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Abstract
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1 Introduction

This paper studies the planner’s allocation in a model of a large-value payment system, with

and without a liquidity saving mechanism, and compares it with the equilibrium allocation(s).

Studying the planner’s problem allows us to deepen our understanding of the economic role

of liquidity-saving mechanisms.

In contrast to the standard theory of intertemporal trade, where agents borrow and

lend at a market price that they take as given, there is typically no market for short-term

(intraday) credit in interbank settlement systems. Instead, under typical arrangements,

banks borrow reserves from the central bank at a fixed price.

Concerns about systemic and operational risk have made managing the flow of interbank

payments an important concern of central banks in the past 25 years. Over this period,

most central banks have abandoned settlement systems based on the netting of interbank

claims and replaced them with systems in which all payments are settled on a gross basis

(see Bech and Hobijn 2007). Net settlement systems were viewed as representing too big a

risk of cascades of defaults or unexpected settlement demands on banks. Real-time gross

settlement (RTGS) systems have reduced the risk of cascades of defaults, but at the cost

of increased need for liquidity and incentives for banks to delay their payments. In recent

years, a number of countries have introduced, or are planning to introduce, liquidity-saving

mechanisms (LSMs), as a complement to their RTGS systems.1 LSMs aim to combine the

strengths of net settlement and RTGS systems.2 The Federal Reserve is also studying the

possibility of implementing an LSM for Fedwire, its large-value payment system.

In an RTGS system, banks have the choice between sending a payment early or delaying

it. While banks are required to hold positive reserves, they can borrow reserves from the

central bank. Banks have an incentive to delay their payment if they expect the cost of

borrowing reserves to exceed the cost of delaying their payment. A bank’s expected cost of

sending a payment early increases as other banks delay more of their payments, leading to

undesirable surges of payments late in the day.

1For example, the European Central Bank launched TARGET 2 in November 2007 and the Bank of Japan
introduced liquidity-saving features to its large-value payment system in October 2008.

2Martin and McAndrews (2008) provide a descriptive overview of RTGS systems and LSMs. See also
McAndrews and Trundle (2001) and Bank for International Settlements (2005) for a review and extensive
descriptive material on LSMs.

1



With an LSM, banks still have the option to send or delay a payment. In addition, banks

can put a payment in a queue. The payment will be released from the queue according to

some prespecified rules. Typically, a payment is released from the queue if the bank has

sufficient reserves in its account or if the payment is part of a bilaterally or multilaterally

offsetting group of payments in the queue.

We first study the planner’s allocation, with and without an LSM, in the model of Martin

and McAndrews (2008). In that model, all banks are ex ante identical. Banks are exposed to

shocks and can be of six different types: They either have to make a time-critical payment,

which is costly to delay, or a non—time-critical payment, which can be delayed at no cost; in

addition, banks receive either a positive, a negative, or no liquidity shock. We assume that

the planner can choose the action of banks: delay or send in the case of RTGS; delay, queue,

or send in the case of an LSM.

The planner maximizes the ex ante welfare of all banks. In particular, the planner can

direct banks to take a feasible action even if, ex post, it is not in the best interest of that

particular bank, given its type. We can think of the planner as having a commitment

technology since it can achieve allocations banks would like to commit to ex ante. The

planner knows the distribution of payments in the economy but does not know the identity

or the type of the bank that will receive a specific payment. Hence, the planner cannot

choose the action of a sending bank conditional on the type or the identity of the receiving

bank.

Unless liquidity shocks are large, the planner chooses the same allocation whether an

LSM is available or not. With small liquidity shocks, the planner wants all banks to send

their payments early. Hence, the ability to commit could make an LSM inessential. When

liquidity shocks are large, however, the planner is able to achieve higher welfare with an

LSM than without. Here, the LSM goes beyond the commitment technology by helping the

planner find receiving banks that can reciprocate in delivering payments.

For some parameter values, the planner’s allocation, where all banks make their payment

early, can be achieved in equilibrium with an LSM. However, the planner’s allocation cannot

be achieved with an RTGS system only, if some payments can be delayed without cost. With

RTGS, banks always delay their non—time-critical payments.
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When liquidity shocks are large, the planner can improve welfare by making banks with

a negative liquidity shock delay their payments. Some of these banks will receive a payment

that will offset the liquidity shock and reduce their borrowing cost. When some banks delay,

an LSM can help the planner by allowing the release of some payments conditional on the

receipt of an offsetting payment. This conditionality, which cannot be achieved with an

RTGS system, has value in addition to the kind of commitment technology available to the

planner.

These results show how the conditionality that an LSM provides can partially substitute

for commitment, when commitment is unavailable, and can complement the commitment,

when commitment is available. In addition, an LSM can improve welfare by offsetting

payments inside the queue.

Our paper is part of a growing literature concerned with settlement systems in general and

liquidity-saving mechanisms in particular. Roberds (1999) compares gross and net payment

systems with systems offering an LSM. He examines the incentives participants have to

engage in risk-taking behavior in the different systems. Kahn and Roberds (2001) consider

the benefits of coordination from an LSM in the case of Continuous Linked Settlement (CLS).

Willison (2005) examines the behavior of participants in an LSM. Martin and McAndrews

(forthcoming) study two different designs for an LSM. Our paper uses the framework first

presented in Martin and McAndrews (2008); they derive the equilibrium allocations used in

this paper.

The remainder of the paper proceeds as follows. Section 2 introduces the environment.

Section 3 describes the planner’s problem. Section 4 characterizes the solution to the plan-

ner’s problem when an LSM is not available, while section 5 characterizes the solution when

an LSM is available. Section 6 concludes.

2 The environment

The environment is similar to the one in Martin and McAndrews (2008). The economy

is populated by a continuum of mass 1 of risk-neutral agents. These agents are called

payment-system participants or banks. A nonstrategic agent is identified with settlement
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institutions.3

The economy lasts two periods, morning and afternoon. Each bank makes two payments

and receives two payments each day. One payment is sent to another bank and is called the

core payment. The other payment is sent to the nonstrategic agent and affects the bank’s

liquidity shock. Similarly, one payment is received from another bank, and one is received

from the nonstrategic agent. Core payments have size μ ≥ 1
2
, while payments to and from

the nonstrategic agent have size 1− μ.
Three factors influence the banks’ payoff of sending, queuing, or delaying their core

payment. First, banks must pay a cost to borrow from the central bank. Second, banks may

need to send a time-critical payment. Third, banks may receive a liquidity shock.

Each bank starts the day with zero reserves. Reserves can be borrowed from the central

bank at an interest cost of R.4 In our welfare analysis, we think of R as representing both

the private and the social cost of borrowing reserves. Banks that receive more payments

than they send in the morning have excess reserves. It is assumed that these reserves cannot

be lent to other banks, so that banks receive no benefit from excess reserves. Payments

received and sent in the same period offset each other. Hence, a bank needs to borrow from

the central bank only if the payments it sends in the morning exceed the payments it receives

in the morning.

Banks learn in the morning whether the payment they must make to another bank is

time critical. We assume that banks know the time criticality of the payments that they

must make but not the payments that they receive. For example, a customer of bank A may

want to make a time-critical payment to one of its counterparties, which is a customer of

bank B. In this case, bank A would know that the payment is time critical but bank B may

not. The probability that a payment is time critical is denoted by θ.5 If a bank fails to make

a time-critical payment in the morning, a cost γ is incurred. Delaying non—time-critical

payments until the afternoon has no cost. Banks choose whether to send their payment in

3One can think of the nonstrategic agent as aggregating several distinct institutions such as the CLS
bank, the Clearing House Interbank Payment System (CHIPS), and the Depository Trust Company (DTC),
as well as the payment side of securities transactions.

4Evidence discussed in Mills and Nesmith (2008) suggests that the cost of intraday reserves can influence
banks payment behavior.

5Throughout the paper, it is assumed that if x represents the probability that an event will occur for a
bank, then the fraction of banks for whom this event occurs is x as well. Hence, a fraction θ of banks must
make a time-critical payment.
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the morning before they know if they will receive a payment from another bank in the same

period. Banks form rational expectations about the probability of receiving a payment from

some other bank in the morning. Let π denote this expectation.

In the morning, banks learn when they receive a payment from the nonstrategic agent,

and when they must send an offsetting payment. The probability of receiving the payment

in the morning is π̄ and so is the probability of having to send the payment in the morning.

The events are independent of each other. Payments to the nonstrategic agent cannot be

delayed. Let σ ≡ π̄(1 − π̄). A fraction σ of banks receive a payment from the nonstrategic

agent in the morning and do not need to make a payment until the afternoon; these are the

banks that receive a positive liquidity shock. A fraction σ of banks must make a payment

to the nonstrategic agent in the morning but do not receive an offsetting payment until the

afternoon; these are the banks that receive a negative liquidity shock. The remaining banks,

a fraction 1− 2σ, make and receive a payment from the strategic agent in the same period,

either in the morning or in the afternoon. These banks do not receive a liquidity shock.

In summary, banks can be of six different types: A bank may receive a positive, a negative,

or no liquidity shock; they may or may not have to make a time-critical payment. Table 1

contains the definition of all parameters.

μ ∈ [0.5, 1] Size of payment to other banks
R > 0 Cost of borrowing
θ ∈ [0, 1] Probability of having to make a time-critical payment
γ > 0 Cost of delay
σ ∈ [0, 0.25] Probability of a liquidity shock

Table 1: Parameters of the model

The timing of events is summarized in figure 1. First, nature chooses the banks that re-

ceive a liquidity shock and the banks that must make time-critical payments. Next, morning

payments to and from the nonstrategic agent are made, and banks make the choice to send

their payment to another bank, delay their payment, or—if an LSM is available—put their

payment in queue. At the end of the morning period, banks that must borrow from the

central bank incur a borrowing cost, while banks that did not send time-critical payments

incur a delay cost. All remaining payments are made in the afternoon.
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Nature chooses
which banks receive
a liquidity shock and
a time-sensitive
payment

Morning period

Banks decide
whether to send
payments in the
morning, to delay, or
to queue (if available)

Borrowing costs
incurred if balance is
negative, delay costs
if time-critical
payment not made

Afternoon period

All remaining
payments made

Figure 1: Timeline for shocks and for sending and receiving payments.

The role played by the different frictions in the model can be summarized as follows:

The cost of borrowing provides an incentive to bunch payments. Indeed, absent liquidity

shocks, banks could avoid borrowing if either all payments are sent in the morning or all

payments are delayed. Time-critical payments provide an incentive for some banks to send

their payment early to avoid the delay cost. In contrast, banks have an incentive to delay

their payment to avoid having to borrow from the central bank.

We abstract from settlement failure in this model as it does not play an important role

in the comparison between RTGS systems with or without an LSM. Indeed, the cost of a

settlement failure in RTGS systems does not depend on whether there is an LSM. In contrast,

the cost of a settlement failure is much higher in a delayed net settlement system than in an

RTGS system. Lester (2009) models the difference between a delayed net settlement system

and an RTGS system in a model with settlement risk.

2.1 The settlement system design

We consider two types of settlement system designs: real-time gross settlement (RTGS) and

an RTGS augmented by a liquidity-saving mechanism (LSM). We consider the settlement

system as part of the physical environment.

With an RTGS system, banks have the choice between sending their core payment in

the morning or delaying that payment until the afternoon. With an LSM, banks get an
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Figure 2: Pattern of payments. Left panel: one cycle. Right panel: multiple unique cycles.
Xs denote banks; arrows denote payments from one bank to another.

additional option: They can put their payment in a queue, and the payment will be settled

under prespecified conditions.

With an LSM, the number of payments settled depends on the underlying pattern of

those payments. This pattern affects the number of payments that are released from the

queue. In this paper, we consider two cases, illustrated by figure 2. The Xs in figure 2 denote

banks, and the arrows denote payments from one bank to another. In the left panel of figure

2, all payments form a unique cycle. In the right panel of figure 2, payments are matched in

bilaterally offsetting pairs.

2.1.1 The queue

By assumption, every payment is part of a cycle. In the left panel of figure 3, all payments

in a cycle are also in the queue. Otherwise, at least one payment in the cycle is not in the

queue, as illustrated in the right panel of figure 3. In the former case, all the payments in

that cycle are released by the queue since they offset multilaterally (or bilaterally if the cycle

is of length 2). In the latter case, the payment belongs to a path (within the queue).6

Since payments in a path cannot offset multilaterally, they may not be released from the

queue. These payments will be released from the queue if the bank that must make the

“first” payment in the path receives a payment from outside the queue. In that case, the

6A queue can contain payments in cycles and payments in paths.
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Figure 3: Left panel: queued payments in a cycle. Right panel: queued payments in paths.

first payment in the path is released, creating a cascade of settlements until, eventually, a

payment is made to a bank outside the queue. In the right panel of figure 3, for example, if a

bank outside the queue sends its payment in the morning, then the payment of the receiving

bank, which is in the queue, will also be released in the morning. Otherwise, the queued

payment will be released in the afternoon.7

We denote by χ the probability that a payment in the queue is part of a cycle and 1− χ
the probability that it is part of a path. We consider the value of χ for the two extreme

cases described above. We use λe to denote the fraction of banks that sends payments early,

λq to denote the fraction that puts its payments in the queue, and λd to denote the fraction

that delays its payments. Clearly, λe + λq + λd = 1.

If all payments form a unique cycle, then the probability that a payment in the queue is

in a cycle is zero unless all banks put their payment in the queue. Formally, χ = 0 if λq < 1

and χ = 1 if λq = 1. Under this assumption, the queue releases the fewest payments. This

case is also interesting because the role of the queue is only to allow banks to send their

payment conditional on receiving another payment. The queue no longer plays the role of

settling multilaterally offsetting payments. If all payments are in cycles of length 2, then the

7If payments form a unique long cycle, any proper subset of payments in the queue cannot be multilaterally
offsetting. With this pattern of payments, no offsetting occurs in the queue unless all payments are queued.
In contrast, when payments form many cycles of length 2, the amount of offsetting that occurs in the queue
in maximized. The pattern of payments only matters for the amount of offsetting occurring in the queue.
Other patterns would imply more offsetting in the queue than the unique cycle but less than the cycles of
length 2. The results would be qualitatively similar to the two polar cases we consider.
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probability that a payment in the queue is in a cycle is λq.

The probability of receiving a payment conditional on not putting the payment in the

queue, πo, and the probability of receiving a payment conditionally on putting a payment in

the queue, πq, are given by

πo ≡ λe
λe + λd

=
λe

1− λq , (1)

πq ≡ χ+ (1− χ) λe
λe + λd

= χ+ (1− χ)πo. (2)

The derivation of these expressions is provided in the appendix. Note that under the “long-

cycle” assumption, χ = 0 if λq < 1 so that πo = πq = λe/(λe+λd). If λq = 1, then πo = 0 and

πq = 1, since all the payments are put in the queue. Under the “short-cycles” assumption,

χ = λq so that

πq = λq + (1− λq) λe
λe + λd

= λq + (1− λq)πo.

3 The planner’s problem

In this section, we describe a planner’s problem. The planner assigns an action to each

bank. Feasible actions are pay early, delay, and, in the case of an LSM, queue. An assigned

action can depend on the type of the sending bank but not on the type of the receiving

bank. However, the planner knows the distribution of types of potential receiving banks.

The planner’s objective is to maximize a weighted average of the welfare of all banks in the

economy, where the weights are given by the population sizes. Equivalently, we can interpret

the planner’s objective function as the expected utility of a representative bank before the

bank’s type is known.

The planner’s allocation corresponds to the allocation that banks would choose if they

could commit to a type-conditional action before they know their type. Absent commitment,

banks may have an incentive to deviate from the action prescribed by the planner because

they do not take into account the effect of their actions on the probability that other banks

will receive a payment early.
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Let the set of types be I = {s+, s0, s−, r+, r0, r−}. We use s to denote banks with
a time-critical (or sensitive) payment and r to denote banks with a non—time-critical (or

regular) payment. We use + to denote banks with a positive liquidity shock, 0 to denote

banks with no liquidity shock, and − to denote banks with a negative liquidity shock. Let λji
denote the fraction of participants of type i ∈ I who choose action j ∈ J = {e, q, d}, where
e means that the payment is sent early, q means that the payment is queued, and d means

that the payment is delayed. We have the following restriction:

λei + λ
q
i + λ

d
i = 1,∀i ∈ I. (3)

In addition, λqi ≡ 0, for all i, if the settlement system is RTGS.

The planner’s objective, W, is given by

W = −σ [(θλes+ + (1− θ)λer+)(1− πo)(2μ− 1)R] (4)

− σθλqs+(1− πq)γ

− σθλds+γ

− (1− 2σ) [(θλes0 + (1− θ)λer0)(1− πo)μR]

− (1− 2σ)θλqs0(1− πq)γ

− (1− 2σ)θλds0γ

− σ [(θλes− + (1− θ)λer−) (1− μπo)R]

− σ [θλqs−(1− πq)γ + (θλqs− + (1− θ)λqr−) (1− μ)R]

− σ [θλds−γ + (θλds− + (1− θ)λdr−) (1− πo)(1− μ)R] ,

where πo is defined as

πo ≡ σ
[
θ
(
λes+ + λ

e
s−
)
+ (1− θ) (λer+ + λer−)]+ (1− 2σ)[θλes0 + (1− θ)λer0]

σΓ + (1− 2σ)Σ , (5)
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with

Γ ≡ θ (λds+ + λds− + λes+ + λes−)+ (1− θ) (λdr+ + λdr− + λer+ + λer−) , (6)

Σ ≡ θ (λds0 + λes0)+ (1− θ) (λdr0 + λer0) . (7)

In addition, πq is given by equation (1). We can write χ as

χ = σ [θ (λqs+ + λ
q
s−) + (1− θ) (λqr+ + λqr−)] + (1− 2σ) (θλqs0 + (1− θ)λqr0) ,

in the short-cycles case. In the long-cycle case, χ = 0 if any of the banks do not put their

payments into queue, i.e.,

σ [θ (λqs+ + λ
q
s−) + (1− θ) (λqr+ + λqr−)] + (1− 2σ) (θλqs0 + (1− θ)λqr0) < 1,

and χ = 1 otherwise.

To get an idea of how equation (4) is constructed, note that the first three lines give the

welfare cost associated with banks that receive a positive liquidity shock, multiplied by the

fraction of such banks. The first line gives the welfare of the banks that send their payments

early, the second line gives the welfare of the banks that queue their payments, and the third

line gives the welfare of the banks that delay. The next three lines give the welfare cost of

banks that receive no liquidity shock, and the last three lines give the welfare cost of banks

that receive a negative liquidity shock.

If the settlement system is RTGS, χ is trivially equal to zero. The expression for the

probability of receiving a payment in the morning is given by equation (5).

Lemma 1 W is convex in λji , for all i ∈ I, j ∈ J .

All proofs are provided in the appendix. A consequence of lemma 1 is that the planner

always assigns the same action to all banks of the same type. Hence, when solving the

planner’s problem, we can limit our attention to action profiles of the type {ai}i∈I , with
ai ∈ J in the case of an LSM and ai ∈ {e, d} in the case of an RTGS system.
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The function W can be interpreted as social welfare if R represents the social cost of

borrowing and if γ represents the social cost of delay. In particular, these variables must

adequately capture the cost to the payment systems for households, which are not modeled

in this paper. Otherwise, the function W represents the welfare of the banking system more

narrowly.

4 The planner’s solution in the case of RTGS

This section characterizes the solution to the planner’s problem with an RTGS settlement

system. Depending on the parameter values, the planner may choose to make all banks, all

banks except those of type r−, or all banks except those of type r− and s− make their core
payment early.

The next lemma compares the benefit of delay depending on a bank’s liquidity shock.

Lemma 2 The benefit of delay, relative to sending a payment early, is greater for a bank

that receives a negative liquidity shock than for a bank that receives no liquidity shock. It

is greater for a bank that receives no liquidity shock than for a bank that receives a positive

liquidity shock.

Comparing banks with the same liquidity shock, the planner always prefers to delay the

payment of a bank that must make a non—time-critical payment. The expected cost of delay

to other banks, however, is independent of the delaying bank’s type because we have assumed

that the type of the recipient is not correlated with the sender’s type.

Proposition 1 Depending on parameter values, the solution to the planner’s problem can

take one of three forms: (1) all banks pay early; (2) only bank of type r− delay; (3) only

banks of types r− and s− delay.

The parameter configurations that determine the planner’s choice are provided in the

proof in the Appendix. Here we provide some intuition. Inspection of the function W

shows that, everything else being equal, a reduction in the fraction of payments settled in

12



the morning, πo, reduces welfare. This effect provides incentives for the planner to make

banks pay early. However, there can be welfare gains from delaying a payment, to the extent

that such delay helps redistribute liquidity between banks. Consider a bank that receives

a negative liquidity shock. If this bank delays its core payment, it will receive a payment

with probability 1−πo, in which case it will not need to borrow. Even if that bank does not
receive a payment, the amount it needs to borrow is only (1−μ) if it delays its core payment
instead of 1 if it sends the payment early. The delay of this bank’s payment will have a cost

for the bank that was supposed to receive the payment. That cost will be lower than the

benefit when the bank not receiving the payment has a positive liquidity shock. In contrast,

if a bank that has a positive liquidity shock sends its payment early and does not receive an

offsetting payment, it will have to borrow only the difference between the core payment it

sent and the liquidity shock it received.

Gains from delay are large when the shocks are large (μ is small) because banks that

receive positive liquidity shock need not borrow much if they send a payment and do not

receive an offsetting payment. In addition, the cost of not delaying payments for banks that

have a negative liquidity shock is large. The gains are also large when σ is large, so that more

banks receive either a positive or a negative liquidity shock. Whether the planner decides to

delay the time-critical payments of banks that receive a negative shock depends on the size

of γ
R
. If the cost of delay is small, relative to the cost of borrowing, delaying those payments

will not be very costly, compared to the benefits from reduced borrowing.

4.1 Comparison with equilibria

Equilibria for this model are characterized in Martin and McAndrews (2008).

Proposition 2 Four equilibria can exist. For all equilibria, non—time-critical payments are

delayed. In addition,

1. If γ ≥ [μ− θ(2μ− 1)]R, it is an equilibrium for all time-critical payments to be sent

early.
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2. If {μ− θ (1− σ) (2μ− 1)}R > γ ≥ [1− θ (1− σ)]μR, then it is an equilibrium for

banks of type s− to delay time-critical payments while other banks pay time-critical

payments early.

3. If (1− σθ)μR > γ ≥ (1− σθ)(2μ− 1)R, it is an equilibrium for only banks of type s+

to send time-critical payments early.

4. If (2μ− 1)R > γ, then it is an equilibrium for all banks to delay.

These equilibria can coexist, as shown in Martin and McAndrews (2007).

The next two propositions show that the planner’s allocation typically cannot be achieved

as an equilibrium and that one reason is excessive delay.

Proposition 3 The planner’s allocation cannot be attained with an RTGS settlement system

as long as some payments can be delayed without cost.

To better understand this result, note that, according to proposition 2, all banks with a

non—time-critical payment will delay their payments under the equilibrium solution. Indeed,

the expected cost of sending early is positive while the cost of delay is 0 for such banks.

However, the planner would like to use the liquidity of banks with a positive or zero liquidity

shock to ensure that banks with a negative liquidity shock will not have to borrow too much,

as is shown in proposition 1.

Proposition 4 With RTGS, there are at least as many payments settled early under the

planner’s allocation as in equilibrium.
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Figure 4: Comparing the equilibrium and planner’s allocations, when an LSM is available,
under the long-cycle assumption. μ is given on the X-axis and γ / R is given on the Y-axis.
For these graphs we used σ = 0.15 and θ = 0.6. Left panel: equilibrium allocations. Right
panel: planner’s allocations. The numbers correspond to those in propositions 1 and 2

The result that too few payments are settled early in equilibrium is important because

it shows that our model captures the main policy concern associated with RTGS systems.8

Several central banks have adopted measures aimed at providing incentives for early submis-

sion of payments. For example, the Bank of England imposes “throughput requirements”

on the Clearing House Automated Payment System (CHAPS), its RTGS payment system.

Under such requirements, banks must send a certain fraction of their daily payments before

a given time, which limits the banks’ ability to delay. The Swiss National Bank provides in-

centives by charging a higher price for payments sent late than payments sent early. Policies

of this type could improve welfare in our model.

5 Welfare in the case of an LSM

In this section, we characterize the solution to the planner’s problem when an LSM is avail-

able. The planner may find it beneficial to use the LSM because it allows the settlement of

a payment to be made conditional on the receipt of another payment. This conditionality

reduces the amount, and thus the total cost, of borrowing.

As in the RTGS case, the planner always chooses the same action for all banks of the

same type. However, since each of the six types of banks can, in principle, be assigned any

of three actions, this leaves 63 = 216 cases to check. The next four lemmas allow us to

eliminate some cases.

Lemma 3 The planner never chooses to make banks with a positive or zero liquidity shock

delay their payments.

Since the planner aims to redistribute liquidity to banks that have negative liquidity

shocks, it is important that other banks do not delay. In particular, the planner can exploit

8Several authors have studied RTGS environment with excessive delays, including Angelini (1998, 2000),
Bech and Garratt (2003), and Martin (2004).
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the conditionality of the LSM and will prefer to have banks with positive or zero liquidity

shock queue rather than delay.

Lemma 4 The planner never chooses to make banks of type r− queue or send early, unless
all other payments are being sent early.

Banks of type r− are the banks that benefit the most from delay and for which delay is

least costly. Hence, if any type of bank delays its payment, this type should.

Lemma 5 The cost of sending a payment early, relative to queuing or delaying, is smaller

for banks with a positive liquidity shock than for banks with no liquidity shock. It is smaller

for banks with no liquidity shock than for banks with a negative liquidity shock.

An interpretation of this result is that there are decreasing returns to holding reserves.

Banks that have a negative liquidity shock need reserves the most and find it particularly

costly to send a payment. Banks that have a positive liquidity shock need reserves the least

and suffer the smallest cost from paying early.

Lemma 6 The planner will never choose to have banks of type s+ delay or queue payments

while other banks send payments early.

Banks of type s+ have the smallest expected borrowing cost of any type of banks sending

a payment early. In addition, they suffer a cost of delay if the payment is not settled in the

morning. Hence, if any type of bank pays early, this type should.

Lemma 6 shows that the planner always chooses for banks of type s+ to make their

payment early.9 Lemma 4 shows that unless all banks pay early, the planner makes banks

of type r− delay. Lemma 3 shows that banks of types s+, s0, r+, and r0 never delay. This
brings the number of options the planner will consider down to 25 (1 + 2 · 2 · 2 · 3).

9All action profiles that have all banks queueing or sending their payments early are equivalent to the
action profile in which all banks send early. For simplicity, we assume that the planner always chooses for
all banks to send their payment early instead of an alternative action profile with the same outcome. In
addition, the planner would never choose for all banks to delay, since this allocation would imply the same
borrowing cost as the allocation in which all banks pay early, but a higher cost of delay.
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We can use lemma 5 to eliminate some more action profiles, as shown in the appendix.

For example, we know that the planner would not choose for banks of type s0 to queue,

while banks of type s− pay early. After such profiles are discarded, we are left with 14

possible profiles, which are listed in table 7 in the appendix. The next proposition shows

which strategy profiles can be chosen by the planner.

Proposition 5 Let E denote that a payment is sent early, Q that a payment is queued, and

D that a payment is delayed. Both for the long-cycle and for the short-cycles assumption,

depending on parameter values, the planner will choose one of four profiles:

Type s+ s0 s- r+ r0 r-
1 E E E E E E
2 E E E E Q D
3 E Q Q E Q D
4 E Q D E Q D

Table 2: Equilibria for proposition 5

The proof characterizes the boundaries between profiles 1, 2, 3, and 4 in the parameter

space. The planner’s allocation for θ = 0.6, σ = 0.15, and different values of γ
R
and μ is given

in the right panel of figure 5. As in the RTGS case, the planner chooses for all banks to

send early if the size of the liquidity shock is not too large. The benefits from redistributing

liquidity between banks are large enough only if liquidity shocks are large. In that case,

and if γ, cost of delaying time-critical payments, is also large, then the planner may choose

profile 2. This profile allows some redistribution of liquidity but limits the cost of delay since

all time-critical payments are sent early. Profile 2 is chosen when there are few time-critical

payments (θ is small) and/or many banks receive shocks (σ is large). When γ is small, and

for moderate values of θ, profiles 3 or 4 may be chosen. In these cases, some time-critical

payments are queued or delayed. Profile 4 will be chosen for smaller values of the cost of

delay, γ, since it implies delaying some time-critical payments.

Proposition 6 gives a bound for how small shocks need to be for the planner to make all

banks send payments early, regardless of the value of other parameters.
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Proposition 6 In both the RTGS and LSM case, for μ > 2
3
, the planner will choose to have

all payments sent early. This implies that, for μ > 2
3
, the planner will do no better with an

LSM, relative to RTGS.

Proposition 7 shows that the planner is more likely to delay payments under the long-cycle

rather than under the short-cycles assumption.

Proposition 7 For a given set of parameters, if the planner chooses to delay some payments

in the long-cycle case, then the planner will also choose to delay some payments in the short-

cycles case

With a long cycle, no strict subset of payments in the queue is offsetting. Hence, the

benefit of queuing under the long-cycle case is smaller than under the short-cycles case,

where many payments in the queue can offset bilaterally. For that reason, the planner is

more likely to make banks queue rather than delay under the short-cycles case, compared to

the long-cycle case.

5.1 Comparison with equilibria

As in the RTGS case, the equilibria with an LSM are characterized in Martin and McAndrews

(2008).

Proposition 8 Under the long-cycle assumption, the following equilibria exist:

1. If γ < (2μ− 1)R, then all banks queue their payment.

2. If γ ≥ (2μ− 1)R and μ ≥ 2/3, then

(a) If γ ≥ μR, then all time-critical payments are sent early. Banks with a negative
liquidity shock delay non—time-critical payments and non—time-critical payments

from other types of banks are queued.

(b) If μR > γ ≥ (2μ − 1)R, then only banks with a positive liquidity shock send
time-critical payment early. Banks with a negative liquidity shock delay non—

time-critical payments, and all others queue their payment.
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3. If γ ≥ (2μ− 1)R and μ < 2/3, then

(a) If γ ≥ μR, the equilibrium is the same as under 2a.

(b) If μR > γ ≥ (1− μ)R , the equilibrium is the same as under 2b.

(c) If (1−μ)R > γ ≥ (2μ−1)R, then banks that receive a negative liquidity shock delay
their payment. Banks that receive a positive liquidity shock send their time-critical

payment early. All other payments are queued.

The same types of equilibria arise in the short-cycles case but for different parameter

values. Also, while it is always an equilibrium for all banks to queue their payments, this

equilibrium is not robust when other equilibria exist, as shown in Martin and McAndrews

(2008).

To facilitate the comparison with proposition 5, we display these equilibria in table 3.

Type s+ s0 s- r+ r0 r-
1 E E E E E E
2 E E E Q Q D
3 E Q Q Q Q D
4 E Q D Q Q D

Table 3: Equilibria for proposition 8

Contrary to the RTGS case where the planner’s allocation cannot be achieved in equilib-

rium, the planner’s allocation can be achieved in the LSM case for some parameter values, as

can be seen by looking at the first row of tables 2 and 3. If γ
R
is not too large, all banks queue

in equilibrium, leading to all payments being settled early. This is the allocation chosen by

the planner when the liquidity shock is not too large.
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Figure 5: Comparing the equilibrium and planner’s allocations, when an LSM is available,
under the long-cycle assumption. μ is given on the X-axis and γ / R is given on the Y-axis.
For these graphs we used σ = 0.15 and θ = 0.6. Left panel: equilibrium allocations. Right
panel: planner’s allocations. The numbers correspond to those in propositions 5 and 8

The other rows of tables 2 and 3 show that no other equilibria correspond to an allocation

chosen by the planner. One problem is that the planner would like banks with a positive

liquidity shock to send their non—time-critical payment early. In equilibrium these banks

always prefer to queue, unless all other banks send their payment early, because they do not

want to take the risk of having to borrow.

Another difference with the case of RTGS, where there can never be too much early

settlement in equilibrium, is that with an LSM there can be too little or too much early

settlement in equilibrium. That situation arises because the planner cares about the size of

the liquidity shocks and the opportunity to redistribute reserves between banks. In contrast,

banks care only about the relative costs of borrowing and delaying when deciding whether

or not to send a payment early. Hence, we find that there is too little early settlement if the

liquidity shock is small and the cost of delay, relative to the cost of borrowing, is large. In

that case, the planner would like all core payments to settle in the morning, but this will

not occur in equilibrium. Banks with a time-critical payment will want to send payments

early to avoid the cost of delay, and this action will induce banks with non—time-critical

payments to delay their payments. In contrast, if the liquidity shock is large but the relative

cost of delay is small, then there can be too much early settlement with an LSM. Because

γ
R
is small, all banks queue in equilibrium and all core payments are settled early. However,
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if the liquidity shock is large, the planner would like to redistribute some liquidity between

banks with positive and negative liquidity shock. Thus, the planner would prefer if not all

payments were settled in the morning. For instance, when μ = 0.55, γ
R
= 0.1, θ = 0.4 and

0.25 > σ > 0.1, all payments are settled in the morning period, in equilibrium. Under the

planner’s solution, r− banks delay their payment, s− banks either queue or delay, and s0

and r0 banks queue their payment.

6 Conclusion

In this paper, we compare the planner’s allocation and the equilibrium allocation of a model

of a large-value payment system, with and without an LSM. The planner’s allocation is

interesting because it provides us with a benchmark and because it corresponds to the

allocation that could be obtained in equilibrium with commitment.

Our analysis yields a number of interesting results. First, we show that in an RTGS

equilibrium, there is always too much delay. This finding confirms that our model captures

the key concern of policy makers with respect to RTGS systems. It suggests that policies

designed to provide incentives for banks to settle their payments early, such as throughput

requirements in CHAPS, or fees for late payments in SIC, could improve welfare.

We also show that an LSM can improve upon an RTGS system and can, in some cases,

implement the planner’s allocation. In other cases, there can be either too much or too

little delay in equilibrium. Banks focus on the cost of delay relative to the cost of borrowing

in deciding when to send a payment. In contrast, the planner takes into account the fact

that when liquidity shocks are large, the benefits from redistributing liquidity are also large.

Hence, there can be too much delay if the liquidity shocks are small and too little delay when

they are large.

For Fedwire—the payment system operated by the Federal Reserve—do we observe too

much or too little delay? Would the welfare effects of including an LSM in Fedwire be

economically meaningful? In a companion paper, we calibrate the model of Martin and

McAndews (2008) to answer these questions; see Atalay et al. (2010).
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7 Appendix

Derivation of πo and πq

Recall, πo is the probability of receiving a payment conditionally on not putting the
payment in the queue, and πq the probability of receiving a payment conditionally on putting
a payment in the queue. The latter probability is equivalent to the probability that a payment
in the queue is released.
Suppose that there are no payments in the queue. Then, the probability of receiving a

payment is given by the mass of banks who send a payment outright divided by the total
mass of banks. Formally, πo = λe/(λe + λd). It turns out that the expression for πo does
not change when there are payments in the queue. Indeed, note that every payment made
early by some bank outside the queue to a bank inside the queue must ultimately trigger a
payment from a bank inside the queue to a bank whose payment is outside the queue. From
the perspective of banks outside the queue, this is the same as if the payment had been made
directly from a bank outside the queue. For this reason, we can ignore the queue.
If a bank puts a payment in the queue, the payment will be in a cycle with probability

χ, in which case it is released for sure. With probability 1 − χ, the payment is in a path.
The probability that a payment in a path is released is equal to the probability of receiving
a payment from outside the queue. This probability is equal to πo. So the expression for πq

is given by

πq ≡ χ+ (1− χ) λe
λe + λd

= χ+ (1− χ)πo. (8)

Proof of lemma 1
The proof is an application of the fact that the product of two strictly increasing and

weakly convex functions is convex. First, we can use equation (3) to eliminate λdi , for all i.
Notice that the denominator of πo becomes

Ω = 1− σ [θ(λqs+ + λqs−) + (1− θ)(λqr+ + λqr−)] + (1− 2σ)(θλqs0 + (1− θ)λqs0),

so that πo is linear in the λei s. Inspection ofW reveals that the only terms that are not linear
in λei are of the form λeiπ

o. Since this is the product of two increasing and weakly convex
functions of λei , it must be a convex function of λ

e
i . A similar argument can be used to show

that W is convex in λdi , for all i.
To show that W is convex in λqi , for all i, we need to show that π

q is convex in λqi . First
note that the derivative of Ω with respect to λqi is a constant, for all i. The first and second
derivatives of πo, with respect to the λqi s are given by

∂πo

∂λqi
= −πo ∂Ω

∂λqi

1

Ω
and

∂2πo

∂λq2i
= 2πo(

∂Ω

∂λqi
)2(
1

Ω
)2.

Now we can take the partial derivative of πq with respect to λqi . Note that the partial
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derivative of χ with respect to λqi is a constant. We get

∂πq

∂λqi
=
∂χ

∂λqi
+ (1− χ)∂π

o

∂λqi
− ∂χ

∂λqi
πo,

∂2πq

∂λq2i
= (1− χ) ∂

2πo

∂(λqi )
2
− 2 ∂χ

∂λqi

∂πo

∂λqi
.

Since ∂πo/∂λqi < 0, ∂
2πq/∂λq2i > 0, which completes the proof.

Proof of lemma 2
A bank with a positive liquidity shock has an expected borrowing cost of (1−πo)(2μ−1)R

if it does not delay, and does not need to borrow if it delays. So the expected benefit from
delaying is (1 − πo)(2μ − 1)R. A bank with no liquidity shock has an expected borrowing
cost of (1 − πo)μR if it does not delay, and does not need to borrow if it delays. So the
expected benefit from delaying is (1−πo)μR. A bank with a negative liquidity shock has an
expected borrowing cost of (1−πo)R+πo(1−μ)R if it does not delay, and an expected cost of
(1−πo)(1−μ)R if it delays. So the expected benefit from delaying is (1−πo)μR+πo(1−μ)R.
It can easily be verified that

(1− πo)(2μ− 1)R ≤ (1− πo)μR ≤ (1− πo)μR + πo(1− μ)R.

Proof of lemma 1
LetW0 denote welfare when all banks make their core payment early,Wr− denote welfare

when only banks of type r− delay their core payment, and W− denote welfare when banks
with a negative liquidity shock delay their core payments.

W0 = −σ(1− μ)R, (9)

Wr− = −(1− θ)σ [σ(2μ− 1) + (1− 2σ)μ+ (1− θ)σ(1− μ)]R (10)

− σθ [(1− θ)σ + (1− (1− θ)σ) (1− μ)]R, (11)

W− = −σ [σ(2μ− 1) + (1− 2σ)μ+ σ(1− μ)]R− θσγ. (12)

Depending on the parameter values, either W0, or Wr−, or W− can be largest. However,
the planner never chooses to make a bank with no liquidity shock delay. Since the benefit of
delay is even lower for banks with a positive liquidity shock, the planner will not make such
banks delay.
First, we compare W0 and Wr−:

W0 −Wr− = [μ(2 + 2θσ − σ)− 1− σθ] (1− θ)σR,

so W0 < Wr− if and only if
μ(2 + 2θσ − σ) < σθ + 1.

Since θ ≥ 0 and σ ≤ 1
4
, this inequality can hold only if μ < 4

7
.

Next, we compare Wr− and W−:

Wr− −W− = θσγ + θσR [(2μ− 1)(1− σ)− μσ(1− θ)− θσ(1− μ)] .

This expression is positive if γ
R
is large enough. Indeed, if the cost of delay is large, the

planner will never choose to make banks with time-critical payment delay. However, if μ is
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close enough to 1
2
and γ

R
is small, this expression is negative. We already know that if μ is

small then Wr− can be larger than W0.
We check that the planner would never choose to delay banks of type r0. The welfare

when all banks of type r− and r0 delay is given by

Wr0 = −(1− θ)(1− σ) [σ(2μ− 1) + θ(1− 2σ)μ]R
− θσ [1− μ(θ + σ − θσ)]R
− (1− θ)σ [(1− θ)(1− σ)] (1− μ)R.

Since
Wr− −Wr0 = (1− 2σ)(μ− σ + μσ)(1− θ)θR ≥ 0,

the planner never chooses to delay banks of type r0.
Finally, we check that the planner would never choose to delay banks of type s0 and r0.

The welfare when all banks of type s−, s0, and r− and r0 delay is given by:

Ws0,r0 = −σ(1− σ)μR− (1− σ)θγ

Since
W− −Ws0,r0 = θγ(1− 2σ) ≥ 0,

the planner will never choose to delay banks of type r0 and s0.
Proof of proposition 3
If some payments are non—time-critical, then the planner never chooses to make banks

of type r+ or r0 delay. If all payments are time-critical, then the planner’s allocation can
be achieved if the cost of delay is high enough. For a high cost, neither the planner, nor the
banks in equilibrium, wish to delay.
Proof of proposition 4
The planner will always have s+ and s0 banks send their payments early. If, in equilib-

rium, s− banks delay their payments then there will be no more payments sent early than
in the planner’s allocation.
If s− banks send their payments early in the equilibrium allocation, then θ payments

will be sent early. This is the largest fraction of payments that can possibly be sent early
in the equilibrium allocation. The condition for s− banks to send their payments early, in
equilibrium, is

γ

R
≥ μ− θ(2μ− 1). (13)

Under the planner’s allocation, at least 1 − σ payments are sent early. These represent
the payments of all banks of types s+, s0, r+, and r0.
So we need to show that if θ ≥ 1− σ, then the planner will prefer to make all banks pay

early rather than only banks of types s+, s0, r+, and r0.
The condition for W0 ≥ W− is

γ

R
≥ σμ− (2μ− 1

θ
. (14)

We need to show that the condition given by equation (13) implies the condition given by
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equation (14) when θ ≥ 1− σ. This amounts to showing that

θμ+ (1− θ2)(2μ− 1) ≥ σμ,

whenever θ ≥ 1− σ. This must be true since 1− σ > σ.
Proof of lemma 3
Queuing is always preferable to delay for such banks. Indeed, if a bank with positive

or zero liquidity shock does not receive a payment in the morning, queueing a payment
will be equivalent to delaying. If a bank with positive or zero liquidity shock does receive
a payment, then the queue will release the outgoing payment, but the bank’s balance will
remain nonnegative.
Proof of lemma 4
Suppose that banks of type r− are queueing or sending their payments early while some

other banks are delaying their payments. Let Δ denote the set of these other banks. Recall
that the benefit of receiving a payment is independent of the type of the sending bank. If
the planner switches the actions of some of the banks of type r− that were not delaying and
an equal mass of the banks in Δ, this leaves the welfare of all other banks unchanged, since
the mass of banks that delay, queue, or send early has not changed. However, because the
benefit of delay is greater for banks of type r− than for any other banks, from lemma 2,
welfare must have increased.
Proof of lemma 5
Banks that have a positive or no liquidity shock never need to borrow if they queue

or delay their payment. If they pay early, banks with a positive liquidity shock face an
expected cost of (1− πo)(2μ− 1), while banks with no liquidity shock face an expected cost
of (1− πo)μ ≥ (1− πo)(2μ− 1). Banks with a negative liquidity shock face an expected cost
of 1 − πoμ if they pay early, 1 − μ if they queue, and (1 − πo)(1 − μ) if they delay. Hence
the cost of sending a payment early, relative to queuing of delaying, is at least as large or
greater for banks with a negative liquidity shock than for banks with no liquidity shock.
Proof of lemma 6
Let us suppose banks of type s+ are queueing or delaying payments while some other

banks are sending payments early. Let Δ denote the set of these other banks. As in the
proof of the previous lemma, the planner can switch the actions of some of the banks of type
s+ and some of the banks in Δ, leaving all other banks unaffected. However, because the
cost of sending a payment early is smaller for banks of type s+ than for any other banks,
from lemma 5, welfare must have increased.
Ruling out more action profiles
Of the 25 action profiles that cannot be eliminated by lemmas 3, 4, and 6, 14 are in

table 2. Here we show how the remaining 11 profiles can be ruled out. We use the notation
of table 2 to describe a profile. Some profiles can be ruled out by the observation that,
everything else being equal, it is more costly to queue or delay a time-critical payment than
a non—time-critical payment. These profiles are:

Type s+ s0 s- r+ r0 r-
E Q E E E D
E Q E Q E D
E Q Q E E D
E Q Q Q E D
E Q D E E D
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Other profiles can be eliminated using lemma 5:

Type s+ s0 s- r+ r0 r-
E E E Q E D
E E Q Q E D
E Q E E Q D
E Q E Q Q D
E E D Q E D
E Q D Q E D

In each of these profiles, a type of bank for which it is relatively costly to send payments
early sends early, while a type of bank for which it is relatively less costly to send early
queues.
Proof of proposition 5
The following table shows the 14 strategy profiles left to consider. The remainder of the

proof shows that only profiles 1 to 4 can be chosen by the planner. It also provides the
parameter boundaries between different profiles.

Type s+ s0 s- r+ r0 r-
1 E E E E E E
2 E E E E Q D
3 E Q Q E Q D
4 E Q D E Q D
A E E E E E D
B E E E Q Q D
C E E Q E E D
D E E Q E Q D
E E E Q Q Q D
F E E D E E D
G E E D E Q D
H E E D Q Q D
I E Q Q Q Q D
J E Q D Q Q D

Table 4: Fourteen strategy profiles

Long Cycles Case:
LetWi, i ∈ {1, ..., 4, A, ..., J}, denote welfare when banks adopt the action corresponding

26



to their type in row i of table 2. Then we have

W1 = −(1− μ)Rσ, (15)

W2 =
Rσ [σ(1− θ) + θ] [−θ + μ(2θ − 1)]

2σ(1− θ) + θ , (16)

W3 = −μRσ(1− 2θ) + θ [Rσ + γ(1− σ)(1− θ)]
2− θ , (17)

W4 = −1
2
(μRσ + γθ), (18)

WA = −Rσ [1 + σ(θ − 1)] [θ + μ(1− 2θ)] , (19)

WB = −Rσ [(1− μ)σ(1− θ)
2 + θ(μ+ θ − 2μθ)]

σ(1− θ) + θ , (20)

WC = −σ {[R(1− σ) + γσ(1− θ)] θ + μR(1− σ)(1− 2θ)}
1− σθ , (21)

WD = −σ {μR(2θ − 1) [σ(2θ − 1)− θ] + θ [R(σ + θ(1− 2σ) + γσ(1− θ)]}
θ + σ(2− 3θ) , (22)

WE = −σ {γσ(1− θ)θ +R [θ(μ+ θ − 2μθ) + σ(μ(θ + θ
2 − 1) + 1− 2θ)]}

θ + σ(1− 2θ) , (23)

WF = −σ(μR(1− σ) + θγ), (24)

WG = −σ
[
γθ + μR(1− σ

2σ + θ − 2θσ )
]
, (25)

WH = −σ {θγ(σ + θ − σθ) +R [μθ − σ(−1 + μ+ θ)]}
σ(1− θ) + θ , (26)

WI = −Rσ [1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)]− γθ(1− σ)(1− θ), (27)

WJ = −Rσ(1− μ− θ + 2θμ) + γθ(1− σ + θσ)
1 + θ

. (28)

Now we show that the planner will never choose action profiles A to J in table 2.
A) The planner will never choose profile A, because aggregate welfare under profile 2 is

always higher than profile A. W2 ≥ WA holds if

−Rσ [σ(1− θ) + θ] [θ + μ(1− 2θ)]
2σ(1− θ) + θ +Rσ [1 + σ(θ − 1)] [θ + μ(1− 2θ)] ≥ 0.

This expression can be simplified to yield

(θ + μ− 2μθ)(1− θ)2(1− 2σ)Rσ2
2σ(1− θ) + θ ≥ 0.

This inequality always holds since θ + μ− 2μθ ≥ 0 is equivalent to 1 ≥ μ.
B) The planner will never choose profile B, because either the welfare under profile 1 is

higher than the welfare under profile B or the welfare under profile 2 is higher. If the shock
is small, the planner prefers to send all core payments early. First we show that W1 ≥ WB
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if μ ≥ 1+σ
2+σ
. W1 ≥ WB holds if

−(1− μ)Rσ ≥ −Rσ [(1− μ)σ(1− θ)
2 + θ(μ+ θ − 2μθ)]

σ(1− θ) + θ ,

which can be simplified to Rσ[−1−σ+μ(2+σ)](1−θ)θ
σ(1−θ)+θ ≥ 0. The numerator is positive whenever

μ ≥ 1+σ
2+σ
.

Next we show that W2 ≥ WB if μ ≤ 1+σ
2+σ
. W2 ≥ WB holds if

Rσ2(1− θ)2 {θ − μθ + σ [2− 3θ + μ(4θ − 3)]}
2σ2(1− θ)2 + 3θσ(1− θ) + θ2 ≥ 0.

The numerator is positive if μ ≤ θ+2σ−3σθ
θ+3σ−4σθ . It can be checked that μ ≤ 1+σ

2+σ
implies μ ≤

θ+2σ−3σθ
θ+3σ−4σθ .
C) The planner will never choose profile C. If γθ ≤ Rθ(1 − 2μ) + μR then the planner

will choose profile D over profile C. Otherwise, the planner will choose profile A over profile
C. WD ≥ WC holds if

−σ {μR(2θ − 1) [−θ + σ(−1 + 2θ)] + θ [R(σ + θ − 2θσ) + γ(σ − σθ)]}
θ + σ(2− 3θ)

+
σ {[R−Rσ + γσ(1− θ)] θ + μR(1− σ)(1− 2θ)}

1− σθ ≥ 0.

This can be simplified to yield

σ2(1− θ)2(1− 2σ)[Rθ − γθ + μR(1− 2θ)]
[θ + σ(2− 3θ)](1− σθ) ≥ 0.

The numerator will be positive if Rθ − γθ + μR(1 − 2θ) ≥ 0, which is equivalent to γθ ≤
Rθ(1− 2μ) + μR.
WA ≥ WC is equivalent to

−Rσ [1 + σ(θ − 1)] [θ + μ(1− 2θ)]
+
σ {[R−Rσ + γσ(1− θ)] θ + μR(1− σ)(1− 2θ)}

1− σθ ≥ 0.

Simplifying gives us
σ2(1− θ)θ[γ −Rσ(θ + μ− 2μθ)]

1− σθ ≥ 0.
The numerator is positive if γθ ≥ Rσθ(θ + μ − 2μθ), which occurs provided γθ ≥ Rθ(1 −
2μ) + μR.
D) The planner never chooses action profile D as it provides lower welfare than either 2

or 3, depending on parameter values. W3 ≥ WD if γ[2σ(−1+ θ)− θ] +Rσ(μ+ θ− 2μθ) ≥ 0.
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W3 ≥ WD if

− μRσ(1− 2θ) + θ [Rσ + γ(1− σ)(1− θ)]
2− θ

+
σ {μR(2θ − 1) [−θ + σ(−1 + 2θ)] + θ [R(σ + θ − 2θσ) + γ(σ − σθ)]}

θ + σ(2− 3θ) ≥ 0.

This can be simplified to

(1− 2σ)(1− θ)θ [γ(2σ(−1 + θ)− θ) +Rσ(μ+ θ − 2μθ)]
(2− θ) [θ + σ(2− 3θ)] ≥ 0,

which must hold if γ [2σ(−1 + θ)− θ] +Rσ(μ+ θ − 2μθ) ≥ 0.
Next we show that W2 ≥ WD if γ(2σ(−1 + θ)− θ) +Rσ(μ+ θ − 2μθ) ≤ 0. W2 ≥ WD if

− Rσ [σ(1− θ) + θ] [θ + μ(1− 2θ)]
2σ(1− θ) + θ

+
σ {μR(2θ − 1)(−θ + σ(−1 + 2θ)) + θ [R(σ + θ − 2θσ) + γ(σ − σθ)]}

θ + σ(2− 3θ) ≥ 0.

This can be simplified to

−(1− θ)σ
2θ [γ(2σ(−1 + θ)− θ) +Rσ(μ+ θ − 2μθ)]
[2σ(1− θ) + θ] [θ + σ(2− 3θ)] ≥ 0,

which must hold if γ [2σ(−1 + θ)− θ] +Rσ(μ+ θ − 2μθ) ≤ 0.
E) The planner will never choose action profile E because if E provides higher welfare

than action profile 1, then welfare under action profile C is higher than under E. W1 ≥ WE

if R [1− μ(2− σ)]− γσ ≤ 0. W1 ≥ WE holds if

−(1− μ)Rσ + σ (γσ(1− θ)θ +R {θ(μ+ θ − 2μθ) + σ [1− 2θ + μ(−1 + θ + θ
2)]})

θ + σ(1− 2θ) ≥ 0.

This simplifies to

−σ(1− θ)θ {R [1− μ(2− σ)]− γσ}
θ + σ(1− 2θ) ≥ 0,

which must hold if R [1− μ(2− σ)]− γσ ≤ 0.
WC ≥ WE if R [1− μ(2− σ)]− γσ ≥ 0. WC ≥ WE holds if

σ {[R(1− σ) + γσ(1− θ)] θ + μR(1− σ)(1− 2θ)}
1− σθ

+
σ (γσ(1− θ)θ +R {θ(μ+ θ − 2μθ) + σ [1− 2θ + μ(−1 + θ + θ2)]})

θ + σ(1− 2θ) ≥ 0.

This can be simplified to

σ2(1− θ)2 {R [1− μ(2− σ)] (1− θ) + γ(1− σ)θ}
(1− σθ) [θ + σ(1− 2θ)] ≥ 0,

which must hold since R [1− μ(2− σ)]−γσ ≥ 0 implies R [1− μ(2− σ)] (1−θ)+γ(1−σ)θ ≥
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0.
F) The planner will never choose action profile F because action profile G always provides

higher welfare. WG ≥ WF holds if

−σ
[
γθ + μR(1− σ

2σ + θ − 2θσ )
]
+ σ [μR(1− σ) + θγ] ≥ 0,

which must hold since
μRσ2(1− 2σ)(1− θ)

2σ(1− θ) + θ ≥ 0.

G) The planner will never choose action profile G. Action profile 4 provides higher welfare
if μRσ ≥ γ(2σ(1− θ) + θ) and action profile 2 provides higher welfare otherwise. W4 ≥ WG

holds if

−1
2
(μRσ + γθ) + σ

[
γθ + μR(1− σ

2σ + θ − 2θσ )
]
≥ 0.

This simplifies to
(1− 2σ)θ{μRσ − γ[2σ(1− θ) + θ]}

4σ(1− θ) + 2θ ≥ 0,

which must hold when μRσ ≥ γ(2σ(1− θ) + θ).
W2 ≥ WG holds if

−Rσ [σ(1− θ) + θ] [θ + μ(1− 2θ)]
2σ(1− θ) + θ + σ

[
γθ + μR(1− σ

2σ + θ − 2θσ )
]
≥ 0.

This simplifies to

−θσ [(1− μ)Rσ + (1− 2μ)R(1− σ)θ − γ(2σ(1− θ) + θ)]
2σ(1− θ) + θ ≥ 0.

(1−μ)Rσ+(1−2μ)R(1−σ)θ ≤ γ(2σ(1−θ)+θ) will be true if (1−μ)Rσ ≤ γ(2σ(1−θ)+θ).
This inequality must hold when μRσ ≤ γ(2σ(1− θ) + θ) since μ ≥ 1− μ.
H) The planner will never choose profile H. Either profile 1 will produce higher welfare

or profile G will. If the shock is small, the planner will always want all payments to be
made early. W1 ≥ WH holds if

−(1− μ)Rσ + σ{θγ(σ + θ − σθ) +R[μθ − σ(−1 + μ+ θ)]}
σ(1− θ) + θ ≥ 0.

This simplifies to
σθ[R(1− 2μ+ μσ)− γσ − γθ + γθσ]

σ(−1 + θ)− θ ≥ 0

R(1 − 2μ + μσ) − γσ − γθ + γθσ ≤ 0 will be true if (1 − 2μ + μσ) ≤ 0 which will occur if
μ ≥ 2

3
.

WG ≥ WH holds if

−σ[γθ + μR(1− σ

2σ + θ − 2θσ )] +
σ{θγ(σ + θ − σθ) +R[μθ − σ(−1 + μ+ θ)]}

σ(1− θ) + θ ≥ 0.
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This simplifies to
Rσ2(1− θ)[θ(1− μ)(1− 2σ) + σ(2− 3μ)]

2σ2(1− θ)2 + 3σ(1− θ)θ + θ2 ≥ 0.

This occurs if θ(1− μ)(1− 2σ) + σ(2− 3μ) ≥ 0, which holds if μ ≤ 2
3
.

I) The planner will never choose profile I. If μ ≥ 2
3
, profile 1 will produce higher welfare.

Otherwise, profile 3 will. W1 ≥ WI holds if

− (1− μ)Rσ + γθ(1− σ − θ + σθ)+
+Rσ[1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)] + γθ(1− σ − θ + σθ)] ≥ 0.

This simplifies to ((3μ− 2)Rσ + γ(1− σ))(1− θ)θ ≥ 0, which holds if μ ≥ 2
3
.

W3 ≥ WI is true if

− μRσ(1− 2θ) + θ[Rσ + γ(1− σ)(1− θ)]
2− θ

+Rσ[1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)] + γθ(1− σ − θ + σθ)] ≥ 0.

This simplifies to
(1− θ)2[(2− 3μ)Rσ(1− θ) + γ(1− σ)θ]

2− θ ≥ 0,

which occurs if (2− 3μ)Rσ(1− θ) + γ(1− σ)θ ≥ 0. This holds if μ ≤ 2
3
.

J) The planner will never choose profile J. Either profile 1 will produce higher welfare or
profile 4 will. W1 ≥ WJ if

−(1− μ)Rσ + Rσ(1− μ− θ + 2θμ) + γθ(1− σ + θσ)
1 + θ

≥ 0.
This inequality is true if

[(3μ− 2)Rσ + γ(1− σ + σθ)]θ
1 + θ

≥ 0,

which is true for μ ≥ 2
3
.

W4 ≥ WJ if

−1
2
(μRσ + γθ) +

Rσ(1− μ− θ + 2θμ) + γθ(1− σ + θσ)
1 + θ

≥ 0,

which simplifies to
(1− θ)[(2− 3μ)Rσ + γ(1− 2σ)θ]

2(1 + θ)
≥ 0.

This occurs if (2− 3μ)Rσ + γ(1− 2σ)θ ≥ 0, which is true if μ ≤ 2
3
.

Short Cycles Case:
Let Wi, i ∈ {1, ..., 4, A, ..., J}, denote welfare when banks adopt the action in row i of
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table 2, this time for the short cycles scenario. We have

W1 = −(1− μ)Rσ, (29)

W2 =
Rσ [σ(1− θ) + θ] [−θ + μ(2θ − 1)]

2σ(1− θ) + θ , (30)

W3 = −σ{[R + γ(1− σ)(2− θ)(1− θ)]θ + μR(1− 2θ)}
2− θ , (31)

W4 = −1
2
μRσ − 2γ(1− σ)σθ, (32)

WA = −Rσ[1 + σ(θ − 1)][θ + μ(1− 2θ)], (33)

WB = −Rσ [(1− μ)σ(1− θ)
2 + θ(μ+ θ − 2μθ)]

σ(1− θ) + θ , (34)

WC = −σ{μR(1− σ)(1− 2θ) + θ[R−Rσ + γσ(1− θ)(1− σθ)]}
1− σθ , (35)

WD = −σ{μR(2θ − 1)[σ(2θ − 1)− θ] + θ[R(σ + θ − 2θσ) + γσ(1− θ)(2σ + θ − 3σθ)]}
θ + σ(2− 3θ) ,

(36)

WE = −σ{γσ(1− θ)θ[θ + σ(1− 2θ)] +R[θ(μ+ θ − 2μθ) + σ(1− 2θ + μ(−1 + θ + θ
2))]}

θ + σ(1− 2θ) ,

(37)

WF = −σ[μR(1− σ) + θγ)], (38)

WG = −σ[γθ + μR(1− σ

2σ + θ − 2θσ )], (39)

WH = −σ{θγ(σ + θ − σθ) +R[μθ − σ(−1 + μ+ θ)]}
σ(1− θ) + θ , (40)

WI = −σ{γθ(1− σ − θ + σθ) +R[1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)]}, (41)

WJ = −σ[2γ(1− σ)θ(1 + θ) +R(1− μ− θ + 2μθ)]
1 + θ

. (42)

Notice that, for profiles such that no banks with time-critical payments are queueing
their payments, the welfare under the long cycles scenario is the same as the welfare in the
short cycles scenario. Thus W1, W2, WA, WB, WF , WG, and WH , are the same for the
long and short cycles scenarios. Hence action profiles A,B, F,G, and H will not be chosen
by the planner in the short cycles case.
C) The planner will never choose profile C. The welfare under profile D is always higher

than the welfare under profile C. WD ≥ WC is equivalent to

− σ{μR(2θ − 1)[−θ + σ(−1 + 2θ)] + θ[R(σ + θ − 2θσ) + γσ(1− θ)(2σ + θ − 3σθ)]}
θ + σ(2− 3θ)

+
σ{μR(1− σ)(1− 2θ) + θ[R−Rσ + γσ(1− θ)(1− σθ)]}

1− σθ ≥ 0.

This simplifies to Rσ2(1−2σ)(1−θ)2(μ+θ−2μθ)
(1−θσ)(θ+2σ−3θσ) ≥ 0, which is always true since μ+ θ − 2μθ ≥ 0.

D) Likewise, the planner will never choose profile D. Either profile 2 or profile 3 will
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produce higher welfare than the welfare under profile D.
W3 ≥ WD holds if

− σ{[R + γ(1− σ)(2− θ)(1− θ)]θ + μR(1− 2θ)}
2− θ

+
σ{μR(2θ − 1)[−θ + σ(−1 + 2θ)] + θ[R(σ + θ − 2θσ) + γσ(1− θ)(2σ + θ − 3σθ)]}

θ + σ(2− 3θ) ≥ 0.

This simplifies to

[−Rθ + μR(−1 + 2θ) + γ(2− θ)(2σ + θ − 3σθ)]θ(1− θ)(1− 2σ)σ
(2− θ)(θ + σ(2− 3θ)) ≤ 0.

The numerator will be negative provided −Rθ+ μR(−1+ 2θ) + γ(2− θ)(2σ+ θ− 3σθ) ≤ 0.
W2 ≥WD is equivalent to

− Rσ[σ(−1 + θ)− θ][−θ + μ(2θ − 1)]
2σ(1− θ) + θ

+
σ{μR(2θ − 1)[−θ + σ(−1 + 2θ)] + θ[R(σ + θ − 2θσ) + γσ(1− θ)(2σ + θ − 3σθ)]}

θ + σ(2− 3θ) ≥ 0.

This simplifies to

σ2(1− θ)θ(−Rσθ + μRσ(−1 + 2θ) + γ(2σ(1− θ) + θ)(2σ + θ − 3σθ))
(2σ(1− θ) + θ)(θ + σ(2− 3θ)) ≥ 0.

The numerator is positive provided−Rθσ+μRσ(−1+2θ)+γ(2σ−2θσ+θ)(2σ+θ−3σθ) ≥ 0.
Since −2θσ + θ ≥ −θσ, the inequality from the last sentence is true if −Rθσ + μRσ(−1 +
2θ) + γ(2σ − θσ)(2σ + θ − 3σθ) ≥ 0. Dividing by σ, we see that the last inequality is
equivalent to −Rθ + μR(−1 + 2θ) + γ(2− θ)(2σ + θ − 3σθ) ≥ 0.
E) The planner will never choose profile E. If the size of the shock is small, the planner

will choose to have all payments sent early. Otherwise, the planner would choose profile D
over profile E. WD ≥ WE holds if

− σ{μR(2θ − 1)[−θ + σ(−1 + 2θ)] + θ[R(σ + θ − 2θσ) + γσ(1− θ)(2σ + θ − 3σθ)]}
θ + σ(2− 3θ)

+
σ{γσ(1− θ)θ[θ + σ(1− 2θ)] +R[θ(μ+ θ − 2μθ) + σ(1− 2θ + μ(−1 + θ + θ2))]}

θ + σ(1− 2θ) ≥ 0.

This simplifies to Rσ2(1−θ)2(θ−μθ+σ(2−4θ+μ(5θ−3)))
σ(3−5θ)θ+θ2+σ2(2−7θ+6θ2) ≥ 0. Now σ(3− 5θ)θ+ θ2+ σ2(2− 7θ+6θ2)

will be nonnegative for θ ∈ [0, 1] and σ ∈ [0, 0.25]. The numerator is nonnegative provided
θ − μθ + σ(2− 4θ + μ(5θ − 3)) ≥ 0, which is equivalent to θ + 2σ − 4σθ ≥ μ(θ − 5θσ + 3σ).
Since 2

3
≤ .5

.75−.25θ ≤ θ+2σ−4θσ
θ+3σ−5θσ , WD ≥ WE will hold for all μ ≤ 2

3
.

W1 ≥ WE occurs if
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− (1− μ)Rσ
+
σ{γσ(1− θ)θ[θ + σ(1− 2θ)] +R[θ(μ+ θ − 2μθ) + σ(1− 2θ + μ(−1 + θ + θ2))]}

θ + σ(1− 2θ) ≥ 0.

This inequality simplifies to

σθ(−1 + θ){R[1 + μ(−2 + σ)] + γσ[−θ + σ(−1 + 2θ)]}
θ + σ(1− 2θ) ≥ 0.

The numerator will be positive provided R[1+μ(−2+σ)]+ γσ[−θ+σ(−1+2θ)] ≤ 0, which
will occur for μ ≥ 1

2−σ − γσ(θ+σ(1−2θ))
2R−σR . This inequality holds true for μ ≥ 2

3
.

G) The planner will never choose profile G. If the size of the shock is small and the penalty
for delaying time-critical payments is large the planner will choose profile 2. Otherwise the
planner will choose profile 4 over profile G. The only difference between these two profiles
is that zero liquidity shock banks with time-critical payments are putting their payments in
queue under profile 4, but sending them outright under profile G. W4 ≥ WG is equivalent to

−1
2
μRσ − 2γθσ(1− σ) + σ[γθ + μR(1− σ

2σ + θ − 2θσ )]) ≥ 0,

which can be written as σ(1−2σ)[μR−2γ(2σ(1−θ)+θ)]θ
4σ(1−θ)+2θ ≥ 0. The numerator is positive if μR

2
≥

γ(2σ(1− θ) + θ).
W2 ≥ WG is equivalent to

−Rσ[σ(−1 + θ)− θ][−θ + μ(2θ − 1)]
2σ(1− θ) + θ σ[γθ + μR(1− σ

2σ + θ − 2θσ )] ≥ 0

Combining terms we get

θσ((1− μ)Rσ + (1− 2μ)R(1− σ)θ − γ(2σ(1− θ) + θ))
2σ(−1 + θ)− θ ≥ 0,

which occurs if (1− μ)Rσ+ (1− 2μ)R(1− σ)θ− γ(2σ(1− θ) + θ) ≤ 0. This is equivalent to
(1−μ)Rσ+(1−2μ)R(1−σ)θ ≤ γ(2σ(1−θ)+θ) which occurs if (1−μ)Rσ ≤ γ(2σ(1−θ)+θ).
This is true if μR

2
≤ γ(2σ(1− θ) + θ) since (1− μ) ≤ μ and σ ≤ 1

4
< 1

2
.

I) The planner will never choose profile I. If the size of the shock is small the planner
would rather have everyone pay early rather than choose profile I. If the size of the shock is
large profile 3 is preferable to profile I. W1 ≥ WI if

− (1− μ)Rσ
+ σ{γθ(1− σ − θ + σθ) +R[1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)]} ≥ 0.

This occurs provided [(3μ− 2)R + γ(1− σ)]σ(1− θ)θ ≥ 0, which holds for μ ≥ 2
3
.
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W3 ≥ WI is true when

− σ{[R + γ(1− σ)(2− θ)(1− θ)]θ + μR(1− 2θ)}
2− θ

+ σ{γθ(1− σ − θ + σθ) +R[1− 2(1− θ)θ − μ(1 + 3(−1 + θ)θ)]} ≥ 0.

holds. This is true if (1−θ)
3Rσ(2−3μ)
2−θ ≥ 0, which is true for μ ≤ 2

3
.

J) As in the previous case, when the size of the shock is small profile 1 leads to higher
welfare than profile J. Otherwise, profile 4 is preferable to profile J. W1 ≥ WJ is equivalent
to

−(1− μ)Rσ + σ[2γ(1− σ)θ(1 + θ) +R(1− μ− θ + 2μθ)]
1 + θ

≥ 0,
which simplifies to

σθ((3μ− 2)R + 2γ(1− σ)(1 + θ))
1 + θ

≥ 0.

The numerator is positive provided μ ≥ 2
3
.

W4 ≥ WJ is positive if

−1
2
μRσ − 2γθσ(1− σ) + σ[2γ(1− σ)θ(1 + θ) +R(1− μ− θ + 2μθ)]

1 + θ
≥ 0.

This simplifies to
(2− 3μ)Rσ(1− θ)

2(1 + θ)
≥ 0.

The numerator is positive if μ ≤ 2
3

Conditions on Planner’s Choices with an LSM
Long Cycles Case:
W1 ≥W2

⇐⇒ −(1− μ)Rσ ≥-Rσ[σ(1−θ)+θ][−θ+μ(2θ−1)]
2σ(1−θ)+θ

⇐⇒ Rσ(1−θ)[(3μ−2)σ+(2μ−1)(1−σ)θ]
2σ(1−θ)+θ ≥ 0

⇐⇒ (3μ− 2)σ + (2μ− 1)(1− σ)θ ≥ 0
⇐⇒ μ[3σ + 2θ(1− σ)] ≥ 2σ + (1− σ)θ
⇐⇒ μ ≥ 2σ+θ(1−σ)

3σ+2θ(1−σ)
W1 ≥W3

⇐⇒ −(1− μ)Rσ ≥-μRσ(1−2θ)+θ[Rσ+γ(1−σ)(1−θ)]
2−θ⇐⇒ (−1 + θ)[(−2 + 3μ)Rσ − γ(−1 + σ)θ] ≤ 0

⇐⇒ (−2 + 3μ)Rσ − γ(−1 + σ)θ ≥ 0
⇐⇒ 3μRσ ≥ 2Rσ + γ(−1 + σ)θ
⇐⇒ μ ≥ 2Rσ−γθ(1−σ)

3Rσ
.

W1 ≥W4

⇐⇒ −(1− μ)Rσ ≥ −1
2
(μRσ + γθ)

⇐⇒ Rσ − 1
2
γθ ≤ 3

2
μRσ

⇐⇒ μ ≥ 2Rσ−γθ
3Rσ

Note: Since 2Rσ−γθ(1−σ)
3Rσ

≥ 2Rσ−γθ
3Rσ

,W1 ≥W3 =⇒W1 ≥W4

W2 ≥W3

⇐⇒ −Rσ(σ(1−θ)+θ)(−θ+μ(2θ−1))
2σ(1−θ)+θ ≥-μRσ(1−2θ)+θ(Rσ+γ(1−σ)(1−θ))

2−θ
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⇐⇒ (1−σ)(1−θ)θ{γ[2σ(−1+θ)−θ]+Rσ(μ+θ−2θμ)}
[2σ(1−θ)+θ](2−θ) ≤ 0

⇐⇒ (1− σ)(1− θ)θ{γ[2σ(−1 + θ)− θ] +Rσ(μ+ θ − 2θμ)} ≤ 0
⇐⇒ Rσ(μ− 2θμ) ≤ γ[2σ(1− θ) + θ]−Rσθ
⇐⇒ μ ≤ γ[2σ(1−θ)+θ]−Rσθ

Rσ(1−2θ) if θ < 1
2

μ ≥ γ[2σ(1−θ)+θ]−Rσθ
Rσ(1−2θ) if θ > 1

2

W2 ≥W4

⇐⇒ −Rσ(σ(1−θ)+θ)(−θ+μ(2θ−1))
2σ(1−θ)+θ ≥ −1

2
(μRσ + γθ)

⇐⇒ θγ[2σ(−1 + θ)− θ] +Rσθ[μ+ 2σ − 4μσ + 2(2μ− 1)(−1 + σ)θ] ≤ 0
⇐⇒ Rσθ[μ+ 2σ − 4μσ + 2(2μ− 1)(−1 + σ)θ] ≤ θγ(2σ(1− θ) + θ)
⇐⇒ Rσμ(1− 4σ + 4(−1 + σ)θ) ≤ γ(2σ(1− θ) + θ) + 2(−1 + σ)Rσθ − 2Rσ2
⇐⇒ μ ≤ γ[2σ(1−θ)+θ]+2(−1+σ)Rσθ−2Rσ2

Rσ(1−4σ+4(−1+σ)θ) if 1− 4σ + 4(−1 + σ)θ > 0
μ ≥ γ[2σ(1−θ)+θ]+2(−1+σ)Rσθ−2Rσ2

Rσ(1−4σ+4(−1+σ)θ) if 1− 4σ + 4(−1 + σ)θ < 0
W3 ≥W4

⇐⇒ −μRσ(1−2θ)+θ(Rσ+γ(1−σ)(1−θ))
2−θ ≥ −1

2
(μRσ + γθ)

⇐⇒ θ{(3μ−2)Rσ+γ[2σ(1−θ)+θ]}
2(−2+θ) ≤ 0

⇐⇒ (3μ− 2)Rσ + γ[2σ(1− θ) + θ] ≥ 0
⇐⇒ 3μRσ ≥ 2Rσ − γ[2σ(1− θ) + θ]
⇐⇒ μ ≥ 2Rσ−γ[2σ(1−θ)+θ]

3Rσ

Short Cycles Case:
W1 ≥W2

Same as long cycles case.
W1 ≥W3

⇐⇒ −(1− μ)Rσ + σ((R+γ(1−σ)(2−θ)(1−θ)θ)+μ(R−2Rθ))
2−θ ≥ 0

⇐⇒ σ(1−θ)((3μ−2)R+γθ(1−σ)(2−θ))
2−θ ≥ 0

⇐⇒ (3μ− 2)R + γθ(1− σ)(2− θ) ≥ 0
⇐⇒ (3μ− 2) ≥ −γθ

R
(1− σ)(2− θ)

⇐⇒ μ ≥ 2
3
− γθ

3R
(1− σ)(2− θ)

W1 ≥W4

⇐⇒ −(1− μ)Rσ + 1
2
μRσ + 2γ(1− σ)σθ ≥ 0

⇐⇒ −1
2
σ((2− 3μ)R− 4γθ(1− σ)) ≥ 0

⇐⇒ (2− 3μ)R− 4γθ(1− σ) ≤ 0
⇐⇒ 3μR ≥ 2R− 4γθ(1− σ)
⇐⇒ μ ≥ 2

3
− 4γθ

3R
(1− σ)

W2 ≥ W3

⇐⇒ −Rσ(σ(−1+θ)−θ)(−θ+μ(2θ−1))
2σ(1−θ)+θ + σ((R+γ(1−σ)(2−θ)(1−θ)θ)+μ(R−2Rθ))

2−θ ≥ 0
⇐⇒ (1−σ)σ(1−θ)θ(γ(2σ(−1+θ)−θ)(−2+θ)−Rθ+μR(−1+2θ))

(2σ(1−θ)+θ)(2−θ) ≥ 0
⇐⇒ γ(2σ(−1 + θ)− θ)(−2 + θ)−Rθ + μR(−1 + 2θ) ≥ 0
⇐⇒ μR(2θ − 1) ≥ γ(2σ(−1 + θ)− θ)(2− θ) +Rθ
⇐⇒ μ ≥ γ(2σ(−1+θ)−θ)(2−θ)+Rθ

R(2θ−1) if θ > 1
2

μ ≤ γ(2σ(−1+θ)−θ)(2−θ)+Rθ
R(2θ−1) if θ < 1

2

W2 ≥ W4

⇐⇒ −Rσ(σ(−1+θ)−θ)(−θ+μ(2θ−1))
2σ(1−θ)+θ + 1

2
μRσ + 2γ(1− σ)σθ ≥ 0

⇐⇒ 1
2
μRσ + μRσ(σ(1−θ)+θ)(2θ−1)

2σ(1−θ)+θ ≥ Rσθ(σ(1−θ)+θ)
2σ(1−θ)+θ − 2γ(1− σ)σθ
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⇐⇒ 1
2
μRσ[2σ(1− θ) + θ] + μ{Rσ[σ(1− θ) + θ](2θ− 1)} ≥ Rσθ(σ(1− θ) + θ)− 2γ(1−

σ)σθ(2σ(1− θ) + θ)
⇐⇒ μ(1

2
Rθσ(4θ−1+4σ(1−θ))) ≥ σθ((R+4γ(−1+σ))σ+(1−σ)(R+γ(−2+4σ))θ)

⇐⇒ μ ≥ 2((R+4γ(−1+σ))σ+(1−σ)(R+γ(−2+4σ))θ)
R(4θ−1+4σ(1−θ)) if 4θ − 1 + 4σ(1− θ) > 0

μ ≤ 2((R+4γ(−1+σ))σ+(1−σ)(R+γ(−2+4σ))θ)
R(4θ−1+4σ(1−θ)) if 4θ − 1 + 4σ(1− θ) < 0

W3 ≥ W4

⇐⇒ −σ((R+γ(1−σ)(2−θ)(1−θ)θ)+μ(R−2Rθ))
2−θ + 1

2
μRσ + 2γ(1− σ)σθ ≥ 0

⇐⇒ σθ((3μ−2)R+2γ(1−σ)(2−θ)(1+θ))
2(2−θ) ≥ 0

⇐⇒ (3μ− 2)R + 2γ(1− σ)(2− θ)(1 + θ) ≥ 0
⇐⇒ 3μR ≥ 2R− 2γ(1− σ)(2− θ)(1 + θ)
⇐⇒ μ ≥ 2

3
− 2γ

3R
(1− σ)(2− θ)(1 + θ)

Proof of proposition 6
Proof. We need to show that if the parameters are such that the planner does not choose
profile 1, then μ < 2

3
. Formally, for the BRLSM long cycle case, we need to show that

2σ+θ(1−σ)
3σ+2θ(1−σ) ,

2Rσ−γθ(1−σ)
3Rσ

, and 2Rσ−γθ
3Rσ

are all less than or equal to 2
3
. For the BRLSM short

cycles case we need to show that 2σ+θ(1−σ)
3σ+2θ(1−σ) ,

2
3
− γθ

3R
(1− σ)(2− θ), and 2

3
− 4γθ

3R
(1− σ) are all

less than or equal to 2
3
. For the RTGS case, we will have to show that (1+σθ)

2(1+σθ)−σ and
R−γθ
R(2−σ)

are both less than 2
3
.

1) , 4) 2σ+θ(1−σ)
3σ+2θ(1−σ) ≤ 2

3
holds if 6σ + 4θ(1 − σ) ≥ 6σ + 3θ(1 − σ), which is true since

θ(1− σ) ≥ 0.
2) 2Rσ−γθ(1−σ)

3Rσ
≤ 2

3
holds if 6Rσ−3γθ(1−σ) ≤ 6Rσ, which is true since −3γθ(1−σ) ≤ 0.

3) 2Rσ−γθ
3Rσ

≤ 2Rσ−γθ(1−σ)
3Rσ

.
5) 2

3
− γθ

3R
(1− σ)(2− θ) ≤ 2

3
since γθ

3R
(1− σ)(2− θ) ≥ 0.

6) 2
3
− 4γθ

3R
(1− σ) ≤ 2

3
since 4γθ

3R
(1− σ) ≥ 0.

7) (1+σθ)
2(1+σθ)−σ ≤ 2

3
holds if 3 + 3σθ ≤ 4 + 4σθ − 2σ, which must be true since 2σ ≤ 1 + σθ.

8) R−γθ
R(2−σ) ≤ 2

3
holds if 3R − 3γθ ≤ 4R − 2σR, which must be true since −3γθ ≤ 0 ≤

R(1− 2σ).
Proof of proposition 7

Proof. We will have proven is proposition if we can show that W1 ≥Wi for the short cycles
case implies W1 ≥Wi for the long cycles case, for i ∈ {2, 3, 4} To do this we just check that
1) 2σ+θ(1−σ)

3σ+2θ(1−σ) ≤ 2σ+θ(1−σ)
3σ+2θ(1−σ) , 2)

2Rσ−γθ(1−σ)
3Rσ

≤ 2
3
− γθ
3R
(1−σ)(2−θ), and 3)2Rσ−γθ

3Rσ
≤ 2

3
− 4γθ

3R
(1−σ):

1) Trivial.
2) (2− θ) ≤ 2 ≤ 1

σ

=⇒ (2− θ)γθ(1−σ)
3R

≤ γθ(1−σ)
3Rσ

=⇒ 2Rσ−γθ(1−σ)
3Rσ

≤ 2
3
− γθ

3R
(1− σ)(2− θ)

3) 4(1− σ) ≤ 1
σ

=⇒ 4γθ
3R
(1− σ) ≤ γθ

3Rσ

=⇒ 2
3
− 4γθ

3R
(1− σ) ≥ 2Rσ−γθ

3Rσ
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