essentially normalized MSEP’s
(with values in [0, 1]) and therefore measure the ”predictive power” of the variables
Xy,..., X, for predicting values of Y at the different moments ¢ and individuals .
The partial coefficient B(X?) (s < k) is usually interpreted as describing the linear
or nonlinear dependence of Y on X,..., X under elimination of the influence of
the other variables X ..., Xk .

As the coefficients depend on the unknown distributions of the independent random
vectors (X, Yy) they have to be estimated. For this we may use our adaptive

estimates, which we will denote by f s.if applied to a situation with the observations
Ltils - - - Ltiss Yti- R

The conditional means f* given by (4.3) are estimated by fs, while for each t € T
the observation mean

(4.6) fo=g=n"3 Yy
ti

will be an estimate of f{. This yields the estimate

. tZ|yti—fu'|2
4.7 By(X®%)i=1- 2
(4.7 (&9 ;Iyn—yP

of the coefficient of determination (4.1).

While the coefficients (4.7) and the corresponding estimates of partial coefficients
estimate the predictive paper which would have the explanantory variables, if the
distributions Py; of the variables (Xy;, Y;) would be known, it is even more interest-
ing to know the predictive power attained without this knowledge, given only the n
observations Xy;, Y;;. A corresponding ”cross-validated” coefficient of determination
would be smaller, because the errors in estimating the means f* and f° have to be
taken into consideration: under unknown P; the predictors for Yy; used in (4.1) will

be £ in place of the unknown optimal predictors f* given by (4.3) (s =0,1,...,k).
The ”cross-validated coefficients of determination” B,(X1,..., Xy) is obtained by
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(4.7) replacing f 5,; by the analogous estimate f; calculated leaving out the obser-
vation (2, Yi)-

The Stock Market example

An example for an application of these coefficients is the analysis of the German
stock market in Bunke, Sommerfeld and Stehle (1997), were it was shown, that the
book-to-market ratio has the highest partial coefficient of determination among the
considered variables and thus may be considered as most influential for the stock
return. This fact has been already noticed (with less statistical justification) in em-
pirical stock market research. In this application even the highest partial coefficient
of determination is relatively small. This illuminates the well known fact, that stock
returns may hardly be predicted with sensible accuracy.

On the other side, it may as well be possible that some more rough or summary
properties zy; of stock returns yy; (in place of their exact ammount) may be predicted
with a higher accuracy. Examples for such derived qualitative properties:

A. Positive or nonpositive stock returns:

o 1 Yy > 0
(43) e { 0 <0

If a function g : {(t,2)|t € T,z € R™} — {0,1}" is used for the prediction
Zr=g(t,xp,...,Tym,) of the vector z; := (24, . .., 2, ), then the prediction error has
a natural description by the loss function

(4.9) L(ys, 2) = Z |2t — 2] = ${i] 26 # 24}

An alternative loss function may be even more appearing:

(4.10)  L(ye, %) = > (v — Zuy),  (y" := max{0,y}).

)

This is just the loss in return at the moment ¢ relative to the ”optimal strategy”
(investing a unit amount of capital amount in the asset i, if (and only if) the re-
turn yy; is positive), if the capital is just assigned to the asset i, if the prediction Z;
is positive, that is, if the asset ¢ is predicted to have positive return at the moment ¢.

15



B. High, moderate, low or negative stock return

A more refined view at the stock return would classify them, e.g. as high, moderate,
low or negative.

Assigning formal number to these properties we have e.g. for some positive thresh-
olds my < 1ot

1 if yu € V) = (1, 00)
2 if Yi < y2 (7717772]
411 i = :
(4.11) 2t 3 if yuy € Y3 =10,m]
4 if yu; € Yi=(—00,0)

If for each i a wrong prediction of zy; by 2y is measured by a loss ¢(zy, 2;;) > 0 and
a correct prediction by zero loss ¢(zy;, 2;) = 0, we would have the loss function

(4.12) Ly, 2) = > clzu, 2ui)-

i

C. Highest stock return

In the context of stock markets an asset z; = z;(y;) € N; with highest return

(4-13) Tzré%( Yti = Ytz

should be of special interest.

We see that the property depends at each fixed moment ¢ on the whole vector
Y = (Ys1y .-+ Yn,) of firm returns, and its prediction 2, = ¢(t, ;) has to be done
using the vector z; = (x4, ..., Zyy,,) of values of explanatory variables for all firms
i. A sensible loss function would be

(4-14) Lt(yt; zt) = Ytzy — Yuzs»

which is the loss in return compared with the highest return, if a unit amount of
capital is invested in the asset Z;.

These examples suggest a generalized definition of the coefficient of determination,
which is more flexible and may be adapted to applied problems like the above
problems A., B., C. We consider for each ¢t € 7 a function z;, : R" — Z with
values in a set Z and a loss function L, : R x Z — R'. A predictor is a function

ST x R®™ — Z. The prediction of z; = z,(y;) using the vector z7 of values of
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the explanatory variables X1, ..., X, for all individuals i € N; at the moment ¢ is

then z7 = ¢°(t,z]). The average prediction power over the time interval 7 will be
described by the risk

(4.15) Ry(g) =T 'S EL/(Y;,9(t, X}))
teT

and the corresponding generalized coefficients of determination would be defined by
(4.1) and (4.4). Here ¢° is a function minimizing R,(g) over all predictors g and
¢°: T — R' a constant function minimizing R,(g) over all constants g € R'.

In the special above mentioned cases we obtain the following formulae for the coef-
ficients of determination:

Case A (with loss function (4.10):

It is easy to see, that the optimal predictor ¢° is given by

(4.16) 9t x]) = (915 - Gin,)

and

(4.17) gy = sign {E(Yy | X3 = 27)}

while ¢° is given by
(4.18) g = sign {n™' > EYj}.
t,i
Thus the estimated coefficients of determination will be

S =77)

>y — ")

t,

(419)  B,(X?®) :=

Case B.

It is easy to see and well known from discriminant analysis, that the optimal pre-
dictor is given by (4.16) and

(4.20) gy = minfwo € W = {1,2,3,4} [ f;(wo | 2y;) = min &;(w | )},
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where

(4.21) Gi(w o) = Z c(v,w)P(Yy € Vo | X = a3;).
vEW

The trivial predictor ¢° is determined by

(4.22) ¢° = min{wy € W[ l(wy) = IIéIVI\I} l(w)},

(4.23) Uw) = > clo,w)n "> Pi(Yy € Vo).

veEW t,i

To obtain estimated coefficients of determination it is necessary to estimate the
probabilities in (4.21) and (4.23). This is an estimation problem, which is parallel to
our problem of estimating the regression function and deserves a separate treatment,
to which we will devote a forthcoming paper. With such estimates we would obtain
estimates 0% (w|z) of ¢*(w|z), {(w) of ¢(w) and of the coefficient of determination

124)  B.(X®) = %(“%Uinaw)—ngnf;(w))
(4.24) S(X7) = T

ti W

It is obvious, that more generally W may be any finite set corresponding to a

partition R' = ¥ y,. In the special case of a simple 0-1-loss ¢(v, w) = Gy (Cpuw
wew
Kronecker symbol; v, w € W) the estimated coefficient of determination would be

tzz:[muz}x Pi(w) — max P(w)]
Y[l — max P(w)]

i

(4.25)  By(X?®) =

where Pg(w) and P(w) are the above mentioned estimates of the probabilities
P(Y; € Vo | X5 =28) and n=' Y P(Y,; € V) resp.
ti

Case C.

Here it the optimal predictor ¢° is given by (4.16) and (see(4.3))

(4.26) gy = min{iy € Ny | pj;, = max py;},
1€EN
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while the trivial predictor ¢° is given by 7, =T Yy, and
7

(4.27) ¢° == min{i; | EY ;, = maxEY }.

The estimated coefficient of determination will then be

(mas fi ~ max7,)

> t
4.28 B, X% =
( ) ( ) Zt

(maxy,; — maxy,;)

5 Estimating the individual effects: an adaptive
semiparametric alternative to parametric panel
data analysis

The estimation procedures of the sections 2. and 3. were based on the at least
approximatively valid assumption of a regression function f;(z;;) depending on the
individual ¢ only trough the values of the explanatory variables. Without this re-
striction are would have a regression function f(t,4,2y) depending on time, the
individual ¢ and the values x;; of the explanatory variables. The literature on the
statistical analysis of panel data offers some procedures for regression functions
of this type, although under other relatively restrictive assumptions. An example
would be a time independent pseudo-linear fixed effect panel model

(51) f(Z,J?) = z_:ﬁ]gj(x) + v (t € T,Z € N)

with the restriction >57; = 0 (see Hsiao 1986). Here and in the following we will

assume N, = N and Znt = ny, that is the same individuals at every moment t € 7.
The estimation of the individual effects v; makes sense only if the time interval
T is sufficiently large compared with the number n; of individuals. This is often
not the case and even more, if in reality the parameters ;,7; change sometimes
or even continuously with the time . The same comments apply to more general
semiparametric models of the type

(5.2) [t i, x) = filz] + v,

where f; itself may possibly follow some parametric or semiparametric model. The
second term v4; describes the individual effect which are not produced solely by the
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explanatory variables and which may possibly vary with the time ¢.

In this section we propose a procedure for the estimation of regression functions
(5.2) under the assumptions

Eyu = f(t,i,26) == pi , DYy =0’
, which is based on

(i) the approach of Bunke and Castell (1998) developed for regression on quali-
tative variables (for estimating v4; in (5.2)) combined with

(ii) our approach of section 2. (for estimating the function f; in (5.2)).

The approach has an analoguous heuristic background as that of section 2. We use
a partition

qr
(5.3) TN =Y N
7j=1

of the set N of individuals, which for the sake of single presentation is assumed to
be independent of the time ¢t. The use of time dependent partitions m; presents no
additional difficulties and allows possibly a higher accuracy. For each i € A there is
a j = j(i,m) with i € N7. The individuals i € N7 may sometimes be characterized
as "neighours” of ¢, but in general this will be only a formal characterization, espe-
cially when ¢ is a purely nominal index and therefore there is no sensible definition
of a ”distance” between individuals.

The formal assumptions of identical individual effects v;; for fixed ¢,7 (in analogy
to the approach of Bunke and Castell 1998) and

(64)  teT' =[] , i€Njn
and of the identifiability condition
(5.5) =0 (teT)
ieN
lead for each fixed ¢ € T to a linear model L] for the vector v, of individual effects

vy (i € N) obeying vy; = vy for j(i,m) = j(i, 7). The vector v; is dermined by the
vector nff = (1}, .-, 7, ) given by

(5.6) Ny = vy for i€ N
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The linear model £; may be written in the form

(5.7) LT ={v, € R™|vy; = (a))'nf , i € N}
with some fixed vectors ay;.

For fixed ¢ a "local” estimator of the terms v;(t € T* , i € N) in (5.2) based
on the assumption of identical individual effects v;; under (5.4) will intuitively be
a good estimate, even if assumption of "identical effects” is replaced by ”at most
moderately differing effects”. The idea of our procedure is to find a partition and a
horizon h hopefully leading to such a situation for all £ € 7. The tool for this is to
minimize a cross-validation criterion over a set [], of partitions. [[, may be the set
of all partitions of A" or some subset of especially interesting partitions. For instance
some of the subsets ./\/;-7r may be fixed in advance due to preliminary knowledge in
the field of application. In the example of the stock market, there will be groups
of firms ¢ with similar production profile and economic background, so that their
individual effects may assumed to be similar.

Our approach consists in choosing simultaneously the horizon h € H, a partition
7 € []p and an estimator from a class { fM"™ | M € M} of estimators by minimiza-
tion of the cross-validation criterion

2

1 ~Mhr
(58) C(M7 h? ﬂ-) = Z Z | Yti — /Li\iLh’
T ieN

fitP"™ denotes the "local” estimate of pi; calculated under (5.2) and (5.4) with the

estimator f"7 but leaving out the observation (x4, yu).

The estimators fM™ are constructed in the following way :

Case 1: M € M,

In this case we assume for fixed m € [[,,t € T and for moments ¢ € 7;’1 and
individuals ¢ € N a parametric model

(5.9) FHTUL @) = gar (] ) + (ag) 0y

with parameters by, 7. Fitting by ordinary least squares to the observations

zy,y; t €T, leads to the estimates b pMmh and to the estimates

(5.10)  fURTUE G ) = gar(e | 00T (af) B
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of f(t,i,2). The estimates (5.10) may be interpreted as "running semiparametric
estimates” w.r.t. the variable ¢t and as "regressograms” w.r.t. the variable . The
models gy (M € M;) are described in section 2.

The estimates of the individual effects v;; are given by o™ = (af)'n" .

ti) Tt
A triple (M, h,7) € M, x H x [I, minimizing (5.6) finally leads to the ”adaptive

estimate” f of f given by

Ft i x) = fURR(L i ).

Case 2: M € M, (s=2,3,4,5).

In these cases we use adaptive partially parametric (s = 2,4, 5) or semi-parametric
(s = 3) estimates of f(¢,4,x) of the form

~
~

(5-11) f(tai'x) :ft[x] =+ 5ti; ﬁti = (ai’i)'ﬁt-

The estimates ft will be determined in an analoguous way as described in section

2 for f , but taking into consideration the parametric forms given by the individual
effects and adapting simultaneously M, h and the partition 7 as in the case 1.

For instance, when s = 2 the estimate may be constructed in the following way:
For fixed h € H,M € My, m € [ly,t € T,n € R¥ we take the "1st stage trans-
formed kernel estimate”

62 )= 1SS RS ) Tolyns — (@)l

Tzéh iEN

of the first term in (5.2) corresponding to the time window ¢ € 7,". In (5.12) we use
the same notation as in (2.19). Least squares fitting leads to the estimates

~ . p- ~M ,h,m - M, h,T
(5.13) fM’h’”(t,z,:v) = MR [z] + (ati)'n,fwh

/\M,h,’rr . . .
where 7, = 1), minimizes the sum of squares

t, R
(5.14) St hx () = Z Z | yri — ftM’h’W’m (73] — (a;)'m |2-

thh ’ieNr

The adaptive estimates (5.11) are given by
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2 N b A N7
(5.15)  filal = f M, =
where (M, h,7) minimizes the corresponding cross-validation (5.8).

Remark: The selection of an optimal partition 7 may require excessive computational
effort, if the number n of individuals is large, because then the number B(n) of all
partitions is very large

(516) Bl =3 Y (-7 /5 (g )

(see e.g. Stanley (1997)). Practical devices in this situation are to choose a sensible
but only moderately large class [], of partitions or alternatively to select only a
"suboptimal” partition 7 in [, by a stepwise procedure, as for instance described
in Bunke and Castell (1998).
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