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Abstract

We show how to price the time series and cross section of zero coupon bonds via ordinary

least squares regressions. Our approach allows computationally fast estimation of term

structure models with a large number of pricing factors. Even though we do not impose

cross-equation restrictions in the estimation, we show that our return regressions generate

a term structure of interest rates with small pricing errors compared to commonly

reported specifications, both in and out-of-sample. 
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1 Introduction

Affine models of the term structure of interest rates are a popular tool for the analysis

of government bond yields. These models typically start with three assumptions: 1) the

pricing kernel is exponentially affine in the shocks driving the economy, 2) prices of risk

are affine in the state variables, and 3) innovations to state variables and log yield obser-

vation errors are conditionally Gaussian and independent (see Dai and Singleton (2000,

2002, 2003), Goldstein and Dufresne (2001), Duffee (2002), Kim and Wright (2005) for

examples). These assumptions give rise to log yields that are affine in the state vari-

ables, and whose coefficients on the state variables are subject to no-arbitrage constraints

across maturities (see Duffie and Kan (1996), Piazzesi (2003), and Singleton (2006) for

overviews). Empirically, the affine term structure literature commonly uses maximum

likelihood methods to estimate coefficients and pricing factors, thus exploiting the distri-

butional assumptions as well as the no-arbitrage constraints.

In this paper, we propose an alternative, regression based approach to pricing the

time series and cross section of interest rates. We start with observable pricing factors

and develop a three step ordinary least squares estimator. In the first step, we decompose

pricing factors into predictable components and factor innovations by regressing factors

on their lagged levels. In the second step, we estimate exposures of Treasury returns

with respect to lagged levels of pricing factors and pricing factor innovations (the latter

obtained in the first step). In the third step, we decompose the exposures of returns

on the lagged pricing factors (from the second step) into “quasi” prices of risk and yield

factor loadings via means of a cross-sectional regression. We compute standard errors that

adjust for the generated regressor uncertainty from the previous stages via bootstrap.

Our regression based pricing approach does not rely on distributional assumptions.

However, in order to relate the ”quasi” prices of risk to actual prices of risk, we need to

make distributional assumptions. In particular, we assume that prices of risk are affine
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functions of the state variables, that the pricing kernel is exponentially affine, and that

shocks to the state variables are conditionally Gaussian. In the appendix, we present

an alternative approach with a linear pricing kernel that does not require distributional

assumptions.

We treat pricing factors as observable. In our preferred specification, we use the first

five principal components of the yield curve as pricing factors. We find that a smaller

number of yield factors is not able to adequately capture the dynamics of both returns

and yields. In our preferred five factor specification, the Cochrane and Piazzesi (2005)

return forecasting factor does not add significant forecasting power for excess Treasury

returns.

Our starting point of using yield principal components as factors is not essential.

Indeed, we can alternatively use forward rates or the parameters of the Nelson-Siegel-

Svensson curve from which our zero-coupon term structure is constructed as pricing fac-

tors. The choice of pricing factors does not seem essential as long as the factors span both

the time-series and cross-sectional variation of the term structure of interest rates.

Our estimation procedure is computationally extremely fast, as it only relies on linear

regressions. It is thus easy to use the model for out-of-sample forecasts. We show that

our preferred factor specification gives rise to smaller out-of sample pricing errors than

A) the random walk model, B) a three factor specification, C) the Diebold and Li (2006)

model. Our model can thus be readily used in real time analysis.

Our paper is organized as follows. In Section 2, we discuss our model and the three

step estimator. In Section 3, we present our main empirical findings which include an

in-sample and out-of-sample analysis of specifications of our model with different sets of

pricing factors and at different sampling frequencies. Section 4 concludes.
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2 The Model

2.1 State variables and expected returns

We assume that the dynamics of a K × 1 vector of state variables Xt evolve according to

the following vector autoregressive process:

Xt+1 = µ+ ΦXt + vt+1 (1)

This specification of the dynamic evolution of the state variables can be interpreted as a

discrete time analog to the state variable dynamics of Merton’s (1973) ICAPM or Cox,

Ingersoll, and Ross’ (1985) general equilibrium setup. At this point, we do not make any

distributional assumptions about the shocks vt+1. We solely assume that the expectation

of vt+1 conditional on the history of Xt is zero, and that the variance of vt+1 conditional

on the history of Xt is finite:

Et

(
vt+1| {Xs}ts=0

)
= Et (vt+1|Xt) = 0 (2)

V art

(
vt+1| {Xs}ts=0

)
= V art (vt+1|Xt) = Σt (3)

where {Xs}ts=0 denotes the history of Xt. We denote rx
(n−1)
t+1 the log excess one period

holding return of a bond maturing in n periods. We assume that the return generating

process for log excess holding period returns are:

rx
(n−1)
t+1 = β(n−1)′ (γ0 + γ1Xt)︸ ︷︷ ︸

Expected

Return

+ β(n−1)′vt+1︸ ︷︷ ︸
Priced Return

Innovation

+ e
(n−1)
t+1︸ ︷︷ ︸

Return

Error

(4)
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The excess return thus depends on the expected return, a component that is correlated

with the innovations of the state variables, vt+1 = Xt+1 − Et [Xt+1], and a return pricing

error e
(n−1)
t+1 that is orthogonal to the state innovations. Therefore, the innovations to

the state variables are cross-sectional pricing factors, and the levels of the states are

forecasting variables. Per construction, the return pricing error e
(n−1)
t+1 is orthogonal to

current and lagged state variables.

Note that up to a convexity term this return generating process is identical to the

return generating process that would be implied by a Gaussian affine term structure

model that imposes no-arbitrage restrictions. A dynamic term structure model with a

linear pricing kernel specification would exactly imply a return generating process as in

equation (4). We will discuss the link to arbitrage-free pricing in Section 2.6 below.

2.2 Estimation

Based on equation (4) above, we propose the following three step estimator for the pa-

rameters of our return equation.

1. Estimate µ and Φ via OLS. This allows the decomposition of Xt+1 into a predictable

component µ̂+ Φ̂Xt, and an innovation v̂t+1.

2. Regress excess returns on lagged pricing factors and contemporaneous pricing factor

innovations,

rx
(n−1)
t+1 = a(n−1) + β(n−1)′v̂t+1 + c(n−1)′Xt + e

(n−1)
t+1 (5)

and recover the coefficients â(n−1), β̂(n−1), and ĉ(n−1). Stacking them across maturi-

ties gives â = (â(1), ..., â(N)), β̂ =
(
β̂(1)′, ..., β̂(N)′

)′
, and ĉ =

(
ĉ(1)′, ..., ĉ(N)′)′, where

â is a vector of length N , and where b̂ and ĉ are matrices of dimension N × K,

respectively.
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3. Estimate the quasi prices of risk parameters γ0 and γ1 via a cross sectional regression.

We know from (4) that a(n) = β
(n)′
0 γ0 and c(n)′ = β

(n)′
1 γ1 ∀n. We therefore have

â = β̂γ0 and ĉ = β̂γ1. Hence, we can obtain estimates for γ0 and γ1 via

γ̂0 =
(
β̂′β̂
)−1

β̂′â (6)

γ̂1 =
(
β̂′β̂
)−1

β̂′ĉ (7)

Note that when N = K, these estimators amount to setting γ̂0 = β̂−1â and γ̂1 =

β̂−1ĉ.

2.3 Relation to Fama-MacBeth regressions

The last step of our three step OLS estimation amounts to cross-sectional regressions of

a on β and c on β. Our approach thus bears a close relationship to the cross-sectional

regressions of Fama and MacBeth (1973). In contrast to Fama-MacBeth regressions,

we assume a particular affine form for the quasi prices of risk. Alternatively, we could

follow Fama-MacBeth (1973) by regressing returns Rt+1 on β′ in the cross-section for

each t to recover γFM
t+1 . In our setting, the return generating process implies that γFM

t+1 =

(γ0 + γ1Xt + vt+1). We could thus recover γ0 and γ1 from the Fama-MacBeth prices of

risk by regressing them on the lagged state variables and a constant. Our approach can

thus be interpreted as a dynamic version of Fama-MacBeth regressions that decomposes

prices of risk into a predictable component (γ0 + γ1Xt) and an innovation vt+1. The

dynamics of prices of risk are in turn linked to the dynamics of the state variables.

2.4 Standard errors

Our three step estimation approach uses generated regressors whose estimation uncer-

tainty has to be taken into account in computing standard errors. We use bootstrapping
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methods to adjust standard errors for the two layers of generated regressor uncertainty

by using the following procedure. We save the residuals {v̂t} from the VAR(1) regression

of the pricing factors on their lagged levels, and the residuals {êt} from the regression of

excess returns on the lagged pricing factors and their innovations. Using the stationary

block bootstrap of Politis and Romano (1994a,b) which is robust to serial correlation, we

then generate 1000 artificial samples of the state vector and the cross-section of returns.

In each bootstrap iteration, we simulate the state equation (1) and generate a set of ar-

tificial excess returns via (4). For each of the 1000 generated samples of excess returns

and factors, we then estimate the market price of risk parameters using our three step

regression approach and report the average and standard deviations from the generated

sample of estimates as parameter estimates and standard errors, respectively. Standard

errors for the three step regression approach could alternatively be computed analytically.

2.5 Affine yields

We fit our model to returns of non-defaultable zero coupon bonds. In this section, we

show how to calculate the term structure of log bond prices. The definition of the log

excess one period holding returns is:

rx
(n−1)
t+1 = lnP

(n−1)
t+1 − lnP

(n)
t + lnP

(1)
t (8)

where P
(1)
t denotes the price of a zero coupon bond that matures in one period, and P

(n)
t

denotes the time t price of a zero coupon bond with maturity (t+ n).

We assume that log bond prices are affine in the states Xt and an error term u
(n)
t :

lnP
(n)
t = An +B′nXt + u

(n)
t (9)

We will derive the properties of the yield pricing error term u
(n)
t as a function of the return
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pricing error e
(n)
t . By replacing (9) into (8), we see:

rx
(n−1)
t+1 = An−1 +B′n−1Xt+1 + u

(n−1)
t+1 − An −B′nXt − u(n)

t + A1 +B′1Xt + u
(1)
t (10)

Equating this expression for excess returns with the return generating expression (4), we

find:

β(n−1)′ (γ0 + γ1Xt + vt+1) + e
(n−1)
t+1 = An−1 +B′n−1 (µ+ ΦXt + vt+1) + u

(n−1)
t+1 (11)

−An −B′nXt − u(n)
t + A1 +B′1Xt + u

(1)
t

This equation has to hold state by state. Let A1 = −δ0 and B1 = −δ1. Matching terms,

we obtain a system of recursive linear restrictions for the bond pricing parameters:

An = An−1 +B′n−1 (µ− γ0)− δ0 (12a)

B′n = B′n−1 (Φ− γ1)− δ′1 (12b)

A0 = 0, B′0 = 0 (12c)

β(n)′ = B′n (12d)

We also obtain the following expression for the log bond pricing errors:

u
(n−1)
t+1 − u(n)

t + u
(1)
t︸ ︷︷ ︸

Log Bond

Pricing Error

= e
(n−1)
t+1︸ ︷︷ ︸

Return Pricing

Error

(13)

Two remarks are in order. First, note that the derivation of log bond prices is exact,

provided that β(n)′ = B′n. The latter restriction is testable. The recursions (12a) and

(12b) are linear ODEs, as we assumed that the return generating model is affine in log
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excess returns (see equation 4), and that log bond prices are affine in the state variables

(see equation 9). Second, notice that expression (13) above implies that log bond pricing

errors are cross-sectionally and serially correlated. Because return innovations should

have no serial correlation, the serial correlation of the bond pricing errors arises naturally.

2.6 Arbitrage Free Pricing

So far, we have not linked the log-return generating process (4) to arbitrage free pricing

restrictions. We will make three standard assumptions in order to introduce no arbitrage

constraints in our set up. First, innovations to the state variables vt+1 are conditionally

Gaussian. Second, the pricing kernel is exponentially affine. Third, the no-arbitrage

equations hold without the pricing error e
(n−1)
t+1 . These assumptions allow us to link our

model to the standard results in the recent literature on affine term structure models

(see Dai and Singleton (2000, 2002, 2003), Collin-Dufresne and Goldstein (2001), Duffee

(2002), Kim and Wright (2005), Piazzesi (2003), and Singleton (2006)).

Denote a pricing kernel by Mt+1, and the holding period return by R
(n)
t+1. The assump-

tion of no-arbitrage implies (see Dybvig and Ross (1987)):

1 = Et

[
Mt+1R

(n)
t+1

]
(14)

We assume that the pricing kernel Mt+1 is exponentially affine as in Duffee (2002):

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tΣ

−1/2
t vt+1

)
(15)

λt = Σ
−1/2
t (λ0 + λ1Xt) , (16)

where rt denotes the risk-free one-period interest rate. Noting that R
(n)
t+1 = exp(r

(n)
t+1) =

exp(rx
(n)
t+1+rt), replacing (15) and (4) into (14) and using the fact that vt+1 is conditionally
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Gaussian gives:

1 = Et

[
exp

(
−1

2
λ′tλt − λ′tΣ

−1/2
t vt+1 + β(n−1)′ (γ0 + γ1Xt) + β(n−1)′vt+1

)]
= exp

(
β(n−1)′ (γ0 + γ1Xt)− Covt

[
λ′tΣ

−1/2
t vt+1, β

(n−1)′vt+1

]
+

1

2
V art

[
β(n−1)′vt+1

])
= exp

(
β(n−1)′ (γ0 + γ1Xt)− β(n−1)′ (λ0 + λ1Xt) +

1

2
β(n−1)′Σtβ

(n−1)

)
(17)

which can be written as:

β(n−1)′ (γ0 + γ1Xt) = β(n−1)′ (λ0 + λ1Xt)−
1

2
β(n−1)′Σtβ

(n−1) (18)

Following the common assumption that the variance-covariance matrix of shocks to the

state variables vt+1 is affine in the state variables:

vec (Σt) = S0 + S1Xt (19)

we find:

β(n−1)′ (γ0 + γ1Xt) = β(n−1)′ (λ0 + λ1Xt)−
1

2

(
β(n−1)′ ⊗ β(n−1)′) (S0 + S1Xt) (20)

These equations can be stacked across maturities n:

β (γ0 + γ1Xt) = β (λ0 + λ1Xt)−
1

2
β∗ (S0 + S1Xt) (21)

where β is a N × K matrix of with the n-th row given by β(n)′ and where β∗ is a N ×

K2matrix with n-th row given by (β(n)′ ⊗ β(n)′). Setting prices of risk to zero therefore
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implies:

λ0 = 0 =⇒ γ0 = −1

2
(β′β)

−1
β′β∗S0 (22)

λ1 = 0 =⇒ γ1 = −1

2
(β′β)

−1
β′β∗S1 (23)

Hence, the coefficients γ0 and γ1 of equation (4) differ from the price of risk parameters

λ0 and λ1 by a convexity term. Note that the latter is particular to the Gaussian case.

In general, the wedge between γ and λ depends on the difference between holding period

returns and log returns, which happens to be proportional to a convexity adjustment in

the Gaussian case. We discuss the equivalent risk-adjustment in the case where shocks

are not Gaussian in Appendix A.

Setting the market prices of risk parameters λ0 and λ1 to zero in the recursions (12a)

and (12b), one can deduce the risk-neutral bond pricing parameters which in turn can

be used to compute risk-neutral yields. These are of independent economic interest since

they reflect market participants’ expected path of future short term interest rates.

3 Empirical results

In this section, we provide estimation results from our regression approach for models with

different numbers of factors. As baseline examples, we choose a K = 3 and a K = 5 factor

specification where the pricing factors are computed as the first K principal components

from 120 yields for maturities n = 1, . . . , 120 months.1

We start by providing in-sample estimation results for the different model specifica-

tions. We then turn to out-of-sample yield forecasts and document that the five factor

1The choice of using principal components of yields as pricing factors was made for convenience and
is not essential to our model. Unreported results show that specifications using e.g. the time series of
parameters of the Nelson-Siegel curve (as in Diebold and Li, 2006) or a selection of forward rates as
pricing factors provide qualitatively similar results.
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specification of our model predicts yields well out-of-sample relative to benchmark models.

3.1 Data

We estimate our model based on the zero-coupon yield data constructed by Gurkay-

nak, Sack, and Wright (2006).2 The construction of these data is based on the Nelson-

Siegel-Svensson curve, the parameters of which are published along with the estimated

zero-coupon curve. We use these parameters to back out the cross-section of yields for

maturities n = 1, . . . , 120 months from which we compute the one-month holding period

returns.

We estimate the models for the sample period 1986:01-2008:12 and use as inputs

excess holding period returns for bonds of maturities n = 12, 18, 24, . . . , 120 months. This

provides us with a cross-section of N = 19 maturities for which he have a total of T = 276

observations. Recall that the excess holding period return for a bond of maturity n is

defined as R
(n)
t+1 − RF

t =
P

(n)
t+1

P
(n+1)
t

− 1

P
(1)
t

where P
(n)
t denotes the price in period t of a bond

which matures in t+ n.

3.2 In sample estimation

Taken as given the set of pricing factors, we estimate the parameters (Φ, γ0, γ1) using our

three step estimation approach.3 We further obtain estimates of the short rate parameters

δ0 and δ1 by regressing the log one-month yield on the pricing factors. We then feed all

parameters into the equations (12a) and (12b) to obtain the recursive pricing parameters

and use the latter to compute the model-implied yields.

2We thank the authors for making these data available for download on the website http://www.
federalreserve.gov/Pubs/feds/2006/200628/feds200628.xls

3Note that our pricing factors are principal components extracted from demeaned yields. Hence, they
have a sample average of zero by construction. We therefore fix the mean of the state equation (1) to
zero and estimate Φ but not µ.
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3.2.1 Three Factor Specification

Table 1 below reports the time series properties of the yield pricing errors û implied by

the three factor specification of our model. As these results show, the three factor model

explains yields of intermediate maturities very well, implying maximum average pricing

errors below 3 basis points across the entire maturity spectrum. Table 2 shows the same

set of moments for the return pricing errors ê implied by the model.

The yield pricing errors, even though they are small, show substantial serial correlation,

as predicted by our equation (13). In contrast, the return pricing errors are essentially

serially uncorrelated. Figure 1 provides a plot of average yields as observed and fitted

by the three factor model. As can be seen from this plot, the three factor specification

provides a very good fit of the average yield curve. This finding is underscored by Figure 2,

which shows the unconditional standard deviations of observed and model-implied yields.

While these almost coincide for intermediate and long maturities, there is some notable

difference at the short end of the curve. Figures 3 and 4 show the time series of observed

and fitted yields and excess holding period returns for a set of different maturities. These

plots provide additional evidence that the three factor specification of our model gives a

close fit to the term structure of interest rates, especially so for intermediate and longer

maturities.

Recall that we use the first three principal components of the yield data as the pricing

factors in the three factor specification of our model. According to their loadings on

individual bond yields, these are commonly labeled ”level”, ”slope”, and ”curvature”.

Our arbitrage-free term structure model allows us to derive the risk premia associated

with shocks to these components. Figure 5 provides a plot of the yield loadings − 1
n
Bn

implied by our model. Shocks to the first principal component affect yield of all maturities

by about the same amount, so it can clearly be interpreted as a level factor. Moreover,

the yield loadings of the second and third factor show that these can readily be viewed
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as representing slope and curvature. Hence, the three principal components retain their

interpretation when used as state variables in our no-arbitrage model.

While the loadings of yields of different maturities on the level, slope, and curvature

factors have often been documented in the literature, relatively little attention has previ-

ously been given to their impact on expected excess returns. In our arbitrage-free model,

this is straightforward to analyze. Figure 6 shows the loadings B′nγ1 of expected returns

on the three factors. According to this plot, the yield curve level and slope factors are

equally strong drivers of variations in risk premia, albeit with opposite signs. Indeed,

while the impact on expected excess returns is increasing for the slope factor across the

maturity spectrum, it is decreasing for the level factor. Compared to level and slope, the

curvature factor only has a relatively small impact on expected returns. We will see below

how these conclusions change when we allow additional factors to enter the model.

3.2.2 Five Factor Specification

We have seen in the previous section that a three factor specification of our pricing model,

although implying small pricing errors, still leaves some of the variation of interest rates at

the short end of the yield curve unexplained. We now show that a five factor specification

of our model fits the yield curve close to perfectly in-sample. Since traditional term

structure models are estimated imposing non-linear cross-equation restrictions, estimation

of these models with more than three factors becomes computationally very demanding.

In contrast, our estimation approach is based on simple linear regressions, and it therefore

comes at no cost to add pricing factors to the model.

Table 4 reports the time series properties of the yield pricing errors implied by the

five factor specification of our model. The average yield pricing errors are very small,

ranging between 0.3 and 0.7 basis points. Moreover, the standard deviation of the pricing

errors is very small, exceeding 1 basis point only for the 12-month maturity. Consistent
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with our decomposition of yield pricing errors in terms of return pricing errors, we again

find evidence for serial correlation in yield pricing errors. Table 5 shows that the return

pricing errors, in turn, are essentially not autocorrelated.

Figures 7 to 10 visualize the above results. As can be seen from these plots, the

five factor specification provides a very good fit to the yield curve across the maturity

spectrum. In sum, the ability of our model to fit yields of various maturities is striking

given that all estimates are based on simple linear regressions. One might think that this

is not surprising since our pricing factors are the principal components of yields. However,

it is important to keep in mind that the model has been fitted to returns and that all

parameters have been obtained via linear regressions without imposing the cross-equation

restrictions for yields as in standard affine term structure models. These have only been

used ex-post to back out the model-implied yield curve.

While the first three principal components of yields have a common interpretation as

level, slope, and curvature, higher order principal components of yields have tradition-

ally not been given much attention in the term structure literature as they only explain

minimal shares of the cross-sectional variation of yields. In Figure 11, we plot the yield

loadings implied by our five factor model. According to this plot and consistent with

the in-sample pricing errors, the fourth and fifth principal component carry a very small

amount of explanatory power at the very short end of the curve, but explain little to no

variation in longer maturities. Turning now to the effects of these two factors on expected

excess returns shown in Figure 12, this picture changes substantially. Indeed, shocks to

the fourth and fifth principal components are the main driving forces behind movements

in risk premia. Indeed, in the five factor specification, the fourth principal component has

a strong positive hump-shaped effect on expected one-month excess returns. In contrast,

the fifth principal component exhibits strongly negative coefficients on expected excess

returns. In spirit, these results are in line with the findings in Cochrane and Piazzesi
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(2005) and Duffee (2009a) who document that factors with negligible contemporaneous

effects on the yield curve may have strong predictive power for future excess returns.

Recall that we have derived the recursive pricing equations (12a) and (12b) by equating

our return generating process (4) with the definition of excess returns (8) under the

assumption that log bond prices and thus yields are linear in the state variables X.

The matching of terms implies that our recursive bond pricing parameters Bn which

are functions of the parameters µ,Φ, δ0, δ1, γ0, and γ1 estimated via linear regressions be

equal to the coefficients β(n) from the time series regressions of excess returns on the factor

innovations v for all maturities n. In practice, however, this is not by construction the

case. Indeed, it may serve as an additional diagnostic of model fit whether the imputed

recursive pricing parameters B equal the regression coefficients β.

Figure (13) provides plots of the two sets of coefficients. As expected, they are visually

indistinguishable for all maturities for the first three factors. While they differ slightly

for the fourth and fifth factor, that difference is economically and statistically negligible.

3.3 Out-of-sample forecasts

We have seen above that both a three factor and a five factor specification of our term

structure model fit the yield curve very well in-sample. While the additional factors in

the five factor specification do not noticeably enhance in-sample fit, they seem to be the

key driving force behind model-implied expected excess returns. In this subsection, we

thus assess whether the added pricing factors carry additional predictive power.

To this end, we perform the following recursive out-of-sample forecast exercise. We

use the subperiod 1986:01-2002:12 as our training sample and recursively re-estimate the

model for all months from 2003:01 until 2008:03 using data from 1986:01 to the month

when the forecast is made. That is, we extract the first K principal components from the

yields up to date t, use these as pricing factors, estimate the model parameters with our
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three step regression approach, and then predict yields according to

y
(n)
t+h|t = ân + b̂nX̂t+h|t

where ân and b̂n have been back out from (12a) and (12b) based on estimates of the

model parameters obtained using data up to date t, and where X̂t+h|t is the h-step ahead

conditional forecast of the state variables implied by their VAR(1) representation.

Table 7 reports the root mean squared forecast errors for the yield predictions implied

by the three and five factor specifications of our model at forecast horizons 1-month, 6-

months, and 12-months ahead. We further provide results obtained from the five factor

specification augmented by an estimate of the Cochrane-Piazzesi return forecasting factor.

All RMSEs are stated relative to those implied by a simple random walk model for yield

levels. As a means of comparison, we also compute yield forecasts based on the dynamic

extension of the Nelson-Siegel (1987) model that has been suggested by Diebold and Li

(2006). Nelson and Siegel’s model is not arbitrage-free, but simply decomposes variations

in the cross-section of yields at every point in time into three factors with pre-specified

loadings. Diebold and Li (2006) give a dynamic interpretation to these time-varying fitted

parameters, estimate their dynamics with a simple VAR, and show that this generates

good out-of-sample yield forecasts.

Let’s first compare the out-of-sample predictive ability at the one-month ahead hori-

zon. The Nelson-Siegel model is outperformed by the random walk as indicated by relative

RMSEs that are larger than one. The same is true for the three factor specification of our

model for all maturities but the 12-month yield. In contrast, the five factor specification

outperforms all other models including the random walk for maturities up to five years.

The improvement relative to the RW forecast appears to be relatively small, though.

The improvement over the random walk is considerably larger for forecasts six and
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twelve months ahead. Indeed, we find that our five factor specification achieves a reduction

in RMSEs with respect to the random walk of the order of 20% for maturities up to

five years. This is comparable in magnitude to the reduction in yield forecast errors

that can be achieved using principal components extracted from a large cross-section of

macroeconomic variables as pricing factors as in Moench (2008). Our model also clearly

outperforms the Nelson-Siegel model. We interpret these results as evidence that factors

which may have little explanatory power in the cross-section, might well be useful for

predicting future yields and hence represent important state variables. This is again in

line with the results in Cochrane and Piazzesi (2005) who find that a linear combination

of forward rates which only explains a small share of the cross-sectional variation of yields

is a strong predictor for one-year excess holding period returns. As a rough check of

whether the fourth and fifth principal components span the information in the CP-factor,

we also compare the results of our five factor specification to one that is augmented by an

estimate of the CP-factor from our data sample.4 These results show that the CP-factor

only marginally reduces forecast errors, and in some cases even slightly deteriorates yield

predictions at the long end of the curve. We therefore conclude that the CP-factor does

not carry important predictive information beyond the first five principal components of

yields in our sample.

What drives the superior forecast performance of our five-factor model? We provide

the following interpretation. We have seen in Section 3.2.2 that the fourth and fifth factor

in our model are the most important drivers of expected excess holding period returns.

Hence, even if these factors are only marginally informative about the contemporaneous

cross-sectional variation of yields, they contain useful information for future yield changes

or returns. A three factor model, while fitting the cross-section of yields very precisely at

4We construct the CP factor by regressing log one-year excess holding returns onto the one-year yield,
as well as the four and seven year forward rates. This gives a similar tent-shaped pattern of regression
coefficient as in Cochrane and Piazzesi. We use the linear dependence to construct the return-forecasting
factor.
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any given point in time, is therefore likely to provide worse forecasts.

It appears useful to discuss this interpretation with respect to some recent work by

Joslin, Singleton, and Zhu (2009), and Duffee (2009b) who argue that no-arbitrage re-

strictions do not improve out-of-sample forecasts of yields unless restrictions are imposed

on the time series properties of model-implied risk premia. The core of the argument by

Joslin et al. (2009) is that with a fully flexible affine market price of risk specification,

the physical and risk-neutral factor dynamics are not tied to one another. Duffee (2009b)

argues that restrictions on the physical dynamics of the risk factors - without imposing

no-arbitrage restrictions - improve the predictive power of out-of-sample yield forecasts

the most. In particular, he suggests to force long-maturity yields implied by the model

to follow random walk processes.

As our estimation methodology is entirely based on linear regressions, imposing any

kind of linear restriction on the parameters of our model is easily implemented. Here, we

do not consider restrictions on either the physical factor dynamics or the market prices

of risk. Instead, we add two factors to the standard three factor specification and find

that this improves the model’s forecasts considerably. Unreported results underscore our

above interpretation that the additional factors help the forecasts of yields by improving

the forecasts of the first two principal components of yields. Indeed, out-of-sample forecast

errors of our five factor specification for the level and slope factors are considerably lower

than out-of-sample forecasts of the three-factor specification. In contrast, out-of-sample

forecasts of level and slope implied by the five factor specification augmented with the

CP factor are about the same as those implied by the five factor specification. Hence, the

CP factor does not add information to the factor forecasts beyond the first five principal

components. Following the logic of Joslin et al. (2009) and Duffee (2009b), imposing

restrictions on the specification of risk premia or the physical factor dynamics is likely to

further improve our results.
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3.4 Term Structure Estimation in Real Time

As we fit our model using simple linear regressions, estimation is extremely fast. This is

in sharp contrast to traditional likelihood based estimation of term structure models sub-

ject to nonlinear cross-equation restrictions which typically requires a long optimization

process.5

Its simplicity and the speed at which it is estimated makes our model particularly

appealing for real time analysis of term structure dynamics. In this section, we document

how we fit our model to the US Treasury yield curve at the daily frequency. This allows

us to interpret yield curve movements in terms of risk-neutral yield versus term premia

dynamics in real time.

Estimation at the daily frequency requires a slight modification of the empirical ap-

proach outlined above which was tailored to the monthly frequency. In the daily appli-

cation of our model, we use the daily yields of maturities from n = 1, . . . 120 months

obtained from Gurkaynak, Sack, and Wright (2006). We aggregate the daily yields to the

monthly frequency by taking monthly averages and extract principal components from

the monthly yields. We then apply the weights from the monthly principal components

to the daily yields in order to obtain daily estimates of our pricing factors.6

We compute log excess holding period returns at the monthly frequency and estimate

the parameters of our model as outlined in Sections 2.2 and 2.5. Finally, we use the

estimated parameters and the daily yield factors to impute model-implied yields and

term premia at the daily frequency.

5Joslin, Singleton, and Zhu (2009) provide a new parameterization of standard Gaussian dynamic
term structure models which allows them to estimate a subset of the model parameters using OLS and
the remaining parameters using MLE. Their estimation is therefore computationally considerably less
burdensome than that of standard affine models.

6Note that since we extract the principal components from demeaned monthly yields, we need to make
an adjustment to the daily factors. Precisely, we apply the monthly principal components weights to the
sample average of the monthly yields and then substract this vector from the daily factors obtained as
described before.
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To illustrate the ability of our model to fit daily term structures, Figure 14 shows

for the K = 5 factor specification the daily observed and model-implied yields for the

5-year Treasury and the 10-year Treasury notes since August 2008. The model prices

both maturities very precisely.

Perhaps more interesting is an analysis of term premia over this sample period. As

discussed in Section 2.6 above, we can use our model to achieve a decomposition of

interest rates into risk-neutral yields and term premia. Figure 15 displays the estimated

term premium for the 10-Year Treasury along with the 1-month MOVE index. The latter

is a measure of implied volatilities from options on Treasury futures constructed by Merrill

Lynch. The plot shows that our term premium estimate and the MOVE index exhibit a

strong correlation. This is striking since our model is estimated without using any option

data. Note also that the risk premium adjustment is made for the case of a homoskedastic

Gaussian model with S0 = vec(E[ν ′tνt]) and S1 = 0 and thus λ1 = 0 implies γ1 = 0. We

interpret the correlation between the two time series as evidence that the term premium

estimate from our model indeed reflects the risk of holding Treasury securities.

4 Conclusion

We outline an empirical approach to the estimation of dynamic term structure models.

Our approach is computationally fast, gives rise to small pricing errors, and provides very

good out-of-sample forecasts compared to benchmark models. Our contribution is readily

implementable for other pricing applications—such as in the macro-finance literature—

and to other asset classes. Most importantly, our method is practical for real time analysis.
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Appendix

A Arbitrage free pricing without Gaussian shocks

In section 2.6, we made the assumption that the pricing kernel is exponentially affine,

and that shocks to the state dynamics are conditionally Gaussian. We can alternatively

derive the relationship between the quasi prices of risk γ0 and γ1 and actual prices of risk

by assuming that the pricing kernel is affine, without making distributional assumptions

about the state innovations. Instead of the pricing kernel of equation (15), we make the

following assumption about pricing kernel innovations:

Mt+1 − Et [Mt+1]

Et [Mt+1]
= − (λ0 + λ1Xt)

′Σ−1
t vt+1. (24)

We denote excess holding period returns by Rx
(n−1)
t+1 . Then the no arbitrage constraint is:

0 = Et

[
Mt+1Rx

(n−1)
t+1

]
. (25)

This can be rewritten as:

Et

[
Rx

(n−1)
t+1

]
= −Covt

[
Rx

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
. (26)

We define the difference between excess holding period returns and log excess returns as

ω
(n−1)
t+1 :

ω
(n−1)
t+1 = Rx

(n−1)
t+1 − rx(n−1)

t+1 . (27)
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Replacing this in the no arbitrage equation gives:

Et

[
rx

(n−1)
t+1

]
= Et

[
Rx

(n−1)
t+1 − ω(n−1)

t+1

]
(28)

= −Covt

[
rx

(n−1)
t+1 + ω

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
− Et

[
ω

(n−1)
t+1

]
= −Covt

[
rx

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
︸ ︷︷ ︸

log -risk premium

− Et

[
ω

(n−1)
t+1

]
− Covt

[
ω

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
︸ ︷︷ ︸

approximation error

We can decompose the approximation error ω
(n−1)
t+1 into a part that is correlated with the

state variables νt+1, and a part ξ
(n−1)
t+1 that is orthogonal:

ω
(n−1)
t+1 = φ(n−1)′ (W0 +W1Xt) + φ(n−1)′vt+1 + ξ

(n−1)
t+1 , (29)

where we have assumed that the conditional mean of ω
(n−1)
t+1 is φ(n−1)′ (W0 +W1Xt). Re-

placing this and the pricing kernel into the no arbitrage equation gives:

Et

[
rx

(n−1)
t+1

]
= −Covt

[
rx

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
− Et

[
ω

(n−1)
t+1

]
− Covt

[
ω

(n−1)
t+1 ,

Mt+1

Et [Mt+1]

]
(30)

= Covt

[
rx

(n−1)
t+1 + ω

(n−1)
t+1 , vt+1

]
Σ−1

t (λ0 + λ1Xt)− Et

[
ω

(n−1)
t+1

]
=

(
β(n−1)′ + φ(n−1)′) (λ0 + λ1Xt)− φ(n−1)′ (W0 +W1Xt) .

Matching coefficients with (4) gives:

β(n−1)′γ0 =
(
β(n−1)′ + φ(n−1)′)λ0 − φ(n−1)′W0

β(n−1)′γ1 =
(
β(n−1)′ + φ(n−1)′)λ1 − φ(n−1)′W1
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We can stack these equations to obtain:

(β′ + φ′)λ0 = β′γ0 + φ′W0 (31)

(β′ + φ′)λ1 = β′γ1 + φ′W1 (32)

So setting prices of risk to zero implies:

λ0 = 0 =⇒ γ0 = − (ββ′)
−1
βφ′W0 (33)

λ1 = 0 =⇒ γ1 = − (ββ′)
−1
βφ′W1 (34)

Because ω is observable, the parameters φ(n−1)′, W0, and W1 can be estimated from

(29) using the three step regression approach. In the Gaussian case, φ′W0 = 1
2
β∗S0 and

φ′W1 = 1
2
β∗S1.
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B Tables and Figures

Table 1: Three Factor Model: Yield Pricing Errors
This table summarizes the time series properties of the yield pricing errors û implied by the three factor
specification of our model. The sample period is 1986:01-2008:12. ”mean”, ”std”, ”skew”, and ”kurt”
refer to the sample mean, standard deviation, skewness, and kurtosis of the yield errors; ρ(1), ρ(6), and
ρ(12) denote the autocorrelation coefficients of order one, six, and twelve, respectively.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

mean 0.025 0.014 -0.002 -0.010 -0.001 -0.010
std 0.061 0.025 0.015 0.028 0.015 0.036
skew 0.062 1.008 -0.250 -0.833 -0.140 0.045
kurt 5.633 4.422 7.329 3.800 2.716 2.745
ρ(1) 0.881 0.858 0.786 0.867 0.888 0.856
ρ(6) 0.665 0.368 0.483 0.390 0.424 0.355
ρ(12) 0.377 0.034 0.140 0.076 0.164 0.104

Table 2: Three Factor Model: Return Pricing Errors
This table summarizes the time series properties of the return pricing errors ê implied by the three factor
specification of our model. The sample period is 1986:01-2008:12. ”mean”, ”std”, ”skew”, and ”kurt”
refer to the sample mean, standard deviation, skewness, and kurtosis of the yield errors; ρ(1), ρ(6), and
ρ(12) denote the autocorrelation coefficients of order one, six, and twelve, respectively.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

mean 0.035 -0.006 -0.018 0.002 0.012 -0.017
std 0.433 0.353 0.291 0.734 0.531 2.129
skew 0.214 0.341 1.180 0.194 0.256 0.275
kurt 9.502 4.461 11.793 5.694 4.861 4.769
ρ(1) 0.143 0.111 0.014 0.080 0.174 0.092
ρ(6) 0.162 0.043 0.117 0.049 0.043 -0.003
ρ(12) 0.107 0.050 0.112 0.087 0.072 0.050
R̄2 0.972 0.997 0.999 0.998 0.999 0.995
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Table 3: Three Factor Model: Market Prices of Risk
This table summarizes the estimates of the market price of risk parameters γ0 and γ1 for the three factor
specification of our Approximate Affine Model. t-statistics are reported in brackets. The standard errors
have been computed according to the bootstrap procedure laid out in Section 2.4.

γ0 γ1.1 γ1.2 γ1.3

X1 0.035 -0.033 0.029 -0.021
t-stat ( 1.970) (-1.725) ( 1.670) (-1.380)
X2 0.037 -0.028 0.015 -0.013
t-stat ( 2.099) (-1.116) ( 0.738) (-0.769)
X3 0.004 -0.041 -0.002 -0.002
t-stat ( 0.083) (-0.799) (-0.046) (-0.056)

Table 4: Five Factor Model: Yield Pricing Errors
This table summarizes the time series properties of the yield pricing errors û implied by the five factor
specification of our approximate affine model. The sample period is 1986:01-2008:12. ”mean”, ”std”,
”skew”, and ”kurt” refer to the sample mean, standard deviation, skewness, and kurtosis of the yield
errors; ρ(1), ρ(6), and ρ(12) denote the autocorrelation coefficients of order one, six, and twelve, respec-
tively.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

mean 0.003 0.007 0.005 0.005 0.007 0.004
std 0.024 0.009 0.006 0.006 0.005 0.008
skew 0.265 0.140 0.447 -0.344 0.672 -1.394
kurt 2.768 2.845 6.211 3.534 3.560 7.775
ρ(1) 0.916 0.912 0.789 0.915 0.843 0.827
ρ(6) 0.594 0.597 0.447 0.591 0.436 0.374
ρ(12) 0.271 0.441 0.153 0.364 0.272 0.156
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Table 5: Five Factor Model: Return Pricing Errors
This table summarizes the time series properties of the return pricing errors ê implied by the five factor
specification of our approximate affine model. The sample period is 1986:01-2008:12. ”mean”, ”std”,
”skew”, and ”kurt” refer to the sample mean, standard deviation, skewness, and kurtosis of the yield
errors; ρ(1), ρ(6), and ρ(12) denote the autocorrelation coefficients of order one, six, and twelve, respec-
tively.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

mean -0.000 0.000 -0.001 0.001 -0.000 -0.000
std 0.042 0.054 0.109 0.056 0.190 0.514
skew 0.059 0.110 0.466 0.411 -0.119 0.233
kurt 18.583 5.381 12.987 6.950 5.748 5.906
ρ(1) -0.201 0.093 -0.090 0.159 -0.030 0.045
ρ(6) 0.240 0.075 0.185 -0.017 0.047 0.044
ρ(12) 0.014 0.170 0.055 0.040 0.112 0.117
R̄2 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Five Factor Model: Pseudo Market Prices of Risk
This table summarizes the estimates of the quasi market price of risk parameters γ0 and γ1 for the five
factor specification of our model. t-statistics are reported in brackets. The standard errors have been
computed according to the bootstrap procedure laid out in Section 2.4.

γ0 γ1.1 γ1.2 γ1.3 γ1.4 γ1.5

X1 0.035 0.001 0.009 -0.002 0.018 -0.029
t-stat ( 2.127) ( 0.030) ( 0.477) (-0.122) ( 1.516) (-2.145)
X2 0.040 0.005 -0.008 0.010 0.021 -0.030
t-stat ( 2.611) ( 0.215) (-0.440) ( 0.627) ( 1.606) (-2.256)
X3 0.022 -0.158 0.040 -0.041 -0.166 0.025
t-stat ( 0.495) (-2.300) ( 0.759) (-0.984) (-3.837) ( 0.548)
X4 -0.054 0.080 0.032 -0.035 0.153 0.083
t-stat (-0.610) ( 0.591) ( 0.288) (-0.452) ( 1.421) ( 1.042)
X5 0.004 0.240 -0.069 0.070 0.140 -0.160
t-stat ( 0.050) ( 1.845) (-0.740) ( 0.861) ( 1.169) (-2.033)
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Table 7: RMSEs from Approximate Affine Specifications and Nelson-Siegel
Model Relative to RW: 2003:01-2008:12
This table summarizes the root mean squared forecast errors relative to those implied by a random walk
for yields. The models have been estimated using data from 1986:01 until the period when the forecast is
made. The forecasting period is 2003:01-2008:12. “AA(3)” and “AA(5)” refer to the three factor and five
factor specifications of our Approximate Affine Model, “AA(5)+CP” denotes the five factor specification
augmented by the Cochrane-Piazzesi return forecasting factor, and “NS” denotes the Diebold-Li (2006)
version of the three-factor Nelson-Siegel model with VAR factor dynamics.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel : 1 months ahead

AA(3) 0.935 0.987 0.994 1.006 1.003 1.040
AA(5) 0.890 0.942 0.974 0.991 0.994 1.014
AA(5) + CP 0.889 0.925 0.955 0.984 0.999 1.020
NS 1.116 1.030 1.030 1.071 1.047 1.033

Panel : 6 months ahead

AA(3) 0.940 0.991 0.999 1.000 1.017 1.065
AA(5) 0.868 0.914 0.945 0.987 1.022 1.074
AA(5) + CP 0.848 0.892 0.925 0.973 1.014 1.072
NS 1.002 0.994 0.996 1.025 1.032 0.995

Panel : 12 months ahead

AA(3) 0.936 0.968 0.976 0.991 1.039 1.145
AA(5) 0.777 0.795 0.816 0.870 0.952 1.103
AA(5) + CP 0.746 0.759 0.782 0.845 0.942 1.114
NS 0.922 0.927 0.940 0.999 1.064 1.090
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Figure 1: Three Factor Model: Average Observed and Model-Implied Yields

This figure plots average observed yields against those implied by the Three Factor Approximate Affine
Model.
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Figure 2: Three Factor Model: Standard Deviation of Observed and Model-
Implied Yields

This figure plots the unconditional standard deviations of observed yields against those implied by the
Three Factor Approximate Affine Model.
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Figure 3: Three Factor Model: Observed and Model-Implied Yields

This figure provides plots of the observed and fitted yields for the 1-year, 2-year, 5- and 10-year maturities.
The observed yields are plotted by solid lines, whereas dashed lines correspond to yields implied by the
three factor model.
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Figure 4: Three Factor Model: Observed and Model-Implied Excess One-
Month Holding Returns

This figure provides plots of the observed and model-implied excess one-month holding returns for the
1-year, 2-year, 5- and 10-year maturities. The observed returns are plotted by solid lines, whereas
dashed green lines correspond to actual model-implied returns, and dash-dotted red lines to model-
implied expected one-month excess holding returns.
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Figure 5: Three Factor Model: Factor Loadings for Yields

This figure provides a plot of the yield loadings − 1
nBn implied by the Three Factor Approximate Affine

Model. The coefficients can be interpreted as the response of the n-month yield to a contemporary shock
to the respective factor.
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Figure 6: Three Factor Model: Factor Loadings for Expected Returns

This figure provides a plot of the expected return loadings B′nγ1 implied by the Three Factor Approximate
Affine Model. The coefficients can be interpreted as the response of the expected one-month excess holing
return on an n-month bond to a contemporary shock to the respective factor.
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Figure 7: Five Factor Model: Average Observed and Model-Implied Yields

This figure plots average observed yields against those implied by the Five Factor Approximate Affine
Model.
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Figure 8: Five Factor Model: Standard Deviation of Observed and Model-
Implied Yields

This figure plots the unconditional standard deviations of observed yields against those implied by the
Five Factor Approximate Affine Model.
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Figure 9: Five Factor Model: Observed and Model-Implied Yields

This figure provides plots of the observed and fitted yields for the 1-year, 2-year, 5- and 10-year maturities.
The observed yields are plotted by solid lines, whereas dashed lines correspond to yields implied by the
three factor model.
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Figure 10: Five Factor Model: Observed and Model-Implied Excess One-Month
Holding Returns

This figure provides plots of the observed and model-implied excess one-month holding returns for the
1-year, 2-year, 5- and 10-year maturities. The observed returns are plotted by solid lines, whereas
dashed green lines correspond to actual model-implied returns, and dash-dotted red lines to model-
implied expected one-month excess holding returns.
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Figure 11: Five Factor Model: Factor Loadings for Yields

This figure provides a plot of the yield loadings − 1
nBn implied by the Five Factor Approximate Affine

Model. The coefficients can be interpreted as the response of the n-month yield to a contemporary shock
to the respective factor.
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Figure 12: Five Factor Model: Factor Loadings for Expected Returns

This figure provides a plot of the expected return loadings B′nγ1 implied by the Five Factor Approximate
Affine Model. The coefficients can be interpreted as the response of the expected one-month excess holing
return on an n-month bond to a contemporary shock to the respective factor.
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Figure 13: Five Factor Model: Regression Coefficients β(n) versus recursive
pricing parameters Bn

This figure provides plots of the coefficients β(n) from the regression (5)of log excess holding period
returns on the state variable innovations versus the recursive pricing parameters Bn given in (12b). The
red diamonds represent the former while the blue solid line corresponds to the latter.

First Factor Second Factor

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
beta vs. B for Factor 1

0 20 40 60 80 100 120
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
beta vs. B for Factor 2

Third Factor Fourth Factor

0 20 40 60 80 100 120
−4

−2

0

2

4

6

8

10

12
x 10

−3 beta vs. B for Factor 3

0 20 40 60 80 100 120
−2

−1

0

1

2

3

4
x 10

−3 beta vs. B for Factor 4

Fifth Factor

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3 beta vs. B for Factor 5

43



Figure 14: Five Factor Model: Observed and Model-Implied Daily Yields
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Figure 15: 10-Year Treasury Term Premium and 1-Month MOVE Index
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