
Groen, Jan J. J.; Kapetanios, George

Working Paper

Model selection criteria for factor-augmented regressions

Staff Report, No. 363

Provided in Cooperation with:
Federal Reserve Bank of New York

Suggested Citation: Groen, Jan J. J.; Kapetanios, George (2009) : Model selection criteria for factor-
augmented regressions, Staff Report, No. 363, Federal Reserve Bank of New York, New York, NY

This Version is available at:
https://hdl.handle.net/10419/60773

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/60773
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Federal Reserve Bank of New York

Staff Reports

Model Selection Criteria for Factor-Augmented Regressions

Jan J. J. Groen

George Kapetanios

Staff Report no. 363

February 2009

This paper presents preliminary findings and is being distributed to economists

and other interested readers solely to stimulate discussion and elicit comments.

The views expressed in the paper are those of the authors and are not necessarily

reflective of views at the Federal Reserve Bank of New York or the Federal

Reserve System. Any errors or omissions are the responsibility of the authors.



Model Selection Criteria for Factor-Augmented Regressions

Jan J. J. Groen and George Kapetanios

Federal Reserve Bank of New York Staff Reports, no. 363

February 2009

JEL classification: C22, C52, E37  

Abstract

In a factor-augmented regression, the forecast of a variable depends on a few factors

estimated from a large number of predictors. But how does one determine the appropriate

number of factors relevant for such a regression? Existing work has focused on criteria

that can consistently estimate the appropriate number of factors in a large-dimensional

panel of explanatory variables. However, not all of these factors are necessarily relevant

for modeling a specific dependent variable within a factor-augmented regression. This

paper develops a number of theoretical conditions that selection criteria must fulfill in

order to provide a consistent estimate of the factor dimension relevant for a factor-

augmented regression. Our framework takes into account factor estimation error and does

not depend on a specific factor estimation methodology. It also provides, as a by-product,

a template for developing selection criteria for regressions that include standard generated

regressors. The conditions make it clear that standard model selection criteria do not

provide a consistent estimate of the factor dimension in a factor-augmented regression.

We propose alternative criteria that do fulfill our conditions. These criteria essentially

modify standard information criteria so that the corresponding penalty function for

dimensionality also penalizes factor estimation error. We show through Monte Carlo and

empirical applications that these modified information criteria are useful in determining

the appropriate dimensions of factor-augmented regressions.
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1 Introduction

When forecasting an economic variable, it is often necessary to incorporate information from
a large set of potential explanatory variables into the forecasting model. Most traditional
macroeconomic prediction approaches, however, are unable to deal with this, either because
it is inefficient or downright impossible to incorporate a large number of variables in a single
forecasting model and estimate it using standard econometric techniques. As an alternative
approach to this problem factor-augmented regressions have gained a prominent place. A
seminal application is Stock and Watson (2002b), where a limited number of principal
components extracted from a large data set are added to a standard linear regression model
which then is used to forecast key macroeconomic variables. Stock and Watson (2002a) and
Bai (2003) formalized the underlying asymptotic theory, which allows the use of principal
components in very large data sets to identify the common factors in such a data set.

Dynamic factor research in econometrics has spend substantial effort on developing tests
and selection criteria aimed at determining that number of factors that describes best the
dynamics in a large data set of explanatory variables. A well-known contribution is Bai
and Ng (2002), who derive a range of consistent information criteria that can be used to
identify the common factor space underlying a large panel of predictor series. While the
number of factors selected in such a way provides an upper bound for the number of factors
that should enter the forecasting regression for a particular variable, there is no a priori
reason to suppose that all factors should enter this regression. Therefore, it is of importance
that a form of factor selection is carried out that is tailored at determining a factor-based
forecasting model for a specific variable. This problem has received far less attention in
the literature than the aforementioned issue of determining the number of factors that best
explains the dynamics in large data sets of explanatory variables.

Intuitively, since the aim is to specify a regression model for a single variable, standard
information criteria may be considered useful in selecting the optimal number of factors for a
particular forecasting regression. However, factor variables are not observed and as a result
this estimation error may matter and make standard information criteria invalid. Stock and
Watson (1998) propose a selection criterion that takes into account this estimation error
- note, though, that their criterion depends on an unknown parameter which needs to be
calibrated before hand. Building on Bai and Ng (2006), Bai and Ng (2008) propose a final
prediction error (FPE) criterion in which an extra penalty term is added to proxy for the
effect of factor estimation error on the forecasting regression. Optimizing this FPE will yield
the number of factors that asymptotically minimizes the prediction error, but it does not
necessarily provide an asymptotically consistent estimate of the number of factors present in
the regression of interest. Also, the finite sample performance of this FPE criterion depends
on the choice of a consistent estimator of the factor estimation error variance.

In this paper, we propose a number of novel insights with respect to this issue of de-
termining the relevant factors for a specific factor-augmented regression. We show that
standard information criteria are inconsistent estimators of the true dimension of the rel-
evant factor space, in particular when the time series dimension of the underlying panel
of predictor variables grows faster than its cross-section dimension. As an alternative we
suggest new criteria that are consistent estimators in all cases - essentially we build on ex-
isting consistent information criteria for time series analysis and modify them to take into
account the effects of factor estimation error. Further, we generalize our analysis to factor
estimation methods other than principal components. In general, our analysis is valid for
setups where variable selection has to be carried out in the presence of generated regres-
sors. Both Monte Carlo and empirical exercises show the relevance and added value of our
proposed framework.
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The paper is structured as follows. In Section 2, we present our setup and theoretical
results. Section 3 reports on a detailed Monte Carlo study of our new selection criteria in
comparison with existing ones. Section 4 presents an empirical forecasting application and
Section 5 concludes.

2 Theory

We focus on a single variable yt that we wish to model using an N -dimensional set of
variables xt and the latter is assumed to have a factor structure. In particular, we posit the
following model for xt:

xt = Λft + ut, t = 1, . . . , T (1)

where ft is an r×1 vector of factor variables such that r << N and ut is an N ×1 vector of
zero-mean errors. The factors ft are not observed and need to be estimated from the N × 1
data vector, xt. Let the forecasting equation for yt, be specified as

yt = f0′
t β + et (2)

where f0
t is r0 × 1 vector of factor variables that is possibly a subset of ft, i.e., 1 ≤ r0 ≤ r.

The aim of our work is to provide information criteria for selecting the appropriate set of
factors that should be entered in (2). There has been a considerable amount of work on
determining r, which is the true number of factors needed to explain xt (see, e.g., Bai and Ng
(2002)). Our focus is different in the sense that not all factors underlying xt maybe relevant
for modeling yt. It is clear that standard information criteria may be of use in specifying
(2), but care needs to be taken given that ft are not observed and must be estimated from
xt.

Now let us consider the class of information criteria (IC) given by

IC =
T

2
ln{σ̂2

ê}+ CT,N (3)

where σ̂2
ê denotes the estimated residual variance from the regression

yt = f̂
′
tβ + êt (4)

and f̂t denotes some subset of the estimated factor set obtained by applying principal com-
ponents (PC) to (1). We further specify that CT,N = iC̃T,N where i denotes the dimension
of the candidate set of factors to be entered in (2) and C̃T,N denotes a penalty term that
depends solely on T and N . This class includes all popular IC such as the Akaike (1974)
IC (AIC), the Bayesian IC (BIC - see Schwarz (1978)) and the IC proposed by Hannan and
Quinn (1979) (HQIC). We have the following theorem concerning the consistency of factor
selection using IC of the above form.

Theorem 1 Let Assumptions A-E of Bai and Ng (2006) hold. Let

F̂ =
{{

f̂
(1)
t

}T
t=1

,
{
f̂

(2)
t

}T
t=1

. . . ,
{
f̂

(r)
t

}T
t=1

}
denote the set of estimated factor vectors over which the information criterion search is
carried over and let

F =
{{

f
(1)
t

}∞
t=1

,
{
f

(2)
t

}∞
t=1

. . . ,
{
f

(r)
t

}∞
t=1

}
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denote the probability limit of F̂ as N,T →∞. Further, denote by
{
f0
t

}∞
t=1

the set of true

factors entering (2). Assume that there exists a unique i, 1 ≤ i ≤ r, such that
{
f

(i)
t

}∞
t=1

is both spanned by and spans
{
f0
t

}∞
t=1

. Let the penalty term of the IC, denoted by CT,N

satisfy the following: (i) Suppose that
{
f

(i)
t

}∞
t=1

does not span
{
f0
t

}∞
t=1

but
{
f0
t

}∞
t=1

spans{
f

(i)
t

}∞
t=1

. Then, C0
T,N − CT,N = o(T ). (ii) Suppose that

{
f0
t

}∞
t=1

does not span
{
f

(i)
t

}∞
t=1

but
{
f

(i)
t

}∞
t=1

spans
{
f0
t

}∞
t=1

. Then,
C0

T,N−CT,N

T min(N,T )−1 → −∞. Under the above conditions, the

IC search will choose the unique i such that
{
f

(i)
t

}∞
t=1

is both spanned by and spans
{
f0
t

}∞
t=1

,
with probability approaching 1.

Proof: See Appendix A for details on the proof of this theorem.

Remark 1 Theorem 1 is a factor selection consistency result. Note that we assume that
there exists an

{
f

(i)
t

}∞
t=1

such that
{
f

(i)
t

}∞
t=1

is both spanned by and spans
{
f0
t

}∞
t=1

. Given
that only the space of the true factors is consistently estimated by PC, this assumption is
not guaranteed to hold. Then, our result can easily be seen to hold for the set

{
f

(i)
t

}∞
t=1

that

spans
{
f0
t

}∞
t=1

and is of the minimum dimension among all such sets that are considered in
the IC search.

The intuition behind Theorem 1 can be summarized as follows. Condition (i) of Theo-
rem 1 implies that the penalty term of a standard consistent IC is sufficient to guarantee
that any i < r0 number of factors is not selected with probability approaching one. Now
to avoid selecting i > r0 in the limit, Condition (ii) of Theorem 1 implies that if T/N → c
for 0 ≤ c < ∞ the penalty term of an IC needs to be of larger order of magnitude than
T−1, whereas if N/T → 0, it needs to be of larger order of magnitude than N−1. There-
fore, standard consistent IC can only guarantee consistency if in (2) T/N → c. Hence, in
practice such a standard consistent IC, like BIC, is only useful for determining the factor
dimension in a factor-augmented regression if in the underlying panel N > T , if not it will
overestimate the number of factors entering such a regression.

Theorem 1 relates explicitly to factor estimates obtained by static PC and although
this is the most widely used method for estimating factors, there exist a variety of other
estimation methods. For example, we have dynamic principal components as suggested in,
e.g., Forni et al. (2000), there are methods based on maximum likelihood estimation of state
space factor models (Doz et al. (2006)) or one can follow Groen and Kapetanios (2008) and
use partial least squares to directly estimate the factors relevant for a specific dependent
variable. These methods may have different consistency rates both for the factor estimates
and the coefficients entering (2). It is therefore useful to generalize our consistency result
to cover cases where factors are estimated by some other method. As we wish our result
to be general we make the following high level assumption where σ̂2

e denotes the residual
variance from (2):

Assumption 1 σ̂2
e − σ̂2

ê = Op(qNT ) where qNT → 0.

Theorem 2 spells out the generalization of the consistency result in Theorem 1.

Theorem 2 Let Assumption 1 and Assumption A of Bai and Ng (2006) hold. Further,
assume that et in (2) has finite variance and satisfies a law of large numbers. Let

F̂ =
{{

f̂
(1)
t

}T
t=1

,
{
f̂

(2)
t

}T
t=1

. . . ,
{
f̂

(r)
t

}T
t=1

}
3



denote the set of estimated factor vectors over which the information criterion search is
carried over and let

F =
{{

f
(1)
t

}∞
t=1

,
{
f

(2)
t

}∞
t=1

. . . ,
{
f

(r)
t

}∞
t=1

}
denote the probability limit of F̂ as N,T →∞. Further, denote by

{
f0
t

}∞
t=1

the set of true

factors entering (2). Assume that there exists a unique i, 1 ≤ i ≤ r, such that
{
f

(i)
t

}∞
t=1

is both spanned by and spans
{
f0
t

}∞
t=1

. Let the penalty term of the IC, denoted by CT,N

satisfy the following: (i) Suppose that
{
f

(i)
t

}∞
t=1

does not span
{
f0
t

}∞
t=1

but
{
f0
t

}∞
t=1

spans{
f

(i)
t

}∞
t=1

. Then, C0
T,N − CT,N = o(T ). (ii) Suppose that

{
f0
t

}∞
t=1

does not span
{
f

(i)
t

}∞
t=1

but
{
f

(i)
t

}∞
t=1

spans
{
f0
t

}∞
t=1

. Then, C0
T,N − CT,N → −∞ and

C0
T,N−CT,N

TqNT
→ −∞. Under

the above conditions, the information criterion search will choose the unique i such that{
f

(i)
t

}∞
t=1

is both spanned by and spans
{
f0
t

}∞
t=1

, with probability approaching 1.

Proof: The proof of Theorem 2 is straightforward and given in Appendix A.

Remark 1 holds for Theorem 2 as well. Note further, that Theorem 2 need not be
applied just to factor models. It provides a general template for determining penalty terms
for consistency of information criteria when generated regressors are considered.

In the context of regression (2) it is easy to see that modified versions of the BIC and
HQIC given by

BICM =
T

2
ln{σ̂2

ê}+ i ln(T )
(

1 +
T

N

)
,

HQICM =
T

2
ln{σ̂2

ê}+ 2i ln ln(T )
(

1 +
T

N

)
,

(5)

with 1 ≤ i ≤ r, fulfill the conditions of Theorems 1 and 2. Of course, other variables can
enter the regression and one can also envisage other types of selection. The most obvious
one is lag selection where lags of yt or possibly other variables enter the regression and the
number of lags needs to be selected. Given that the conditions of the Theorems 1 and 2
imply that the relevant IC will be consistent also for lag selection, it is clear that such joint
searches are feasible. Therefore, we can modify regression (2) such that

yt = z′tγ + f0′
t β + et (6)

with zt is a k × 1 vector of non-generated regressors and γ is the corresponding parameter
vector; zt can contain an intercept, lags of yt and so on. The following versions of the
modified criteria in (5) are valid for regression (6) under the framework spelled out in
Theorems 1 and 2:

BICM =
T

2
ln{σ̂2

ê}+ k ln(T ) + i ln(T )
(

1 +
T

N

)
,

HQICM =
T

2
ln{σ̂2

ê}+ 2k ln ln(T ) + 2i ln ln(T )
(

1 +
T

N

)
.

(7)

Hence, searching for the optimal values of the modified ICs in (7) will provide the econo-
metrician with a consistent, simultaneous, estimate of the optimal values of k and i in
regression (6).
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3 Monte Carlo Analysis

In this section we carry out a Monte Carlo study of the new selection criteria for factor-
augmented regressions suggested in Section 2. The set-up of the Monte Carlo experiments
are spelled out in Section 3.1. In the experiments we compare our suggested criteria with
existing ones and the results of this comparison are reported in Section 3.2.

3.1 Set-Up

Our Monte Carlo experiments are based on the following data generating processes (DGPs):

yt = α′xt + εt, t = 1, ..., T,
xt = Λ′ft + ut,

εt =
√
cNεt

(8)

In (8), xt = (x1,t · · ·xN,t)′ is the N × 1 vector of explanatory variables with corresponding
N × 1 vector of regression parameters α = (α1 · · ·αN )′. The term εt is a zero-mean distur-
bance term, which we discuss in more detail below. The explanatory variables xt in (8) are
generated by r factors with a N×1 vector of zero-mean disturbances ut = (u1,t · · ·uN,t)′ and
a r×N matrix of factor loadings Λ = (λ1 · · ·λN ) that corresponds with the r× 1 vector of
factors ft = (f1,t · · · fr,t)′ with λi = (λi,1 · · ·λi,r)′. The individual regression coefficients in
(8) are drawn from a standard normal distribution: αi ∼ iidN(0, 1) and the disturbances for
the N explanatory variables are generated in an equal manner: ui,t ∼ iidN(0, 1). Similarly,
the individual factor loadings in Λ are determined as λi,j ∼ iidN(0, 1) and the r factors are
each generated as fj,t ∼ iidN(0, 1).

The regression model for yt in (8) has the alternative representation given by

yt = α′Λ′ft +
(
α′ut + εt

)
, t = 1, ..., T,

which warrants the use of a factor-augmented type of regression model to explain the dynam-
ics in yt in a parsimonious manner. In each artificial sample generated from (8), we therefore
select the optimal number of factors in a regression of yt on factors that are estimated by
applying PC on xt. We do this for different selection criteria, both the ones we considered in
Section 2, in particular (5) given the set-up in (8), as well as standard information criteria
and the FPE criterion suggested in Bai and Ng (2008). Crucial for the Monte Carlo study
is the population R2 of the yt regression equation in (8). This is controlled by controlling
the variance of the yt disturbance term εt in (8) through c, where εt ∼ iidN(0, 1). Setting
c = 0.5, 1, 4, 9 gives a population R2 equal to 0.66, 0.50, 0.20 and 0.10, respectively. We
generate data through (8) for r = 1, 2, 4, 6 and for N, T = 20, 30, 50, 100, 200, 400.
The respective Monte Carlo experiments are based on 1000 replications and we report for
each selection criterion under consideration the average number of factors selected across
the replications. The best performing criterion should on average select a number of factors
that is close to the assumed factor order r in a particular Monte Carlo experiment.

3.2 Results

Apart from the modified information criteria (5) in Section 2, which are relevant given
DGP (8) for the Monte Carlo experiments, we analyze in our study also the performance
of standard information criteria. As AIC is known to be inconsistent, we will in particular
focus on the performance of the BIC and HQIC criteria. Given that the extra penalty term
in our criteria will be most relevant for cases were T ≥ N , we expect specially for those
cases to observe large differences for the criteria in (5) vis-à-vis BIC and HQIC.
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Our modified information criteria are not the first set of selection criteria that are
specifically developed to determine the dimensions of factor-augmented regressions, albeit
that ours are the first consistent criteria to be proposed for this purpose. Stock and Watson
(1998) derive a selection criterion that penalizes factor estimation error variance. However,
this criterion depends on a nuisance parameter that needs to be calibrated before it can
be applied to a factor-augmented regression, and this calibration can differ significantly
across regression models. Bai and Ng (2008) suggest a forecast prediction error (FPE)
criterion that in the limit minimizes the mean squared prediction error of a factor-augmented
regression. This FPE criterion essentially entails adding a cross-sectional penalty factor,
which depends on an estimate of the factor covariance matrix, to a standard information
criterion. So using BIC the FPE for regression model (6) becomes

FPE = ln{σ̂2
ê}+ (k + i)

(
ln(T )
T

)
+ ci

(
ln(N)
N

)
(9)

with

cr =
β̂′Σiβ̂

σ̂2
ê

where Σi is a consistent estimator of the covariance matrix of the i factors included in (6).1

We use this FPE criterion as a third alternative, next to BIC and HQIC, for our BICM and
HQICM criteria, which we implement by setting k = 0 in (9).

The results of these experiments are reported in Tables 1-5. When we first focus on the
results for the standard information criteria in Tables 1 and 2, it becomes quite apparent
that these criteria overestimate the number of factors by a considerable margin. This is
particularly the case when the time series dimension T is larger than the cross-section
dimension N of the regressor variable vector xt, indicating the potential severity of the
impact of factor estimation error variance in that case. Also, the results for both large T
and N in Tables 1 and 2 suggest that BIC and HQIC are not able to provide consistent
estimates of the optimal number of factors that underlie a factor-augmented regression.
On the other hand our modified criteria, Tables 3 and 4, and to a lesser extent the FPE
criterion, Table 5, seem to be behaving consistently and outperform the standard criteria
across most experiments. This shows the relevance of our framework and it would be of
interest to see how our criteria behave in a real world data setting - something that we will
explore in the next section.

4 Empirical Application

The purpose of this section is to assess the performance of our proposed framework when
applied on real world data, in particular by assessing its impact on the out-of-sample fore-
casting performance of factor-augmented regressions. We summarize the set-up of our
application in Section 4.1 and discuss the results in Section 4.2.

1There are a variety of estimators possible for Σr, and the choice of such an estimator impacts the finite
sample behavior of (9). We choose to apply a HAC-consistent covariance matrix estimator on the r (i.e. the
total number factors driving the dynamics in xt) estimated factors to proxy Σr - this makes sense as each
factor is a linear combination of the individual predictor series whose dynamics is not explicitly modeled.
Also, we use a HAC estimator for σ̂2

ê in cr of (9) when h > 1. In particular, we found that both in the Monte
Carlo and the empirical applications using the Den Haan and Levin (1997) VAR-HAC estimator based on
BIC lag selection resulted in the most accurate performance of the FPE criterion.
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4.1 Set-Up

We focus in Section 4.2 on the performance of direct forecasts from factor-augmented regres-
sions for a number of macroeconomic variables. It is standard practice in the macroeconomic
forecasting literature to use as forecasting benchmarks for factor-augmented regressions an
autoregressive (AR) model and the unconditional mean. The AR benchmark model in the
context of direct forecasting can be writing as

∆yt+h,t = αh +
p∑
i=1

ρi∆yt−i+1,t−i + εt+h,t, t = 1, . . . , T (10)

with ∆yt+h,t = yt+h − yt for h > 0 and ∆yt−i+1,t−i = yt−i+1 − yt−i for i = 1, . . . , p.
The number of lagged first differences p in (10) is determined by sequentially applying the
standard Schwarz (1978)’s BIC starting with a maximum lag order of p = pmax down to
p = 1. The unconditional mean benchmark is simply

∆yt+h,t = αh + εt+h,t, (11)

which implies a random walk (RW) forecast for the level of the forecast variable yt. The
assessment of the forecasting performance relative to pure AR-based and random walk-based
forecasts is based on the square root of the mean of the squared forecast errors (RMSE).
In Section 4.2 we will report ratios of the RMSE of factor-augmented regressions vis-à-vis
the RMSE based on either (10) or (11). Obviously, superior out-of-sample performance of
a factor-augmented regression relative to these benchmarks is indicated by a RMSE ratio
smaller than one and vice versa.

Our factor-augmented regressions adhere to the following specification:

∆yt+h,t = αh +
r̂∑
i=1

βhi fi,t +
p̂∑
j=1

ρij∆yt−i+j,t−j + εt+h,t. (12)

Following Stock and Watson (2002b) we take our T × N matrix of N indicator variables
X = (X ′1 · · ·X ′T )′ and normalize this such that the variables are in zero-mean and unity
variance space, which results in the T×N matrix X̃. We then compute the r̂ eigenvectors of
the N ×N matrix X̃ ′X̃ that correspond to the first r̂ largest eigenvalues of that matrix and
post-multiplying X̃ with these eigenvectors results in the estimated factors used in (12).

It is, of course, the aim of this exercise to evaluate the finite sample performance of
different selection criteria than can be used to determine the optimal dimensions of a factor-
augmented regression like (12). We will use the same set of selection criteria analyzed in
the Monte Carlo study in Section 3.2. Given (12), we use the BICM and HQICM criteria
outlined in (7) to search for that combination of p̂ and r̂ in (12) that minimizes either of
these metrics, with the search done across the range j = 0, . . . , pmax and i = 1, . . . , rmax.
In addition, we do similar searches using the standard BIC and HQIC criteria as well as the
Bai-Ng FPE criterion (9) (with k ≥ 1 in (9)). In the end this results in five different versions
of (12) for each forecast horizon that we will assess relative to our two benchmark models.
The forecasting models will be updated based on an expanding window of historical data:

1. First forecast for all h is generated on t0.

2. Extract rmax principal components from the N predictor variables over the sample
t = 1, . . . , t0 − h.
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3. Determine for each h over the sample t = 1, . . . , t0 − h the optimal lag order and
optimal number of factors for (12) for each of our five criteria: BICM, HQICM, BIC,
HQIC and Bai-Ng FPE across the range j = 0, . . . , pmax and i = 1, . . . , rmax. This
results in (p̂BICM , r̂BICM ), (p̂HQICM , r̂HQICM ), (p̂BIC , r̂BIC), (p̂HQIC , r̂HQIC) and
(p̂FPE , r̂FPE). In a similar vein, determine also the optimal lag order for the AR
benchmark based on BIC.

4. Given the outcome of step 3, estimate (10), (11) and (12) over the sample t =
1, . . . , t0 − h for each h.

5. Extract rmax principal components from the N predictor variables N over the sample
t = 1, . . . , t0.

6. Generate for h the forecast ∆ŷt+h,t using the estimated dimensions from step 3 and
the parameter estimates from step 4 as well as, in case of (12), the common factors
from step 5.

7. Repeat for t0 + 1, . . . , T − h for each h.

4.2 Empirical Results

We base our empirical exercise on a large panel of monthly macroeconomic, financial and
survey-based indicator variables for the United States, which is similar to that used Stock
and Watson (2007) but updated by us up to mid-2008. This panel consists of 108 monthly
series, which before transformation span a sample starting in January 1959 and ending in
July 2008. It spans real variables (sectoral industrial production, employment, subcompo-
nents of unemployment and hours worked), nominal variables (subcomponents of consumer
price index, producer price indexes, deflators, wages, money and credit aggregates), asset
prices (interest rates, stock prices and exchange rates) and surveys. Of these 108 series, we
use 106 as predictor variables that are transformed such that they are I(0). In general this
means that the real variables are expressed in log first differences and we use simply first
differences of series expressed in rates, such as interest rates and unemployment series; see
Appendix B for more details. We transform the nominal variables into first differences of
annual growth rates in order to guarantee that the dynamic properties of these transformed
series are comparable to those of the rest of the predictor variable panel, as for example
motivated in D’Agostino and Giannone (2006, Appendix B).2 Hence, after transforming
the predictor variables we end up with an effective span of the data that starts in February
1960 (i.e. 1960.2) and ends in July 2008 (i.e. 2008.07).

The aforementioned panel is used to forecast appropriate transformations of inflation
based on the U.S. personal consumption expenditures (PCE) price index as well as the
federal funds rate – see Table 6 for an overview of the appropriate transformation of each
forecast variable – and we deliberately keep these two variables separate from the panel
of predictor series. The federal funds rate is determined by the Federal Reserve Board,
which sets the target for the federal funds rate by taking into account both nominal and
real developments. The Board, like any other central bank, does that based on information
extracted across a wide range of data series, so factor methods could potentially be very
useful in predicting this variable. Inflation based on the PCE price index is of interest,
as the expenditure weights of the individual consumption goods in this price index vary

2This particular transformation acknowledges that series like log price levels and log money aggregate
levels behave as if they are I(2), possibly because of mean growth shifts due to policy regime shifts, financial
liberalizations and other phenomena.
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Table 6: Transformation of the forecast variables

Yt ∆yt,t−1 ∆yt+h,t

PCE index ∆ lnYt,t−12 −∆ lnYt−1,t−13 ∆ lnYt+h,t+h−12 −∆ lnYt,t−12

Federal Funds rate ∆Yt,t−1 ∆Yt+h,t

Notes: The table illustrates the transformation of a forecast variable Yt, indicated in the first
column, for use in the prediction regression (12).

from period to period and it is a chain-linked index. As such, one would expect that PCE
inflation better reflects the effects of substitution across goods by consumers when relative
prices change than other inflation measures, such as CPI inflation. Also, the Federal Reserve
Board has made it clear that it views PCE inflation as its primary measure of inflation.3

As described in the previous subsection, the forecasting models are updated based on an
expanding window of data and all forecasts are direct forecasts for 2 horizons (in months):
h = 1 and h = 12, which are horizons commonly analyzed in the literature. In each
update we determine five versions of the factor-augmented regression (12) using our modified
information criteria in (7), BIC, HQIC and the Bai-Ng FPE measure (9). For each criterion
we simultaneously select the optimal lag order from p = 0, . . . , 12 as well as the optimal
number of factors across i = 1, . . . , 8 such that a particular criterion is minimized. In case
of the AR benchmark (10) we select that lag order from p = 1, . . . , 12 that minimizes the
BIC criterion for (10). The forecast evaluation spans three samples: January 1972 - July
2008, January 1972 - December 1984 and January 1985 - July 2008. The latter two sub-
samples split the first sample in two around the start of the ‘Great Moderation’; see, e.g.,
McConnell and Perez-Quiros (2000) and Sensier and van Dijk (2004) who find evidence for
a downward, exogenous, shift in the volatility of a large number of U.S. macroeconomic
time series around 1985.

The Monte Carlo-based results in Section 3.2 indicate potentially large divergences
across the different selection criteria in terms of the selected number of factors. There-
fore, it might be of interest to see if this also occurs in real world data before we move on
to discuss the out-of-sample forecasting performance of our factor-augmented regressions.
Figures 1 and 2 plot the recursively selected number of factors for our factor-augmented
regression model using our five selection criteria at horizons h = 1 and h = 12 across the
January 1972 - July 2008 sample for both PCE inflation and the fed funds rate. When we
focus first on PCE inflation, see Figure 1, it becomes clear that the standard BIC and HQIC
criteria have a tendency to select, on average, a large number of factors, much larger than
our modified versions of these selection criteria, BICM and HQICM. BICM and HQICM,
except for the volatile 1970s in case of HQICM, consistently select only the first factor to
model PCE inflation dynamics at h = 1, whereas the regular criteria jump around between
one and eight factors and converging towards 7 factors at the end of the sample. Similar
conclusions can be drawn at the one-year ahead horizon. The Bai and Ng (2008) FPE
criterion performs in the same vein as our modified information criteria when it comes to
number of selected factors at h = 1, but tends to select more factors at the one-year hori-
zon. Also in the case of the federal funds rate (Figure 2) we observe the pattern of BIC
and HQIC criteria that select, in a very volatile manner, a substantially larger number of
factors than our BICM and HQICM criteria. This is fully consistent with the Monte Carlo

3See ‘Monetary Policy Report to the Congress’, February 2000, Federal Reserve Board.
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evidence in Section 3.2 for cases when the time series dimension of an underlying panel
of predictors grows faster than its cross-section dimension, which indicated that standard
selection criteria overestimate the number of factors in a factor-augmented regression. It
also corroborates our theoretical insights from Section 2: factor estimation error matters
for the corresponding factor-augmented regression and thus model selection criteria need to
take that into account in order to get a consistent estimate of the number of factors entering
such a regression.

Let us now turn to the out-of-sample forecasting results for both PCE inflation and
the federal funds rate, which are reported in Table 7. In case of PCE inflation the factor-
augmented model selection strategy based on our HQICM criterion most frequently results
in the best performing inflation forecast at the one-quarter horizon, except for the post-1984
sub-sample when the BICM-based strategy yields the most precise inflation forecast. The
latter approach generally performs best in terms of one-year ahead inflation predictions.
The exception, again, is the 1985-2008 sub-sample, in which all h = 12 forecasts seem to
perform in a more or less similar fashion - this is a period for which it is known that changes
in inflation are very hard to forecast. Our BICM criterion applied to a factor-augmented
regression appears to be the most useful in forecasting future changes in the federal funds
rate. Only for the 1972-1984 sub-sample, the strategy based on the Bai-Ng FPE criterion
yields the most accurate fed fund rate forecasts at h = 1 whereas for one-year ahead the
standard BIC approach seems to be a bit better than other model selection strategies.

The empirical results in this section confirm our earlier insights from theory and Monte
Carlo experiments. By taking into account factor estimation error when selecting the di-
mensions of a factor-augmented regression, one ends up with parsimonious and relatively
stable regression models. These perform at least as well as, and in an overwhelming num-
ber of cases improves upon, factor-augmented regressions whose dimensions are determined
through standard model selection criteria.

5 Conclusions

Factor-augmented regressions are often used for macroeconomic forecasting and analysis as
a parsimonious way of basing the forecast or the analysis on information from a large number
of variables. This paper focused on the issue of how to determine the appropriate number
of factors that are relevant for such a factor-augmented regression, whereas existing work
has been more focused on criteria that can consistently estimate the appropriate number
of factors that drive the dynamics in a large-dimensional panel of explanatory variables.
However, the resulting number of factors are not necessarily all relevant for modeling a
specific dependent variable within a factor-augmented regression.

Factor estimation error is an important issue in determining the dimensions of a factor-
augmented regression, particularly when the time series dimension of the underlying panel
of predictor series is growing at a faster rate than the cross-section dimension. We develop
a number of theoretical conditions selection criteria have to fulfill in order to estimate
the factor dimension that is relevant for such a regression in a consistent manner. The
framework does not hinge on a particular factor estimation methodology and can also
provide a template for developing selection criteria for regressions that include standard
generated regressors. Based on this framework it is clear that standard model selection
criteria like AIC, BIC and HQIC are not guaranteed to provide consistent estimates of the
dimensions of a factor-augmented regression. We propose alternative selection criteria that
do fulfill the conditions set by our theoretical framework and thus are consistent for factor-
augmented regressions. Our criteria essentially take standard information criteria that are

15



Figure 1: Number of factors selected in case of PCE inflation; 1972.01 - 2008.07

Horizon: h = 1 Horizon: h = 12

Notes: In the first column of this figure, we depict for PCE inflation the recursively selected number

of factors for (12) with h = 1 using BIC and BICM (first row), HQIC and HQICM (second row) and

the Bai-Ng FPE (last row) criteria. Similarly, in the second column we depict for PCE inflation these

recursively selected number of factors for (12) with h = 12.
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Figure 2: Number of factors selected in case of the federal funds rate; 1972.01 - 2008.07

Horizon: h = 1 Horizon: h = 12

Notes: See the notes for Figure 1.
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commonly used in time series econometrics and modify these such that the corresponding
penalty function for dimensionality also penalizes factor estimation error. We show through
Monte Carlo applications and empirically, through forecast evaluations for PCE inflation
and the fed funds rate, that our model selection criteria are useful in determining the
dimensions of factor-augmented regressions and yield models that in most cases outperform
factor-augmented regressions selected using existing criteria.
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Table 7: Out-of-sample forecasting results

h BIC HQIC BICM HQICM FPE BIC HQIC BICM HQICM FPE

PCE Inflation Federal Funds Rate

January 1972 - July 2008 January 1972 - July 2008

Benchmark: RW Benchmark: RW
1 0.832 0.812 0.815 0.806 0.816 0.957 0.995 0.933 1.003 0.941
12 1.007 1.041 0.964 1.010 0.985 0.925 0.940 0.943 0.942 0.953

Benchmark: AR Benchmark: AR
1 1.007 0.983 0.986 0.975 0.988 0.951 0.989 0.928 0.997 0.936
12 0.933 0.965 0.894 0.936 0.913 0.858 0.872 0.875 0.874 0.884

January 1985 - July 2008 January 1985 - July 2008

Benchmark: RW Benchmark: RW
1 0.846 0.841 0.838 0.838 0.838 1.167 1.146 0.894 0.972 1.220
12 1.129 1.132 1.145 1.143 1.129 0.995 0.981 0.898 0.962 1.004

Benchmark: AR Benchmark: AR
1 1.000 0.994 0.991 0.991 0.991 1.283 1.261 0.984 1.069 1.342
12 0.974 0.976 0.988 0.986 0.974 0.966 0.952 0.872 0.934 0.974

January 1972 - December 1984 January 1972 - December 1984

Benchmark: RW Benchmark: RW
1 0.816 0.778 0.787 0.767 0.791 0.936 0.981 0.937 1.006 0.913
12 0.961 1.006 0.900 0.961 0.932 0.871 0.907 0.932 0.917 0.912

Benchmark: AR Benchmark: AR
1 1.016 0.969 0.980 0.955 0.984 0.923 0.967 0.923 0.991 0.900
12 0.911 0.953 0.852 0.911 0.883 0.797 0.830 0.853 0.839 0.834

Notes: The table reports the ratio of the RMSE of a version of (12) vis-à-vis the random walk
model (11) or the autoregressive model (10) for PCE inflation and fed funds rate (see Table 6)) at
each horizon h (in months). Versions of (12) depend on which selection criterion has been used to
select both the number of lagged dependent variables as well as the number of principal components;
in case of the former the optimal lags are picked from a range between 0 and 12, whereas for the
latter they are selected across a range from 1 to 8. Column BIC (HQIC ) indicates the results when
the optimal number of lags and factors are chosen to minimize the BIC criterion (Hannan-Quinn IC
criterion), columns BICM and HQICM report results when the optimal number of lags and factors
are chosen to minimize our modified BIC and Hannan-Quinn IC measures, see (7), and, finally, FPE
show the results when the optimal number of lags and factors are chosen to minimize the Bai-Ng
FPE criterion (9). The method that performs relatively best vis-à-vis the benchmark is highlighted
in bold.

20



Appendices

A Proofs

Proof of Theorem 1

Let F̂ = (f̂1, . . . , f̂T )′ and F = (f1, . . . , fT )′ where f̂t denotes a generic set of estimated
factors and ft denote its probability limit. We abstact from the fact that F̂→pPF rather
than F̂→pF by assuming without loss of generality that P = I. From now on when the
matrices F and M = I − F′(F′F)−1F have superscript 0, they are constructed using the
true set of factors, F0. If they have no superscript then they are constructed using the
generic set of factors. When the coefficient vector α has superscript 0 then it refers to a
model using the true set of factors. Hats indicate estimated parameters. We denote the
penalty term for the generic set of factors by CT,N and the penalty term for the true set of
factors by C0

T,N . The feasible information criterion takes the following form

ÎC(α,CT,N ) =
T

2
ln{ 1

T
(y − F̂α)′(y − F̂α)}+ CT,N

We also introduce the infeasible criterion given by

IC(α,CT,N ) =
T

2
ln{ 1

T
(y − Fα)′(y − Fα)}+ CT,N

We decompose ÎC(α,CT,N ) as follows

ÎC(α,CT,N ) = IC(α,CT,N ) +
T

2
ln

[
1
T (y − F̂α)′(y − F̂α)
1
T (y − Fα)′(y − Fα)

]

At first, we consider the case F does not span F0 but F0 spans F. Then, consistency
requires that

lim
T→∞

P{ÎC(α̂, CT,N )− ÎC(α̂0, C0
T,N ) < 0} = 0 (A.1)

By substitution and using standard regression results this becomes

lim
T→∞

P


T
2 ln

[ 1
T

y′My
1
T

y′M0y

]
+ T

2 ln
[

1
T

(y−F̂α)′(y−F̂α)
1
T

(y−Fα)′(y−Fα)

]
+

T
2 ln

[
1
T

(y−F̂0α)′(y−F̂0α)
1
T

(y−F0α)′(y−F0α)

]
< C0

T,N − CT,N

 = 0 (A.2)

We next examine the first term of the LHS of the inequality within the probability statement.
By expanding y we get that

T

2
ln

[
1
T y′My
1
T y′M0y

]
=
T

2
ln

[
1
T1

(α0′F0′MF0α0 + εFε+ 2ε′MF0α0)
1
T1

(α0′F0′M0F0α0 + εF0ε+ 2ε′M0F0α0)

]

But idempotency implies positive-definiteness and as a result α0′F0′MF0α0 > 0. Further ,

α0′F0′M0F0α0 = α0′F0′F0α0 − α0′F0′F0(F0′F0)−1F0′F0α0′ = 0

Further, by the assumed stationarity of the model and using the theorem assumptions we
get

0 < plim
1
T

F0′F0 <∞
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0 < plim
1
T

F′F <∞

and
1
T

F0ε→p0

and
1
T

Fε→p0

Thus
(

1
T

F0′ε)′(
1
T

F0′F0)−1(
1
T

F0′ε)→p0

and
(

1
T

F′ε)′(
1
T

F′F)−1(
1
T

F′ε)→p0

Thus,
1
T1
εM0ε→pσ

2 (A.3)

and
1
T1
εMε→pσ

2 (A.4)

As a result of all the above ln
[ 1

T
y′My

1
T

y′M0y

]
is positive and Op(1) and, therefore,

T

2
ln

[
1
T y′My
1
T y′M0y

]
= Op(T )

By Theorem 3 of Bai and Ng (2006) we know that

T

2
ln

[
1
T (y − F̂α)′(y − F̂α)
1
T (y − Fα)′(y − Fα)

]
= Op

(
T min(N,T )−1

)
= op(T ) (A.5)

as long as N →∞. Since C0
T,N −CT,N = o(T ), (A.2) holds proving the result when F does

not span F0 but F0 spans F.
Now, we want to prove that (A.1) holds, when F0 does not span F but F spans F0. By

standard regression analysis we know that if F spans F0, then MF 0 = 0. Then,

α0′F0′MF0α0 =ε′MF0α0 = α0′F0′M0F0α0 =ε′M0F0α0 = 0

Thus,
T

2
ln

[
1
T y′My
1
T y′M0y

]
=
T

2
ln

[
1
T ε
′Mε

1
T ε
′M0ε

]
But

ln

[
1
T ε
′Mε

1
T ε
′M0ε

]
= Op(T−1

1 )

and therefore
T

2
ln

[
1
T ε
′Mε

1
T ε
′M0ε

]
= Op(1)

As a result

lim
T→∞

P

{
T

2
ln

[
1
T y′My
1
T y′M0y

]
< C0

T,N − CT,N

}
= 0 (A.6)
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Table B.1: Transformation of the predictor variables

Transformation code Transformation Xt of raw series Yt

1 Xt = Yt
2 Xt = ∆Yt,t−1

3 Xt = ∆Yt,t−12 −∆Yt−1,t−13

4 Xt = lnYt
5 Xt = ∆ lnYt,t−1

6 Xt = ∆ lnYt,t−12 −∆ lnYt−1,t−13

as long as C0
T,N −CT,N → −∞. But, (A.5) implies this is not enough for (A.1) to hold. For

(A.1) to hold, and given (A.6), we need that

lim
T→∞

P

 T
2 ln

[
1
T

(y−F̂α)′(y−F̂α)
1
T

(y−Fα)′(y−Fα)

]
+ T

2 ln
[

1
T

(y−F̂0α)′(y−F̂0α)
1
T

(y−F0α)′(y−F0α)

]
< C0

T,N − CT,N + C

 = 0 (A.7)

for all positive finite constants C. But (A.7) holds, if
C0

T,N−CT,N

T min(N,T )−1 → −∞. Given we assume
this, the result is proven.

Proof of Theorem 2

The result follows immediately from the proof of Theorem 1 once we note that (A.5) can
be replaced by

T

2
ln

[
1
T (y − F̂α)′(y − F̂α)
1
T (y − Fα)′(y − Fα)

]
= Op (TqNT ) = op(T ). (A.8)

B Data Set

The data set used for forecasting are the monthly series from the panel of U.S. indicator
series as employed in Stock and Watson (2007), extended by us up to July 2008. Our two
dependent variables, PCE inflation and the (effective) federal funds rate, are excluded from
this panel. In order to be sure that these predictor variables are I(0), the underlying raw
series need to be transformed such that this is the case; generally we employ the same
transformation as Stock and Watson (2007), except for the bulk of the nominal series where
we follow, e.g., D’Agostino and Giannone (2006) and use first differences of twelve-month
transformations of the raw series. Table B.1 summarizes our potential transformations for
the raw series.

Hence, we are using as predictor variables the following 106 series, which span the sample
January 1959 - July 2008 before the appropriate transformations are applied, and we refer
to Stock and Watson (2007) for more details regarding data construction and sources:

Series Yt Transformation:
(See Table B.1)

INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5
INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
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INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
INDUSTRIAL PRODUCTION INDEX - MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
INDUSTRIAL PRODUCTION INDEX - FUELS 5
NAPM PRODUCTION INDEX (PERCENT) 1
CAPACITY UTILIZATION - MANUFACTURING (SIC) 1
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5
EMPLOYEES, NONFARM - TOTAL PRIVATE 5
EMPLOYEES, NONFARM - GOODS-PRODUCING 5
EMPLOYEES, NONFARM - MINING EMPLOYEES, NONFARM - CONSTRUCTION 5
EMPLOYEES, NONFARM - MFG 5
EMPLOYEES, NONFARM - DURABLE GOODS 5
EMPLOYEES, NONFARM - NONDURABLE GOODS 5
EMPLOYEES, NONFARM - SERVICE-PROVIDING 5
EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES 5
EMPLOYEES, NONFARM - WHOLESALE TRADE 5
EMPLOYEES, NONFARM - RETAIL TRADE 5
EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES 5
EMPLOYEES, NONFARM - GOVERNMENT 5
INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING 1
AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG 2
HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4
HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,U)SA 4
HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4
HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4
HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HOUSING STARTS:WEST (THOUS.U.)S.A. 4
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
INTEREST RATE SPREAD: 6-MO. TREASURY BILLS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 1-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 10-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: AAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
INTEREST RATE SPREAD: BAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
MZM (SA) FRB St. Louis 6
MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP)(BIL$,SA) 6
MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA) 6
CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
Personal Consumption Expenditures, Price Index (2000=100) , SAAR 6
Personal Consumption Expenditures - Durable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR 6
PCE Price Index Less Food and Energy (SA) Fred 6
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PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
Real PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6
Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5
PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA) 6
PPI Crude (Relative to Core PCE) 5
NAPM COMMODITY PRICES INDEX (PERCENT) 1
UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 2
COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
PURCHASING MANAGERS’ INDEX (SA) 1
NAPM NEW ORDERS INDEX (PERCENT) 1
NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
NAPM INVENTORIES INDEX (PERCENT) 1
NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI) 5
NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI) 5
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