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Abstract

Dynamic stochastic general equilibrium (DSGE) models use modern macroeconomic 
theory to explain and predict comovements of aggregate time series over the business 
cycle and to perform policy analysis. We explain how to use DSGE models for all three 
purposes―forecasting, story telling, and policy experiments―and review their forecast-
ing record. We also provide our own real-time assessment of the forecasting performance 
of the Smets and Wouters (2007) model data up to 2011, compare it with Blue Chip and 
Greenbook forecasts, and show how it changes as we augment the standard set of ob-
servables with external information from surveys (nowcasts, interest rate forecasts, and 
expectations for long-run infl ation and output growth). We explore methods of generat-
ing forecasts in the presence of a zero-lower-bound constraint on nominal interest rates 
and conditional on counterfactual interest rate paths. Finally, we perform a postmortem 
of DSGE model forecasts of the Great Recession and show that forecasts from a version 
of the Smets-Wouters model augmented by fi nancial frictions, and using spreads as an 
observable, compare well with Blue Chip forecasts.
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1 Introduction

[sec:intro] Dynamic stochastic general equilibrium (DSGE) models use modern macroeco-

nomic theory to explain and predict comovements of aggregate time series over the business

cycle. The term DSGE model encompasses a broad class of macroeconomic models that spans

the standard neoclassical growth model discussed in King, Plosser, and Rebelo (1988) as well

as New Keynesian monetary models with numerous real and nominal frictions that are based

on the work of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003).

A common feature of these models is that decision rules of economic agents are derived from

assumptions about preferences, technologies, and the prevailing fiscal and monetary policy

regime by solving intertemporal optimization problems. As a consequence, the DSGE model

paradigm delivers empirical models with a strong degree of theoretical coherence that are

attractive as a laboratory for policy experiments.

DSGE models are increasingly being used by central banks around the world as tools for

macroeconomic forecasting and policy analysis. Examples of such models include the small

open economy model developed by the Sveriges Riksbank (Adolfson, Lindé, and Villani

(2007) and Adolfson, Andersson, Lindé, Villani, and Vredin (2007)), the New Area-Wide

Model developed at the European Central Bank (Coenen, McAdam, and Straub (2008) and

Christoffel, Coenen, and Warne (2010)), and the Federal Reserve Board’s new Estimated,

Dynamic, Optimization-based model (Edge, Kiley, and Laforte (2009)). DSGE models are

frequently estimated with Bayesian methods (see, for instance, An and Schorfheide (2007a)

or Del Negro and Schorfheide (2010) for a review), in particular if the goal is to track

and forecast macroeconomic time series. Bayesian inference delivers posterior predictive

distributions that reflect uncertainty about latent state variables, parameters, and future

realizations of shocks conditional on the available information.

The contribution of this paper has a methodological and a substantive dimension. On

the methodological side, we provide a collection of algorithms that can be used to generate

forecasts with DSGE models that have been estimated with Bayesian methods. In particular,

we focus on novel methods that allow the user to incorporate external information into the

DSGE-model-based forecasts. This external information could take the form of forecasts

for the current quarter (nowcasts) from surveys of professional forecasters, short-term and

medium-term interest rate forecasts, or long-run inflation and output-growth expectations.
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We also study the use of unanticipated and anticipated monetary policy shocks to generate

forecasts conditional on desired interest rate paths.

On the substantive side, we are providing detailed empirical applications of the fore-

casting methods. The empirical analysis features small and medium-scale DSGE models

estimated on U.S. data. The novel aspects of the empirical analysis are to document how

the forecast performance of the Smets and Wouters (2007) model can be improved by in-

corporating data on long-run inflation expectations as well as nowcasts from the Blue Chip

survey. We also show that data on short- and medium-horizon interest rate expectations

improves the interest rate forecasts of the Smets-Wouters model with anticipated monetary

policy shocks, but has some adverse effects on output growth and inflation forecasts. Fi-

nally, we provide new insights in the real-time forecasting performance of the Smets-Wouters

model and a DSGE model with financial frictions during the 2008-09 recession.

The remainder of this paper is organized as follows. Section 2 provides a description of

the DSGE models used in the empirical analysis of this paper. The mechanics of generating

DSGE model forecasts within a Bayesian framework are described in Section 3. We review

well-known procedures to generate draws from posterior parameter distributions and poste-

rior predictive distributions for future realizations of macroeconomic variables. From these

draws one can then compute point, interval, and density forecasts. The first set of empirical

results is presented in Section 4. We describe the real-time data set that is used throughout

this paper and examine the accuracy of our benchmark point forecasts. We also provide a

review of the sizeable literature on the accuracy of DSGE model forecasts.

The accuracy of DSGE model forecasts is affected by how well the model captures low

frequency trends in the data and the extent to which important information about the current

quarter (nowcast) is incorporated into the forecast. In Section 5 we introduce shocks to the

target-inflation rate, long-run productivity growth, as well as anticipated monetary policy

shocks into the Smets and Wouters (2007) model. With these additional shocks, we can use

data on inflation, output growth, and interest rate expectations from the Blue Chip survey

as observations on agents’ expectations in the DSGE model and thereby incorporate the

survey information into the DSGE model forecasts. We also consider methods of adjusting

DSGE model forecasts in light of Blue Chip nowcasts. In Section 6 we use unanticipated and

anticipated monetary policy shocks to generate forecasts conditional on a desired interest

rate path.
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Up to this point we have mainly focused on point forecasts generated from DSGE models.

In Section 7 we move beyond point forecasts. We start by using the DSGE model to decom-

pose the forecasts into the contribution of the various structural shocks. We then generate

density forecasts throughout the 2008-09 financial crisis and recession, comparing predictions

from a DSGE model without and with financial frictions. We also present some evidence on

the quality of density forecasts by computing probability integral transformations. Finally,

Section 8 concludes and provides an outlook. As part of this outlook we point the reader to

several strands of related literature in which forecasts are not directly generated from DSGE

models but the DSGE model restrictions nonetheless influence the forecasts.

Throughout this paper we use the following notation. Yt0:t1 denotes the sequence of

observations or random variables {yt0 , . . . , yt1}. If no ambiguity arises, we sometimes drop

the time subscripts and abbreviate Y1:T by Y . θ often serves as generic parameter vector,

p(θ) is the density associated with the prior distribution, p(Y |θ) is the likelihood function,

and p(θ|Y ) the posterior density. We use iid to abbreviate independently and identically

distributed. If X|Σ ∼ MNp×q(M,Σ ⊗ P ) is matricvariate Normal and Σ ∼ IWq(S, ν) has

an Inverted Wishart distribution, we say that (X,Σ) ∼ MNIW (M,P, S, ν). Here ⊗ is the

Kronecker product. We use I to denote the identity matrix and use a subscript indicating

the dimension if necessary. tr[A] is the trace of the square matrix A, |A| is its determinant,

and vec(A) stacks the columns of A. Moreover, we let ‖A‖ =
√
tr[A′A]. If A is a vector,

then ‖A‖ =
√
A′A is its length. We use A(.j) (A(j.)) to denote the j’th column (row) of a

matrix A. Finally, I{x ≥ a} is the indicator function equal to one if x ≥ a and equal to zero

otherwise.

2 The DSGE Models

[sec:models] We consider three DSGE models in this paper. The first model is the Smets

and Wouters (2007), which is based on earlier work by Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2003) (Section 2.1). It is a medium-scale DSGE model,

which augments the standard neoclassical stochastic growth model by nominal price and

wage rigidities as well as habit formation in consumption and investment adjustment costs.

The second model is obtained by augmenting the Smets-Wouters model with credit frictions

as in the financial accelerator model developed by Bernanke, Gertler, and Gilchrist (1999)
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(Section 2.2). The actual implementation of the credit frictions closely follows Christiano,

Motto, and Rostagno (2009). Finally, we consider a small-scale DSGE model, which is

obtained as a special case of the Smets and Wouters (2007) model by removing some of its

features such as capital accumulation, wage stickiness, and habit formation (Section 2.3).

2.1 The Smets-Wouters Model

[subsec:swmodel] We begin by briefly describing the log-linearized equilibrium conditions of

the Smets and Wouters (2007) model. We deviate from Smets and Wouters (2007) in that

we detrend the non-stationary model variables by a stochastic rather than a deterministic

trend. This approach makes it possible to express almost all equilibrium conditions in a way

that encompasses both the trend-stationary total factor productivity process in Smets and

Wouters (2007), as well as the case where technology follows a unit root process. We refer

to the model presented in this section as SW model. Let z̃t be the linearly detrended log

productivity process which follows the autoregressive law of motion

z̃t = ρz z̃t−1 + σzεz,t. (1)

We detrend all non stationary variables by Zt = eγt+ 1
1−α

z̃t , where γ is the steady state growth

rate of the economy. The growth rate of Zt in deviations from γ, denoted by zt, follows the

process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t. (2)

All variables in the subsequent equations are expressed in log deviations from their non-

stochastic steady state. Steady state values are denoted by ∗-subscripts and steady state

formulas are provided in a Technical Appendix (available upon request). The consumption

Euler equation takes the form:

ct = − (1− he−γ)

σc(1 + he−γ)
(Rt − IEt[πt+1] + bt) +

he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (3)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is inflation.

The exogenous process bt drives a wedge between the intertemporal ratio of the marginal

utility of consumption and the riskless real return Rt − IEt[πt+1], and follows an AR(1)
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process with parameters ρb and σb. The parameters σc and h capture the relative degree of

risk aversion and the degree of habit persistence in the utility function, respectively. The

next condition follows from the optimality condition for the capital producers, and expresses

the relationship between the value of capital in terms of consumption qk
t and the level of

investment it measured in terms of consumption goods:

qk
t = S ′′e2γ(1 + βe(1−σc)γ)

(
it −

1

1 + βe(1−σc)γ
(it−1 − zt)

− βe(1−σc)γ

1 + βe(1−σc)γ
IEt [it+1 + zt+1]− µt

)
, (4)

which is affected by both investment adjustment cost (S ′′ is the second derivative of the

adjustment cost function) and by µt, an exogenous process called “marginal efficiency of

investment” that affects the rate of transformation between consumption and installed capital

(see Greenwood, Hercovitz, and Krusell (1998)). The latter, called k̄t, indeed evolves as

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + βe(1−σc)γ)µt, (5)

where i∗/k̄∗ is the steady state ratio of investment to capital. µt follows an AR(1) process

with parameters ρµ and σµ. The parameter β captures the intertemporal discount rate in

the utility function of the households. The arbitrage condition between the return to capital

and the riskless rate is:

rk
∗

rk
∗ + (1− δ)

IEt[r
k
t+1] +

1− δ

rk
∗ + (1− δ)

IEt[q
k
t+1]− qk

t = Rt + bt − IEt[πt+1], (6)

where rk
t is the rental rate of capital, rk

∗ its steady state value, and δ the depreciation rate.

Capital is subject to variable capacity utilization ut. The relationship between k̄t and the

amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (7)

The optimality condition determining the rate of utilization is given by

1− ψ

ψ
rk
t = ut, (8)

where ψ captures the utilization costs in terms of foregone consumption. From the optimality

conditions of goods producers it follows that all firms have the same capital-labor ratio:

kt = wt − rk
t + Lt. (9)
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Real marginal costs for firms are given by

mct = wt + αLt − αkt, (10)

where α is the income share of capital (after paying markups and fixed costs) in the produc-

tion function.

All of the equations so far maintain the same form whether technology has a unit root or

is trend stationary. A few small differences arise for the following two equilibrium conditions.

The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (11)

under trend stationarity. The last term (Φp−1) 1
1−α

z̃t drops out if technology has a stochastic

trend, because in this case one has to assume that the fixed costs are proportional to the

trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk
∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, . (12)

The term − 1
1−α

z̃t disappears if technology follows a unit root process. Government spending

gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.

Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβe

(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe(1−σc)γ
πt−1 +

βe(1−σc)γ

1 + ιpβe(1−σc)γ
IEt[πt+1] + λf,t, (13)

and

wt =
(1− ζwβe

(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wh

t − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1

1 + βe(1−σc)γ
(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t, (14)
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where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature

parameters in the Kimball aggregator for prices, and ζw, ιw, and εw are the corresponding

parameters for wages. The variable wh
t corresponds to the household’s marginal rate of

substitution between consumption and labor, and is given by:

wh
t =

1

1− he−γ

(
ct − he−γct−1 + he−γzt

)
+ νlLt, (15)

where νl characterizes the curvature of the disutility of labor (and would equal the inverse

of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and λw,t follow

exogenous ARMA(1,1) processes

λf,t = ρλf
λf,t−1 + σλf

ελf ,t + ηλf
σλf

ελf ,t−1, and

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Last, the monetary authority follows a generalized feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yf

t )
)
+ ψ3

(
(yt − yf

t )− (yt−1 − yf
t−1)
)

+ rm
t , (16)

where the flexible price/wage output yf
t obtains from solving the version of the model without

nominal rigidities (that is, Equations (3) through (12) and (15)), and the residual rm
t follows

an AR(1) process with parameters ρrm and σrm .

The SW model is estimated based on seven quarterly macroeconomic time series. The

measurement equations for real output, consumption, investment, and real wage growth,

hours, inflation, and interest rates are given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (17)

where all variables are measured in percent, π∗ and R∗ measure the steady state level of

net inflation and short term nominal interest rates, respectively, and l̄ captures the mean of

hours (this variable is measured as an index). The priors for the DSGE model parameters

is the same as in Smets and Wouters (2007), and is summarized in Panel I of Table 1.
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2.2 A Medium-Scale Model with Financial Frictions

[subsec:ffmodel] We now add financial frictions to the SW model following the work of

Bernanke, Gertler, and Gilchrist (1999) and Christiano, Motto, and Rostagno (2009). This

amounts to replacing (6) with the following conditions:

Et

[
R̃k

t+1 −Rt

]
= −bt + ζsp,b

(
qk
t + k̄t − nt

)
+ σ̃ω,t (18)

and

R̃k
t − πt =

rk
∗

rk
∗ + (1− δ)

rk
t +

(1− δ)

rk
∗ + (1− δ)

qk
t − qk

t−1, (19)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial

equity, and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability

across entrepreneurs (see Christiano, Motto, and Rostagno (2009)) and follows an AR(1)

process with parameters ρσω and σσω . The second condition defines the return on capital,

while the first one determines the spread between the expected return on capital and the

riskless rate.1 The following condition describes the evolution of entrepreneurial net worth:

n̂t = ζn,R̃k

(
R̃k

t − πt

)
− ζn,R (Rt−1 − πt) + ζn,qK

(
qk
t−1 + k̄t−1

)
+ ζn,nnt−1

− ζn,σω

ζsp,σω
σ̃ω,t−1

. (20)

In addition, the set of measurement equations (17) is augmented as follows

Spread = SP∗ + 100IEt

[
R̃k

t+1 −Rt

]
, (21)

where the parameter SP∗ measures the steady state spread. We specify priors for the param-

eters SP∗, ζsp,b, in addition to ρσω and σσω , and fix the parameters F̄∗ and γ∗ (steady state

default probability and survival rate of entrepreneurs, respectively). A summary is provided

in Panel V of Table 1. In turn, these parameters imply values for the parameters of (20), as

shown in the Technical Appendix. We refer to the DSGE model with financial frictions as

SW-FF.

2.3 A Small-Scale DSGE Model

[subsec:smallmodel] The small-scale DSGE model is obtained as a special case of the SW

model, by removing some of its features such as capital accumulation, wage stickiness, and

1Note that if ζsp,b = 0 and the financial friction shocks are zero, (6) coincides with (18) plus (19).
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Table 1: Priors for the Medium-Scale Model

Density Mean St. Dev. Density Mean St. Dev.

Panel I: SW Model

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10
ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20
ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.62 0.10
Φ Normal 1.25 0.12 γ Normal 0.40 0.10
h Beta 0.70 0.10 S ′′ Normal 4.00 1.50
νl Normal 2.00 0.75 σc Normal 1.50 0.37
ιp Beta 0.50 0.15 ιw Beta 0.50 0.15
r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

(Note β = (1/(1 + r∗/100))
ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00
ρb Beta 0.50 0.20 σb InvG 0.10 2.00
ρλf

Beta 0.50 0.20 σλf
InvG 0.10 2.00

ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00
ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00
ρg Beta 0.50 0.20 σg InvG 0.10 2.00
ηλf

Beta 0.50 0.20 ηλw Beta 0.50 0.20
ηgz Beta 0.50 0.20

Panel II: SW with Loose π∗ Prior (SW − Loose)

π∗ Gamma 0.75 0.40

Panel III: Model with Long Run Inflation Excpetations (SWπ)

ρπ∗ Beta 0.50 0.20 σπ∗ InvG 0.03 6.00

Panel IV: Model with Long Run Output Excpetations (SWπY )

ρzp Beta 0.98 0.01 σzp InvG 0.01 4.00

Panel V: Financial Frictions (SW − FF )

SP∗ Gamma 2.00 0.10 ζsp,b Beta 0.05 0.005
ρσw Beta 0.75 0.15 σσw InvG 0.05 4.00

Notes: The following parameters are fixed in Smets and Wouters (2007): δ = 0.025, g∗ = 0.18, λw = 1.50, εw = 10.0, and

εp = 10. In addition, for the model with financial frictions we fix F̄∗ = .03 and γ∗ = .99. The columns “Mean” and “St. Dev.”

list the means and the standard deviations for Beta, Gamma, and Normal distributions, and the values s and ν for the Inverse

Gamma (InvG) distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
. The effective prior is truncated at the boundary of the

determinacy region. The prior for l̄ is N (−45, 52).
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habit formation. After setting h = 0 and eliminating the shock bt the consumption Euler

equation simplifies to:

ct = IEt [ct+1 + zt+1]−
1

σc

(Rt − IEt[πt+1]) . (22)

After setting the capital share α in the production function to zero, the marginal costs are

given by the wage: mct = wt. In the absence of wage stickiness the wage equals the house-

holds’ marginal rate of substitution between consumption and leisure, which in equilibrium

leads to wt = ct + νlLt. In the absence of fixed costs (Φp = 1) detrended output equals the

labor input yt = Lt. Overall, we obtain

mct = ct + νlyt. (23)

The Phillips curve simplifies to

πt =
(1− ζpβ)(1− ζp)

(1 + ιpβ)ζp
mct +

β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1. (24)

We assume that the central bank only reacts to inflation and output growth and that the

monetary policy shock is iid. This leads to a policy rule of the form

Rt = ρRRt−1 + (1− ρR)
[
ψ1πt + ψ2(yt − yt−1 + zt)

]
+ σRεR,t. (25)

Finally, the aggregate resource constraint simplifies to

yt = ct + gt. (26)

Here we have adopted a slightly different definition of the government spending shock than

in the SW model.

The model is completed with the specification of the exogenous shock processes. The

government spending shock evolves according to

gt = ρggt−1 + σgεg,t. (27)

We slightly generalize the technology process from an AR(1) process to an AR(2) process

z̃t = ρz(1− ϕ)z̃t−1 + ϕz̃t−2 + σzεz,t, (28)

which implies that the growth rate of the trend process evolves according to

zt = ln(Zt/Zt−1)− γ = (ρz − 1)(1− ϕ)z̃t−1 − ϕ(z̃t−1 − z̃t−2) + σzεz,t.
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The innovations εz,t, εg,t, and εR,t are assumed to be iid standard normal.

The small-scale model is estimated based on three quarterly macroeconomic time series.

The measurement equations for real output growth, inflation, and interest rates are given

by:

Output growth = γ + 100 (yt − yt−1 + zt)

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

(29)

where all variables are measured in percent and π∗ and R∗ measure the steady state level

of inflation and short term nominal interest rates, respectively. For the parameters that are

common between the SW model and the small-scale model we use the same marginal prior

distributions as listed in Table 1. The additional parameter ϕz has a prior distribution that

is uniform on the interval (−1, 1) because it is a partial autocorrelation. The joint prior

distribution is given by the products of the marginals, truncated to ensure that the DSGE

model has a determinate equilibrium.

3 Generating Forecasts with DSGE Models

[sec:dsgeforecasts] Before examining the forecast performance of DSGE models we provide

a brief overview of the mechanics of generating such forecasts in a Bayesian framework. A

more comprehensive review of Bayesian forecasting is provided by Geweke and Whiteman

(2006). Let θ denote the vector that stacks the DSGE model parameters. Bayesian inference

starts from a prior distribution represented by a density p(θ). The prior is combined with

the conditional density of the data Y1:T given the parameters θ, denoted by p(Y1:T |θ). This

density can be derived from the DSGE model. According to Bayes Theorem, the posterior

distribution, that is the conditional distribution of parameters given data, is given by

p(θ|Y1:T ) =
p(Y1:T |θ)p(θ)
p(Y1:T )

, p(Y1:T ) =

∫
p(Y1:T |θ)p(θ)dθ, (30)

where p(Y1:T ) is called the marginal likelihood or data density. In DSGE model applications

it is typically not possible to derive moments and quantiles of the posterior distribution

analytically. Instead, inference is implemented via numerical methods such as MCMC simu-

lation. MCMC algorithms deliver serially correlated sequences {θ(j)}nsim
j=1 of nsim draws from

the density p(θ|Y1:T ).
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In forecasting applications the posterior distribution p(θ|Y1:T ) is not the primary object

of interest. Instead, the focus is on predictive distributions, which can be decomposed as

follows:

p(YT+1:T+H |Y1:T ) =

∫
p(YT+1:T+H |θ, Y1:T )p(θ|Y1:T )dθ. (31)

This decomposition highlights that draws from the predictive density can be obtained by

simulating the DSGE model conditional on posterior parameter draws θ(j) and the observa-

tions Y1;T . In turn, this leads to sequences Y
(j)
T+1:T+H , j = 1, . . . , nsim that represent draws

from the predictive distribution (31). These draws can then be used to obtain numerical

approximations of moments, quantiles, and the probability density function of YT+1:T+H . In

the remainder of this section, we discuss how to obtain draws from the posterior distribution

of DSGE model parameters (Section 3.1) and how to generate draws from the predictive

distribution of future observations (Section 3.2).

3.1 Posterior Inference for θ

[subsec:posteriortheta] Before the DSGE model can be estimated, it has to be solved using

a numerical method. In most DSGE models, the intertemporal optimization problems of

economic agents can be written recursively, using Bellman equations. In general, the value

and policy functions associated with the optimization problems are nonlinear in terms of

both the state and the control variables, and the solution of the optimization problems

requires numerical techniques. The implied equilibrium law of motion can be written as

st = Φ(st−1, εt; θ), (32)

where st is a vector of suitably defined state variables and εt is a vector that stacks the

innovations for the structural shocks. In this paper, we proceed under the assumption that

the DSGE model’s solution is approximated by log-linearization techniques and ignore the

discrepancy between the nonlinear model solution and the first-order approximation:

st = Φ1(θ)st−1 + Φε(θ)εt. (33)

The system matrices Φ1 and Φε are functions of the DSGE model parameters θ, and st spans

the state variables of the model economy, but also might contain some redundant elements

that facilitate a simple representation of the measurement equation:

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st. (34)
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Equations (33) and (34) provide a state-space representation for the linearized DSGE model.

This representation is the basis for the econometric analysis. If the innovations εt are Gaus-

sian, then the likelihood function p(Y1:T |θ) can be evaluated with a standard Kalman filter.

We now turn to the prior distribution represented by the density p(θ). An example of such

a prior distribution is provided in Table 1. The table characterizes the marginal distribution

of the DSGE model parameters. The joint distribution is then obtained as the product of the

marginals. It is typically truncated to ensure that the DSGE model has a unique solution.

DSGE model parameters can be grouped into three categories: (i) parameters that affect

steady states; (ii) parameters that control the endogenous propagation mechanism of the

model without affecting steady states; and (iii) parameters that determine the law of motion

of the exogenous shock processes.

Priors for steady-state related parameters are often elicited indirectly by ensuring that

model-implied steady states are commensurable with pre-sample averages of the correspond-

ing economic variables. Micro-level information, e.g. about labor supply elasticities or the

frequency of price and wage changes, is often used to formulate priors for parameters that

control the endogenous propagation mechanism of the model. Finally, beliefs about volatili-

ties and autocovariance patterns of endogenous variables can be used to elicit priors for the

remaining parameters. A more detailed discussions and some tools to mechanize the prior

elicitation are provided in Del Negro and Schorfheide (2008).

A detailed discussion of numerical techniques to obtain draws from the posterior distri-

bution p(θ|Y1:T ) can be found, for instance, in An and Schorfheide (2007a) and Del Negro

and Schorfheide (2010). We only provide a brief overview. Because of the nonlinear re-

lationship between the DSGE model parameters θ and the system matrices Ψ0, Ψ1, Ψ2,

Φ1 and Φε of the state-space representation in (33) and (34), the marginal and conditional

distributions of the elements of θ do not fall into the well-known families of probability dis-

tributions. Up to now, the most commonly used procedures for generating draws from the

posterior distribution of θ are the Random-Walk Metropolis (RWM) Algorithm described

in Schorfheide (2000) and Otrok (2001) or the Importance Sampler proposed in DeJong,

Ingram, and Whiteman (2000). The basic RWM Algorithm takes the following form

Algorithm 1. Random-Walk Metropolis (RWM) Algorithm for DSGE Model.

[algo:rwm]



Del Negro, Schorfheide – DSGE Model Based Forecasting: February 29, 2012 14

1. Use a numerical optimization routine to maximize the log posterior, which up to a

constant is given by ln p(Y1:T |θ) + ln p(θ). Denote the posterior mode by θ̃.

2. Let Σ̃ be the inverse of the (negative) Hessian computed at the posterior mode θ̃, which

can be computed numerically.

3. Draw θ(0) from N(θ̃, c20Σ̃) or directly specify a starting value.

4. For j = 1, . . . , nsim: draw ϑ from the proposal distribution N(θ(j−1), c2Σ̃). The jump

from θ(j−1) is accepted (θ(j) = ϑ) with probability min {1, r(θ(j−1), ϑ|Y1:T )} and rejected

(θ(j) = θ(j−1)) otherwise. Here,

r(θ(j−1), ϑ|Y1:T ) =
p(Y1:T |ϑ)p(ϑ)

p(Y1:T |θ(j−1))p(θ(j−1))
. �

If the likelihood can be evaluated with a high degree of precision, then the maximization

in Step 1 can be implemented with a gradient-based numerical optimization routine. The

optimization is often not straightforward because the posterior density is typically not glob-

ally concave. Thus, it is advisable to start the optimization routine from multiple starting

values, which could be drawn from the prior distribution, and then set θ̃ to the value that

attains the highest posterior density across optimization runs. In some applications we found

it useful to skip Steps 1 to 3 by choosing a reasonable starting value, such as the mean of

the prior distribution, and replacing Σ̃ in Step 4 with a matrix whose diagonal elements are

equal to the prior variances of the DSGE model parameters and whose off-diagonal elements

are zero.

While the RWM algorithm in principle delivers consistent approximations of posterior

moments and quantiles even if the posterior contours are highly non-elliptical, the practical

performance can be poor as documented in An and Schorfheide (2007a). Recent research on

posterior simulators tailored toward DSGE models tries to address the shortcomings of the

“default” approaches that are being used in empirical work. An and Schorfheide (2007b)

use transition mixtures to deal with a multi-modal posterior distribution. This approach

works well if the researcher has knowledge about the location of the modes, obtained, for

instance, by finding local maxima of the posterior density with a numerical optimization al-

gorithm. Chib and Ramamurthy (2010) propose to replace the commonly used single block

RWM algorithm with a Metropolis-within-Gibbs algorithm that cycles over multiple, ran-

domly selected blocks of parameters. Kohn, Giordani, and Strid (2010) propose an adaptive
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hybrid Metropolis-Hastings samplers and Herbst (2010) develops a Metropolis-within-Gibbs

algorithm that uses information from the Hessian matrix to construct parameter blocks that

maximize within-block correlations at each iteration and Newton steps to tailor proposal

distributions for the various conditional posteriors.

3.2 Evaluating the Predictive Distribution

[subsec:preddistribution] Bayesian DSGE model forecasts can computed based on draws from

the posterior predictive distribution of YT+1:T+H . We use the parameter draws {θ(j)}nsim
j=1

generated with Algorithm 1 in the previous section as a starting point. Since the DSGE

model is represented as a state-space model with latent state vector st, we modify the

decomposition of the predictive density in (31) accordingly:

p(YT+1:T+H |Y1:T ) (35)

=

∫
(sT ,θ)

[∫
ST+1:T+H

p(YT+1|T+H |ST+1:T+H)p(ST+1:T+H |sT , θ, Y1:T )dST+1:T+H

]
×p(sT |θ, Y1:T )p(θ|Y1:T )d(sT , θ)

Draws from the predictive density can be generated with the following algorithm:

Algorithm 2. Draws from the Predictive Distribution. [algo:preddraws] For j = 1 to

nsim, select the j’th draw from the posterior distribution p(θ|Y1:T ) and:

1. Use the Kalman filter to compute mean and variance of the distribution p(sT |θ(j), Y1:T ).

Generate a draw s
(j)
T from this distribution.

2. A draw from ST+1:T+H |(sT , θ, Y1:T ) is obtained by generating a sequence of innovations

ε
(j)
T+1:T+H . Then, starting from s

(j)
T , iterate the state transition equation (33) with θ

replaced by the draw θ(j) forward to obtain a sequence S
(j)
T+1:T+H :

s
(j)
t = Φ1(θ

(j))s
(j)
t−1 + Φε(θ

(j))ε
(j)
t , t = T + 1, . . . , T +H.

3. Use the measurement equation (34) to obtain Y
(j)
T+1:T+H :

y
(j)
t = Ψ0(θ

(j)) + Ψ1(θ
(j))t+ Ψ2(θ

(j))s
(j)
t , t = T + 1, . . . , T +H. �
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Algorithm 2 generates nsim trajectories Y
(j)
T+1:T+H from the predictive distribution of

YT+1:T+H given Y1:T . The algorithm could be modified by executing Steps 2 and 3 m times

for each j, which would lead to a total of m · nsim draws from the predictive distribution. A

point forecast ŷT+h of yT+h can be obtained by specifying a loss function L(yT+h, ŷT+h) and

determining the prediction that minimizes the posterior expected loss:

ŷT+h|T = argminδ∈Rn

∫
yT+h

L(yT+h, δ)p(yT+h|Y1:T )dyT+h. (36)

For instance, under the quadratic forecast error loss function

L(y, δ) = tr[W (y − δ)′(y − δ)],

where W is a symmetric positive-definite weight matrix and tr[·] is the trace operator, the

optimal predictor is the posterior mean

ŷT+h|T =

∫
yT+h

yT+hp(yT+h|Y1:T )dyT+h ≈
1

nsim

nsim∑
j=1

y
(j)
T+h, (37)

which can be approximated by a Monte Carlo average.

Pointwise (meaning for fixed h rather than jointly over multiple horizons) 1−α credible

interval forecasts for a particular element yi,T+h of yT+h can be obtained by either com-

puting the α/2 and 1 − α/2 percentiles of the empirical distribution of {y(j)
i,T+h}

nsim
j=1 or by

numerically searching for the shortest connected interval that contains a 1−α fraction of the

draws {y(j)
i,T+h}

nsim
j=1 . By construction, the latter approach leads to sharper interval forecasts.2

Finally, density forecasts can be obtained by applying a density estimator (see Silverman

(1986) for an introduction) to the set of draws {y(j)
i,T+h}

nsim
j=1 .

As a short-cut, practitioners sometimes replace the numerical integration with respect to

the parameter vector θ in Algorithm 2 by a plug-in step. Draws from the plug-in predictive

distribution p(yT+1:T+H |θ̂, Y1:T ) are obtained by setting θ(j) = θ̂ in Steps 2 and 3 of the

algorithm. Here θ̂ is a point estimator such as the posterior mode or the posterior mean.

While the plug-in approach tends to reduce the computational burden, it does not deliver

the correct Bayes predictions and, importantly, interval and density forecasts will understate

the uncertainty about future realizations of yt.

2In general, the smallest (in terms of volume) set forecast is given by the highest-density set. If the

predictive density is uni-modal the second above-mentioned approach generates the highest-density set. If

the predictive density is multi-modal, then there might exist a collection of disconnected intervals that

provides a sharper forecast.
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4 Accuracy of Point Forecasts

[sec:pointforecasts] We begin the empirical analysis with the computation of RMSEs for

our DSGE models. The RMSEs are based on a pseudo-out-of-sample forecasting exercise

in which we are using real-time data sets to recursively estimate the DSGE models. The

construction of the real-time data set is discussed in Section 4.1. Empirical results for the

small-scale DSGE model of Section 2.3 are presented in Section 4.2. We compare DSGE

model-based RMSEs to RMSEs computed for forecasts of the Blue Chip survey. A similar

analysis is conducted for the SW model in Section 4.3. Finally, Section 4.4 summarizes results

on the forecast performance of medium-scale DSGE models published in the literature.

4.1 A Real Time Data Set for Forecast Evaluation

[subsec:realtimedata] Since the small-scale DSGE model is estimated based on a subset of

variables that are used for the estimation of the SW model, we focus on the description of

the data set for the latter. Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal

personal consumption expenditures (PCEC), and nominal fixed private investment (FPI) are

constructed at a quarterly frequency by the Bureau of Economic Analysis (BEA), and are

included in the National Income and Product Accounts (NIPA).

Average weekly hours of production and nonsupervisory employees for total private in-

dustries (PRS85006023), civilian employment (CE16OV), and civilian noninstitutional pop-

ulation (LNSINDEX) are produced by the Bureau of Labor Statistics (BLS) at the monthly

frequency. The first of these series is obtained from the Establishment Survey, and the re-

maining from the Household Survey. Both surveys are released in the BLS Employment Sit-

uation Summary (ESS). Since our models are estimated on quarterly data, we take averages

of the monthly data. Compensation per hour for the nonfarm business sector (PRS85006103)

is obtained from the Labor Productivity and Costs (LPC) release, and produced by the BLS

at the quarterly frequency.

Last, the federal funds rate is obtained from the Federal Reserve Board’s H.15 release at

the business day frequency, and is not revised. We take quarterly averages of the annualized
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daily data. All data are transformed following Smets and Wouters (2007). Specifically:

Output growth = LN((GDPC)/LNSINDEX) ∗ 100

Consumption growth = LN((PCEC/GDPDEF )/LNSINDEX) ∗ 100

Investment growth = LN((FPI/GDPDEF )/LNSINDEX) ∗ 100

Real Wage growth = LN(PRS85006103/GDPDEF ) ∗ 100

Hours = LN((PRS85006023 ∗ CE16OV/100)/LNSINDEX) ∗ 100

Inflation = LN(GDPDEF/GDPDEF (−1)) ∗ 100

FFR = FEDERAL FUNDS RATE/4

In the estimation of the DSGE model with financial frictions we measure Spread as the

annualized Moody’s Seasoned Baa Corporate Bond Yield spread over the 10-Year Treasury

Note Yield at Constant Maturity. Both series are available from the Federal Reserve Board’s

H.15 release, and averaged over each quarter. Spread data is also not revised.

Many macroeconomic time series get revised multiple times by the statistical agencies

that publish the series. In many cases the revisions reflect additional information that has

been collected by the agencies, in other instances revisions are caused by changes in defi-

nitions. For instance, the BEA publishes three releases of quarterly GDP in the first three

month following the quarter. Thus, in order to be able to compare DSGE model forecasts

to real-time forecasts made by private-sector professional forecasters or the Federal Reserve

Board, it is important to construct vintages of real time historical data. We follow the work

by Edge and Gürkaynak (2010) and construct data vintages that are aligned with the publi-

cation dates of the Blue Chip survey and the Federal Reserve Board’s Greenbook/Tealbook.

Blue Chip’s survey of professional forecasters is published on the 10th of each month,

based on responses that have been submitted at the end of the previous month. For instance,

forecasts published on April 10 are based on information that was available at the end of

March. Whenever we evaluate the accuracy of Blue Chip forecasts in this paper, we focus

on the so-called Consensus Blue Chip forecast, which is defined as the average of all the

forecasts gathered in the Blue Chip Economic Indicators (BCEI) survey. While there are

three Blue Chip forecasts published every quarter, we restrict our attention to the month

in which the last forecast is made in each quarter. Given the approximate two week delay

between the survey and the publication of the results on the 10th of each month, this means

that we are constructing data sets that are aligned with the information available for the

January, April, July, and October Blue Chip publications. For concreteness, consider the
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April 1992 Blue Chip release date. In late March the NIPA series for 1992:Q1 are not yet

available, which means that the DSGE model can only be estimated based on a sample that

ends in 1991:Q4. Our selection of Blue Chip dates maximizes the informational advantage

for the Blue Chip forecasters, who can in principle utilize high-frequency information about

economic activity in 1992:Q1 that is available by late March. The first forecast origin con-

sidered in the subsequent forecast evaluation is January 1992 and the last one is April 2011.

We refer to the collection of data vintages aligned with the Blue Chip publication dates as

Blue Chip sample.

The Greenbook/Tealbook contains macroeconomic forecasts from the staff of the Board

of Governors in preparation for a FOMC meeting. There are typically eight FOMC meetings

per year. For the comparison of Greenbook versus DSGE model forecasts we also only

consider a subset of four Greenbook publication dates, one associated with each quarter:

typically from the months of March, June, September, and December.3 We refer to the

collection of vintages aligned with the Greenbook dates as Greenbook sample. The first

forecast origin in the Greenbook sample is March 1992 and the last one is September 2004,

since the Greenbook forecasts are only available with a 5 year lag. Table 2 summarizes

the Blue Chip and Greenbook forecast origins in 1992 for which we are constructing DSGE

model forecasts. Since we always use real time information, the vintage used to estimate the

DSGE model for the comparison to the March 1992 Greenbook may be different from the

vintage that is used for the comparison with the April 1992 Blue Chip forecast, even though

in both cases the end of the estimation sample for the DSGE model is T=1991:Q4.

The Blue Chip Economic Indicators survey only contain quarterly forecasts for one calen-

dar year after the current one. This implies that on January 10 the survey will have forecasts

for eight quarters, and only for six quarters on October 10. When comparing forecast accu-

racy between Blue Chip and DSGE models, we use seven- and eight-quarter ahead forecasts

only when available from the Blue Chip survey (which means we only use the January and

April forecast dates when computing eight-quarter ahead RMSEs). For consistency, when

comparing forecast accuracy across DSGE models we use the same approach (we refer to this

set of dates/forecast horizons as the “Blue Chip dates”). Similarly, the horizon of Greenbook

3As forecast origins we choose the last Greenbook forecast date before an advanced NIPA estimate for

the most recent quarter is released. For instance, the advanced estimate for Q1 GDP is typically released in

the second half of April, prior to the April FOMC meeting.
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Table 2: Blue Chip and Greenbook Forecast Dates for 1992

Forecast Origin End of Est. Forecast

Blue Chip Greenbook Sample T h = 1 h = 2 h = 3 h = 4

Apr 92 Mar 92 91:Q4 92:Q1 92:Q2 92:Q3 92:Q4

Jul 92 Jun 92 92:Q1 92:Q2 92:Q3 92:Q4 93:Q1

Oct 92 Sep 92 92:Q2 92:Q3 92:Q4 93:Q1 93:Q2

Jan 93 Dec 92 92:Q3 92:Q4 93:Q1 93:Q2 93:Q3

forecasts also varies over time. In comparing DSGE model and Greenbook forecast accuracy

we only use seven- and eight-quarter ahead whenever available from both.

For each forecast origin our estimation sample begins in 1964:Q1 and ends with the

most recent quarter for which a NIPA release is available. Historical data were taken from

the FRB St. Louis’ ALFRED database. For vintages prior to 1997, compensation and

population series were unavailable in ALFRED. In these cases, the series were taken from

Edge and Gürkaynak (2010).4 In constructing the real time data set, the release of one

series for a given quarter may outpace that of another. For example, in several instances,

Greenbook forecast dates occur after a quarter’s ESS release but before the NIPA release.

In other words, for a number of data vintages there is, relative to NIPA, an extra quarter

of employment data. Conversely, in a few cases NIPA releases outpace LPC, resulting in

an extra quarter of NIPA data. We follow the convention in Edge and Gürkaynak (2010)

and use NIPA availability to determine whether a given quarter’s data should be included in

a vintage’s estimation sample. When employment data outpace NIPA releases, this means

ignoring the extra observations for hours, population, and employment from the Employment

Situation Summary. In cases where NIPA releases outpace LPC releases, we include the next

available LPC data in that vintage’s estimation sample to “catch up” to the NIPA data.

There is an ongoing debate in the forecasting literature as to whether the “actuals”

used in computing forecast errors should be the values of the variables according to the

last available vintage, or the so-called “first finals”, which for output corresponds with the

4We are very grateful to Rochelle Edge and Refet Gürkaynak for giving us this data, and explaining us

how they constructed their dataset.
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“Final” NIPA estimate (available roughly three months after the quarter is over). We show

results according to the first approach.

Finally, the various DSGE models only produce forecasts for per-capita output, while

Blue Chip and Greenbook forecasts are in terms of total GDP. When comparing RMSEs

between the DSGE models and Blue Chip/Greenbook we therefore transform per-capita

into aggregate output forecasts using (the final estimate of) realized population growth.5

4.2 Forecasts from the Small-Scale Model

[subsec:rmsesmallmodel] We begin by comparing the point forecast performance of the small-

scale DSGE model described in Section 2.3 to that of the Blue Chip and Greenbook forecasts.

RMSEs for output growth, inflation, and interest rates (Federal Funds) are displayed in

Figure 1. Throughout this paper, GDP growth rates, inflation rates, and interest rates are

reported in Quarter-on-Quarter (QoQ) percentages. The RMSEs in the first row of the figure

are for forecasts that are based on the information available prior to the January, April, July,

and October Blue Chip publication dates over the period 1992 to 2011. The RMSEs in the

bottom row correspond to forecasts generated at the March, June, September, and December

Greenbook dates over the period from 1992 to 2004.

The small-scale model attains a RMSE for output growth of approximately 0.65%. The

RMSE is fairly flat with respect to the forecast horizon, which is consistent with the low

serial correlation of U.S. GDP growth. At the nowcast horizon (h = 1), the Blue Chip

forecasts are much more precise, their RMSE is 0.42, because they incorporate information

from the current quarter. As the forecast horizon increases to h = 4 the RMSEs of the DSGE

model and the Blue Chip forecasts are approximately the same. The accuracy of inflation

and, in particular, interest rate forecasts of the small scale DSGE model is decreasing in the

forecast horizon h due to the persistence of these series. The inflation RMSE is about 0.25%

at the nowcast horizon and 0.35% for a two-year horizon. For the Federal Funds rate the

RMSE increases from about 0.15 to 0.5. The inflation and interest rate Blue Chip forecasts

tend to be substantially more precise than the DSGE model forecasts both at the nowcast

as well as the one-year horizon.

5Edge and Gürkaynak (2010) follow a similar approach, except that their population “actuals” are the

“first finals”, consistently with the fact that they use “first finals” to measure forecast errors.
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In comparison to the Greenbook forecasts the output growth forecasts of the small-scale

DSGE model are more precise for horizons h ≥ 3. Moreover, the inflation forecast of the

DSGE model at the nowcast horizon is about as precise as the Greenbook inflation nowcast,

but for horizons h ≥ 1 the Greenbook forecasts dominate. We do not report RMSEs for

Greenbook interest rate projections because the FOMC sets the nominal interest rate in part

based on the information provided in the Greenbook.

4.3 Forecasts from the Smets-Wouters Model

[subsec:rmsemediummodel] We proceed by computing forecast error statistics for the SW

model reviewed in Section 2.1. The results are reported in Figure 2. The top panels provide

a comparison to Blue Chip forecasts from 1992 to 2011 and the bottom panels a comparison

to Greenbook forecasts from 1992 to 2004. The accuracy of the output growth and inflation

forecasts from the SW model forecasts for the Blue Chip dates is commensurable with the

accuracy of the forecasts generated by the small-scale DSGE model. The inflation forecast

of the SW model, however, are more precise than the inflation forecasts of the small-scale

model, which can be attributed to a more sophisticated Phillips curve relationship and the

presence of wage stickiness. The SW interest rate forecasts are slightly more accurate in the

short run but slightly less precise in the long run. In the short-run the Blue Chip forecasts of

output growth and inflation are more precise than the forecasts from the SW model, but for

horizons h = 5 to h = 8, the DSGE model dominates. In general the DSGE model forecast

errors are smaller for the Greenbook sample than for the Blue Chip sample. While the Blue

Chip sample spans the period from 1992 to 2011, the forecasts for the Greenbook sample

end in 2004 and thereby exclude the most recent recession. Except at the nowcast horizon,

the SW model produces slightly more precise point forecasts than the Greenbook, though

the differences in forecast accuracy tend to be small.

Up to this point we considered multi-step-ahead forecasts of growth rates of output and

prices, as well as multi-step-ahead forecast of interest rates. Alternatively, the model can

be used to forecast average growth rates and average interest rates over the next h-periods.

In many instance, forecasts of averages might be more appealing than forecasts of a growth

rate between period T +h− 1 and T +h. RMSEs associated with forecasts of averages tend

to have a different profile as a function of h. To fix ideas, suppose that yt, say inflation,
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Figure 1: RMSEs for Small-Scale Model

DSGE vs Blue Chip (1992-2011)
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DSGE vs Greenbook (1992-2004)
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Notes: The top and bottom panels compare the RMSEs for the Small-Scale DSGE model (circles) with the Blue Chip (blue

diamonds, top panel) and Greenbook (green diamonds, bottom panel) for one through eight quarters ahead for output growth,

inflation, and interest rates. All variables are expressed in terms of QoQ rates in percentage. Section 4.1 provides the details

of the forecast comparison exercise.



Del Negro, Schorfheide – DSGE Model Based Forecasting: February 29, 2012 24

Figure 2: RMSEs for SW Model

DSGE vs Blue Chip (1992-2011)
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DSGE vs Greenbook (1992-2004)
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Notes: The top and bottom panels compare the RMSEs for the SW DSGE model (circles) with the Blue Chip (blue diamonds,

top panel) and Greenbook (green diamonds, bottom panel) for one through eight quarters ahead for output growth, inflation,

and interest rates. All variables are expressed in terms of QoQ rates in percentage. Section 4.1 provides the details of the

forecast comparison exercise.

evolves according to an AR(1) process

yt = θyt−1 + ut, ut ∼ iidN(0, 1), 0 < θ < 1. (38)
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To simplify the exposition, we will abstract from parameter uncertainty and assume that θ

is known. The time T h-step forecast of yT+h is given by ŷT+h|T = θhyT . The h-step ahead

forecast error is given by

eT+h|T =
h−1∑
j=0

θjuT+h−j. (39)

In turn, the population RMSE is given by√
E[e2T+h|T ] =

√
1− θ2h

1− θ2
−→ 1√

1− θ2
as h→∞. (40)

If θ is close to zero, the RMSE as a function of h is fairly flat, whereas it is strongly increasing

for values of θ close to one. The RMSEs associated with the DSGE model forecasts aligned

with the Blue Chip publication dates in the top panels of Figure 2 are broadly consistent

with this pattern. The serial correlation of output growth and inflation is fairly small, which

leads to a fairly flat, albeit slightly increasing RMSE function. Interest rates, on the other

hand, follow a highly persistent process (θ ≈ 1), which generates RMSEs that are essentially

linearly increasing in the forecast horizon.

The error associated with a forecast of an h-period average is given by

ēT+h|T =
1

h

h∑
s=1

(
s−1∑
j=0

θjuT+s−j

)
=

1

h

h−1∑
j=0

1− θj+1

1− θ
ut+h−j. (41)

The second equality is obtained by re-arranging terms and using the formula
∑j−1

s=0 θ
s =

(1− θj)/(1− θ). The resulting population RMSE is given by

√
E[ē2T+h|T ] =

1√
h(1− θ)2

√
1− 2θ

1− θh

h(1− θ)
+ θ2

1− θ2h

h(1− θ2)
. (42)

Thus, the RMSE of the forecast of the h-period average decays at rate 1/
√
h. Based on

results from the Blue Chip sample, we plot RMSEs for the forecasts of average output

growth, average inflation, and average interest rates in Figure 3. In assessing the empirical

results, it is important to keep in mind that the population RMSE calculated above abstracts

from parameter uncertainty and potential misspecification of the forecasting model. The

GDP growth and inflation RMSEs for the DSGE model are indeed decreasing in the forecast

horizon. The interest rate RMSEs remain increasing in h, but compared to Figure 2 the

slope is not as steep. Since the Blue Chip forecasts are more precise at short horizons, the

averaging favors the Blue Chip forecasts in the RMSE comparison.
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Figure 3: RMSEs for SW Model vs Blue Chip: Forecasting Averages

Forecasts of h-Period Averages
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Notes: The figure compares the RMSEs for the SW DSGE model (circles) with the Blue Chip forecasts (blue diamonds) for

one through eight quarters-ahead averages for output growth, inflation, and interest rates. All variables are expressed in terms

of QoQ rates in percentage. Section 4.1 provides the details of the forecast comparison exercise.

4.4 Literature Review of Forecasting Performance

[subsec:rmseliterature] By now there exists a substantial body of research evaluating the

accuracy of point forecasts from DSGE models. Some of the papers are listed in Table 3.

Many of the studies consider variants of the Smets and Wouters (2003, 2007) models. Since

the studies differ with respect to the forecast periods, that is, the collection of forecast origins,

as well as the choice of data vintages, direct comparisons of results are difficult. Smets and

Wouters (2007) report output growth, inflation, and interest rate RMSEs of 0.57%, 0.24%,

and 0.11% QoQ. The forecast period considered by Smets and Wouters (2007) ranges from

1990:Q1 to 2004:Q2 and is comparable to our Greenbook sample. The corresponding RMSEs

obtained in our analysis in Section 4.3 using real-time data are 0.55%, 0.19%, and 0.11%.

In order to make the RMSE results comparable across studies we generate forecasts from

a simple AR(2), using the variable definitions, forecast origins, and estimation samples that

underly the studies listed in Table 3. In particular, we use real-time data whenever the

original study was based on real-time data and we use the corresponding vintage for studies

that were based on the analysis of a single vintage. The AR(2) model is estimated using
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Table 3: A Sample of Studies Reporting RMSEs for Medium-Scale DSGE Models

Study Forecast Origins Real Time

Rubaszek and Skrzypczynski (2008) 1994:Q1 - 2005:Q3 Yes

Kolasa, Rubaszek, and Skrzypczyński (2010) 1994:Q1 - 2007:Q4 Yes

Graeve, Emiris, and Wouters (2009) 1990:Q1 - 2007:Q1 (h=1) No

Wolters (2010), Del Negro-Schorfheide Model 1984:Q1 - 2000:Q4 Yes

Wolters (2010), Fuhrer-Moore Model 1984:Q1 - 2000:Q4 Yes

Wolters (2010), SW Model 1984:Q1 - 2000:Q4 Yes

Wolters (2010), EDO Model 1984:Q1 - 2000:Q4 Yes

Edge and Gürkaynak (2010) 1992:Jan - 2004:Q4 Yes

Edge, Kiley, and Laforte (2009) 1996:Sep - 2002:Q4 Yes

Smets and Wouters (2007) 1990:Q1 - 2004:Q4 (h=1) No

Del Negro, Schorfheide, Smets, and Wouters (2007) 1985:Q4 - 2000:Q2 (h=1) No

Schorfheide, Sill, and Kryshko (2010) 2001:Q1 - 2007:Q4 (h=1) No
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Bayesian techniques with the improper prior p(σ2) ∝ (σ2)−1, where σ2 is the innovation

variance.

Figure 4 depicts RMSE ratios for DSGE model forecasts versus AR(2) forecasts. Each

cross corresponds to one of the studies listed in Table 3. A value less than one indicates

that the RMSE of the DSGE model forecast is lower than the RMSE of the benchmark

AR(2) forecast. The solid lines indicate RMSE ratios of one. The top panels summarize the

accuracy of output growth and inflation forecasts, whereas the bottom panel summarize the

accuracy of interest rate and inflation forecasts. In general, the DSGE models perform better

at the h = 4 horizon than at the one-quarter-ahead horizon as there are fewer observations

in the upper-right quadrant.

While the one-step-ahead output growth forecasts from the DSGE models are by and

large at par with the AR(2) forecasts, the bottom left panel indicates that the DSGE model

inflation and interest rate forecasts in general tend to be worse than the AR(2) forecasts. At

the one-year horizon, more than half of the DSGE model output growth forecasts are more

accurate than the corresponding AR(2) forecasts. One outlier (the RMSE ratio is close to

2.0) is the output growth RMSE reported in Del Negro, Schorfheide, Smets, and Wouters

(2007), which is computed from an infinite-order VAR approximation of the state-space

representation of the DSGE model. Growth rate differentials between output, investment,

consumption, and real wages might contribute to the poor forecast performance of the DSGE

model. Finally, about half of the estimated DSGE models considered here are able to produce

inflation and interest rate forecasts that attain a lower RMSE than the AR(2) forecasts.

Our interpretation of Figure 4 is that DSGE model forecasts can be competitive in

terms of accuracy with simple benchmark models, in particular for medium-run forecasts.

This statement, however, has two qualifications. First, the DSGE model needs to carefully

specified to optimize forecast performance. Second, if the AR(2) model is replaced by a

statistical model that is specifically designed to forecast a particular macroeconomic time

series well, DSGE model forecasts can be dominated in terms of RMSEs by other time series

models.

Many of the papers in the DSGE model forecasting literature offer direct comparisons of

DSGE model forecasts to other forecasts. Edge and Gürkaynak (2010) compare univariate

forecasts from the SW model estimated with real-time data against forecasts obtained from
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Figure 4: RMSEs Reported in the Literature

Notes: Figure depicts RMSE ratios: DSGE (reported in various papers) / AR(2) (authors

calculation).
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the staff of the Federal Reserve, the Blue Chip survey, and a Bayesian vector autoregres-

sion (VAR). Based on RMSEs, they conclude that the DSGE model delivers forecasts that

are competitive in terms of accuracy with those obtained from the alternative prediction

methods. Comparisons between DSGE model and professional forecasts are also reported

in Wieland and Wolters (2011) and Wieland and Wolters (2012). The evidence from Euro

Area data is similar. Adolfson, Lindé, and Villani (2007) assess the forecasting performance

of an Open Economy DSGE model during the period of 1994 to 2004 based on RMSEs, log

determinant of the forecast-error covariance matrix6, predictive scores, and the coverage fre-

quency of interval forecasts. Overall, the authors conclude that the DSGE model compares

well with more flexible time series models such as VARs.

Christoffel, Coenen, and Warne (2010) examine the forecasting performance of the New

Area Wide Model (NAWM), the DSGE model used by the European Central Bank. The

authors evaluate the model’s univariate forecast performance through RMSEs and its multi-

variate performance using the ln-det statistic. They find that the DSGE model is competitive

with other forecasting models such as VARs of various sizes. The authors also find that the

assessment of multivariate forecasts based on the ln-det statistic can sometimes be severely

affected by the inability to forecast just one series, nominal wage growth.

The Bayesian VARs that serve as a benchmark in the aforementioned papers use a

Minnesota prior but are typically not optimized with respect to their empirical performance.

For instance, some of the dummy observations described in Sims and Zha (1998) and more

recently discussed in Del Negro and Schorfheide (2010) that generate a priori correlations

among VAR coefficients and have been found useful for prediction have been excluded from

the construction of the prior distribution. Del Negro and Schorfheide (2004) and DSSW

compare the forecasting performance of a three-equation New Keynesian DSGE model and

a variant of the SW model to Bayesian VARs that use a prior distribution centered at

the DSGE model restrictions. Both papers find that the resulting DSGE-VAR forecasts

significantly better than the underlying DSGE model.

In addition to comparing point forecasts across different models, Edge and Gürkaynak

6The so-called “ln-det” statistic had been proposed by Doan, Litterman, and Sims (1984). The eigen-

vectors of the forecast error covariance matrix generate linear combinations of the model variables with

uncorrelated forecast errors. The determinant equals the product of the eigenvalues and thereby measures

the product of the forecast error variances associated with these linear combinations. The more linear

combinations exist that can be predicted with small forecast error variance, the smaller the ln-det statistic.
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(2010) also examine the overall quality of DSGE model forecasts. To do so, they estimate

regressions of the form

yi,t = α(h) + β(h)ŷi,t|t−h + e
(h)
t . (43)

If the predictor ŷi,t|t−h is the conditional mean of yi,t then the estimate of α(h) should be close

to zero and the estimate of β(h) close to one. In the simple AR(1) example in Equation (38)

of Section 4.3 the residual e
(h)
t would be equal to the h-step-ahead forecast error et|t−h

in (39) and the population R2 of the regression (43) would be θ2h. For inflation forecasts of

varying horizons h Edge and Gürkaynak (2010) find that α(h) is significantly positive, β(h)

is significantly less than one, and R2 is near zero. The output growth forecasts are better

behaved in that the authors are unable to reject the hypotheses that α(h) = 0 and β(h) = 1.

Moreover, R2 is between 0.07 and 0.2. While the fairly low R2 is qualitatively consistent

with the low persistent in inflation and output growth during the forecasting period, the

estimates of α(h) and β(h) indicate that the DSGE model forecasts are deficient.

Herbst and Schorfheide (2011) examine whether the realized pseudo-out-of-sample RMSE

of DSGE model forecasts is commensurable with the RMSE that would be expected given the

posterior distribution of DSGE model parameters. By simulating the estimated DSGE model

and then generating recursive forecasts on the simulated trajectories, one can obtain a DSGE

model-implied predictive distribution for RMSEs. The authors find that for a small-scale

DSGE model, similar to the model of Section 2.3, the actual RMSEs of output and inflation

forecasts are within the bands of the predictive distribution. The actual interest rate RMSEs,

on the other hand, exceed the predictive bands, indicating a deficiency in the law of motion

of the interest rate. For the Smets and Wouters (2007) model, the inflation and interest rate

RMSEs fall within the bands of the predictive distribution, but the realized output growth

RMSE is smaller than the RMSE predicted by the model. A possible explanation is that

some of the estimated shock processes are overly persistent because they need to absorb

violations of the balanced growth path restrictions of the DSGE model. This would lead to

excess volatility in the simulated output paths.

To summarize, the empirical evidence supports our claim that DSGE model forecasts are

comparable to standard autoregressive or vector autoregressive models but can be dominated

by more sophisticated univariate or multivariate time series. Nonetheless DSGE models

present advantages relative to reduced form models as tools for predictions because they

provide an intelligible econonomic story for their projections, as we discuss in Section 7.
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Moreover, these models also provide a framework for policy analysis. In the forecasting

context this is important as they can be used to make projections based on alternative paths

for the policy instrument (see Section 6).

5 DSGE Model Forecasts using External Information

[sec:externalinfo] In the previous section we generated baseline forecasts from two DSGE

models. For the small-scale model these forecasts were based on output growth, inflation,

and interest rate data. For the SW model we also used data on consumption, investment,

hours worked, and real wages. However, these series reflect only a subset of the information

that is available to a forecaster in real time. While quarterly NIPA data are released with

a lag of more than four weeks, other series, e.g. interest rates, are observed at a much

higher frequency and without publication lag. Thus, in this section we present methods of

improving DSGE model forecasts by incorporating what we call external information. This

external information can take various forms. We consider long-run inflation expectations

(Section 5.1), long-run output growth expectations (Section 5.2), nowcasts of output and

inflation from professional forecasters (Section 5.3), as well as expectations of the short-term

interest rate over various horizons (Section 5.4).

Two distinctly different approaches of incorporating the external information are con-

sidered. First, in Sections 5.1, 5.2, and 5.4 we treat some of the (rational) expectations held

by agents within the DSGE model as observable and equate them with multi-step forecasts

published by the Blue Chip Survey. Discrepancies between DSGE-model implied expecta-

tions and professional forecasts are bridged by introducing additional structural shocks into

the DSGE models presented in Section 2: shocks to the target inflation rate, the growth rate

of technology, and anticipated monetary policy shocks. Second, in Section 5.3 we consider

methods that amount to interpreting nowcasts from professional forecasters as a noisy mea-

sure of (or as news about) current quarter macroeconomic variables. In turn, the external

nowcasts provide information about the exogenous shocks that hit the economy in the cur-

rent quarter and thereby alter the DSGE model forecasts. These methods do not require

the DSGE model to be modified and augmented by additional structural shocks.
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5.1 Incorporating Long-Run Inflation Expectations

[subsec:inflationexpectations] The level of inflation and interest rates has shifted substantially

in the post-war period. In our DSGE models the estimated target inflation rate roughly

corresponds to the sample average of the inflation rate. If the sample includes observations

from the 70s and 80s, then this sample average tends to be higher than what can be thought

of as a long-run inflation target of the past decade, which is around 2%. In turn, this leads

to a poor forecast performance.

In Figure 5 we are plotting the RMSE of the output growth, inflation, and interest rate

forecasts from the SW model under the prior distribution used in Smets and Wouters (2007)

as well as an alternative prior. The original prior for the quarterly steady state inflation rate

used by Smets and Wouters (2007) is tightly centered around 0.62% (which is about 2.5%

annualized) with a standard deviation of 0.1%. Our alternative prior is centered at 0.75%

and is less dogmatic with a standard deviation of 0.4% (see Panel II of Table 1). We refer

to the model with “loose” prior as SW-Loose. Under the Smets and Wouters (2007) prior

the estimated target inflation rate is around 2.7% to 3.0%, whereas the “loose” prior yields

posterior estimates in the range of 4% to 5% As a consequence, the medium-run forecast

accuracy is worse for the SW-Loose model than for the SW model, in particular for inflation

but also for interest rates and output growth.

The forecast inaccuracy caused by the gradual decline of inflation and interest rates post

1980 had been recognized by Wright (2011), who proposed to center the prior distribution

for the vector of long-run means in a Bayesian VAR at the five-to-ten year expectations of

professional forecasters. This approach turned out to be particularly helpful for inflation

forecasts, because of the ability of survey forecasts to capture shifting end points. Faust and

Wright (2011) use a similar approach to improve inflation forecasts from a DSGE model.

Instead of simply centering a tight prior for π∗ with hindsight, they center the prior at the

most recent long-run inflation forecast.

Our approach is similar in spirit to Faust and Wright (2011), but differs in regard to

the implementation. In order to capture the rise and fall of inflation and interest rates in

the estimation sample we replace the constant target inflation rate by a time-varying target

inflation. While time-varying target rates have been frequently used for the specification of

monetary policy rules in DSGE model (e.g., Erceg and Levin (2003), Smets and Wouters
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Figure 5: Using Inflation Expectations

SW vs SW with “loose” prior (SW-Loose)
vs SW with “loose” prior and long run inflation expectations (SWπ)
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Notes: The figure compares the one through eight quarters-ahead RMSEs for the SW DSGE model (SW, circles) with the SW

model with a “loose” prior on the parameter π∗ (SW-Loose, crosses) and the SW model with observed long run inflation expec-

tations (SWπ, squares) for output growth, inflation, and interest rates. The comparison is done for the same vintages/forecast

dates as the Blue Chip/DSGE comparison discussed in Section 4.3. All variables are expressed in terms of QoQ rates in

percentage. Section 4.1 provides the details of the forecast comparison exercise.

(2003) and Justiniano, Primiceri, and Tambalotti (2009), among others), we follow the ap-

proach of Aruoba and Schorfheide (2010) and Del Negro and Eusepi (2011) and include data

on long-run inflation expectations as an observable into the estimation of the DSGE model.

At each point in time, the long-run inflation expectations essentially determine the level of

the target inflation rate.

More specifically, for the SW model the interest-rate feedback rule of the central bank (16)

is modified as follows:7

Rt = ρRRt−1 + (1− ρR)
(
ψ1(πt − π∗t ) + ψ2(yt − yf

t )
)

(44)

+ψ3

(
(yt − yf

t )− (yt−1 − yf
t−1)
)

+ rm
t .

7We follow the specification in Del Negro and Eusepi (2011), while Aruoba and Schorfheide (2010) assume

that the inflation target also affects the intercept in the feedback rule.
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The time-varying inflation target evolves according to:

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (45)

where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. We follow Erceg and Levin (2003) and model

π∗t as following a stationary process, although our prior for ρπ∗ will force this process to

be highly persistent (see Panel III of Table 1). The set of measurement equations (17) is

augmented by

πO,40
t = π∗ + 100IEt

[
1

40

40∑
k=1

πt+k

]
(46)

= π∗ +
100

40
Ψ2(θ)(π,.)(I − Φ1(θ))

−1
(
Φ1(θ)− Φ1(θ)

41
)
st,

where πO,40
t represents observed long run inflation expectations obtained from surveys (in

percent per quarter), and the right-hand-side of (46) corresponds to expectations obtained

from the DSGE model (in deviation from the mean π∗). The second line shows how to

compute these expectations using the transition equation (33), where Ψ2(θ)(π,.) is the row of

the matrix Ψ2(θ) entering the measurement equation (34) corresponding to inflation.

The long-run inflation forecasts are obtained from the Blue Chip Economic Indicators

survey and the Survey of Professional Forecasters (SPF) available from the FRB Philadel-

phia. Long-run inflation expectations (average CPI inflation over the next 10 years) are

available from 1991:Q4 onwards. Prior to 1991:Q4, we use the 10-year expectations data

from the Blue Chip survey to construct a long time series that begins in 1979:Q4. Since the

Blue Chip survey reports long-run inflation expectations only twice a year, we treat these

expectations in the remaining quarters as missing observations and adjust the measurement

equation of the Kalman filter accordingly. Long-run inflation expectations πO,40
t are therefore

measured as

πO,40
t = (10-YEAR AVERAGE CPI INFLATION FORECAST− 0.50)/4.

where .50 is the average difference between CPI and GDP annualized inflation from the

beginning of the sample to the 1992, the starting point for our forecasting exercise, and

where we divide by 4 since the data are expressed in quarterly terms.

Importantly from a real-time forecasting perspective, the inflation expectation data used

in the DSGE model estimation is available to both Blue Chip and Greenbook forecasters by
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the time they make their forecasts. The timing of the SPF Survey is geared to the release

of the BEA’s Advance NIPA report, which is released at the end of the first month of each

quarter. This implies that, for instance, when producing DSGE forecasts with T =1991:Q4

we use long-run inflation expectation data that is public by the end of January 1992, that is,

well before the associated Greenbook and Blue Chip forecasts are made (March and April

1992, respectively, see Table 2).

RMSEs from the modified SW model with time-varying inflation target and inflation

expectation data, henceforth SWπ, are also plotted in Figure 5. While the RMSEs associated

with forecasts from the SWπ model are only slightly lower than those of the SW model, the

former is much more appealing because it is not based on a prior distribution that from

an a priori perspective is rather tight. Moreover, the SWπ is much more flexible. If the

average level of inflation as well as inflation expectations will rise again in the future, then

the estimated inflation target will increase and the forecasts will adapt to a higher level of

inflation.

5.2 Incorporating Output Expectations

[subsec:outputexpectations] Over the past six decades the U.S. economy has experienced

several shifts in the long-run growth rates of productivity and output, e.g. the productivity

slowdown of the 1970s. While the changes in long-run growth rates are not as pronounced

as the changes in the inflation rate during the late 1970s and early 1980s, capturing low fre-

quency movements in productivity growth is potentially important for DSGE model forecasts

of output. Thus, we now introduce long-run output growth expectations as an observable

variable in the DSGE model following the same approach we used for the long-run inflation

expectations in Section 5.1

The measurement equations are augmented with an expression equating the model-

implied long-run output expectation with the long-run growth expectations data obtained

from a combination of Blue Chip Financial Forecasts (BCFF), Blue Chip Economic Indica-
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tors (BCEI), Livingstone Survey, and the SPF:8

GrowthO,40
t = γ + 100IEt

[
1

40

40∑
k=1

(yt+k − yt+k−1 + zt+k)

]
, (47)

where GrowthO,40
t represents the observed long-run-growth expectation (in percent per quar-

ter) obtained from the two surveys and the right-hand-side of (47) is the corresponding

expectation computed from the DSGE model. 10-year GDP forecasts are given in aggregate

annualized growth rates. They are transformed into quarterly per capita rates using the

5-year (backward looking) moving average of the population series from the ESS Household

Survey:

GrowthO,40
t = 10-YEAR AVERAGE GDP GROWTH FORECAST/4

− 100 ∗ (LN(LNSINDEX/LNSINDEX(−20))/20).

In order to generate time-variation in the DSGE model’s implied long-run output growth

expectations we introduce very persistent changes to the growth rate of productivity in the

SW model described in (2). Specifically, we assume that zt, the growth rate of the stochastic

trend Zt in deviations from γ, follows the process:

zt = log(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t + zp

t , (48)

where

zp
t = ρzpzp

t−1 + σzpεzp,t. (49)

The prior for ρzp is chosen to ensure that the local level process zp
t is highly persistent (see

Panel IV of Table 1).

RMSEs for the SWπ model versus the DSGE model with inflation and output expec-

tations, denoted by SWπY, are depicted in Figure 6. Unlike the incorporation of long-run

inflation expectations, the use of long-run output growth expectations does not lead to an

8We are very grateful to Stefano Eusepi and Emanuel Mönch for providing us with this data, which are

described in Eusepi and Mönch (2011). Specifically, Eusepi and Mönch obtain a monthly time series of 10-

years ahead output growth forecasts using the data from SPF for February, BCFF for May and November,

BCEI for March and October, the Livingston survey for June and December. We take quarterly averages of

the monthly data, whenever available. We adjust the observation equation in the Kalman filter to deal with

missing observations.
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Figure 6: Using Inflation and Output Expectations

SW with long run inflation expectations (SWπ) vs
SW with long run inflation and output growth expectations (SWπY )
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Notes: The figure compares the one through eight quarters-ahead RMSEs for the SW model with observed long run inflation

expectations (SWπ, squares) and the SW model with observed long run inflation and output growth expectations (SWπY,

crosses) for output growth, inflation, interest rates, consumption, investment, and real wage growth. The comparison is done

for the same vintages/forecast dates as the Blue Chip/DSGE comparison discussed in Section 4.3. All variables are expressed

in terms of QoQ rates in percentage. Section 4.1 provides the details of the forecast comparison exercise.

improvement in the forecast performance of the DSGE model. In fact, the forecasts for

output, consumption, investment, and real wage growth deteriorated substantially. While

the SWπ model attains an RMSE for output growth of 0.58% at h = 1 and 0.67% at h = 8,
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the corresponding RMSEs for the SWπY model are 0.74% and 0.86%. Including long-run

output growth expectations does not improve DSGE model forecasts partly because these

forecasts appear to be overly optimistic. Of course, we do not have a large-enough sample

to test the accuracy of 10-years ahead forecasts. However, we observe that the eight-quarter

ahead forecast bias (defined as actual value minus forecast) for output growth is −0.5% for

the SWπY model, whereas it is only −0.1% for the SWπ model.

5.3 Conditioning on External Nowcasts

[subsec:externalnowcasts] As explained in Section 4.1, the NIPA data that enter the estima-

tion of the DSGE model only become available with a lag of more than four weeks. During

this time period, a lot of other important information about the state of the economy is

released, e.g. interest rates, unemployment rates, inflation data. Some of this information is

implicitly incorporated in the current quarter forecasts surveyed by Blue Chip because the

professional forecasters included in the survey are not required to use quarterly-frequency

time series models and potentially make subjective adjustments to model-based forecasts in

view of high frequency economic data. In this section we use the nowcasts obtained from

the Blue Chip survey to improve the forecasts from the SWπ DSGE model. We proceed

in four steps. First, the timing of the nowcast release is described. Second, we consider

two approaches of incorporating external information: (i) nowcasts are interpreted as noisy

measures of variables dated T +1 (recall that T corresponds to the end of estimation sample

and beginning of forecasting origin); (ii) nowcasts are interpreted as news about T + 1 data.

We provide algorithms to generate draws from the predictive density of the DSGE models

under these two interpretations of external information. Third, using the noise interpre-

tation, nowcasts are incorporated into forecasts from the SWπ model. Finally, we discuss

alternative methods that have been proposed in the literature.

To fix ideas, the timing of the DSGE model forecasts and the Blue Chip nowcasts for the

year 1992 is illustrated in Table 4. Columns 1 and 2 of Table 4 are identical to Columns 1

and 3 of Table 2. Consider for instance the forecast origin that corresponds to the July 1992

Blue Chip release. Due to the timing of the NIPA GDP release the estimation sample ends

in 1992:Q1. In our notation, the first quarter of 1992 corresponds to period T . We modify

the DSGE model forecast by incorporating the nowcast for 1992:Q2 (T + 1) published in

July 1992. To fix notation, assume that the variables used for the DSGE model estimation
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Table 4: Blue Chip Forecast Dates and Nowcast Information for 1992

Forecast End of Est. External Forecast

Origin Sample T Nowcast T + 1 h = 1 h = 2

Apr 92 91:Q4 92:Q1 based on Apr 92 BC 92:Q1 92:Q2

Jul 92 92:Q1 92:Q2 based on Jul 92 BC 92:Q2 92:Q3

Oct 92 92:Q2 92:Q3 based on Oct 92 BC 92:Q3 92:Q4

Jan 93 92:Q3 92:Q4 based on Jan 93 BC 92:Q4 93:Q1

are partitioned into y′T+1 = [y′1,T+1, y
′
2,T+1], where y1,T+1 is the subvector for which external

information zT+1 is available. The T + 1 subscript highlights that the information in z

pertains to t = T + 1 variables.

To understand how external information alters the DSGE model forecasts, consider the

following factorization of the one-step-ahead predictive density:

p(yT+1|Y1:T ) =

∫
θ

[∫
sT ,sT+1

p(yT+1|sT+1, θ)p(sT , sT+1|θ, Y1:T )d(sT , sT+1)

]
p(θ|Y1:T )dθ. (50)

We adopted the timing convention that the Blue Chip nowcasts zT+1 become available after

period T , but prior to the release of yT+1. In view of (50), zT+1 provides information about

the latent states (sT+1, sT ) and the DSGE model parameters θ. Thus, p(sT+1, sT |θ, Y1:T ) and

p(θ|Y1:T ) should be replaced by p(sT+1, sT |θ, Y1:T , zT+1) and p(θ|Y1:T , zT+1), respectively. In

the remainder of this section we focus on p(sT+1, sT |θ, Y1:T , zT+1), assuming that

p(θ|Y1:T , zT+1) ≈ p(θ|Y1:T ). (51)

Thus, unlike in the work on conditional forecasting with Bayesian VARs by Waggoner and

Zha (1999), we disregard the information contents of the external nowcasts with respect

to the model parameters θ. This assumption is compelling in applications in which the

information in the sample Y1:T and prior distribution strongly dominates the information

contained in zT+1. For the SWπ model considered below, the shortest estimation sample

contains about 110 observations for 8 macroeconomic time series, whereas zT+1 is comprised

of only 3 observations.

We now turn our attention to the construction of p(sT+1, sT |θ, Y1:T , zT+1). Since we

adopted the convention that zT+1 provides information about y1,T+1 we can write without
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loss of generality

y1,T+1 = zT+1 + (y1,T+1 − zT+1) = zT+1 + ηT+1. (52)

An assumption about the joint distribution of zT+1 and ηT determine the joint distribution

of y1,T+1 and zT+1. For now, we consider two specific assumptions that we classify as Noise

and News. Under the Noise assumption the external information zT+1 is interpreted as a

noisy measure of y1,T+1, that is

Noise : zT+1 = y1,T+1 − ηT+1, y1,T+1 ⊥ ηT+1. (53)

Here ηT+1 is a measurement error that is independent (⊥) of the actual value y1,T+1. Under

the News assumption it is the nowcast zT+1 that is independent of the error term ηT+1

News : y1,T+1 = zT+1 + ηT+1, zT+1 ⊥ ηT+1. (54)

Such a correlation structure arises if, for instance, zT+1 is a conditional expectation of y1,T+1

given Y1:T and other information.

The Noise assumption can be easily incorporated into the Kalman-filter-based analysis

of the DSGE model. After the time T Kalman filter iterations have been completed and

p(sT |Y1:T , θ) has been computed, (53) is used as period T + 1 measurement equation. This

leads to the following algorithm:

Algorithm 3. Draws from the Predictive Distribution Conditional on External

Nowcast (Noise Assumption). [algo:preddrawsnowcastnoise] For j = 1 to nsim, select

the j’th draw from the posterior distribution p(θ|Y1:T ) and:

1. Use the Kalman filter to compute mean and variance of the distribution p(sT |θ(j), Y1:T ).

2. In period T+1 use Equation (53) as measurement equation for the nowcast zT+1 assum-

ing ηT+1 ∼ N(0, σ2
η). Use the Kalman filter updating to compute p(sT+1|θ(j), Y1:T , zT+1)

and generate a draw s
(j)
T+1 from this distribution.

3. Draw a sequence of innovations ε
(j)
T+2:T+H and, starting from s

(j)
T+1, iterate the state

transition equation (33) forward to obtain the sequence S
(j)
T+2:T+H .

4. Use the measurement equation (34) to compute Y
(j)
T+1:T+H based on S

(j)
T+1:T+H . �
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So far, we have assumed that the external information only pertains to observations

dated T + 1. Algorithm 3 has a straightforward generalization to the case in which the

external information spans multiple horizons, e.g. T + 1, . . . , T + H̄. Denoting this in-

formation by ZT+1:T+H̄ = {zT+1, . . . , zT+H̄}, Step 2 can be replaced by using the simula-

tion smoother described in Carter and Kohn (1994)) to generate a draw S
(j)

T+1:T+H̄
from

p(ST+1:T+H̄ |θ(j), Y1:T , ZT+1:T+H̄). Associated with each simulated sequence of latent states

S
(j)

T+1:T+H̄
is a sequence of structural shocks ε

(j)

T+1:T+H̄
. The distribution of the structural

shocks conditional on the external information has no longer mean zero. Thus, an external

nowcast of output growth that is larger than the DSGE model forecast might be rational-

ized by a particular combination of technology, government spending, and monetary policy

shocks.9

According to the News assumption in (54), the nowcast is interpreted as a predictive

distribution for y1,T+1 that incorporates both the information Y1:T used in the DSGE model

estimation as well as some additional, not explicitly specified information that has been

processed by the professional forecasters included in the Blue Chip survey. We will describe

an algorithm that is based on the following representation of the predictive density

p(yT+1|Y1:T , zT+1) =

∫
θ

[ ∫
ỹ1,T+1

p(yT+1|sT+1, θ)p(sT+1|ỹ1,T+1, Y1:T , θ) (55)

×p(ỹ1,T+1|Y1:T , zT+1)dỹ1,T+1

]
p(θ|Y1:T ).

We assume that conditional on the Blue Chip nowcast Y1:T contains no additional information

that is useful for predicting y1,T+1, that is,

p(ỹ1,T+1|Y1:T , zT+1) = p(ỹ1,T+1|zT+1) (56)

and the density on the right-hand-side is given by (54). The density p(sT+1|ỹ1,T+1, Y1:T , θ)

in (55) captures the information about the latent state sT+1, accounting through ỹ1,T+1 for

the information contained in zT+1. Since the DSGE model is represented as a linear Gaussian

state-space model, the one-step-ahead forecast generated by (55) of y1,T+1 equals zT+1. The

following algorithm implements the conditional forecast.

9Beneš, Binning, and Lees (2008) interpret the likelihood of the structural shocks that are needed to

attain the path of observables implied by the external information as a measure of how plausible this external

information is in view of the model.
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Algorithm 4. Draws from the Predictive Distribution Conditional on External

Nowcast (News Assumption). [algo:preddrawsnowcastnews] For j = 1 to nsim, select

the j’th draw from the posterior distribution p(θ|Y1:T ) and:

1. Use the Kalman filter to compute mean and variance of the distribution p(sT |θ(j), Y1:T ).

2. Generate a draw ỹ
(j)
1,T+1 from the distribution p(ỹ1,T+1|Y1:T , zT+1) using (54), assuming

ηT+1 ∼ N(0, σ2
η).

3. Treating ỹ
(j)
1,T+1 as observation for y1,T+1 use the Kalman filter updating step to compute

p(sT+1|θ(j), Y1:T , ỹ
(j)
1,T+1) and generate a draw s

(j)
T+1 from this distribution.

4. Draw a sequence of innovations ε
(j)
T+2:T+H and, starting from s

(j)
T+1, iterate the state

transition equation (33) forward to obtain the sequence S
(j)
T+2:T+H .

5. Use the measurement equation (34) to obtain Y
(j)
T+1:T+H based on S

(j)
T+2:T+H .

Using (56) in Step 2 of Algorithm 4, we impose that ỹ1,T+1 ∼ N(zT+1, σ
2
η). This step

can be modified to allow for a more general conditional distribution of ỹ1,T+1. For instance,

instead of imposing that the conditional mean of ỹ1,T+1 equals the Blue Chip nowcast zT+1,

one could use a weighted average of the Blue Chip nowcast and the one-step-ahead DSGE

model forecast from p(y1,T+1|Y1:T , θ). Finally, hard conditioning on external nowcasts, i.e.

imposing the equality y1,T+1 = zT+1, can be implemented by setting σ2
η = 0. In this case

Algorithms 3 and 4 are identical.

We now use Algorithm 3 to incorporate information from Blue Chip nowcasts of output

growth, inflation, and interest rates into the DSGE model forecasts. We refer to the resulting

forecasts as SWπ-now. The vector of measurement errors σ2
η in (53) associated with the Blue

Chip nowcasts are calibrated to match the size of the nowcast error. Figure 7 depicts RMSEs

for SWπ and SWπ-now forecasts as well as the Blue Chip forecasts. The top panels of the

figure depict RMSEs for output growth, inflation, and interest rates, which are the three

series for which we add external information. At the nowcast horizon h = 1 the RMSEs

associated with SWπ-now and Blue Chip forecasts are essentially identical and dominate

the SWπ forecasts by a considerable margin. The nowcasts reduce the RMSEs of output

growth forecasts horizon h = 1 from 0.58% to 0.43%, but essentially have no effect on RMSEs
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Figure 7: Using Inflation Expectations and External Nowcasts

Blue Chip vs SW with long run inflation expectations (SWπ) vs
SW with long run inflation expectations and nowcast (SWπnow)
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Notes: The figure compares the one through eight quarters-ahead RMSEs for Blue Chip (diamonds), the SW model with

observed long run inflation expectations (SWπ, squares) and the SW model with observed long run inflation expectations and

output growth, inflation, and interest rate nowcasts (SWπ-now, crosses) for output growth, inflation, interest rates, consumption,

investment, and real wage growth. The comparison is done for the same vintages/forecast dates as the Blue Chip/DSGE

comparison discussed in section 4.3. All variables are expressed in terms of QoQ rates in percentage. Section 4.1 provides the

details of the forecast comparison exercise.

for h > 1. At horizons h = 2 and h = 3 the Blue Chip forecasts dominate the SWπ-now

forecasts. This ranking is reserved for horizons h > 3.
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The positive effect of the external information on inflation and interest rate forecasts is

more persistent. For instance, for h = 1 the interest rate RMSE is reduced from 0.12 (SWπ)

to 0.01 (SWπ-now). For h = 4 the RMSE is lowered from 0.35 (SWπ) to 0.31 (SWπ-now).

For horizons h = 2 to h = 5 the Blue Chip interest rate forecasts remain more accurate than

the SWπ-now forecasts. For inflation, on the other hand, SWπ predictions weakly dominate

Blue Chip forecasts at all horizon. Although the Blue Chip nowcasts include no information

about consumption and investment growth, we observe a RMSE reduction for h = 1. To the

extent that the joint predictive distribution correctly captures non-zero correlations between

output, inflation, and interest rates on the one hand and consumption and investment growth

on the other hand, information about the first set of variables can sharpen the predictions

for the second set of variables.

A number of alternative approaches of incorporating external information in DSGE

model forecasts have been considered in the literature. Herbst and Schorfheide (2011) take

the output of a simulator that generates draws from the unconditional predictive density,

e.g. Algorithm 2, and use Kernel weights to convert draws from the unconditional predictive

density into draws from a predictive density. This nonparametric approach can in princi-

ple be applied to draws from any kind of joint predictive distribution to hard-condition on

y1,T+1 = zT+1. However, if the dimension of zT+1 is moderately large or if the external now-

cast lies far in the tails of the model-implied predictive distribution p(Y1,T+1|Y1:T ) a precise

Kernel-based approximation of the conditional distribution could require a large number

of draws from the predictive distribution p(yT+1:T+H |Y1:T ). One benefit of the Kernel-based

method is that the posterior distribution of θ implicitly also is updated in light of the external

information zT+1.

Robertson, Tallman, and Whiteman (2005) propose a nonparametric method that allows

users to soft-condition on external information. Rather than imposing that y1,T+1 = zT+1,

the authors’ goal is to impose the restriction E[y1,T+1] = zT+1. Building on insights from

the empirical likelihood literature, see Owen (2001), the authors apply an exponential tilt-

ing procedure to the draws from the unconditional predictive distribution p(YT+1:T+H |Y1:T ).

Each draw Y
(j)
T+1:T+H receives a weight wj such that the empirical distribution associated

with the weighted draws minimizes the Kullback-Leibler distance to the unweighted empir-

ical distribution subject to the moment constraint
∑nsim

j=1 wjy
(j)
1,T+1 = zT+1. The procedure

allows the user to remain agnostic about all aspects of the distribution of ηT+1 in (54), except
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the constraint E[ηT+1] = 0.

Monti (2010) develops an approach of incorporating external professional forecasts into

a DSGE model, which combines aspects of what we previously referred to as news and

noise assumption. She assumes that the professional forecasters have additional information

(news) about the structural shocks that are hitting the economy in the current period.

However, the professional forecasters also add some personal judgement to their forecasts

which works like a noise term. Monti (2010) derives a set of measurement equations for

current period observations and multi-step professional forecasts and estimates the DSGE

model on this joint information. Rather than conditioning on external forecasts, Giannone,

Monti, and Reichlin (2009) directly incorporate monthly information in the estimation of a

DSGE model. In a nutshell, the authors first estimate the DSGE model parameters based

on the usual quarterly observations and then transform the state-transition equations to

monthly frequency. In addition to the usual quarterly variables, the authors then also use

monthly variables to make inference about the current state of the economy and to improve

the accuracy of short-horizon forecasts.

5.4 Incorporating Interest Rate Expectations

[subsec:interestrateexpectations] Discrepancies between DSGE model-based interest rate fore-

casts on the one hand and external forecasts or financial-market based expectations of future

interest rates pose a challenge for the DSGE model analysis, in particular, if it is evident

that the latter are more accurate than the former. The state-space representation of the

DSGE model given by (33) and (34) implies that

E[yt+h|st] = ψ0(θ) + Ψ1(θ)(t+ h) + Ψ2(θ)[Φ1(θ)]
hst.

Thus, adding observations that are equated with the DSGE model-implied expectations

of endogenous variables generates a singularity problem because there are fewer shocks in

the model than observables in the measurement equation. In Section 5.1 we overcame the

singularity problem by adding an additional structural shock to the model: we replaced

the constant target inflation rate by a stochastically varying target inflation rate which was

driven by a new innovation επ∗,t. We followed a similar approach in Section 5.2 by adding a

shock to the growth rate of technology. In this section we will introduce so-called anticipated
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monetary policy shocks to absorb discrepancies between observed and DSGE-model-implied

interest rate expectations.

Equation (16) characterizes the monetary policy rule for the SW model with constant

target inflation rate and (44) is the modified version with the time-varying inflation target.

The disturbance rm
t captures deviations from the systematic part of the policy rule. While

in many DSGE models these deviations are assumed to be iid, the SW model allows for a

serially correlated process:

rm
t = ρrmrm

t−1 + σrmεmt . (57)

We now augment the process rm
t by anticipated shocks that capture future expected devia-

tions from the systematic part of the monetary policy rule:

rm
t = ρrmrm

t−1 + σrmεmt +
K∑

k=1

σrm,kε
m
k,t−k, (58)

where the policy shocks εmk,t−k, k = 1, . . . , K, are known to agents at time t − k, but affect

the policy rule with a k period delay in period t. Thus, agents are assumed to expect certain

deviations from the systematic part of the interest-rate feedback rule several quarters in

advance.

To the extent that the SWπ-now model with a policy rule given by (44) and (57) is

unable to match the observed interest rate expectations in the data (see Figure 7), the

anticipated monetary policy shocks can absorb the discrepancies between actual and DSGE

model-implied expectations. As central banks around the world have been experimenting

with so-called forward guidance, that is, sending signals about the future path of interest

rates, we would expect the external interest rates forecasts to become more accurate and

the use of anticipated shocks to rationalize the interest rate expectations in DSGE models

to become attractive and plausible.

It is convenient to express the anticipated shocks in recursive form. For this purpose, we

augment the state vector st with H̄ additional states νm
t ,. . . ,νm

t−H̄
whose law of motion is as

follows:

νm
1,t = νm

2,t−1 + σrm,1ε
m
1,t, νm

2,t = νm
3,t−1 + σrm,2ε

m
2,t, . . . νm

K,t = σrm,Kε
m
K,t (59)

and rewrite the process rm
t in (58) as

rm
t = ρrmrm

t−1 + σrmεmt + νm
1,t−1. (60)
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Figure 8: Using Inflation Expectations, External Nowcasts, and Interest Rate Expectations

Blue Chip vs SW with long run inflation expectations and nowcast (SWπ-now)
vs SW with long run inflation and interest rate

expectations, and nowcast (SWπ-R-now)
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Notes: The figure compares the one through eight quarters-ahead RMSEs for the SW model with observed long run inflation

expectations and output growth, inflation, and interest rate nowcasts (SWπ-now, crosses) and the SW model with observed

long run inflation and interest rate expectations and nowcasts (SWπR-now, diamonds) for output growth, inflation, interest

rates, consumption, investment, and real wage growth. The comparison is done for the same vintages/forecast dates as the Blue

Chip/DSGE comparison discussed in Section 4.3. All variables are expressed in terms of QoQ rates in percentage. Section 4.1

provides the details of the forecast comparison exercise.
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Table 5: Blue Chip Forecast Dates and Nowcast Information and Interest Rate Expectations

for 1992

Forecast End of Est. External Interest Rate Exp Forecast

Origin Sample T Nowcast T + 1 Re
T+2|T+1, . . . , R

e
T+5|T+1 h = 1 h = 2

Apr 92 91:Q4 92:Q1 based on Apr 92 BC 92:Q2 - 93:Q1 92:Q1 92:Q2

Jul 92 92:Q1 92:Q2 based on Jul 92 BC 92:Q3 - 93:Q2 92:Q2 92:Q3

Oct 92 92:Q2 92:Q3 based on Oct 92 BC 92:Q4 - 93:Q3 92:Q3 92:Q4

Jan 93 92:Q3 92:Q4 based on Jan 93 BC 93:Q1 - 93:Q4 92:Q4 93:Q1

It is easy to verify that νm
1,t−1 =

∑K
k=1 σrm,kε

m
k,t−k, that is, νm

1,t−1 is a “bin” that collects all

anticipated shocks that affect the policy rule in period t. The model’s solution can then

again be expressed in terms of the transition equation (33).

While one could in principle estimate the anticipated shock model based on an augmented

data set that includes interest rate expectations, we start from estimates of the SWπ model

based on Y1:T and then switch to the anticipated shocks model, denoted by SWπR-now, to

generate forecasts. This shortcut facilitates the comparison between forecasts from the SWπ-

now and the SWπR-now because the forecasts are generated based on the same posterior

distribution of DSGE model parameters θ.10 The timing of the forecasts and the external

information is explained in Table 5. The first three columns are identical to Columns 1 to 3

of Table 4. Consider the forecast origin that corresponds to the July 1992 Blue Chip release.

The July 10 Blue Chip Economic Indicator survey is based on forecasts that were generated

at the end of June. At this point, the forecasters essentially know the average interest rate

for 1992:Q2, which is period T + 1. We interpret Blue Chip interest forecasts for 1992:Q3

through 1993:Q2 as observations of interest rate expectations Re
T+2|T+1 to Re

T+5|T+1:

Re
T+1+k|T+1 = R∗ + IET+1 [RT+1+k] , k = 1, . . . . (61)

R∗ is the steady state interest rate and IET+1 [RT+1+k] is the DSGE model-implied k-period-

ahead interest rate expectation.

10We do not have estimates for the standard deviations σrm,k of the anticipated shocks. In the imple-

mentation, we assume that these shocks have the same standard deviation as the contemporaneous shock:

σrm,k = σrm .
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Federal funds rate expectations are taken from Blue Chip Financial Forecasts survey,

which is published on the first of each month.11 They are given in annual rates and are

transformed in the same manner as the interest rate series in the estimation sample:

Re
T+1+k|T+1 = BLUE CHIP k-QUARTERS AHEAD FFR FORECAST/4.

Since Blue Chip Financial Forecasts extend to at most two calendar year including the current

one, the horizon k for the interest forecasts varies from seven to five quarters, depending on

the vintage. We use all available data. In addition to the interest rate expectations, we also

incorporate the Blue Chip nowcasts into the forecasting procedure, using the Noise approach

described in Section 5.3. This leads to the following algorithm to generate draws from the

predictive distribution:

Algorithm 5. Draws from the Predictive Distribution Conditional on External

Nowcast (Noise Assumption) and Interest Rate Expectations. [algo:preddrawsinterestexpect]

For j = 1 to nsim, select the j’th draw from the posterior distribution p(θ|Y1:T ) and:

1. Based on the DSGE model without anticipated shocks, use the Kalman filter to com-

pute mean and variance of the distribution p(sT |θ(j), Y1:T ).

2. Forecast the latent state sT+1 based on T information using the DSGE model without

anticipated shocks.

3. Switch to DSGE model with anticipated shocks. Augment the state vector by the

additional state variables νm
1,t, . . . , ν

m
K,t. Set mean and variances/covariances of these

additional states to zero. Denote the augmented state vector by s̃t.

4. Adjust the measurement equation such that it lines up with the available Blue Chip

nowcasts, zT+1, as well as the interest rate expectations Re
T+2|T+1, . . . , R

e
T+5|T+1. Use

the Kalman filter updating to compute p(s̃T+1|θ(j), Y1:T , zT+1, R
e
T+2|T+1, . . . , R

e
T+5|T+1)

Generate a draw s̃
(j)
T+1 from this distribution.

5. Draw a sequence of innovations ε
(j)
T+2:T+H and, starting from s̃

(j)
T+1, iterate the state

transition equations of the DSGE model forward to obtain a sequence S̃
(j)
T+2:T+H .

11There is a ten day gap between the BCFF and the BCEI survey, so the two are not quite based on the

same information set. Also, the survey participants are not the same, although there is a substantial overlap.

We ignore these differences. We thank Stefano Eusepi and Emanuel Mönch for providing us with this data,

and their RA, Jenny Chan, for helping us find out how they were constructed.
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6. Use the measurement equation to obtain Y
(j)
T+1:T+H based on S̃

(j)
T+1:T+H .

In Figure 8 we compare forecasts from the SWπ-now model, which only utilizes current

quarter interest rates, and the model that utilizes interest rate expectations up to four quar-

ters ahead, SWπR-now. The interest-rate expectations modify the DSGE model forecasts

as follows. The use of interest-rate expectations in the measurement equation affects the

inference about the latent state s̃T+1 in Step 4 of Algorithm 5. This latent state vector has

two components, namely sT+1 and the additional state variables νm
k,t, k = 1, . . . , K, specified

in (59). Since the anticipated monetary policy shocks only affect the exogenous component

of the monetary policy rule, the output growth, inflation, and interest rate dynamics gen-

erated by the reversion of sT+1 to its steady state of zero are the same as in the SWπ-now

model. However, the inferred period T + 1 level of the state vector differs across models. In

addition, the forecasts of the SWπR-now model are influenced by the impulse-responses to

the anticipated monetary policy shocks that align the model-based interest rate forecasts in

period T + 1 with the observed interest rate expectations.

The use of interest-rate expectations reduces the RMSE for the Federal Funds rate for

horizon h = 2 to h = 5. For instance, while the RMSE associated with the SWπ-now model

is 0.23% for h = 2, it drops to 0.14% if interest rate expectations are included. Unfortunately,

the interest rate expectations have an adverse effect on output growth and inflation forecasts.

For instance, at h = 3 the output growth RMSE rises from 0.63% to 0.68% and the inflation

RMSE increases from 0.25% to 0.27%. While consumption and real wage growth forecasts

also deteriorate over the two- to five-quarter horizon, only the investment growth forecast

improves. For h = 2 the investment growth RMSE for the SWπ-now model is 2.15% whereas

it is only 1.95% for the SWπR-now model. While it is difficult to disentangle which feature

of SWπR-now is responsible for the observed deterioration in the forecast performance, we

provide a detailed discussion of responses to anticipated monetary policy shocks in the next

section.

6 Forecasts Conditional on Interest Rate Paths

[sec:forecastgivenR] In this section we are generating forecasts conditional on a particular

interest path. In particular, we assume that in periods t = T + 1, . . . , T + H̄ the interest
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rate takes (in expectation or actually) the values R̄T+1, . . ., R̄T+H̄ , where H̄ ≤ H. We

consider two methods: using unanticipated monetary policy shocks (Section 6.2) and using

anticipated monetary policy shocks (Section 6.3). Before engaging in conditional forecasting,

we briefly review the effects of monetary policy shocks in a simple DSGE model (Section 6.1)

and provide impulse response functions for the SWπ model. At last, we provide an empirical

illustration of conditional forecasting (Section 6.4).

6.1 The Effects of Monetary Policy Shocks

[subsec:mpolshocks] In order to understand the effects of unanticipated and anticipated mon-

etary policy shocks, we begin by solving an analytical example.12 The subsequent example

is based on a further simplification of the small-scale model presented in Section 2.3. The

simplified version of the model consists of the linearized Euler equation:

yt = E[yt+1]− (Rt − E[πt+1]) , (62)

a Phillips curve,

πt = βE[πt+1] + κyt, (63)

and a monetary policy rule with unanticipated and anticipated monetary policy shocks:

Rt =
1

β
πt + εRt +

K∑
k=1

εRk,t−k. (64)

As in Section 5.4, we use εRk,t−k as a shock that is realized in period t − k and affects the

interest rate k periods later. The inflation coefficient in the policy rule is restricted to be

equal to 1/β, which facilitates the analytical solution of the model.

We first determine the law of motion of output. The Euler equation (62) implies that

output is the sum of expected future real rates. Of course future real rates are endogenous and

further manipulations are needed to express output as the sum of expected future monetary

policy shocks. Using (64) to eliminating the nominal interest rate from the Euler equation

yields

yt = Et[yt+1]−
(

1

β
πt − Et[πt+1]

)
− εRt −

K∑
k=1

εRk,t−k. (65)

12See also Milani and Treadwell (2011) for a discussion and some empirical results.
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The restriction imposed on the inflation coefficient in the monetary policy rule implies that

we can express next period’s real return on a nominal bond as a function of current output.

More specifically, we can re-write the Phillips curve (63) as

1

β
πt − E[πt+1] =

κ

β
yt (66)

and combine (66) with (65) to obtain

yt = E[yt+1]−
κ

β
yt − εRt −

K∑
k=1

εRk,t−k. (67)

Defining ψ = (1 + κ/β)−1 and solving (67) forward yields

yt = −ψEt

[
∞∑

j=0

ψj

(
εRt+j +

K∑
k=1

εRk,t+j−k

)]
.

Since the expected value of εRk,t+j is zero for j > 0 we deduce

yt = −ψ

(
εRt +

K∑
k=1

εRk,t−k +
K∑

j=1

K∑
k=j

ψjεRk,t+j−k

)
. (68)

This equation implies that the impulse response function for a K-period anticipated shock

takes the form
∂yt+h

∂εRK,t

=
∂yt

∂εRK,t−h

= −ψ1+K−h, h = 0, . . . , K (69)

and is zero thereafter. The anticipated monetary policy shock raises the expected real return

on government bonds and through the consumption Euler equation leads to a decrease in

output. Output drops upon impact. Since 0 < ψ < 1 the output effect increases over time

and peaks at −ψ K periods after impact, before it drops to zero.

The law of motion of inflation can be obtained by solving (63) forward. After calculating

Et[yt+i] based on (68), it can be shown that inflation has the representation

πt = −κψ

(
εRt +

K∑
k=1

εRk,t−k +
K∑

j=1

K∑
k=j

ψjεRk,t+j−k

)
(70)

−κψ
K∑

i=1

βi

(
K∑

k=i

εRk,t+i−k +
K∑

j=1

K∑
k=j+i

ψjεRk,t+i+j−k

)
.
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It can be verified that inflation responds to a K-period anticipated shock according to

∂πt+h

∂εRK,t

=
∂πt

∂εRK,t−h

= −κψ

(
ψK−h + βK−h + ψK−h

K−1−h∑
i=1

(
β

ψ

)i
)
, h = 0, . . . , K, (71)

where β/ψ = β+κ. Inflation also drops on impact of the anticipated monetary policy shock

and remains below steady state until period t+K, after which it reverts to zero. The shape

of the inflation response depends on whether β+κ is less than or greater than unity. Finally,

the law of motion of the interest rates is obtained by plugging (70) into the monetary policy

rule (64). The anticipated future increase in interest rates leads to a drop in interest rates

prior to h = K because the central bank lowers interest rates in response to the below-target

inflation rate.

We now compute impulse response functions of interest rates, output growth, and in-

flation to an unanticipated and an anticipated contractionary policy shock based on the

estimated SWπ model. This model exhibits more elaborate dynamics than the simple ana-

lytical model. The impulse response functions depicted in Figure 9 are computed using the

posterior mode estimates from the May-2011 vintage. The anticipated shock is known to

the agents in the model k = 6 periods in advance. The size of both shocks is the same, and

equal to the estimated standard deviation of the unanticipated shocks.

The response to the unanticipated monetary policy shock (top panels) follows the familiar

pattern. Interest rates rise by about 16bp, whereas output falls by 25bp upon impact. Over

time, output growth reverts back to zero and eventually becomes negative, as the long-run

effect of an unanticipated shock on the level of output is zero. Inflation falls by 5bp and

slowly reverts back to zero. The strong response of output relative to inflation is a reflection

of the magnitude of estimated nominal rigidities in the model.

As foreshadowed by the analytical calculations, the effect of the anticipated policy shock

is quite different from the response to the unanticipated shock. To understand the pattern it

is helpful to reconsider (69) and (71). Upon impact, the anticipated monetary policy shock

lowers output and inflation, and via the systematic part of the monetary policy rule also

interest rates. This pattern is also evident in the bottom panels of Figure 9. Output and

inflation drop by 15bp and 8bp, respectively, interest rates fall by 5bp due to the endogenous

policy response. In the simple analytical model output keeps on falling after the impact of

the anticipated policy shock because 0 < ψ < 1. This implies that output growth remains
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Figure 9: Impulse Responses to Anticipated and Unanticipated Policy Shocks
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Notes: The figure shows the impulse response functions of interest rates, output growth, and inflation to a one-standard

deviation unanticipated (top panel) and anticipated (bottom panel) policy shock. The anticipated shock is known to agents six

periods in advance. The impulse responses are computed using the modal estimates for the last available vintage (May 2011)

for model SWπ.

negative, which we also see in Figure 9. According to (71) the shape of the inflation response

is ambiguous. The SWπ produces a hump-shaped response that reaches its trough at h = 2.

The interest rate jumps after six periods, when the anticipated deviation from the rule is

actually realized. Unlike the simple analytical model, the SWπ model has endogenous state

variables, which generate fairly persistent dynamics even after the policy shock is realized.

Generally, the effect of the anticipated shock on output is much more persistent than

that of the unanticipated shock. Since inflation depends on the present discounted value of
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future marginal costs, this persistence implies that the impact on inflation is almost twice as

strong, even though the size of the shock is the same. After having examined the responses

to unanticipated and anticipated monetary policy shocks, we now turn to the problem of

generating forecasts conditional on a desired interest-rate path by the central bank.

6.2 Using Unanticipated Shocks to Condition on Interest Rates

[subsec:unanticipatedshocks] Many central banks generate model-based forecasts conditional

on hypothetical interest rate paths. One popular scenario in policy discussions is the

constant-interest-rate scenario which assumes that the nominal interest rate stays fixed at

its current level over the forecast horizon. Since in DSGE models as well as vector autore-

gressive models interest rates are endogenous, it is by no means guaranteed that the model

predicts the interest rate to be constant. For concreteness, suppose that the current level

of the nominal interest rate is 2% and the posterior mean predictions for periods T + 1 and

T +2 are 2.25% and 2.50%, respectively. In this case, a constant-interest rate path would, in

the logic of the DSGE model, require an intervention that lowers the interest rate by 25bp

in period T + 1 and by 50bp in period T + 2.

One approach of generating forecasts conditional on hypothetical interest rate with

DSGE models is to utilize a sequence of unanticipated monetary policy shocks as in Leeper

and Zha (2003) and Smets and Wouters (2005). Mechanically, it is straightforward to com-

pute such forecasts. Without loss of generality assume that the interest rate Rt is ordered

first in the vector yt, that is, y1,t = Rt. Moreover, use ε<−p>
t to denote the sub-vector of εt

that contains all structural innovations, except for the monetary policy innovation that is

used to attain the desired interest rate path. Lastly, assume that the monetary policy shock

εpt is ordered first, such that εt = [εpt , ε
<−p>′

t ]′. Typically, the policy shock εpt would correspond

to a short-lived deviation from the systematic part of the monetary policy rule, but in the

SWπ model εpt could also correspond to the innovation of the target-inflation process.

Let R̄T+1, . . . , R̄T+H̄ denote the desired interest rate path, where H̄ ≤ H. Using the

unanticipated monetary policy shocks we can modify the predictive density in two ways: (i)

the expected value of the interest rates in periods T+1, . . . , T+H̄ is equal to R̄t+1, . . . , R̄T+H̄ ;

(ii) the simulated values of the interest rates along each trajectory are exactly equal to
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R̄t+1, . . . , R̄T+H̄ . The following algorithm can be used to generate draws from the predictive

distribution conditional on the desired interest rate path.

Algorithm 6. Draws from the Counterfactual Predictive Distribution via Unan-

ticipated Shocks. [algo:pred:unanticipatedshocks] For j = 1 to nsim, select the j’th draw

from the posterior distribution p(θ|Y1:T ) and:

1. Use the Kalman filter to compute mean and variance of the distribution p(sT |θ(j), Y1:T ).

Generate a draw s
(j)
T from this distribution.

2. Draw a sequence of innovations ε
<−p>(j)
T+1:T+H for the non-policy shocks.

3. Case (i): Compute the sequence ε̄pt , t = T + 1, . . . , T + H̄ as follows. For t = T + 1

to t = T + H̄:

(a) Determine ε̄pt as the solution to

R̄t = Ψ1.,1(θ
(j)) + Ψ1.,1(θ

(j))t+ Ψ1.,2(θ
(j))
(
Φ1(θ

(j))st−1 + Φε(θ
(j))[ε̄pt , 0]′

)
.

(b) Let st = Φ1st−1 + Φε[ε̄
p
t , 0]′.

Case (ii): Compute the sequence ε̄pt , t = T + 1, . . . , T + H̄ as follows. For t = T + 1

to t = T + H̄:

(a) Determine ε̄pt as the solution to

R̄t = Ψ1.,1(θ
(j)) + Ψ1.,1(θ

(j))t+ Ψ1.,2(θ
(j))
(
Φ1(θ

(j))st−1 + Φε(θ
(j))[ε̄pt , ε

<−p>(j)
t ]′

)
.

for ε̄pt .

(b) Let st = Φ1st−1 + Φε[ε̄
p
t , ε

<−p>(j)
t ]′.

4. Starting from s
(j)
T , iterate the state transition equation (33) forward to obtain a se-

quence s
(j)
T+1:T+H :

s
(j)
t = Φ1(θ

(j))s
(j)
t−1 + Φε(θ

(j))[εpt , ε
<−p>(j)′

t ]′, t = T + 1, . . . , T +H.

For t = T + 1, . . . , T + H̄ use εpt = ε̄pt . For t > T + H̄, generate a draw εpt ∼ N(0, 1).

5. Use the measurement equation (34) to compute y
(j)
T+1:T+H based on s

(j)
T+1:T+H . �
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There are two conceptual drawbacks associated with the use of unanticipated monetary

policy shocks. First, if the interest rate path R̄T+1:T+H̄ is credibly announced by the central

bank, then the deviations from the systematic part of the monetary policy rule are not

unanticipated. Consequently, the use of unanticipated monetary policy shocks might lead

to inaccurate predictions. Second, suppose that the interest rate path is not announced

to the public but its implementation requires a sequence of strongly positively correlated

unanticipated monetary policy shocks. Over time, the agents in the DSGE model might

be able to detect the persistence in the deviation from the systematic part of the monetary

policy rule and suspect that the policy rule itself might have changed permanently, which,

in turn, creates an incentive to update decision rules. Of course, none of this is captured in

the DSGE model itself. Leeper and Zha (2003) recommend to analyze the effect of monetary

policy interventions with unanticipated shocks only if the interventions are modest. Here

modest essentially means that in a larger model in which agents assign positive probability to

occasional shifts in policy regimes, the intervention would not trigger the learning mechanism

and lead the agent to belief that the policy regime has shifted.

6.3 Using Anticipated Shocks to Condition on Interest Rates

[subsec:anticipatedshocks] More recently, the literature has considered the use of anticipated

monetary policy shocks to generate forecasts conditional on an interest rate path that de-

viates from the model-implied path, e.g. Laseen and Svensson (2011), Blake (2011), and

Milani and Treadwell (2011). This approach is appealing because several central banks have

changed their communication strategy and started to announce interest rate paths. Con-

sider the modified policy rule (58) that includes anticipated shocks εRk,t−k as discussed in

Section 5.4.

Suppose that after time T shocks are realized, the central bank announces the interest

rate path. For the agents the announcement in a one-time surprise in period T + 1, which

corresponds to the realization of a single unanticipated monetary policy shock εRT+1 and a

sequence of anticipated shocks

εR1:K,T+1 =
[
εR1,T+1, ε

R
2,T+1, . . . , ε

R
K,T+1

]′
,

where K = H̄ − 1. Notice that unlike in Section 6.2 all policy shocks that are used to

implement the interest rate path are dated T + 1. We will subsequently use εt to denote
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the vector that collects the innovation of the unanticipated shocks and εR1:K,t, the vector

of anticipated shocks. In slight abuse of notation, we denote the expanded state vector

that includes cumulative effects of anticipated shocks, see (59), also by st and use the same

notation for the state transition equation, which is now driven by the combined innovation

vector [ε′t, ε
R′
1:K,t]

′. The following algorithm determines the time T +1 monetary policy shocks

as a function of the desired interest rate sequence R̄T+1, . . . , R̄T+H̄ to generate predictions

conditional on an announced interest rate path. The announced interest rate path will be

attained in expectation.

Algorithm 7. Draws from the Counterfactual Predictive Distribution via Antic-

ipated Shocks. [algo:predanticipatedshocks] For j = 1 to nsim, select the j’th draw from

the posterior distribution p(θ|Y1:T ) and:

1. Use the Kalman filter to compute mean and variance of the distribution p(sT |θ(j), Y1:T ).

Generate a draw s
(j)
T from this distribution.

2. Draw a sequence of innovations ε
(j)
T+1:T+H .

3. Consider the following system of equations, omitting the θ(j) argument of the system

matrices:

R̄T+1 = Ψ1.,0 + Ψ1.,1(T + 1) + Ψ1.,2Φ1sT + Ψ1.,2Φε[ε̄
R
T+1, 0, . . . , 0︸ ︷︷ ︸

ε′T+1

, ε̄R
′

1:K,T+1]
′

R̄T+2 = Ψ1.,0 + Ψ1.,1(T + 2) + Ψ1.,2(Φ1)
2sT + Ψ1.,2Φ1Φε[ε̄

R
T+1, 0, . . . , 0︸ ︷︷ ︸

ε′T+1

, ε̄R
′

1:K,T+1]
′

...

R̄T+H̄ = Ψ1.,0 + Ψ1.,1(T + H̄) + Ψ1.,2(Φ1)
H̄sT + Ψ1.,2(Φ1)

H̄−1Φε[ε̄
R
T+1, 0, . . . , 0︸ ︷︷ ︸

ε′T+1

, ε̄R
′

1:K,T+1]
′

This linear system of H̄ equations with H̄ unknowns can be solved for for ε̄RT+1 and

ε̄R1:K,T+1.

4. Starting from s
(j)
T , iterate the state transition equation (33) forward to obtain a se-
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quence s
(j)
T+1:T+H :

s
(j)
t = Φ1(θ

(j))s
(j)
t−1 + Φε(θ

(j))[εRt , ε
<−R>′

t︸ ︷︷ ︸
ε′t

, εR
′

1:K,t]
′, t = T + 1, . . . , T +H,

where (i) ε<−R>
t = ε

<−R>(j)
t for t = T + 1, . . . , T + H̄ (we are using simulated values

throughout); (ii) εRT+1 = ε̄RT+1 and εRt = ε
R(j)
t for t = T + 2, . . . , T + H̄ (use solved-for

value in period T + 1 and simulated values thereafter); (iii) εR1:K,T+1 = ε̄R1:K,T+1 and

εR1:K,t = 0 for t = T + 2, . . . , T + H̄ (use solved-for values in period T + 1 and zeros

thereafter).

5. Use the measurement equation (34) to compute y
(j)
T+1:T+H based on s

(j)
T+1:T+H . �

To shed some light on the algorithm it is instructive to revisit the analytical example of

Section 6.1. For K = 1 output, inflation, and interest rates are given by

yt = −ψ
(
εRt + εR1,t−1 + ψεR1,t

)
(72)

πt = −κψ
(
εRt + εR1,t−1 + (ψ + β)εR1,t

)
Rt = ψεRt + ψεR1,t−1 −

1

β
κψ(ψ + β)εR1,t.

Suppose that the central bank wants to raise interest rates by 25 basis points (bp) for periods

T +1 and T +2. The unanticipated policy shock εRT+1 and the anticipated policy shock εR1,T+1

are determined by solving the system

R̄T+1 = 0.25 = ψεRT+1 −
1

β
κψ(ψ + β)εR1,T+1

R̄T+2 = 0.25 = ψεR1,T+1.

For κ = 0.1 and β = 0.99, which leads to ψ = 0.91, the second equation implies that the

anticipated policy shock needs to be equal to εR1,T+1 = 0.275. The anticipated shock lowers

the interest rate in the first period by 2.5bp. To compensate for this effect, the unanticipated

monetary policy shock has to be equal to 30bp. Once the policy shocks have been determined,

Algorithm 7 amounts to simulating the system (72) holding the time T + 1 monetary policy

shocks fixed.

One can solve for the effect of a policy that raises interest rates 25bp above the steady

state level in periods T+1 and T+2 in an alternative manner. Since there is no persistence in



Del Negro, Schorfheide – DSGE Model Based Forecasting: February 29, 2012 61

the model, the economy returns to the rational expectations equilibrium in period t = T +3.

Thus, in the absence of further shocks yT+3 = πT+3 = RT+3 = 0. In turn, ET+2[yT+3] =

ET+2[πT+3] = 0. The Euler equation (62) for period T +2 implies that output is determined

by yT+2 = −RT+2. Using ET+2[πT+3] = 0 once more, the Phillips curve (63) implies that

πT+2 = κyT+2. Now that period T + 2 output and inflation are determined, (62) and (63)

can be solved to find yT+1 and πT+1 conditional on RT+1. The solution is identical to the

one obtained with the anticipated monetary policy shocks.

The effect of keeping the interest rate constant at, say R̄ = 25bp, for an extended

period of time can be determined by proceeding with the backward solution of the difference

equations:

yt−j = yt−j+1 − R̄ + πt−j+1, j = 0, 1, . . . , K

πt−j = (1 + β)πt−j+1 + yt−j+1 − R̄

As explained in detail in Carlstrom, Fuerst, and Paustian (2012) the backward iterations

generate explosive paths for output and inflation which leads to potentially implausibly large

initial effects of extended periods of fixed interest rates. In larger systems the explosive roots

could also be complex such that fixed interest rates cause oscillating dynamics. Carlstrom,

Fuerst, and Paustian (2012) interpret the explosive dynamics as a failure of New Keyne-

sian monetary DSGE models. This sentiment is shared by Blake (2011) who proposes an

alternative method of simulating DSGE models conditional on an interest rate path that is

pre-determined for H̄ periods. His solution evolves a modification that introduces indetermi-

nacy into the model and then selecting an equilibrium path that delivers a priori reasonable

responses.

In sum, it remains an open research question how to best generate DSGE model forecasts

conditional on a fixed interest rate paths. While, the use of anticipated shocks is appealing

at first glance and easy to implement, it might produce unreasonable dynamics. We view this

as a reason to exercise caution when generating predictions of interest rate announcements

and recommend to carefully examine the responses to anticipated monetary policy shocks

before engaging in this type of policy analysis.
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6.4 Forecasting Conditional on an Interest Rate Path: An Empir-

ical Illustration

[subsec:forecastgivenRillustration] Figure 10 provides an example of forecasting conditional

on an interest rate path, where the new path is implemented via anticipated policy shocks

using Algorithm 7. The figure shows the May-2011 vintage data for interest rates, output

growth, and inflation (black lines), the DSGE model mean forecasts for these variables

conditional on the Blue Chip expectations for the FFR (red solid lines), and the forecasts

conditional on the announcement that the quarterly FFR will instead be 0.25% for the next

four quarters (red dashed lines). The exercise is conducted with model SWπR.

Figure 10: Forecasting Conditional on an Interest Rate Path
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Notes: The figure shows the May 2011 vintage data for interest rates, output growth, and inflation (black lines), the DSGE

model mean forecasts for these variables conditional on the Blue Chip expectations for the FFR (red solid lines), and the

forecasts conditional on the announcement that the quarterly FFR will instead be .25% over the next four quarters (red dashed

lines). The exercise is conducted with model SWπ.

The left panel shows the expected interest rate path pre- and post-intervention. The

pre-intervention interest rate forecast (solid) incorporates the market Federal Funds rate

expectations for the subsequent six quarters, as measured by the Blue Chip forecasts avail-

able on May 10, 2011. Markets expect the interest rate to remain at (or near) the effective

zero lower bound through the end of 2011, and liftoff to occur only in 2012:Q1. The post-

intervention path (dashed line) captures the effect of an hypothetical announcement by the

monetary authorities that they intend to raise rates immediately. Specifically, the interven-

tion consists of an announcement at the beginning of period T + 1 (2011:Q2 in our case)
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that the quarterly FFR will be .25% (1% annualized) for the next four quarters (through

2012:Q1). In terms of the model mechanics, such an announcement amounts to a vec-

tor of time T + 1 unanticipated and anticipated shocks computed in such a way to obtain

RT+1 = IET+1[RT+2] = .. = IET+1[RT+4] = 0.25, as described in Algorithm 7.

Consistent with the impulse responses shown in Figure 9, the announcement that policy

will be more contractionary than expected leads to lower inflation and lower output growth.

The effect of the announcement on output growth is front-loaded, as we discussed in Sec-

tion 6.1. On impact (2011:Q2) the difference between the solid and dashed lines is about

75 basis points, that is, roughly 3% annualized. The difference narrows over the following

two quarters and is about zero in 2012:Q1, even though the difference in interest rates in

that quarter is almost as large as it was in 2011:Q2. After 2012:Q1 output growth following

the contractionary announcement is actually higher than otherwise. This is not surprising

in light of the fact that monetary policy is still neutral in this model. Slower growth in the

short-run must be compensated by higher growth later, since eventually the effect of the

announcement on the level of output must be zero. Nonetheless the post-intervention level

of output remains below the pre-intervention level at least through 2015, leading to lower

real marginal costs and lower inflation, as shown in the last panel of Figure 10.

7 Moving Beyond Point Forecasts

[sec:densforecast] Thus far, this paper has focused on point forecasts generated from DSGE

models and on how to improve their accuracy by using external information. For the remain-

der of this paper we will explore other aspects of DSGE model forecasts. First, an important

feature that distinguishes DSGE models from many other time series models, is that DSGE

models attribute macroeconomic fluctuations to orthogonal structural shocks. Thus, the

models can provide decompositions of historical time series as well as the predicted path of

the economy. We illustrate the use of shock decompositions in Section 7.1. Second, the al-

gorithms described in the preceding sections generate draws from the predictive distribution

which, as discussed in Section 3.2, can also be used to obtain interval or density forecasts.

In Section 7.2 we generate real-time density forecasts from the SWπ model as well as the

DSGE model with financial frictions introduced in Section 2.2 and examine the extent to

which the forecasts capture the evolution of output growth and inflation during the 2008-09
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recession. Third, in Section 7.3 we examine more systematically whether DSGE model den-

sity forecasts are well calibrated in the sense that stated probabilities are commensurable

with actual frequencies.

7.1 Shock Decompositions

[subsec:shockdecompositions] DSGE models deliver a structural interpretation for both the

history and the forecasts of macroeconomic time series. Figure 11 displays so-called shock

decompositions for output growth and inflation, that illustrate the contribution of the various

structural shocks to the historical and projected evolution of the two series. Before discussing

the results in detail, we present the algorithm that is used to construct the decomposition.

Algorithm 8. Draws from the Posterior Distribution of a Shock Decomposition.

[algo:shockdecomposition] For j = 1 to nsim, select the j’th draw from the posterior distri-

bution p(θ|Y1:T ) and:

1. Use the simulation smoother (see, for instance, the textbook by Durbin and Koopman

(2001) for a description) to generate a draw S
(j)
0:T from the distribution p(S

(j)
0:T |Y1:T , θ

(j)).

2. For each structural shock i = 1, . . . ,m (which is an element of the vector st):

(a) Compute the sequence of shock innovations ε
(j)
i,1:T , for instance, by solving s

(j)
i,t =

ρ
(j)
i s

(j)
i,t−1 + σ

(j)
i ε

(j)
i,t for ε

(j)
i,t .

(b) Define a new sequence of innovations e1:T (et is of the same dimension as εt)

by setting the i’th element ei,t = ε
(j)
i,t for t = 1, . . . , T and ei,t ∼ N(0, σ2

i ) for

t = T + 1, . . . , T +H. All other elements of et, t = 1, . . . , T +H, are set equal to

zero.

(c) Starting from s̃0 = s
(j)
0 , iterate the state transition equation (33) forward using

the innovations e1:T+H to obtain the sequence S̃
(j)
1:T+H .

(d) Use the measurement equation (34) to compute Ỹ
(j)
1:T+H based on S̃

(j)
1:T+H . �

In practice, researchers sometimes take some or all of the following short-cuts: the

parameter draws θ(j) are replaced by the posterior mean or mode, say θ̂; draws of the
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Figure 11: Shock Decompositions
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Notes: The shock decompositions for output growth (top) and inflation (bottom) are computed using model SWπ estimated

on the last available vintage (May 2011). The black and red lines represent the data and the forecasts, both in deviation from

the steady state. The colored bars represent the contribution of each shock to the evolution of the variables.
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sequence S
(j)
0:T are replaced by the mean of the distribution p(S0:T |Y1:T , θ̂); and future values

of ei,t (Step 2(b)) are set to zero.

The shock decomposition for output growth and inflation in Figure 11 is obtained from

the SWπ model based on the May-2011 data vintage and provides an interpretation of the

2008-09 recession through the lens of a DSGE model. The black and red lines represent

the data and the forecasts, both in deviations from the steady state. The colored bars

represent the contribution of each shock in the model to the evolution of the historical and

the projected path of the two series. The bars in Figure 11 show the posterior mean of

the output generated with Algorithm 8. The two shocks chiefly responsible for the drop in

output (top panel of Figure 11) are shocks that captures imperfections in financial markets,

namely the discount rate (b) and the marginal efficiency of investment (µ) shocks.

As discussed in Smets and Wouters (2007), the discount rate shock has similar effects

as a shock to the external finance premium in a model with explicit financial frictions as in

Section 2.2. This is evident from the no-arbitrage condition (18). All else equal, a negative

b shock coincides with an increase in the expected return of capital. Likewise, an increase

in the riskiness of entrepreneurial projects (positive σ̃ω shock) raises the spread between the

expected return on capital and the riskless rate. The µ shock captures, in a broad sense, the

headwinds from the crisis. More precisely, the shock shifts the efficiency with which savings

are turned into future capital, and therefore serves as a proxy for the efficiency of financial

intermediation (see Justiniano, Primiceri, and Tambalotti (2009)).

Wage mark-up (λw) and monetary policy (rm) shocks also play a significant role in

the 2008-09 recession. Wage mark-up shocks capture imperfections in the labor market,

whereas the monetary policy shocks capture unanticipated deviations from the systematic

part of the interest rate feedback rule. During the recession output and inflation were very

low compared to their target value. According to the systematic part of the interest-rate

feedback rule nominal interest rates should have been below zero during this period. Since

the linearized version of the DSGE model ignores the zero-lower-bound constraint on the

nominal interest rate, contractionary monetary policy shocks are necessary to rationalize

the observed 25bp interest rates. The contractionary monetary policy shocks contributed

to the depth of the recession. Finally, positive productivity shocks are the main drivers of

the recovery in GDP after the trough, which is consistent with the behavior of measured

productivity.
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The same shocks that drive fluctuations in economic activity – µ and b shocks – also

explain much of the business-cycle frequency movements in inflation. This is not surprising

in light of the New Keynesian Phillips curve. These shocks depress the level of output, and

therefore real marginal costs, for a long period of time, and consequently lead to inflation

below trend. Productivity shocks also play an important role, as positive shocks lead to

lower real marginal costs, ceteris paribus. High frequency movements in inflation, e.g., due

to oil price shocks, are captured by price mark-up shocks (λf ). Conversely, movements in

the inflation target (π∗), which are disciplined by the use of long-run inflation expectations

in the SWπ model, capture low frequency inflation movements.

Figure 11 is also helpful in explaining the forecasts. For instance, the SWπ model

forecasts above trend output growth throughout the forecast horizon largely because of b

and µ shocks: as the economy recovers from the Great Recession, the negative impact of

these shocks on the level of output diminishes, and this results in a boost in terms of growth

rates. Because of their protracted effect on economic activity, these shocks also keep inflation

lower than steady state.

7.2 Real-Time DSGE Density Forecasts During the Great Reces-

sion: A Post-Mortem

[subsec:densforecastcrisis] After having provided an ex-post rationalization of the 2008-09

recession in the previous section, we now examine ex-ante forecasts of the SWπ model as

well as two variants of the DSGE model with financial frictions discussed in Section 2.2,

henceforth SWπ-FF. Figure 12 shows the DSGE models’ and Blue Chip’s forecasts for output

growth (in Q-o-Q percent) obtained at three different junctures of the financial crisis that

lead to the recession. The dates coincide with Blue Chip forecasts releases: (i) October 10,

2007, right after turmoil in financial markets had begun in August of that year; (ii) July 10,

2008, right before the default of Lehman Brothers; and (iii) January 10, 2009, at or near the

apex of the crisis. Specifically, each panel shows the current real GDP growth vintage (black

line), the DSGE model’s mean forecasts (red line) and percentile bands of the predictive

distribution (shaded blue areas indicate 50% (dark blue), 60%, 70%, 80%, and 90% (light

blue) bands), the Blue Chip forecasts (blue diamonds), and finally the actual realizations

according to the May-2011 vintage (black dashed line).
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In interpreting the results, the reader should bear in mind that the information used

to generate the forecasts depicted in Figure 12 consists only of data that was available at

the beginning of October 2007, July 2008, and January 2009, respectively. For instance, by

January 10, 2009 the forecaster would have access to NIPA samples that end in 2008:Q3 data.

The information set of the Blue Chip forecasters, on the other hand, contains additional

information such as economic indicators for 2008:Q4, information from financial markets,

and a plethora of qualitative information provided by the media, speeches of government

officials, et cetera.

Each row of Figure 12 contains forecasts from a different model. We consider the SWπ

model, the SWπ-FF model, and a specification that we label as SWπ-FF-Current. The two

key differences between the SWπ and the SWπ-FF model are the introduction of financial

frictions as in Bernanke, Gertler, and Gilchrist (1999) and the use of the Baa-10 year Treasury

rate spread as an observable, which arguably captures distress in financial markets.13 The

difference between the SWπ-FF and the SWπ-FF-Current specification is that forecasts

from the latter also utilize the Federal Funds rate and spreads of the most recent quarter,

that is, of the quarter for which NIPA data is not yet available. For instance, the January

2009 SWπ-FF-Current forecast incorporates the average Federal Funds rate and the average

spread for 2008:Q4. At any point in time, the information used to generate predictions from

the SWπ-FF-Current model remains a subset of the information that has been available to

the Blue Chip forecasters.

The October 10, 2007, Blue Chip Consensus forecasts for output are relatively upbeat,

at or above 0.5% Q-o-Q, that is, 2% annualized, as shown in the panels in the first column of

Figure 12. The SWπ forecasts are less optimistic, especially in the short run. The model’s

mean forecasts for output growth are barely above zero in 2008:Q1, with a non-negligible

probability of sustained negative growth (recession) throughout the year. The forecasts for

the two SWπ-FF specifications are in line with those of the SWπ model, although a bit more

subdued. Quarter by quarter, the SWπ-FF specifications assign a probability of 50% or more

to the occurrence of negative growth. While the DSGE models capture the slowdown that

occurred in late 2007 and early 2008, they do not anticipate the subsequent post-Lehman

13Gilchrist and Zakrajsek (forthcoming) use secondary market prices of corporate bonds to construct a

credit spread index that, they argue, is a a considerably more powerful predictor of economic activity than

the measure of spreads we use. Their finding suggests that using an improved measure of spreads may further

improve the SWπ-FF model’s predictive ability.
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Figure 12: Predicting the Crisis: Model and Blue Chip Forecasts for Output Growth

October 10, 2007 (2007Q2 data) July 10, 2008 (2008Q1 data) January 10, 2009 (2008Q3 data)
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2003 2004 2005 2006 2007 2008 2009 2010 2011
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

2004 2005 2006 2007 2008 2009 2010 2011 2012
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

2004 2005 2006 2007 2008 2009 2010 2011 2012
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Notes: The panels show for each model/vintage the available real GDP growth data (black line), the DSGE model’s mean

forecasts (red line) and bands of its forecast distribution (shaded blue areas; these are the 50, 60, 70, 80, and 90 percent bands,

in decreasing shade), the Blue Chip forecasts (blue diamonds), and finally the actual realizations according to the last available

vintage (May 2011, black dashed line) . All the data are in percent, Q-o-Q.
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collapse of economic activity. The decline in real GDP that occurred in 2008:Q4 lies far in the

tails of the predictive distribution generated by the SWπ model. While the DSGE models

with financial frictions place more probability on growth rates below -1% than the SWπ

model, the 2008:Q4 growth rate still falls outside of the 90% credible prediction intervals.

In July 2008 the Blue Chip forecast and the mean forecast for the SWπ model are roughly

aligned. Both foresaw a weak economy – but not negative growth – in 2008, and a rebound

in 2009. The two SWπ-FF specifications are less sanguine. Their forecasts for 2008 are only

slightly more pessimistic than the Blue Chip forecast for 2008, but, unlike Blue Chip, the

financial frictions models do not predict a strong rebound of the economy in 2009. While

the two SWπ-FF deliver point forecasts of essentially zero growth in 2008:Q4, the models

assign a lot of probability to strongly negative growth rates. As a consequence, the realized

-1.7% growth rate in the last quarter of 2008 falls almost within the 90% credible interval

associated with the predictive distribution.

By January 2009 the scenario has changed dramatically: Lehman Brothers has filed for

bankruptcy a few months earlier (September 15, 2008), stock prices have fallen, financial

markets are in disarray, and various current indicators have provided evidence that real

activity was tumbling. None of this information was available to the SWπ model, which for

the January 10, 2009 forecast round uses data up to 2008:Q3. Not surprisingly, the model

is out of touch with reality with regard to the path of economic activity in 2008:Q4 and

thereafter. It predicts a positive growth rate of 0.5% for the fourth quarter, while the actual

growth rate is approximately -1.7%. The SWπ-FF model is less optimistic, it forecasts zero

growth for 2008:Q4, but also misses the steep decline. The SWπ-FF uses spreads as an

observable, but since the Lehman bankruptcy occurred toward the end of the third quarter,

it had minor effects on the average Baa-10 year Treasury rate spread for 2008:Q3. As a

consequence, the SWπ-FF model has little direct information on the turmoil in financial

markets.

Finally, we turn to the forecasts from the SWπ-FF-Current specification, which uses

2008:Q4 observations on spreads and the Federal Funds rate. This model produces about

the same forecast as Blue Chip for 2008:Q4. Unlike Blue Chip forecasters, the agents in the

laboratory DSGE economy have not seen the Fed Chairman and the Treasury Secretary on

television painting a dramatically bleak picture of the U.S. economy. Thus, we regard it as a

significant achievement that the DSGE model forecasts and the Blue Chip forecasts are both
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Figure 13: Predicting the Crisis: Model and Blue Chip Forecasts for Inflation

October 10, 2007 (2007Q2 data) July 10, 2008 (2008Q1 data) January 10, 2009 (2008Q3 data)
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Notes: The panels show for each model/vintage the available GDP deflator data (black line), the DSGE model’s mean forecasts

(red line) and bands of its forecast distribution (shaded blue areas; these are the 50, 60, 70, 80, and 90 percent bands, in

decreasing shade), the Blue Chip forecasts (blue diamonds), and finally the actual realizations according to the last available

vintage (May 2011, black dashed line) . All the data are in percent, Q-o-Q.
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around -1.3%. More importantly, we find this to be convincing evidence on the importance

of using appropriate information in forecasting with structural models.

Figure 13 conducts the same post-mortem for inflation. On October 10, 2010, all three

specifications generate similar forecasts of inflation. The mean quarterly forecasts are above

0.5% (2% annualized) in 2007, and slightly below 0.5% throughout the rest of the forecast

horizon. Blue Chip forecasts are more subdued for 2007, and correctly so, but essentially

coincide with the DSGE models’ forecasts thereafter. The DSGE model point forecasts

overstate inflation in 2009 and 2010. As the structural models miss the severity of the Great

Recession, they also miss its impact on the dynamics of prices. In terms of density forecasts

however, the forecasts of inflation are not as bad as those for output: In 2009 and 2010 the

ex-post realizations of inflation are mostly within the 70 and 50% bands, respectively.

The July 10, 2008, Blue Chip forecasts for inflation increase quite a bit compared to

2007. The U.S. economy has just been hit by a commodity shock and, moreover, the Federal

Reserve has lowered rates in response to the financial crisis, leading to Blue Chip quarterly

inflation forecasts above 0.5% (2% annualized) throughout the forecast horizon. The mean

DSGE model forecasts are instead slightly more subdued than in 2007, especially for the

models with financial frictions. This occurs for two reasons. First, the DSGE models have no

information on the recent rise in commodity prices. Second, the models perceive a weakness

in aggregate activity and translate that into a moderate inflation outlook.

By 2008:Q3 inflation has risen following the commodity shock. Nonetheless, the January

10, 2009, inflation forecasts of the DSGE models are low. While all three models correctly

assume the high 2008Q3 inflation to be temporary, there exist significant differences in the

inflation forecasts across models, which reflect their different assessment of the state of the

economy. The SWπ and SWπ-FF models’ mean forcasts for inflation are generally above

the actuals for 2009 and 2010. Blue Chip consensus forecasts are – correctly – more subdued

than these forecasts for 2008:Q4 and the first half of 2009, but are no different afterwards:

quarterly inflation quickly reverts to 0.5% in their outlook. Conversely, the SWπ-FF-current

model predicts inflation to remain low throughout the forecast horizon, which is consistent

with the actual evolution of this variable in the aftermath of the Great Recession.

The examination of DSGE model forecasts during the 2008-09 recession suggests that

the DSGE models with financial frictions are preferable to the SWπ model. It turns out

that this ranking is not stable over time. Figure 14 depicts RMSE differentials for the SWπ
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Figure 14: Difference in Forecasting Accuracy Over Time: SWπ and SWπFF-Current
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Notes: The figure shows the difference over time in 4-quarter-ahead rolling RMSEs between the SWπ and SWπFF-Current

models for output growth and inflation. At each point in time, the RMSEs are computed using the previous 12 quarters, that

is, the figure shows RMSEt(SWπ)−RMSEt(SWπFF-Current), where RMSEt(Mi) =

r
1
12

P11
j=0

“
yt−j − ŷ

Mi
t−j|t−j−4

”2
and

ŷ
Mi
t−j|t−j−4

is the 4-quarter ahead forecast of yt−j obtained using model Mi, Mi = {SWπ, SWπFF-Current}.

model and the SWπ-FF-Current model for h = 4-step-ahead forecasts (the results for model

SWπ-FF are very similar). At each point in term the RMSEs are computed using the 12

previous quarters. A value greater than zero indicates that the financial-frictions model

attains a lower RMSE. The Figure indicates that on average over the forecast period the

model without financial frictions generates more accurate forecasts. However, during the

recent financial crisis, the ordering is reversed. The SWπ-FF-Current model contains an

additional mechanism that associates high spreads with low economic activity and helps the

model to track and forecast aggregate output and inflation throughout the crisis.

7.3 Calibration of Density Forecasts

[subsec:densforecastcalibration] We previously presented a variety of interval and density

forecasts which begs the question of how accurate these forecasts are. While, strictly speak-
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ing, predictive distributions in a Bayesian framework are subjective, the statistics reported

below provide a measure of the extent to which the predicted probabilities of events are

consistent with their observed frequencies. Dawid (1984) views this consistency as a min-

imal desirable property for probability forecasts. Bayarri and Berger (2004) refer to the

notion that in repeated practical use of a sequential forecasting procedure the long-run av-

erage level of accuracy should be consistent with the long-run average reported accuracy as

frequentist principle. The literature, see for instance Dawid (1982), refers to sequences of

(subjective) density forecasts that adhere to the frequentist principle as well calibrated. To

assess whether DSGE model density forecasts are well calibrated we generate histograms for

probability integral transformations (PITs).

Starting with Dawid (1984) and Kling and Bessler (1989) the use of probability inte-

gral transformations (PITs) has a fairly long tradition in the literature on density forecast

evaluation. The PIT of yi,T+h based on its time T predictive distribution as

zi,h,T =

∫ yi,T+h

−∞
p(ỹi,T+h|Y1:T )dỹi,T+h. (73)

Thus, the PIT is defined as the cumulative density of the random variable yi,T+h evaluated at

yi,T+h. Based on the output of Algorithm 2 the PITs can be easily approximated by (recall

that I{x ≥ a} denotes the indicator function)

zi,h,T ≈
nsim∑
j=1

I{y(j)
i,T+h ≤ yi,T+h},

where yi,T+h is now the value of yi observed in period T+h. It is straightforward to show that

the marginal distribution of PITs is uniform. Consider a random variable X with density

F (x). Then

P{F (X) ≤ z} = P{X ≤ F−1(z)} = F
(
F−1(z)

)
= z

Building on results by Rosenblatt (1952), Diebold, Gunther, and Tay (1998) show that for

h = 1 the zi,t,h’s are not just uniformly distributed, but they are also independent across

time: zi,t,h ∼ iid U [0, 1]. For this reason, PITs are often called generalized residuals.

Below, we plot PIT histograms and informally assess the distance of the unconditional

empirical distribution of the PITs from the uniform distribution. A more formal assess-
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ment, via posterior predictive checks, is provided in Herbst and Schorfheide (2011).14 It

is important to stress that the uniformity of PITs does not imply that a forecast is sharp.

Abstracting from parameter uncertainty, suppose that yt evolves according to

yt = θyt−1 + ut, ut ∼ iidN(0, 1), 0 ≤ θ < 1. (74)

Moreover, suppose that Forecaster F1 reports the predictive density N(θyt−1, 1), whereas

forecaster F2 reports the density forecast N
(
0, 1/(1− θ2)

)
. Both forecasts lead to PITs that

are unconditionally uniformly distributed. The uniformity of the PITs associated with F2

follows immediately. Let Φ(·) denote the cdf of a N(0, 1) random variable. For F1 it can be

verified as follows:

P(yt,yt−1)
{
Φ(yt − θyt−1) ≤ z

}
= Eyt−1

[
Pyt

yt−1

{
Φ(yt − θyt−1) ≤ z

}]
= Eyt−1 [z] = z.

The unconditional probability needs to be computed under the joint distribution of (yt, yt−1).

It can be obtained by first conditioning on yt−1 and subsequently integrating out yt−1, which

leads to the first equality. The second equality follows from (74). However, as long as

θ > 0, F1’s forecast will be more precise than F2’s forecast because it exploits conditioning

information that reduces the variance of the predictive distribution from 1/(1− θ2) to 1. In

fact, conditional on yt−1 the cdf of the PIT computed from F2 is given by

Pyt
yt−1

{
Φ
(√

1− θ2yt

)
≤ z

}
= Φ

(
Φ−1(z)√

1− θ
− θyt−1

)
,

which implies that the sequence of PITs from F2 is not independently distributed.

As we have seen in Section 5, DSGE model forecasts often do not exploit all the available

information and therefore might not be as sharp as other forecasts. Nonetheless, it remains

interesting to assess whether the predictive distributions are well-calibrated in the sense that

PITs have an unconditional distribution that is approximately uniform. Figure 15 depicts

14As emphasized by Geweke and Whiteman (2006), Bayesian approaches to forecast evaluation are funda-

mentally different from frequentist approaches. In a Bayesian framework there is no uncertainty about the

predictive density given the specified collection of models, because predictive densities are simply constructed

by the relevant conditioning. Non-Bayesian approaches, see Corradi and Swanson (2006), tend to adopt the

notion of a “true” data-generating process (DGP) and try to approximate the predictive density inherent in

the DGP with a member of a collection of probability distributions indexed by a parameter θ. To the extent

that the forecaster faces uncertainty with respect to θ, there is uncertainty about the density forecast itself,

and non-Bayesian assessments try to account for this uncertainty.
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Figure 15: PITs: SWπ model
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histograms for PITs based on forecasts generated with the SWπ model. We group the PITs

into five equally sized bin. Under a uniform distribution, each bin should contain 20% of

the PITs, indicated by the solid horizontal lines in the figure. The empirical distribution

looks quite different from a uniform distribution and the discrepancy increases with forecast

horizon h. For output growth, an overly large fraction of PITs fall into the 0.4-0.6 bin. This

indicates that the predictive distribution is too diffuse.



Del Negro, Schorfheide – DSGE Model Based Forecasting: February 29, 2012 77

One potential explanation is that all of the forecasts are generated post 1984 and most

of them fall into the period of the so-called Great Moderation. The estimation sample,

on the other hand, contains a significant fraction of observations from the pre-1984 period.

Thus, the shock standard deviations, roughly speaking, are estimated to capture an average

of the pre- and post-moderation volatility, which means that they tend to overpredict the

volatility during the forecast period. While the empirical distribution of the output growth

PITs is essentially symmetric, the PITs associated with inflation and interest rate forecasts

have a slightly skewed distribution. The DSGE model assigns substantial probability to low

inflation rates that never materialize. Vice versa, the model also assigns positive probability

to relatively high interest rates that are not observed during the forecast period. Further

results on the evaluation of density forecasts of medium-scale DSGE models can be found in

Herbst and Schorfheide (2011) and Wolters (2010).

8 Conclusion and Outlook

[sec:conclusion] This paper reviewed the recent literature on forecasting with DSGE models,

discussed numerous useful algorithms, and provided empirical illustrations of the various

methods considered. We presented some novel methods that allow modelers to incorporate

external information and that may increase the accuracy of DSGE model forecasts. More-

over, we compared methods of generating forecasts conditional on desired interest rate paths,

and studied the forecasting performance of DSGE models with and without financial frictions

during the 2008-09 recession. In closing, we provide some discussion of why we think that

DSGE-model-based forecasts are useful, we review empirical approaches that relax some of

the DSGE model-implied restrictions to improve forecast accuracy, and lastly we engage in

a wild speculation about the future of DSGE model forecasting.

8.1 Why DSGE Model Forecasting?

A macroeconomic forecaster can in principle choose from a large pool of econometric models.

Some models are univariate, others are multivariate; some are linear, others are nonlinear;

some are based on economic theory whereas others simply exploit correlations in the data.

Empirical DSGE models are multivariate, in most instances they are linearized, and they
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build upon modern dynamic macroeconomic theory which emphasizes intertemporal decision

making and the role of expectations. The benefit of building empirical models on sound

theoretical foundations is that the model delivers an internally consistent interpretation of

the current state and future trajectories of the economy and enables a sound analysis of policy

scenarios. The potential cost is that theory-implied cross-coefficient restrictions might lead

to a deterioration in forecast performance.

While a decade ago the costs outweighed the benefits, the scale has tipped in favor of

DSGE models in recent years. First, DSGE models have been enriched with endogenous

propagation mechanisms, e.g. Christiano, Eichenbaum, and Evans (2005), and exogenous

propagation mechanisms, e.g. Smets and Wouters (2003, 2007), which allow the models

to better capture the autocovariance patterns in the data. Second, as demonstrated in

Section 5, DSGE models can be easily modified to incorporate external information into

the forecasts, both real-time information about the current state of the economy as well

information about its long run trends. Real-time information is interpreted by the models

as information about the realization of the structural shocks, and is useful to improve the

accuracy of short-horizon forecasts. Moreover, long-run inflation expectations can be used

to anchor long-horizon forecasts of nominal variables.

The case for DSGE model forecasting ultimately rests on the fact that these models pro-

vide a good package. Granted, there exist time series models that generate more accurate

univariate forecasts of output growth and inflation, but these models might miss comove-

ments between these two variables. Bayesian VARs tend to be good multivariate forecasting

models but it is difficult to identify more than one or two structural shocks and to provide a

narrative for the current and future state of the economy. Moreover, VARs typically do not

have enough structure to generate predictions about anticipated changes in interest rates.

Dynamic factor models are able to extract information from a large cross section of macroe-

conomic variables and to explain the comovements among these series as being generated by

a low-dimensional vector of latent variables. While the forecasting record of these models is

strong, the policy experiments that could be carried out with these models are very limited.

Finally, none of the aforementioned models would allow the user to measure the degree of

distortion in the economy that ought to be corrected through monetary policy.

Estimated DSGE models can perform a lot of tasks simultaneously. They generate

multivariate density forecasts that reflect parameter and shock uncertainty. They provide a
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device of interpreting the current state and the future path of the economy through the lens of

modern dynamic macroeconomics and provide decompositions in terms of structural shocks.

Moreover, the models enable the user to generate predictions of the effect of alternative

policy scenarios. While a successful decathlete may not be the fastest runner or the best

hammer thrower, she certainly is a well-rounded athlete.

8.2 Beyond DSGE Models

Throughout this paper have focused on forecasts generated from specific DSGE models.

In closing we briefly mention some strands of the literature that either relax some of the

DSGE model restrictions to improve their forecast performance or combine different classes

of econometric models. Ingram and Whiteman (1994) were the first to use DSGE models

to construct a prior distribution for vector autoregressions that is centered at the DSGE

model-implied parameter restrictions. This approach has the advantage that the DSGE

model restrictions are imposed in a non-dogmatic manner, allowing for modest violations of

the DSGE model restrictions. Del Negro and Schorfheide (2004) developed this approach

further and constructed a hierarchical Bayes model, called DSGE-VAR, that takes the form

of a structural VAR and allows the researcher to simultaneously estimate the parameters

of the DSGE model and the VAR. A hyperparameter determines the scale of the prior

covariance matrix. If the prior covariance matrix is zero, then the DSGE model restrictions

are dogmatically imposed on the VAR.

In the context of a small-scale DSGE model Del Negro and Schorfheide (2004) document

that the best forecasting performance is obtained for an intermediate value of the hyperpa-

rameter that implies that prior distribution and likelihood of the VAR are about equally

informative about the parameters. The DSGE-VAR produces substantially more accurate

pseudo-out-of-sample forecasts than the underlying DSGE model. A similar empirical re-

sult is reported in Del Negro, Schorfheide, Smets, and Wouters (2007) for a variant of the

Smets-Wouters model.15

15Kolasa, Rubaszek, and Skrzypczyński (2010) provide a less favorable assessment of the DSGE-VAR

approach, however. Using the Smets and Wouters (2007) model to generate a prior distribution, the authors

found that the DSGE model actually outperforms the DSGE-VAR. This result might be due to the fact that

the 2007-version of the Smets-Wouters model contains a number of features that are designed to boost its

forecast performance. Also, the DSGE-VAR specification that they use is in first differences.
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An alternative way of combining VARs and DSGE models for macroeconomic forecast-

ing applications is explored by Amisano and Geweke (2011). The authors consider a pool of

macroeconomic models that incorporates, among others, DSGE models and VARs. A com-

bined forecast is generated from a convex combination of the predictive densities associated

with the models included in the pool. The weights are estimated such that asymptotically

the Kullback-Leibler discrepancy between the convex combination of models and some un-

derlying “data generating process” is minimized. The authors find that while the DSGE

model receives a non-trivial weight in the model mixture, the forecasting performance of the

pool is substantially better than the forecasting performance of any of the individual models

in the pool. Waggoner and Zha (2010) extend the Amisano-Geweke approach by allowing

for time-varying model weights that follow a regime-switching process. Moreover, model

parameters and mixture weights are estimated simultaneously rather than sequentially. The

authors identify episodes in which the DSGE model is useful for macroeconomic forecasting

and episodes in which the combined forecasts are dominated by the VAR. The same ap-

proach could be used to combine different DSGE models. As documented in Section 7.2,

the relative ranking of DSGE models without and with financial frictions seems to shift over

time.

Finally, there is a strand of literature that combines DSGE models and dynamic factor

models (DFM). The goal of this literature is to link the DSGE model with a large cross section

of macroeconomic indicators rather than a small set of seven or eight observables as was done

in this paper. One the one hand, the large set of macroeconomic variables might provide

sharper inference about the current state of the economy. On the other hand, this framework

allows the modeler to assess the effect of structural shocks, e.g. monetary policy shocks,

on variables that are not explicitly modeled in the DSGE model. The resulting empirical

specification is called DSGE-DFM. It is essentially a DFM in which the latent factors are

equated with the state variables of a DSGE model and follow the DSGE model-implied law

of motion. The DSGE-DFM was first developed by Boivin and Giannoni (2006) and studied

further by Kryshko (2010) who documents that the space spanned by the factors of a DSGE-

DFM is very similar to the space spanned by factors extracted from an unrestricted DFM.

Schorfheide, Sill, and Kryshko (2010) used a DSGE-DFM to generate DSGE-model-based

forecasts for variables that do not explicitly appear in the DSGE model.
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8.3 The Future

While the literature on forecasting with DSGE models was practically non-existent a decade

ago, it has become a vibrant area of research. A lot of progress has been made in the specifica-

tion of DSGE models, as well as in the development of methods that enable the incorporation

of real-time information, the relaxation of overly tight cross-equation restrictions, and the

combination of DSGE models with other macroeconometric models. The progress is in part

driven by the desire of central banks to incorporate modern macroeconomic equilibrium into

their decision making process. In this regard, the recent crisis with the emergence of noncon-

ventional monetary policies and interest rates near the zero-lower bound has supplied new

challenges for DSGE model-based forecasting that need to be tackled in future research.

References

Adolfson, M., M. K. Andersson, J. Lindé, M. Villani, and A. Vredin (2007):
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A Details for Figure 4

Table A-1 lists the RMSEs that are plotted in Figure 4 by study. The specific references for

each study can be found in Table 3.

Table A-2 contains details on the computation of AR(2) forecasts that are used to construct

RMSE ratios.
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Table A-1: RMSEs for DSGE and AR(2) Models in Figure 4

h = 1 h = 4

Study Model GDP INFL INT GDP INFL INT

RS DSGE 0.496 0.224 0.130 0.448 0.287 0.335

AR (2) 0.512 0.198 0.083 0.502 0.235 0.320

KRS DSGE 0.485 0.240 0.108 0.477 0.255 0.335

AR (2) 0.471 0.236 0.107 0.465 0.297 0.416

GEW DSGE 0.610 0.290 0.138 0.385 0.350 0.405

AR (2) 0.532 0.221 0.118 0.328 0.281 0.437

W-DS DSGE 0.525 0.262 0.163 0.532 0.272 0.372

AR (2) 0.491 0.257 0.121 0.523 0.331 0.402

W-FM DSGE 0.494 0.321 0.133 0.586 0.330 0.391

AR (2) 0.491 0.257 0.121 0.523 0.331 0.402

W-SW DSGE 0.542 0.255 0.127 0.462 0.279 0.344

AR (2) 0.491 0.257 0.121 0.523 0.331 0.402

W-Edo DSGE 0.529 0.285 0.164 0.511 0.349 0.478

AR (2) 0.491 0.257 0.121 0.523 0.331 0.402

EG DSGE 0.550 0.180 0.110 0.510 0.200 0.100

AR (2) 0.568 0.223 0.122 0.582 0.304 0.425

EKL DSGE 0.448 0.294 0.208 0.502 0.292 0.465

AR (2) 0.626 0.204 0.102 0.734 0.254 0.387

SW DSGE 0.566 0.245 0.108 0.327 0.183 0.354

AR (2) 0.546 0.229 0.126 0.352 0.289 0.467

DSSW DSGE 0.664 0.249 0.123 0.657 0.243 0.394

AR (2) 0.493 0.206 0.111 0.340 0.199 0.357

SSK DSGE 0.510 0.220 0.177 0.410 0.190 0.532

AR (2) 0.525 0.227 0.094 0.469 0.229 0.419
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