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Abstract

We compare a number of data-rich prediction methods that are widely used in

macroeconomic forecasting with a lesser known alternative: partial least squares (PLS)

regression. In this method, linear, orthogonal combinations of a large number of predictor

variables are constructed such that the covariance between a target variable and these

common components is maximized. We show theoretically that when the data have a

factor structure, PLS regression can be seen as an alternative way to approximate this

unobserved factor structure. In addition, we prove that when a large data set has a weak

factor structure, which possibly vanishes in the limit, PLS regression still provides

asymptotically the best fit for the target variable of interest. Monte Carlo experiments

confirm our theoretical results that PLS regression performs at least as well as principal

components regression and rivals Bayesian regression when the data have a factor

structure. But when the factor structure in the data is weak, PLS regression outperforms

both principal components and Bayesian regressions. Finally, we apply PLS, principal

components, and Bayesian regressions to a large panel of monthly U.S. macroeconomic

data to forecast key variables across different subperiods. The results indicate that PLS

regression usually has the best out-of-sample performance.
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1 Introduction

It has been a standard assumption in theoretical macroeconomic modeling that agents are pro-

cessing all the available quantities of information when forming their expectations for the future.

Also, policymakers traditionally have looked at a vast array of indicator series in the run-up to

major policy decisions, or in the words of Lars Svensson (Svensson (2005)) about what central

bankers do in practice: ‘(l)arge amounts of data about the state of the economy and the rest of

the world ... are collected, processed, and analyzed before each major decision.’ However, most

traditional macroeconomic prediction approaches rarely consists of models that handle more

than 10 variables, because it is either inefficient or downright impossible to incorporate a much

larger number of variables in a single forecasting model and estimate it using standard economet-

ric techniques. This failure of traditional macroeconomic forecasting methods prompted a new

strand of research devoted to the theory and practice of alternative macroeconomic forecasting

methods that utilize large data sets.

These alternative methods can be distinguished into two main categories. As, e.g., outlined

in Hendry (1995), the methods of the first category involve inherently two steps: In the first

step some form of variable selection is undertaken. The variables that are chosen are then used

in a standard forecasting model. Recent developments in this line of research has focussed on

automated model selection procedures in order to be better able to select the optimal predictors

from large data sets; see Krolzig and Hendry (2001). An alternative group of forecasting methods

consists of estimation strategies that allow estimation of a single equation model that utilizes

all the information in a large data set and not just an ‘optimal’ subset of the available predictor

series. This is a diverse group of forecasting methods ranging from factor-based methods to

Bayesian regression and forecast combination. These two groups of methods inevitably overlap.

However, we feel that the step of variable selection is, and involves methods that are, sufficiently

distinct to merit separate mention and treatment. Instead, we focus in this paper on the latter

group of data-rich forecasting methods.

Within the group of data-rich forecasting techniques, factor methods have gained a prominent

place. These methods are related to the strict factor models used in finance, but, starting with
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Chamberlain and Rothschild (1983), they use weaker assumptions regarding the behavior of

the idiosyncratic components, which allows the use of principal components in very large data

sets to identify the common factors in such a data set. Stock and Watson (2002a) and Bai

(2003) further formalized the underlying asymptotic theory. Stock and Watson (2002b) proved

to be the starting point of a large empirical research output where, with mixed success, a

limited number of principal components extracted from a large data set are used to forecast key

macroeconomic variables. However, the use of principal components does not always guarantee

that the information extracted from a large number of predictors is useful for forecasting. Boivin

and Ng (2006) make it clear that if the forecasting power comes from a certain factor, this

factor can be dominated by other factors in a large data set, as the principal components solely

provide the best fit for the large data set and not for the target variable. This could explain

why in some empirical applications principal components (PC) factor models are dominated

by Bayesian regression and forecast combinations. Under Bayesian regression one essentially

estimates a multivariate regression consisting of all predictor variables, but with the regression

coefficients shrunken to a value close to zero. Starting with Bates and Granger (1969), forecast

combination involves the use of subsets of predictor variables in distinct forecasting models and

the production of multiple forecasts for the target variable, which are then averaged to produce

a final forecast. The distinctive feature of these two approaches is that the information in a

large data set is compressed such that this has explanatory power for the target variable. Note,

however, that from an econometric perspective forecast combinations are ad hoc in nature,

whereas it has been shown in De Mol et al. (2008) that Bayesian regression is theoretically

related to PC-based factor models.

In this paper we revisit the use of principal components (PC) and Bayesian regression for

data-rich macroeconomic forecasting and compare these with the lesser known method of par-

tial least squares (PLS) regression. We propose PLS regression as an alternative data-rich

approach that can be used for macroeconomic forecasting using very large data sets, irrespec-

tive of whether such a data set involves having a strong factor structure or not. PLS regression

is implemented for large data sets through the construction of linear, orthogonal combinations

of the predictor variables such that the linear combinations maximize the covariance between

2



the target forecast variable and each of the common components constructed from the predictor

variables. Although similar in spirit to PC regression, the explicit consideration of the target

forecast variable addresses a major existing criticism towards PC regression as a forecasting

technique.

One significant contribution of our paper is that we provide theoretical results that relates

PLS to PC for large data sets. When a factor structure is a dominant feature of large data sets

we can show that in the limit PLS and PC regressions will be equivalent, and thus PLS regression

can be seen as a valid alternative technique to uncover the relevant, underlying unobserved factor

structure. However, when this underlying factor structure is very weak, or even absent, we prove

that PLS regression still provides asymptotically the best fit for the target variable of interest.

Next, we argue that the range of forecast combination techniques can be seen as restricted

versions of PLS. PLS, therefore, has explicit theoretical links with the currently used range of

data-rich macroeconomic forecasting tools. More specifically, we provide a unification of forms

of PLS, PC, forecast combination and, via the work of De Mol et al. (2008), Bayesian regression,

thereby linking all major forecasting tools. Finally, we consider in detail the properties of PLS,

PC and Bayesian regression for forecasting using both Monte Carlo analysis and an empirical

application to gauge the potential of each of these data-rich approaches. Our work suggests a

clear potential for PLS regression for a variety of contexts.

In the remainder of this paper we have the following structure: Section 2 discusses the

most frequently used data-rich methods for macroeconomic forecasting. Then, in Section 3,

we provide an overview of PLS regression, present some results on the asymptotic behavior

of PLS regression, and report on an extensive Monte Carlo study that focuses on the out-of-

sample properties of PLS, PC and Bayesian shrinkage regression. Section 4 presents an empirical

application where PLS and the other data-rich forecasting methods are used on a large monthly

US macroeconomic data set. Finally, Section 5 concludes.
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2 Frequently Used Methods for Data-Rich Macroeconomic Fore-
casting

A useful framework for studying existing methods is provided by the following general forecasting

equation

yt = α′xt + εt; t = 1, . . . , T, (1)

where yt is the target of the forecasting exercise, xt = (x1t · · ·xNt)′ is a vector of dimension

N × 1 and thus α = (α1 · · ·αN )′ is also N × 1. It is assumed that the number of indicator

variables N is too large for α to be determined by standard methods such as ordinary least

squares (OLS). The literature has proposed a number of ways how one can deal with this issue

of large-dimensional data sets, of which we provide a selective review.

Factor Methods

The most widely used class of data-rich forecasting methods are factor methods. Factor methods

have been at the forefront of developments in forecasting with large data sets and in fact started

this literature with the influential work of Stock and Watson (2002a). The defining characteristic

of most factor methods is that relatively few summaries of the large data sets are used in

forecasting equations which thereby becomes a standard forecasting equation as they only involve

a few variables. The assumption is that the co-movements across the indicator variables can be

captured by a r × 1 vector of unobserved factors Ft = (F1t · · ·Frt)′, i.e.

x̃t = Λ′Ft + et (2)

where x̃t may be equal to xt or may involve other variables such as, e.g., lags and leads of xt and

Λ is a r×N matrix of parameters describing how the individual indicator variables relate to each

of the r factors, which we denote with the terms ‘loadings’. In (2) et represents a zero-mean I(0)

vector of errors that represent for each indicator variable the fraction of dynamics unexplained

by Ft, the ‘idiosyncratic components’. The number of factors is assumed to be small, meaning

r < min(N, T ). So, implicitly, in (1) α′ = α̃′Λx̃t, where Ft = Λx̃t, which means that a small, r,

number of linear combinations of x̃t represent the factors and act as the predictors for yt. The

main difference between different factor methods relate to how Λ is estimated.
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The use of principal components (PC) for the estimation of factor models is, by far, the most

popular factor extraction method. It has been popularised by Stock and Watson (2002a,b), in

the context of large data sets, although the idea had been well established in the traditional mul-

tivariate statistical literature. The method of principal components (PC) is simple. Estimates

of Λ and the factors Ft are obtained by solving:

V (r) = min
Λ,F

1
NT

N∑

i=1

T∑

t=1

(x̃it − λ′iFt)2, (3)

where λi is a r×1 vector of loadings that represent the N columns of Λ = (λ1 · · ·λN ). One, non-

unique, solution of (3) can be found by taking the eigenvectors corresponding to the r largest

eigenvalues of the second moment matrix X ′X, which then are assumed to represent the rows

in Λ, and the resulting estimate of Λ provides the forecaster with an estimate of the r factors

F̂t = Λ̂x̃t. To identify the factors up to a rotation, the data are usually normalized to have zero

mean and unit variance prior to the application of principal components; see Stock and Watson

(2002a) and Bai (2003)

PC estimation of the factor structure is essentially a static exercise as no lags or leads of xt

are considered. One alternative is dynamic principal components, which, as a method of factor

extraction, has been suggested in a series of papers by Forni, Hallin, Lippi and Reichlin (see,

e.g., Forni et al. (2000, 2004) among others) is designed to address this issue. Dynamic principal

components are extracted in similar fashion to static principal components but , instead of the

second moment matrix, the spectral density matrices of the data at various frequencies are used.

These are then used to construct estimates of the common component of the data set which is

a function of the unobserved factors. This method uses leads of the data and as a result its

application to forecasting has been slow for obvious reasons. Recent work by the developers of

the method has addressed this issue (see, e.g., Forni et al. (2005)).

Bayesian (Shrinkage) Regression

Bayesian regression is a standard tool for providing inference for α in (1) and there exist a large

variety of approaches for implementing Bayesian regression. We will provide a brief exposition

of this method. A starting point is the specification of a prior distribution for α. Once this is
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in place standard Bayesian analysis proceeds by incorporating the likelihood from the observed

data to obtain a posterior distribution for α which can then be used for a variety of inferential

purposes, including, of course, forecasting.

A popular and simple implementation of Bayesian regression results in a shrinkage estimator

for α in (1) given by

α̂BRR = (X ′X + vI)−1X ′y (4)

where X = (x1, ..., xT )′, y = (y1, .., yT )′ and v is a shrinkage scalar parameter. The shrinkage

estimator (4) shrinks the OLS estimator, given by (X ′−1X ′y towards zero, thus enabling a re-

duction in the variance of the resulting estimator. This is a major feature of Bayesian regression

that makes it useful in forecasting when large data sets are available. This particular imple-

mentation of Bayesian regression implies that elements of α are small but different from zero

ensuring that all variables in xt are used for forecasting. In this sense, Bayesian regression can

be linked to other data-rich approaches. When a certain factor structure is assumed in the data,

Bayesian regression through (4) will forecast yt by projecting it on a weighted sum of all N

principal components of X, with decaying weights, instead of projecting it on a limited number

of r principal components with equal weights as in PC regression; see De Mol et al. (2008).

3 An Alternative: Partial Least Squares Regression

Partial least squares (PLS) is a relatively new method for estimating regression equations, in-

troduced in order to facilitate the estimation of multiple regressions when there is a large, but

finite, amount of regressors.1 The basic idea is similar to principal component analysis in that

factors or components, which are linear combinations of the original regression variables, are

used, instead of the original variables, as regressors. A major difference between PC and PLS is

that, whereas in PC regressions the factors are constructed taking into account only the values of

the xt variables, in PLS, the relationship between yt and xt is considered as well in constructing

the factors. PLS regression does not seem to have been explicitly considered for data sets with

a very large number of series, i.e., when N is assumed in the limit to converge to infinity. The
1Herman Wold and co-workers introduced PLS regression between 1975 and 1982, see, e.g., Wold (1982). Since

then it has received much attention in a variety of disciplines, especially in chemometrics, outside of economics.
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latter assumption has motivated the use of PC regression for macroeconomic forecasting, as the

principal components under that assumption can under certain conditions identify the common

factors in the data set (see, e.g., Bai (2003)). One of our contributions is, therefore, to develop

the asymptotic properties of PLS regression under similar assumptions that N, T →∞ for data

sets that have a common factor structure, and we do that in Section 3.1. In addition, we also

investigate in that subsection the asymptotic properties of PLS regression when large data sets

have a weak factor structure that possibly vanishes asymptotically. Section 3.2 then describes

how PLS regression ties up with other data-rich techniques. Finally, Section 3.3 reports on a

number of Monte Carlo experiments in which we compare PLS regression with PC-based factor

modeling.

3.1 PLS Regression: Methodology and Theory

There are a variety of definitions for PLS and accompanying specific PLS algorithms that in-

evitably have much in common. A conceptually powerful way of defining PLS is to note that

the PLS factors are those linear combinations of xt, denoted by Υxt, that give maximum co-

variance between yt and Υxt while being orthogonal to each other. Of course, in analogy to PC

factors, an identification assumption is needed, to construct PLS factors, in the usual form of a

normalization.

A simple algorithm to construct k PLS factors is discussed among others, in detail, in Helland

(1990). Assuming for simplicity that yt has been demeaned and xt have been normalized to have

zero mean and unit variance, a simplified version of the algorithm is given below

Algorithm 1

1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Determine the N × 1 vector of indicator variable weights or loadings wj = (w1j · · ·wNj)′

by computing individual covariances: wij = Cov(ut, vit), i = 1, ..., N . Construct the j-th

PLS factor by taking the linear combination given by w′jvt and denote this factor by fj,t.
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3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt and

ṽi,t respectively.

4. If j = k stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

This algorithm makes clear that PLS is computationally tractable for very large data sets.

Once PLS factors are constructed yt can be modeled or forecast by regressing yt on fj,t j =

1, ..., k. Helland (1988, 1990) provide a general description of the partial least squares (PLS)

regression problem. Helland (1988) shows that the estimates of the coefficients α in the regression

of yt on xt, as in (1), obtained implicitly via PLS Algorithm 1 and a regression of yt on fj,t

j = 1, ..., k, are mathematically equivalent to

α̂PLS = Vk(V ′
kX ′XVk)−1V ′

kX ′y (5)

with Vk1 = (X ′y X ′XX ′y · · · (X ′X)k−1X ′y), X = (x1 · · ·xT )′ and y = (y1 · · · yT )′. Thus,

(5) suggests that the PLS factors that result from Algorithm 1 span the Krylov subspace gen-

erated by X ′X and X ′y, resulting in valid approximations of the covariance between yt and

xt.

Next, we undertake a theoretical analysis of PLS when T, N →∞. Note that previous work

focused exclusively on the case of a finite N . We consider two mutually exclusive frameworks. In

the first, a factor structure exists for X. In the second there is only a very weak factor structure

that can actually disappear as N →∞ but some cross-sectional dependence is allowed. We start

by analysing the factor case. Here, our goal is to show how PLS regression behaves relative to

PC regression, as T, N →∞. Within the general regression (1), which relates yt to xt, denote

the PLS and PC implied regression estimates by α̂PLS and α̂PC respectively, based on (5) and

α̂PC = Λ′(ΛX ′XΛ′)−1ΛX ′y (6)

where Λ is the r×N matrix of linear combinations of the xit’s that result from minimizing (3).

Let the matrix norm we use be ||A|| = tr(A′A)1/2. We follow Stoica and Söderström (1998) who

assume the following :
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Assumption 1 Let

X ′X = SΨS′ + Cδ

where Ψ = diag(ψ1, ..., ψr) for some r < N , S′S = I, Cδ denotes a term whose matrix norm is

Op(δ) and δ → 0. This assumption implies for (5) and (6) within (1):

||α̂PLS − α̂PC || = Op(δ). (7)

An interesting aside that comes out of the above setup of Stoica and Söderström (1998) is that

if the definition of k, suggested in the previous paragraph, is adopted then, for finite N at least,

and assuming a reduced rank structure as in Assumption 1 we have that k ≤ r. We will comment

on that later in more detail.

For our large data set framework, with T, N → ∞, we now assume the following factor

structure for the explanatory variables xt:

Assumption 2 Let Σ = ΣN = [σij ] denote the N ×N second moment matrix of X. Σ can be

factorized as follows:

Σ = S̃Ψ̃S̃′ + R

where S̃S̃′ = I, Ψ̃ = diag(ψ̃N1, ..., ψ̃Nr) is a r × r matrix, r < N and ||R|| = op(N).

Finally, we need an additional assumption regarding the second moments of xt, i.e.,

Assumption 3 For all i, j = 1, ..., N

T∑

t=1

(xi,txj,t − σi,j) = Op(T−1/2)

Remark 1 Assumptions 2 and 3 deserve some comment. Assumption 2 states that the variables

in X are asymptotically with respect to N collinear. Under a standard factor assumption there

can be only a finite number of unbounded eigenvalues, and hence unbounded singular values, for

the covariance matrix of the data. In case of Assumption 2 we can have an infinity of unbounded

eigenvalues as long as the sum of all but the first r eigenvalues is op(N). In particular the

remainder term, R, can, in fact, be parameterized as a neglected ‘weak’ factor model whose
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eigenvalue characterization allows for unbounded eigenvalues which, however, have to grow at a

rate slower than N . Assumption 3 is a mild, high level, assumption. It is sufficient to have a

central limit theorem for (xi,txj,t − σi,j) for this assumption to hold.

Given the above set-up we now end-up with the following Theorem

Theorem 1 Under Assumptions 1-3, and as N, T → ∞ sequentially, we have for the PLS

and PC regression-implied estimates of the individual coefficients α in the general regression

framework (1):

||α̂PLS − α̂PC || = op

(
(NT )−1/2

)
. (8)

Proof: In order the prove this result in our case we need to show that as T,N →∞, Assump-

tion 1 holds in probability asymptotically; for details see Appendix A.

Theorem 1 therefore indicates that under an assumed factor structure the PLS and PC

regression approaches provide an asymptotically equivalent modeling of the relationship between

yt and xt in a general, large-dimensional, regression set-up as in (1). The intuition behind this

Theorem can be described as follows. The principal components extracted from xt in, say, (1)

provide the basis vectors that span the r-dimensional space of the underlying dominant factor

model for xt. Then, the PLS factors extracted from xt reflect an immediate rotation of this

r-dimensional space that provides the best fit for yt and hence k ≤ r in (5). Of course, in

the limit that part of the r-dimensional space spanned by the principal components that is not

relevant for the fit of yt becomes redundant in (6). But exactly because the PLS factors yield

in one step the most relevant rotation of this space one can expect a more efficient modeling of

yt in finite samples using PLS regression than using PC regression.

Next, we consider the theoretical properties of PLS when there exists a weak factor structure

in X that can disappear as N → ∞. We make explicit the dependence of the coefficient and

variable vector on N and write the model in (1) as

yt = α′NxN,t + εt (9)

where xN,t = (x1,N,t, ..., xN,N,t)′. We make the following assumptions
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Assumption 4

Part I: Let Σ = ΣN = [σij ] denote the N ×N second moment matrix of X. Then,

‖ΣXX − I‖1 = o(N),

where ‖.‖1 denotes the Minkowski 1-norm.

Part II: Further, we have

0 < lim
N→∞

sup
i,j

αN,i

αN,j
< ∞.

Assumption 5 Uniformly over j = 1, ..., N

1
T

T∑

t=1

xj,tyt − σXy,j = Op

(
T−1/2

)

where σXy,j = E (xj,tyt).

Remark 2 Again, Assumptions 4 and 5 deserve comment. Part I of Assumption 4 states that

the covariance matrix of X becomes relatively close in a particular sense to the identity matrix

as N →∞. It allows, e.g., for structures such as

ΣXX =
(

B 0
0 I

)
(10)

where B is a N1 × N1 symmetric positive definite matrix (N1 < N) that can have a factor

structure as outlined in Assumption 2, N1 → ∞ and N2
1 /N → 0. In such a set-up relatively

more variables are added to X, as N grows, that are unrelated to the factor structure implied

by B, which therefore gets more and more diluted. Another possibility consistent with Part I of

Assumption 4 is a covariance matrix where non-diagonal elements are non-zero but tending to

zero as the dimension of the matrix increases. For example, denoting the representative element

of ΣXX by σij, we can set σij = 1
iκjκ . Then, the Assumption holds as long as κ > 0.5. The

same result holds if we set σij = 1
N2κ . Note that such a covariance matrix can be obtained by

specifying a factor model where the loadings depend on and tend to zero with N . Part II of

Assumption 4 states that no variable in xN,t has a dominant effect in the forecasting regression.
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This assumption can certainly be relaxed to allow, e.g., for a small subset of variables to be

redundant. Further extensions are also possible but we choose to have this assumption so as to

provide a relatively simple theoretical analysis while illustrating the desirable properties of PLS

in a lower collinearity setting than assumed under a standard factor structure. Assumption 5 is

a mild assumption of a similar nature to Assumption 3

Based on such a weak factor structure we now can formulate the following theorem:

Theorem 2 Let σ2 denote the true variance of εt in the general regression framework (1) (and

thus (9)) and σ̂2 its estimate from a PLS regression, given by steps 1-3 of Algorithm 1, using

the N predictor variables that correspond with (1). Under Assumptions 4-5, and as N,T →∞
sequentially, σ̂2 − σ2 = op(1).

Proof: The proof is given in Appendix B.

Theorem 2 suggests that under a weak factor (or ‘near factor’) structure PLS regression is still

able to estimate a model that has asymptotically the best fit, as the theorem implies that the

PLS regression R2 will converge to the population R2 of the general regression (1). Hence,

PLS regression should continue to do well in modeling a target variable even if the collinearity

amongst the predictor variables is not as strong as it is assumed to be for conventional factor

models.

3.2 Linking Alternative Data Rich Methods

In this subsection, we briefly consider links between alternative data rich methods such as PLS,

PC and Bayesian regression given the results presented in the previous subsection. We first note

that Garthwaite (1994) provides a rationale to cast (ad hoc) forecast combinations in terms of

the above described PLS framework. Essentially what Garthwaite (1994) shows is that a general

PLS algorithm like Algorithm 1 can be expressed in terms of sequences of univariate regressions,

i.e.,

Algorithm 2
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1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Regress ut on vi,t, i = 1, ..., N and denote the OLS estimate of the coefficient of each

regression by βi. Construct the j-th PLS factor by taking the weighted average of βivit:

fj,t = w̃′jvt with w̃j = ((β1w1j) · · · (βNwNj))
′ where (w1j · · ·wNj) are given.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt and

ṽi,t respectively.

4. If j = k1 stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

Therefore, when in this algorithm one sets (w1j · · ·wNj) = (V ar(v1t) · · ·V ar(vNt)) Algo-

rithm 1 follows, but if one assumes (w1j · · ·wNj) = ( 1
N · · · 1

N ) than in the one-factor case the

Capistrán and Timmermann (2008) projection on equal-weighted mean (PEW) forecast com-

bination approach follows. In general, forecast combinations can be interpreted through Algo-

rithm 2 as restricted approximations to one-factor PLS regression, with alternative specifications

for (w1j · · ·wNj) and often with zero intercept and slope coefficients in the final forecast regres-

sion.2 By interpreting forecast combinations as a form of PLS regression, Theorems 1 and 2

provide the underpinning for the relatively good performance of forecast combinations vis-à-

vis PC regressions within different data environments.3 Note, though, that PLS is much more

general and it allows for several factors to be included in the forecast regression.

In addition, De Mol et al. (2008) prove the existence of a form of asymptotic equivalence

between PC regression and Bayesian regression when the underlying data comply with a factor

structure.4 Thus, given that structure, Bayesian regression should, via Theorem 1, be asymptot-

ically equivalent to PLS regression and, under the one-factor assumption, forecast combinations.
2Granger and Ramanathan (1984) suggest regressing individual forecasts on the target variable with the

resulting parameter estimates serving as combination weights. More generally, by specifying a loss function one
can derive combination weights that are optimal under that specific loss function (Elliott and Timmermann
(2004)). Timmermann (2006) provides a comprehensive survey of the forecast combination literature.

3For example, Faust and Wright (2007) show that forecast combination methods provide better out-of-sample
performance than factor methods when applied to high-dimensional panels of U.S. macroeconomic data.

4It is worth noting that the assumption made by De Mol et al. (2008) on the idiosyncratic part of their
entertained factor model bears similarities to our Assumption 2. In particular, just like the implication of our
Assumption 2, discussed in Remark 1, the idiosyncratic component of their factor model can accommodate a
residual ‘weak’ factor model in the sense that the eigenvalues implied by that factor model can be unbounded but
have to grow at a rate slower than N .
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Therefore, the introduction of the PLS regression framework provide a means to asymptotically

tie together different existing data-rich forecasting methods and provides a theoretical rationale

for the common empirical finding that different data-rich approaches have similar performance.

3.3 Monte Carlo Analysis

In this subsection, we explore through Monte Carlo experiments the finite sample performance

of PLS regression relative to PC regression and Bayesian regression. We consider both the case

when the data have a factor structure and the case where there is no factor structure.

Monte Carlo Set-up

For our Monte Carlo experiments we consider the following data generating processes (DGPs):

yt = α′(x1,t · · ·xN,t)′ + εt = α′xt + εt, t = 1, ..., T,

xt = Λ′ft + ut,

ft = (f1,t · · · fr,t)′ ∼ iidN(0, Ir), r << N,

εt =
√

cNεt,

(11)

with the N × 1 vector of regression parameters α = (α1 · · ·αN )′, εt is a zero-mean disturbance

term that we discuss in more detail later, and Λ = (λ1 · · ·λN ) is a r × N matrix of factor

loadings that corresponds with the r × 1 vector of factors ft with λi = (λi,1 · · ·λi,r)′. The DGP

for xt in (11) uses a N × 1 vector of zero-mean disturbances ut = (u1,t · · ·uN,t)′. The individual

regression coefficients in (11) are determined as αi ∼ iid N(0, 1) and the disturbances for the N

explanatory variables are determined in a similar manner: ui,t ∼ iid N(0, 1).

We consider a number of cases for the factor loadings, which we summarize as:

Case I: λi,j ∼ iidN(0, 1) for i = 1, . . . , N & j = 1, . . . , r.

Case II: λi,j





= λ̃i,j ∼ iidN(0, 1) for i = 1, . . . , N1, N1 = Nκ1 (κ1 = 0.25, 0.75) & j = 1, . . . , r.

= 0 for i = N1 + 1, . . . , N & j = 1, . . . , r.

Case III: λi,j = λ̃i,j

Nκ2 and λ̃i,j ∼iid N(0, 1) for i = 1, . . . , N , j = 1, . . . , r & κ2 = 0.25, 0.75.

Clearly, Case I represents a standard factor model where the predictor variables are driven by

r common factors. Cases II and III, on the other hand, imply much weaker factor structures
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in xt than assumed under Case I and these become progressively weaker as the cross-section

dimension N increases. Under Case II we assume a structure of the form (10) where we set

N1 = Nκ1 and κ1 = 0.25, 0.75. This is operationalized by using a factor model where the

factors are not pervasive but affect a subset N1 of the variables in xt. The subset of predictor

variables (N1−N) are non-informative for the factors and this subset will dominate the panel of

N predictor variables as N →∞, where κ1 determines the speed with which this occurs. Case

III assumes that the representative non-diagonal element of the covariance matrix of xt is given

by 1
N2κ2

. We obtain this by using factor loadings that tend to zero as N → ∞. As such Case

III represents a case where we have a ‘near-factor model’ in xt in which κ2 determines how close

this structure is to a standard factor model, and the larger κ2 the further away it is from such

a standard factor model.

An important parameter for the Monte Carlo study is the population R2 of the yt regression

equation in (11). We control this by controlling the variance of the yt disturbance term εt in

(11) through c = (1 + r)c̃, where εt ∼ iidN(0, 1). Setting c̃ = 1, 4, 9 gives a population R2

equal to 0.5, 0.2 and 0.1 in case of the standard factor model (Case I). For the case of weak

factors (Cases II and III) we assume that r = 0 for the purposes of setting c. Therefore, in this

case, the calibrated population R2 is slightly lower than for the standard factor case but this is

a minor deviation since the factor loadings under Cases II and III are small. These values for

R2 provide, in our view, reasonable representations of empirically relevant situations.

When we assume a standard factor structure, we generate data through (11) for r = 1, 6

and we set that the assumed number of PC factors, k2, is equal to the true number of factors, r,

when carrying out PC regression. For the case of PLS regression we argued in Section 3.1 that

the number of PLS factors, k1, is at the most equal and very likely smaller than the number of

PC factors, as not all factors have to be relevant for the target variable. This is more so the case

here, as both the factor loadings as well as the regression parameters α are randomly generated

in our simulations and thus the factors need not be of equal strength for yt (which indeed is

also true in reality). Therefore, for PLS regression we set the number of factors k1 to 1 and 3

to correspond to the respective k2 PC factors. For the weak factor cases, Cases II and III, we

generate data based on r = 1 and assume in case of PLS and PC regressions k1 = k2 = 1 in order
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to focus on how a decreasing amount of collinearity within xt affects the relative performance

of these methods rather than differences in relevance for yt across a multiple of factors. For

Bayesian regression we follow De Mol et al. (2008) and set the shrinkage parameter proportional

to the cross-section dimension N of the explanatory series: qN , where q = 1, 5.

We evaluate the competing methods using the relative out-of-sample mean squared prediction

error (MSE) compared to PC regression. To construct these relative MSEs, we generate T +100

data points according to (11) and estimate all models over the first T observations. We then use

the implied regression weights to do one-step ahead forecasting and get forecast errors for T +

1, . . . , T +100. The results across all variants are computed for N, T = 20, 30, 50, 100, 200, 400

and are each based on 1000 Monte Carlo replications.

Monte Carlo Results

Starting with the standard factor case in Tables 1-2, one notes that the performance of PLS and

PC regressions are fairly similar. Note, though, that the relative performance of PLS regression

improves when the number of entertained PC and PLS factors increases, which reflects the

theoretical result of Section 3.1. The only other noteworthy feature for this case, given already

available Monte Carlo work on the relative performance of PC versus Bayesian regressions, is

the confirmation of the good predictive performance of Bayesian regression in a large number of

cases.

For the intermediate cases of weak factor models a dichotomy in performance emerges be-

tween PC regression on one side and both PLS and Bayesian regression on the other. Already

with moderate degrees of factor weakness under both cases II and III, see Tables 3 and 4, it be-

comes clear that PC regression performs poorly when the dimensions of the underlying panel of

predictor variables become large, as it is almost always outperformed by the two other methods.

PLS regression, on the other hand, performs in a large number of cases as well as Bayesian re-

gression, which in Tables 3 and 4 has a slight edge vis-à-vis PLS regression when an appropriate

shrinkage parameter is chosen. Tables 5 and 6 also report simulation results under Cases II and

III for the factor loadings, but now with much more severe factor weakness than in Tables 3 and

4. What becomes clear from Tables 5 and 6 is that the relative performance of PLS regression
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improves substantially to a point that it now performs at least as well, and in a lot of cases

better, as Bayesian regression.5

To conclude we see that our Monte Carlo study suggests a great advantage for PLS regression

compared to all other methods we considered in terms of forecasting performance. Especially in

the case where the data do not have a standard parsimonious representation such as a (standard)

common factor structure.

4 Empirical Applications

In this section we further analyze the properties of PLS, PC and Bayesian regressions within an

empirical context. We describe in Section 4.1 how we implement the different methods on the

data. In Section 4.2 we provide details on the utilized large data set and on how we construct

our predictor and explanatory variables. Finally, the results of the different forecast exercises

are reported in Section 4.3.

4.1 Implementation of the Data-Rich Methods and the Forecast Comparison

We follow standard practice in the macroeconomic forecasting literature and use as benchmark

for our data-rich based forecasts an autoregressive (AR) model

∆yt+h,t = αh +
p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t, t = 1, . . . , T (12)

with ∆yt+h,t = yt+h− yt for h > 0 and ∆yt−i+1,t−i = yt−i+1− yt−i for i = 1, . . . , p. The number

of lagged first differences p in (12) is determined by sequentially applying the standard Schwarz

(1978)’s BIC starting with a maximum lag order of p = pmax down to p = 1. Next, we use as a

benchmark the unconditional mean,

∆yt+h,t = αh + εt+h,t, (13)

which implies a random walk (RW) forecast for the level of the forecast variable yt. Our assess-

ment of the forecasting performance of the data-rich methods relative to pure AR-based and

random walk-based forecasts is based on the square root of the mean of the squared forecast
5Indeed, if one completely turns off the factor structure in (11) one would get a similar result as in Tables 5

and 6. These simulation results are available upon request from the authors.
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errors (RMSE). In Section 4.3 we will report ratios of the RMSE of the respective data-rich fore-

casting approaches relative to the RMSE based on either (12) or (13). Superior out-of-sample

performance of a data-rich method relative to these benchmarks is, obviously, indicated by a

RMSE ratio smaller than one.

Our data-rich forecasts of h period-ahead changes in yt are generated using a model that

adds the information extracted from the N explanatory variables in the N × 1 vector Xt =

(x1,t · · ·xN,t) to the benchmark models (12) and (13), i.e., respectively

∆yt+h,t = αh + βh′z(Xt) +
p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t (14)

and

∆yt+h,t = αh + βh′z(Xt) + εt+h,t. (15)

where βh is r× 1. In (14) and (15) z(Xt) represents a r× 1 function of Xt that compresses the

information in the N indicator variables, i.e. through principal components (PC), partial least

squares (PLS) or by estimating the βh’s through Bayesian regression (BR, where r = N). We

operationalize the construction of z(Xt) on our data sets as follows:

Principal Components Regression

Following Stock and Watson (2002b) we take our T × N matrix of N indicator variables X =

(X ′
1 · · ·X ′

T )′ and normalize this such that the variables are in zero-mean and unity variance

space, which results in the T ×N matrix X̃. We then compute the r eigenvectors of the N ×N

matrix X̃ ′X̃ that correspond to the first r largest eigenvalues of that matrix, which we assemble

in the N × r matrix Λr. These eigenvectors are then used to approximate the common factors

F that determine the series in X, i.e., F = X̃Λr, which gives us z(Xt) in (14) and (15).

Our forecasting models will be updated based on an expanding window of historical data,

which in case of the principal components-based models evolves as follows:

1. First forecast for all h is generated on t0.

2. Extract r principal components Ft from the N indicator variables over the sample t =

1, . . . , t0 − h.
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3. Estimate either (14) or (15) with z(Xt) = Ft over the sample t = 1, . . . , t0 − h for each h.

4. Extract r principal components Ft from the N indicator variables N over the sample

t = 1, . . . , t0.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and Ft from

step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.

Bayesian Regression

When Bayesian regression is used to compress the forecast information in the N indicator

variables, z(Xt) in (14) and (15) simply equals Xt, whereas βh is estimated with the shrinkage

estimator (4). As in the case of principal components-based regressions we use a normalized

version of the T×N matrix of explanatory variables X = (X ′
1 · · ·X ′

T )′, indicated with X̃, and we

also demean ∆yt+h,t first before we estimate βh
BRR. By doing this we follow De Mol et al. (2008),

as the regression can then be interpreted as a Bayesian regression with a Gaussian prior. In case

of (14) we first regress both the demeaned ∆yt+h,t and the X̃ on ∆yt−i+1,t−i for i = 1, . . . , p,

and use the resulting residuals in (4) to estimate βh. Estimates for the intercept term and the

ρi’s in (14) can then be trivially recovered.

The Bayesian regression forecasts are updated using an expanding window of data:

1. First forecast for all h is generated on t0.

2. Estimate either (15) or (14) with (4) for βh using X̃ over the sample t = 1, . . . , t0 − h for

each h.

3. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 2.

4. Repeat for t0 + 1, . . . , T − h for each h.

Partial Least Squares Regression

With partial least squares (PLS) regression, z(Xt) in (14) and (15) is constructed by computing

r orthogonal combinations from the N indicator variables, where the weights of the individual
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indicator variables in the respective combinations are chosen such that the covariance with

∆yt+h,t is maximized. The general PLS algorithm from Section 3.1 can be implemented for

macroeconomic forecasting as follows:

Algorithm 3

1. Denote, as before, the T ×N matrix of indicator variables, each normalized to have a zero

mean and unit variance, as X̃ and demean the predictor variable, i.e.

∆Ẏh =
(
IT − ι(ι′−1ι′

)



∆yh+1,1
...

∆yT,T−h


 .

2. The r PLS factors FPLS
1,t , . . . , FPLS

r,t and their loadings w1, . . . , wr are iteratively build up

through projections on lower order PLS factors followed by computing the covariances

between the resulting residuals of the columns from X̃ and those of ∆Ẏh:

FPLS
l = X̃l|l−1wl; wl =

1
T − 1

X̃ ′
l|l−1∆Ẏh,l|l−1 for l = 1, . . . , r (16)

where for l = 1 (the first PLS factor)

X̃1|0 = X̃, ∆Ẏh,1|0 = ∆Ẏh,

and for l > 1

X̃l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
X̃l−1|l−2 and

∆Ẏh,l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
∆Ẏh,l−1|l−2.

3. Finally, we simply plug in the r PLS factors FPLS
t = (FPLS

1,t · · ·FPLS
r,t )′ from (16) in the

predictive regression (15) which we estimate in the standard way:

∆yt+h,t = αh + βh′FPLS
t + εt+h,t. (17)
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When lagged predictor variables are included in the predictive regression, as in (14), one

needs to control for the effect of ∆yt,t−1, . . . ,∆yt−p+1,t−p on the covariances between ∆yt+h,t

and x1,t, . . . , xN,t. Like in the BR case we do that by projecting the demeaned ∆yt+h,t as

well as the columns of X̃ on ∆yt,t−1, . . . ,∆yt−p+1,t−p, and then using the resulting residuals in

Algorithm 3 in order to be able to construct a model like

∆yt+h,t = αh + βh′FPLS
t +

p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t. (18)

Finally, forecasts from (17) and (18) are generated as follows, again using an expanding

window of historical data:

1. First forecast for all h is generated on t0.

2. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0−h

for each h based on Algorithm 3.

3. Estimate either (17) or (18) over the sample t = 1, . . . , t0 − h for each h.

4. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0

for each h using the corresponding loadings wr from step 2 based on Algorithm 3.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and FPLS
t

from step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.

This leaves us with one more issue: either the appropriate number of factors r for PC or PLS

regression, or in case of Bayesian regression the appropriate value for the shrinkage parameter v

in (4). In the latter case, we are not aware of the availability of a theoretically justified approach

to select the optimal shrinkage parameter v for a given data set. Instead, De Mol et al. (2008)

suggest that an appropriate Bayesian regression for a large data set under a factor structure

should be based on a shrinkage parameter that is proportional to the cross-section dimension

of the data set. Therefore, for BR-based estimation of (14) and (15) we use in (4) v = qN

with q = 1 and 5, which is in the range for v that De Mol et al. (2008) found useful in their
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applications. To facilitate a fair comparison between the BR-based forecasts and both the PC-

based and PLS-based forecasts, we therefore estimate the PC-based and PLS-based versions of

(14) and (15) using a range of fixed numbers of factors. In case of PC-based forecasts, we will

consider the predictive performance of (14) and (15) using r = 2, 4 and 6 PC factors, whereas

in case of PLS-based forecasts we consider the performance using r = 1, 2 and 3 PLS factors.

4.2 The Data Set and Variable Construction

Stock and Watson (2007) reorganize the large panel of macroeconomic, financial and survey-

based predictor variables for the United States from Stock and Watson (2002b) and update the

span of the data to the end of 2006. Both our forecast variables and our panel of indicator

variables are extracted from Stock and Watson (2007) 6 and we focus on the 109 monthly series

from this U.S. data set, which before transformation span a sample starting in January 1959

and ending in December 2006.

The panel of predictor variables consist of 105 series spanning real variables, labor market

data, data on price indices (and subcomponents) and wages, money and credit series, asset

prices and surveys. The predictor variables are transformed such that they are I(0), which in

general means that the real variables are expressed in log first differences and we use simply first

differences of series expressed in rates, such as interest rates; see Appendix C for more details.

With respect to nominal series we transform these into first differences of annual growth rates

in order to guarantee that the dynamic properties of these transformed series are comparable

to those of the rest of the panel, as for example motivated in D’Agostino and Giannone (2006,

Appendix B).7 Hence, after transforming the indicator variables we end up with an effective

span of the data that starts in February 1960 (i.e. 1960.2) and ends in December 2006 (i.e.

2006.12).

This predictor variables panel will be used to forecast appropriate transformations of CPI

inflation, industrial production, the unemployment rate and the federal funds rate. These fore-
6We are very grateful to Mark Watson who provided us with the underlying raw data from Stock and Watson

(2007).
7This particular transformation acknowledges that series like log price levels and log money aggregate levels be-

have as if they are I(2), possibly because of mean growth shifts due to policy regime shifts, financial liberalizations
and other phenomena.
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cast variables are not part of the panel of predictors and are transformed such to guarantee

stationarity:

Yt ∆yt,t−1 ∆yt+h,t

CPI index ∆ lnYt,t−12 −∆lnYt−1,t−13 ∆lnYt+h,t+h−12 −∆lnYt,t−12

Industrial Production index ∆ lnYt,t−1 ∆lnYt+h,t

Unemployment rate ∆Yt,t−1 ∆Yt+h,t

Federal Funds rate ∆Yt,t−1 ∆Yt+h,t

As described in the previous subsection, the forecasting models are updated based on an

expanding window of data and all forecasts are direct forecasts for 4 horizons (in months):

h = 1, h = 3, h = 12 and h = 24, which are horizons commonly analyzed in the literature.

The forecast evaluation spans three samples: January 1972 - December 2006, January 1972 -

December 1984 and January 1985 - December 2006. The latter two sub-samples split the first

sample in two around the start of the ‘Great Moderation’, e.g., McConnell and Perez-Quiros

(2000) and Sensier and van Dijk (2004) find evidence for a downward, exogenous, shift in the

volatility of a large number of U.S. macroeconomic time series around 1985. This sample split is

of particular importance for forecasting U.S. economic time series, as it has been shown that it

is difficult for a lot of data-rich, approaches (including Greenbook projections from the Federal

Reserve Board) to beat simple, non-structural benchmarks like RW and AR models after the

occurrence of the ‘Great Moderation’.8

4.3 Forecasting Results

As discussed in Section 4.1, we will assess the forecasting performance of our three data-rich

forecast methods with two simple benchmark forecasts: those based on an autoregressive (AR)

specification and those based on the unconditional mean or random walk (RW) model (respec-

tively (12) and (13)). The first set of evaluation results can be found in Table 7 and relate to

forecasting changes in annual CPI inflation. Across the three evaluation samples, the full 1972-

2006 evaluation sample and the two sub-samples, PLS regression does dominates in 11 out of
8See, for example, D’Agostino et al. (2006) who compare PC-based, VAR-based and Greenbook forecasts for

U.S. inflation and economic growth with simple benchmarks for both pre- and post-Great Moderation samples.
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the 24 cases (i.e., 3 evaluation samples times 2 benchmark models times 4 forecasting horizons).

In fact, only Bayesian regression can, up to a certain extent compete with PLS regression. Note,

though, that when it loses out the PLS approach still provides a close second best. Of course,

the overall forecasting performance of the data-rich approaches is less over the post-Great Mod-

eration period, especially vis-à-vis the AR benchmark over longer horizons, which is consistent

with findings elsewhere in the literature.

The Great Moderation has less of a negative effect on the predictive performance of our

data-rich methods for industrial production growth and unemployment rate changes; see the

results for 1985-2006 in Tables 8-9. PLS regression is clearly the overall winner in this case,

as it dominates the other methods in, respectively, 13 and 20 out of the total of 24 forecasting

exercises in each of these tables. In particular in case of unemployment PC regression performs

poorly, and essentially only for the one-month horizon Bayesian regression is able to perform

better than PLS regression.

Finally, we turn to the results for the federal funds rate in Table 10. As the federal funds

rate is determined by the Federal Reserve Board, which sets the target for the federal funds

rate by taking into account both nominal and real developments, data-rich methods, which feed

off of both nominal and real series, are expected to perform well in predicting fed funds rate

changes. This seems certainly to be the case for PLS and Bayesian regressions, although Bayesian

regression performs relatively poorly for the post-Great Moderation 1985-2006 period. PLS

regression, however, performs well throughout the different evaluation samples: it outperforms

the other two approaches in 18 out of the 24 evaluations.

The empirical forecast evaluations in this subsection lead to a number of general observations.

First, it is clear that the PLS-based forecast models are, generally speaking, amongst the best

performing models. And even in the minority of cases that they are outperformed by either

PC or Bayesian regression approaches, the results in Tables 7-10 indicate that they are close

competitors. Note also that in Tables 7-10 the performance of methods that use PLS factors

and Bayesian shrinkage estimators are pretty close, with PLS usually having the edge.
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5 Conclusions

In this paper we have revisited a number of approaches for prediction with many predictors

that are widely used in macroeconomic forecasting and we compare these with a less widely

known alternative approach: partial least squares (PLS) regression. Under PLS regression, one

constructs a number of linear combinations of the predictor variables such that the covariances

between the target variable and each of these linear combinations are maximized.

We provide theoretical arguments for the asymptotic similarity between principal compo-

nents (PC) regression and PLS regression when the underlying data has a common factor struc-

ture. When the factor structure in a large data set is weak, and possibly vanishes as N → ∞,

we prove that PLS regression will continue to provide a model with the best asymptotic fit for

a target variable. We also argue that forecast combinations can be considered as a specific form

of PLS regression. Hence, whether or not a large panel of predictors has a clear factor structure,

we would expect PLS regression, like Bayesian ridge regression, to do well in macroeconomic

forecasting.

An extensive Monte Carlo analysis, which compares PC regression and Bayesian regression

with PLS regression, yields a number of interesting insights. Firstly, when we assume that

the predictors relate to the target variable through a standard common factor structure, PLS

regression is shown to have an out-of-sample performance that is at least comparable to, and

often better than PC regression. PLS regression also compares well to Bayesian regression

under this data specification, especially when the number of relevant factors for the target

variable increases. When the relation between the predictors and the target variable only has a

weak factor structure, PLS regression clearly has the edge in terms of out-of-sample forecasting

performance.

Finally, we apply PC, PLS and Bayesian regression on a panel of 105 U.S. monthly macroe-

conomic and financial variables to forecast CPI inflation, industrial production, unemployment

and the federal funds rate, where these forecasts are evaluated across several sub-samples. PLS

regression turns out to be generally the best performing method, and even in the few cases when

it is outperformed by PC or Bayesian regression, PLS regression remains a close competitor.
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Table 7: Forecast evaluation for CPI inflation

PC Regression PLS Regression Bayesian Regression

h 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N

January 1972 - December 2006

Benchmark: RW
1 0.9291 0.9138 0.9293 0.9114 0.9208 0.9333 0.9218 0.9017
3 0.9064 0.8951 0.8975 0.8678 0.9003 0.9213 0.9213 0.8885
12 0.8411 0.8308 0.8559 0.8101 0.8233 0.8446 0.8398 0.8185
24 0.9102 0.8659 0.8933 0.8441 0.8476 0.8636 0.8321 0.8291

Benchmark: AR
1 0.9804 0.9795 0.9847 0.9643 1.0044 1.0565 0.9862 0.9640
3 0.9582 0.9692 0.9754 0.9229 0.9769 1.0059 0.9636 0.9330
12 0.8541 0.8201 0.8360 0.8032 0.8031 0.8251 0.8461 0.8244
24 0.8223 0.7694 0.7942 0.7709 0.7701 0.7884 0.8642 0.8457

January 1985 - December 2006

Benchmark: RW
1 0.9594 0.9395 0.9431 0.9510 0.9372 0.9508 0.9486 0.9291
3 1.0149 1.0088 0.9972 0.9928 1.0230 1.0263 1.0373 1.0008
12 1.0180 1.1165 1.1323 1.0158 1.0729 1.1061 1.1005 1.0144
24 1.0205 1.0884 1.1553 1.0127 1.0546 1.1322 1.0742 0.9287

Benchmark: AR
1 0.9777 0.9587 0.9481 0.9707 0.9487 1.0340 0.9988 0.9724
3 0.9733 0.9602 0.9580 0.9696 0.9853 1.0681 1.0231 0.9852
12 0.9165 0.9798 0.9918 0.9024 0.9433 0.9859 1.0053 0.9289
24 0.9737 1.0086 1.1228 0.9446 1.0047 1.0787 1.0158 0.8738

January 1972 - December 1984

Benchmark: RW
1 0.8985 0.8881 0.9156 0.8710 0.9045 0.9160 0.8948 0.8742
3 0.8244 0.8082 0.8229 0.7703 0.8067 0.8432 0.8337 0.8033
12 0.7679 0.7098 0.7417 0.7242 0.7221 0.7413 0.7406 0.7418
24 0.8657 0.7984 0.8039 0.7791 0.7615 0.7570 0.7299 0.7726

Benchmark: AR
1 0.9830 0.9995 1.0193 0.9579 1.0559 1.0780 0.9738 0.9558
3 0.9461 0.9757 0.9883 0.8848 0.9705 0.9552 0.9157 0.8910
12 0.8083 0.7374 0.7589 0.7504 0.7336 0.7472 0.7976 0.8104
24 0.7826 0.7134 0.7148 0.7196 0.6922 0.6959 0.7976 0.8104

Notes: The table reports the ratio of the RMSE of either a version of (14) vis-à-
vis autoregressive model (12) or a version of (15) vis-à-vis the random walk model
(13) for CPI inflation (see Section 4.2)) at each horizon h (in months). Versions
of (14) and (15) depend on the usage of principal components (PC), partial least
squares (PLS) or Bayesian regression (BR) to compress the information in the panel
of predictor variables; see Section 4.1. In each case we use several sub-variants,
depending either on the number of principal components, PLS factors or shrinkage
parameters (BRR), where the shrinkage parameters is assumed to be proportional
to the number of predictors in the panel (N = 104). The best performing method
relative to the benchmarks are highlighted in bold.
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Table 8: Forecast evaluation for industrial production

PC Regression PLS Regression Bayesian Regression

h 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N

January 1972 - December 2006

Benchmark: RW
1 0.8600 0.8557 0.8547 0.8437 0.8589 0.8615 0.8553 0.8292
3 0.8216 0.8287 0.8412 0.7784 0.7668 0.7836 0.7832 0.7665
12 1.0414 1.0621 1.0657 0.7912 0.8558 0.8630 0.8541 0.8186
24 1.0734 1.0875 1.0929 0.9037 0.8575 0.8963 0.8749 0.8534

Benchmark: AR
1 0.9388 0.9291 0.9303 0.9239 0.9246 0.9664 0.9525 0.9217
3 0.9289 0.9310 0.9411 0.8870 0.8752 0.9036 0.9279 0.9076
12 1.1922 1.2204 1.1878 0.8768 0.9598 0.9514 0.9786 0.9265
24 1.1505 1.1803 1.1840 1.0030 0.9657 0.9994 0.9956 0.9607

January 1985 - December 2006

Benchmark: RW
1 0.9758 0.9822 0.9751 0.9610 0.9876 0.9810 0.9854 0.9423
3 0.8486 0.8562 0.8628 0.8196 0.8737 0.9021 0.9260 0.8384
12 0.7791 0.7878 0.7980 0.7422 0.8619 0.9127 0.9125 0.8008
24 0.7044 0.7216 0.7312 0.7699 0.7432 0.8405 0.8524 0.7432

Benchmark: AR
1 0.9685 0.9874 0.9831 0.9528 0.9650 1.0141 1.0120 0.9576
3 0.9784 0.9874 0.9880 0.9443 1.0287 1.0490 1.1338 1.0013
12 1.0794 1.0815 1.0794 0.9759 1.2166 1.2446 1.3238 1.1329
24 1.0725 1.0761 1.0867 1.1274 1.1642 1.2677 1.3147 1.1475

January 1972 - December 1984

Benchmark: RW
1 0.7950 0.7839 0.7867 0.7776 0.7858 0.7941 0.7812 0.7655
3 0.8086 0.8161 0.8307 0.7605 0.7181 0.7309 0.7181 0.7354
12 1.1660 1.1946 1.1940 0.8043 0.8338 0.8139 0.7989 0.8166
24 1.4260 1.4413 1.4439 1.0704 0.9961 0.9845 0.9297 0.9994

Benchmark: AR
1 0.9186 0.8884 0.8937 0.9043 0.8969 0.9336 0.9110 0.8972
3 0.9066 0.9070 0.9206 0.8634 0.8081 0.8420 0.8373 0.8693
12 1.2216 1.2589 1.2169 0.8299 0.8448 0.8187 0.8189 0.8378
24 1.1835 1.2218 1.2184 0.9508 0.8605 0.8604 0.8269 0.8734

Notes: See the notes for Table 7.
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Table 9: Forecast evaluation for unemployment

PC Regression PLS Regression Bayesian Regression

h 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N

January 1972 - December 2006

Benchmark: RW
1 0.8927 0.8977 0.9073 0.8856 0.8879 0.8923 0.8866 0.8693
3 0.8095 0.8119 0.8227 0.7964 0.7705 0.8018 0.7870 0.7758
12 1.0483 1.0516 1.0424 0.8338 0.8434 0.8759 0.8872 0.8509
24 1.1398 1.1686 1.1453 0.9195 0.8471 0.8950 0.8871 0.8896

Benchmark: AR
1 0.9057 0.9169 0.9228 0.9061 0.9009 0.9182 0.9507 0.9326
3 0.9031 0.9065 0.9352 0.8889 0.8616 0.8935 0.9403 0.9100
12 1.0542 1.0494 1.0438 0.8606 0.8645 0.8873 0.9182 0.8791
24 1.0761 1.1071 1.0861 0.8926 0.8221 0.8618 0.8543 0.8624

January 1985 - December 2006

Benchmark: RW
1 0.9850 0.9848 0.9867 0.9761 0.9781 0.9875 1.0125 0.9597
3 0.8959 0.8918 0.8897 0.8741 0.8926 0.9357 0.9464 0.8666
12 0.9602 0.9393 0.9332 0.8257 0.9385 0.9403 0.9749 0.8685
24 1.0090 1.0537 1.0204 1.0248 0.9305 1.0132 1.0247 0.9484

Benchmark: AR
1 0.9584 0.9596 0.9592 0.9545 0.9534 0.9721 1.0410 0.9929
3 0.9484 0.9477 0.9415 0.9095 0.9483 0.9839 1.0875 0.9945
12 1.0078 0.9825 0.9543 0.8646 1.0096 0.9726 1.0629 0.9537
24 0.9999 1.0305 0.9874 1.0153 0.9224 0.9844 1.0044 0.9360

January 1972 - December 1984

Benchmark: RW
1 0.8294 0.8384 0.8536 0.8237 0.8261 0.8269 0.7972 0.8073
3 0.7757 0.7806 0.7966 0.7665 0.7211 0.7480 0.7212 0.7404
12 1.0740 1.0850 1.0765 0.8353 0.8030 0.8486 0.8530 0.8426
24 1.2186 1.2438 1.2390 0.8714 0.7931 0.8218 0.8008 0.8541

Benchmark: AR
1 0.8667 0.8856 0.8963 0.8705 0.8621 0.8782 0.8816 0.8877
3 0.8833 0.8884 0.9321 0.8801 0.8222 0.8527 0.8709 0.8718
12 1.0667 1.0686 1.0701 0.8586 0.8086 0.8550 0.8662 0.8532
24 1.1536 1.1878 1.1822 0.8395 0.7597 0.7914 0.7716 0.8269

Notes: See the notes for Table 7.
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Table 10: Forecast evaluation for the federal funds rate

PC Regression PLS Regression Bayesian Regression

h 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N

January 1972 - December 2006

Benchmark: RW
1 0.9175 0.9107 0.8897 0.8541 0.8374 0.8555 0.8581 0.8314
3 0.9279 0.9560 0.9747 0.8920 0.9048 0.9196 0.9194 0.8873
12 0.9490 0.9281 0.9345 0.8939 0.9424 0.9757 1.0182 0.9398
24 1.0426 0.9947 1.0146 0.9262 1.0004 1.0154 1.0251 0.9656

Benchmark: AR
1 1.0387 0.9664 0.9325 0.9713 0.8400 0.8593 0.9088 0.8928
3 1.0253 1.0525 0.9795 0.9717 0.9211 0.9214 0.9180 0.8985
12 0.8602 0.8474 0.8344 0.8136 0.8694 0.8944 0.9444 0.8794
24 0.9739 0.9288 0.9425 0.8724 0.9513 0.9665 0.9769 0.9288

January 1985 - December 2006

Benchmark: RW
1 0.8528 1.2544 1.2335 0.8909 1.1798 1.3448 1.2528 1.0070
3 0.7880 1.0271 1.0339 0.7546 1.1476 1.2513 1.2157 0.9454
12 0.8613 0.9935 0.9964 0.8102 1.0153 1.0762 1.0696 0.9481
24 0.9447 0.9363 0.9516 0.8836 0.9970 1.0492 1.0174 0.9477

Benchmark: AR
1 1.0731 1.3156 1.2996 1.0316 1.3079 1.4715 1.3617 1.0669
3 0.9620 1.0767 1.0707 0.9482 1.1327 1.3825 1.1911 0.9495
12 0.8188 0.9445 0.9398 0.7939 0.9752 1.0251 1.0518 0.9308
24 0.8839 0.8847 0.8820 0.8404 0.9461 0.9928 0.9700 0.9000

January 1972 - December 1984

Benchmark: RW
1 0.9223 0.8781 0.8569 0.8511 0.8044 0.8046 0.8191 0.8160
3 0.9394 0.9492 0.9692 0.9040 0.8773 0.8819 0.8861 0.8819
12 0.9590 0.8920 0.8985 0.9000 0.9031 0.9293 0.9860 0.9226
24 1.0409 0.9758 0.9800 0.8812 0.9310 0.9179 0.9395 0.9111

Benchmark: AR
1 1.0364 0.9397 0.9039 0.9673 0.8009 0.8045 0.8719 0.8805
3 1.0296 1.0504 0.9710 0.9726 0.9002 0.8704 0.8897 0.8932
12 0.8548 0.8044 0.7886 0.8003 0.8234 0.8411 0.8969 0.8511
24 0.9740 0.9104 0.9153 0.8326 0.8910 0.8789 0.9089 0.8912

Notes: See the notes for Table 7.
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Appendices

A Proof of Theorem 1

We first note the following obvious fact: If

||α̂n
PLS − α̂n

PC || = op(aN,T ), (A.1)

for some sequence aN,T , then

||α̂PLS − α̂PC || = op(aN,T /bN,T ), (A.2)

where α̂n
PLS and α̂n

PC are the the PLS and PC regression estimates (5) and (6) obtained when

Xn =
1

bN,T
X

are used as regressors. Given this fact, we focus on α̂n
PLS and α̂n

PC where we set bN,T = (NT )1/2.

First, we have that

Xn′Xn =
1
N

Σ +
1
N

(
Xn′Xn

T
− Σ

)

But, by the factor assumption,
1
N

Σ =
1
N

S̃Ψ̃S̃′ + o(1)

where

ψ̃Ni = O(N), i = 1, . . . , r.

The proof is complete if we show that∥∥∥∥∥
1
N

(
Xn′Xn

T
− Σ

)∥∥∥∥∥ = op(1),

since, then, by Assumption 1 and (7), it follows that

||α̂n
PLS − α̂n

PC || = op(1),

and then, by (A.1) and (A.2), (8) follows. But,
∥∥∥∥∥

1
N

(
Xn′Xn

T
− Σ

)∥∥∥∥∥ =


 1

N2

N∑

i=1

N∑

j=1

(
1
T

T∑

t=1

(xi,txj,t − σi,j)

)2



1/2

= Op(T−1/2),

where the second equality follows by Assumption 2, proving the result.
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B Proof of Theorem 2

For the proof, we first focus on population quantities and deal with the estimation problem as

a last step. Although not necessary, we assume without loss of generality that the variance of yt

is finite. This implies that α′NΣXXαN < ∞. Then, Assumption 4 implies that

αN,i =
α̃N,i√

N

for some α̃N,i, such that

0 < sup
i
|α̃N,i| < ∞

Of course, αN,i can be equivalently written as

αN,i = Σ−1
XXσXy.

Using the above we can write

α′NΣXXαN = σ′XyΣ
−1
XXσXy

and therefore there exist σ̃Xy,i such that

σXy,i =
σ̃Xy,i√

N

where

0 < sup
i
|σ̃Xy,i| < ∞. (B.3)

For PLS where for one factor we have that

p lim
N→∞

α̂N = σXy

it follows that

p lim
N→∞

1
T

α̂′NX ′Xα̂β̂N = σ′XyΣXXσXy

The result we wish to prove follows if we show that

σ′XyΣXXσXy − σ′XyΣ
−1
XXσXy = o(1)
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For a square matrix A = [aij ], define the following matrix norm:

‖A‖σ̃ =
N∑

i=1

N∑

j=1

|σ̃Xy,1,i| |aij | |σ̃Xy,1,j |

This is easily seen to satisfy the standard conditions for it to be a valid matrix norm. Then, we

wish to prove that
∥∥ΣXX − Σ−1

XX

∥∥
σ̃

= o(N). But we immediatelly have that

∥∥ΣXX − Σ−1
XX

∥∥
σ
≤ ‖ΣXX − I‖σ̃ +

∥∥I − Σ−1
XX

∥∥
σ̃

(B.4)

Using the Sherman Morrison formula, and for any N ×N nonnsingular matrix A, any N ×N

matrix M such that (A + M)−1 exists, any matrix norm and some constant c > 0, it can be

easily proven that ∥∥∥A−1 − (A + M)−1
∥∥∥ ≤ c ‖M‖

Thus, it follows that as long as ‖ΣXX − I‖σ̃ = o(N), (B.4) holds. But, ‖ΣXX − I‖σ̃ = o(N) is

equivalent to ‖ΣXX − I‖1 = o(N), for the more familiar Minkowski 1-norm ‖.‖1 which holds by

Assumption 4. Finally, we need to prove that
∥∥∥∥∥

1
T

T∑

t=1

xj,tyt − σXy,i

∥∥∥∥∥ = op(1) (B.5)

But, by assumption 5

1
T

T∑

t=1

xj,tyt − σXy,i = Op

(
T−1/2

)
, uniformly over i. (B.6)

Hence, (B.5) follows if N/T → 0.

C Data Set

The data set used for forecasting are the monthly series from the panel of U.S. predictor series as

employed in Stock and Watson (2007), but excluding our four forecast variables: CPI inflation,

(aggregate) industrial production, (aggregate) unemployment rate and the (effective) federal

funds rate. In order to have I(0) predictor variables, the underlying raw series need to be

appropriately transformed; generally we employ the same transformation as Stock and Watson

(2007), except for the nominal series where we follow, e.g., D’Agostino and Giannone (2006) and
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Table C.1: Transformation of the predictor variables

Transformation code Transformation Xt of raw series Yt

1 Xt = Yt

2 Xt = ∆Yt,t−1

3 Xt = ∆Yt,t−12 −∆Yt−1,t−13

4 Xt = ln Yt

5 Xt = ∆ lnYt,t−1

6 Xt = ∆ lnYt,t−12 −∆lnYt−1,t−13

use first differences of twelve-month transformations of the raw series. Table C.1 summarizes

our potential transformations for the raw series.

Hence, we are using as predictor variables the following 105 series, which span before trans-

formation the sample January 1959 - December 2006 and we refer to Stock and Watson (2007)

for more details regarding data construction and sources:

Series Yt Transformation:
(See Table C.1)

INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
INDUSTRIAL PRODUCTION INDEX - MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
INDUSTRIAL PRODUCTION INDEX - FUELS 5
NAPM PRODUCTION INDEX (PERCENT) 1
CAPACITY UTILIZATION - MANUFACTURING (SIC) 1
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5
EMPLOYEES, NONFARM - TOTAL PRIVATE 5
EMPLOYEES, NONFARM - GOODS-PRODUCING 5
EMPLOYEES, NONFARM - MINING EMPLOYEES, NONFARM - CONSTRUCTION 5
EMPLOYEES, NONFARM - MFG 5
EMPLOYEES, NONFARM - DURABLE GOODS 5
EMPLOYEES, NONFARM - NONDURABLE GOODS 5
EMPLOYEES, NONFARM - SERVICE-PROVIDING 5
EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES 5
EMPLOYEES, NONFARM - WHOLESALE TRADE 5
EMPLOYEES, NONFARM - RETAIL TRADE 5
EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES 5
EMPLOYEES, NONFARM - GOVERNMENT 5
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INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING 1
AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG 2
HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4
HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,U)SA 4
HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4
HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4
HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HOUSING STARTS:WEST (THOUS.U.)S.A. 4
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
INTEREST RATE SPREAD: 6-MO. TREASURY BILLS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 1-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 10-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: AAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
INTEREST RATE SPREAD: BAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
MZM (SA) FRB St. Louis 6
MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP)(BIL$,SA) 6
MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA) 6
CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
Personal Consumption Expenditures, Price Index (2000=100) , SAAR 6
Personal Consumption Expenditures - Durable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR 6
PCE Price Index Less Food and Energy (SA) Fred 6
PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
Real PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6
Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5
PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA) 6
PPI Crude (Relative to Core PCE) 5
NAPM COMMODITY PRICES INDEX (PERCENT) 1
UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 2
COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
PURCHASING MANAGERS’ INDEX (SA) 1
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NAPM NEW ORDERS INDEX (PERCENT) 1
NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
NAPM INVENTORIES INDEX (PERCENT) 1
NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI) 5
NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI) 5
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