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Abstract

We develop a dynamic factor model with Markov switching to ex-
amine secular and business cycle fluctuations in U.S. unemployment
rates. We extract the common dynamics among unemployment rates
disaggregated for seven age groups. The framework allows analysis
of the contribution of demographic factors to secular changes in un-
employment rates. In addition, it allows examination of the separate
contribution of changes due to asymmetric business cycle fluctuations.
We find strong evidence in favor of the common factor and of the
switching between high and low unemployment rate regimes. We also
find that demographic adjustments can account for a great deal of
the secular change in the unemployment rate, particularly the abrupt
increase in the 1970s and 1980s and the subsequent decrease.
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1 Introduction
The U.S. economic performance during the 1990s expansion has in some
aspects been unprecedented. Not only is this the longest expansion in U.S.
history, inflation and unemployment have been unusually low this far into the
business cycle, even in the presence of the current slowdown. In particular,
the unemployment rate is at its lowest levels since before the 1970 recession.
This paper examines the secular and business cycle movements in unem-

ployment over the past 50 years. In particular, we focus on a variety of
features that can be observed in Figure 1, which shows the U.S. total civil-
ian unemployment rate along with shaded bands indicating the NBER-dated
recessions. One observes several interesting patterns in the unemployment
fluctuations. First, there is the usual cyclical movement related to the phases
of the business cycle. Unemployment decreases slowly during expansions,
reaching its lowest level around the beginning of recessions. During reces-
sions unemployment rises sharply, reaching a maximum a couple of months
after the economic trough. Second, unemployment exhibits a different secu-
lar pattern before and after 1969. In particular, unemployment fluctuations
display a long upswing through the 1970s and early 1980s, with a high of
over 10% at the end of the 1982 recession.
We develop a common factor model with Markov switching to analyze

these secular and business cycle fluctuations in the U.S. unemployment rate.1

In particular, we consider extracting the common dynamics amongst a col-
lection of disaggregate unemployment rates which, given appropriate labor
force weights, sum to the total unemployment rate. The framework proposed
allows analysis of the contribution of demographic factors to secular changes
in unemployment rates. In particular, we focus on the impact of the entry
into the labor force and the subsequent aging of the baby-boom generation.2

In addition, it allows examination of the separate contribution of changes in

1Linear dynamic factor models have been widely applied in economics. A classical
exposition is Geweke (1977) and one of the most popular applications is Stock andWatson’s
(1989), who build coincident and leading indicators of the U.S. economy. Diebold and
Rudebusch (1996) propose adding the Markov switching model of Hamilton’s (1989) to
this framework in order to capture asymmetries over the business cycle.

2Another potential application of our methods is to explain the skill-biased technolog-
ical change in the 1970s and 1980s, and its differential effects on education groups (see
Juhn, Murphy and Topel 1991). Alternatively, one might consider unemployment grouped
by sex and race to examine secular changes in the labor market behavior of these groups,
particularly the increasing participation of women in the labor force.
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unemployment rates due to asymmetric business cycle fluctuations.
The behavior of unemployment over the business cycle has attracted a

great deal of attention from economists using nonlinear time series models.3

With a few exceptions 4 this large literature has focused on some measure of
aggregate unemployment. The focus of this paper is to extend the nonlinear
analysis of unemployment rates to the disaggregate level. There are two
main motivations for this. The first is that some of the multiple regimes that
have been found in the unemployment rate may be explained by demographic
factors, particularly the baby boom. The second motivation is that nonlinear
models ask a great deal of a single time series in terms of identifying Markov
switching regimes. For example, in Neftci’s (1984) original analysis, the
evidence for asymmetry in the total unemployment was marginal. If the
regimes are actually present, one would expect to find a common switch in
disaggregate series. This would increase both the accuracy of the switch
estimates as well as the evidence for their presence.
With respect to demographic factors, the significant increase in the num-

ber of births in the 1950s and early 1960s is often acknowledged as changing
several aspects of the economy. As far as the overall unemployment rate is
concerned, because younger labor market participants tend to have higher
unemployment rates than older ones, their entry into the labor market pro-
duced an increase in the unemployment rate in the 1970s and 1980s, while
their subsequent aging induced a decrease in the 1990s.5 Our approach is
to model a latent unemployment rate that captures common labor market
conditions across groups, and then re-aggregate this latent unemployment
rate using the time-varying labor force weights of the different age groups.
This allows us to decompose changes in unemployment between baby-boom
type effects and changes in the overall functioning of the labor market.
We find strong statistical evidence in favor of the common factor struc-

ture and of the switching between high and low unemployment rate regimes.
In particular, the latent factor exhibits the stylized business cycle asymme-

3See for example, Neftci (1984), Rothman (1993), Boldin (1994), Franses (1995), Mont-
gomery, Zarnowitz, Tsay, and Tiao (1998), Abbring, Berg and Ours (1999), Vredin and
Warne, (2000), or Skalin and Teräsvirta (2001).

4Rothman (1993) and Abbring, Berg, Ours (1999).
5Some of the important studies in this subject include Perry (1970) and Gordon (1982).

More recently, Shimer (1998) uses an accounting style analysis, which suggests that the
aging baby boomer is an important cause of the reduction in unemployment in the 1990s.
These results are corroborated in Katz and Krueger (1999)
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tries found in unemployment. The factor displays a fast and steep growth
and a slow and long decline, associated with the phases of the business cy-
cle. In addition, the low unemployment state is less persistent and more
volatile compared to the high unemployment phase. We also find that demo-
graphic adjustments can account for a great deal of secular changes in the
U.S. unemployment rates, particularly the abrupt increase in unemployment
in the 1970s and 1980s and the subsequent decrease in the last 18 years.
The baby boom effect induces a steep increase in the unemployment rate at
the beginning of recessions in the 1970s and 1980s as the labor force weights
of young labor market participants were increasing at the time that these
switches to the high unemployment regime occurred. On the other hand,
the impact of age on the unemployment rate was substantially smaller in the
1990 recession, which is related to the subsequent aging of the baby-boom
generation.
The model is estimated and analyzed using Bayesian methods. In partic-

ular, the Gibbs sampling is used to simulate and estimate the model while
the Savage-Dickey Generalized Density Ratio is used to calculate Bayes fac-
tors, which allow evaluation of the sample evidence in favor of the Markov
switches.
The organization of the paper is as follows. Section 2 develops the statis-

tical model for disaggregate unemployment rates. Section 3 describes some
Bayesian techniques to estimate and test the model. Section 4 discusses the
features of the data on unemployment rates disaggregate by age. Section 5
discusses the prior used and the results. Section 6 offers some concluding
remarks and directions for future research. The appendix summarizes the
complete set of priors and conditional distributions used in the analysis.

2 Statistical Model and Methods

2.1 Common Factor Model

Let Ut be the K × 1 vector of unemployment rates for different age groups
used to estimate the common factor, Ct. The statistical model is:

Ut = λCt +Vt, (1)

where λ is the K×1 vector of factor loadings, which measures the sensitivity
of group k’s unemployment rate to the 1x1 underlying factorCt, and theK×1
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random vector Vt represents a possibly autocorrelated measurement error.
The common factor is given by the Markov switching model:

Ct =

 α1 + φ1p(L)Ct−1 + σ1εt if st = 1

α2 + φ2p(L)Ct−1 + σ2εt if st = 2
, (2)

with P [st+1 = 1|st = 1] = ρ11 and P [st+1 = 2|st = 2] = ρ22. The regime
specific means are defined as:

η(1) =
α1

1− φ11 − · · ·− φ1p

, η(2) =
α2

1− φ21 − · · ·− φ2p

.

We identify state 1 as the high unemployment phase and state 2 as the low
unemployment phase, that is, η(1) > η(2). Further, we consider the observed
asymmetries in unemployment of sharp increases during recessions followed
by slow decreases during expansions using restrictions on the autoregressive
coefficients in the two regimes. These restrictions are easier to describe in the
case of a first order process. In order for unemployment to increase quickly
when it switches from state 2 to 1, φ11 needs to be relatively small so that
α1 is close in size to η(1). Alternatively, when there is a switch from state 1
to state 2, unemployment declines slowly if φ21 is close to 1 and, therefore,
α2 is very different from η(2).
The measurement error vector Vt has an autoregressive structure:

Vt = Θ1Vt−1 + · · ·+ΘqVt−q +Mt, (3)

where the innovations to the common factor, εt ∼ IIDN(0, 1), and the
measurement error, Mt ∼ IIDN(0,ΣK), are independent of each other at all
leads and lags, and ΣK is diagonal. In addition, the autoregressive matrices
are diagonal:

Θi =

 θ1i · · · 0
...

. . .
...

0 · · · θ1K

 .
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2.2 Latent Unemployment

Given our collection of K different age groups, we construct demographic
weights for each category by:

ωkt =
LktPK
k=1 Lkt

, (4)

where Lkt is the total civilian labor force for age group k at time t. The
overall unemployment rate for all groups URt is given by the estimate of the
total number of workers unemployed, TUt, divided by the total civilian labor
force,

PK
k=1 Lkt:

URt =
TUtPK
k=1 Lkt

=

PK
k=1 LktUktPK
k=1 Lkt

, or

URt =
KX
k=1

ωktUkt,

where Ukt is the unemployment rate for age group k. The latent aggregate

unemployment rate implied by the common factor model is:

Ut = Ct
KX
k=1

ωktλk, (5)

The average or “natural rate” of unemployment fluctuates between the
“high-mismatch” average,

Ut(1) = η(1)
KX
k=1

ωktλk, (6)

and the “low-mismatch” average,

Ut(2) = η(2)
KX
k=1

ωktλk. (7)

That is, Ut(1) and Ut(2) correspond to demographically adjusted high and low
bounds for average unemployment. In the empirical analysis, these bounds
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allow analysis of periods in which average unemployment exceeds the high-
mismatch and low mismatch averages in the sample.
Notice that, in contrast with an analysis of the aggregate unemployment

rate, our estimate of {Ct, st} is not influenced by variations over time in the
demographic weights. In the case where the labor force weights are constant
over time, we have:

Ut − Uτ = (Ct − Cτ )
KX
k=1

ωkλk, for τ < t, (8)

or, alternatively, the factor loadings are equal across groups at unity:

Ut − Uτ = (Ct − Cτ ). (9)

In both cases, demographic changes have no effect on the change in latent
aggregate unemployment and there would be little advantage from examin-
ing disaggregate unemployment rates. This should be compared to the more
general case in which the factor loadings vary across k or the demographic
weights change over time. In these cases, changes in aggregate latent unem-
ployment can be split into 2 different contributions — the ones arising from
changes in the common factor and the ones from demographic changes:

Ut − Uτ = (10)

(Ct − Cτ )
KX
k=1

ωktλk Factor Effect

+Cτ

KX
k=1

(ωkt − ωkτ )λk Demographic Effect

2.3 State Space Form

The model can be written in state space form where we assume that p = q+1
for simplicity of notation. First we define the following:

1. Let U∗
t = (Ik −Θ(L))Ut.

2. Let C∗
t = [Ct, . . . , Ct−p+1]

0
.
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3. Define the K × (q + 1) matrix H by:

H =


λ1 −λ1θ11 · · · −λ1θq1
λ2 −λ2θ12 · · · −λ2θq2
...

...
. . .

...
λK −λKθ1K · · · −λKθqK

 .
4. Define the p× p matrices Ai by:

Ai =


φi1 φi2 · · · φip
1 0 · · · 0

0 1
. . .

...

0
. . . 1 0

 .

The state space form has measurement equation:

U∗
t = HC∗

t +Mt (11)

and transition equation:

C∗
t =

 a1 +A1C
∗
t−1 +W1εt if st = 1

a2 +A2C
∗
t−1 +W2εt if st = 2,

(12)

where Wi = [σi, 0, · · · , 0]0 and ai = [αi, 0, . . . , 0]
0 are (p× 1) vectors.

Below we will also sometimes summarize the conditional mean coefficients
in each regime by the p × 1 vector φi = (φ1i, . . . ,φpi), or by the (p + 1) ×
1 vector βi = (αi,φ1i, . . . ,φpi). Let ϕ represent all the parameters of the
common factor model with Markov switching and χ represent the (smaller
by β2,σ2, ρ11, ρ22) set of parameters of the common factor model without
Markov switching.
As is true of all single factor models there is an identification issue between

the factor loadings and the scaling of the innovation to the common factor
(see Chauvet 1998). We normalize one of the elements of the factor loading
vector to 1. Also, unlike Stock and Watson (1989), we do not demean and
standardize the observable variables before the analysis. Thus, not only
will λ be estimated from the joint dynamics of the observed time series it
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will also depend on information on the relative means and variances of the
unemployment rates. In order to capture movements between low and high
unemployment regimes, it is crucial to keep the mean information in the
series.

3 Bayesian Methods
If the sequence {st} were known, estimation by classical or Bayesian methods
would be standard. Both methods use the Kalman filter to construct the
likelihood function.

3.1 Kalman Filter

The Kalman filter iterations are given by:

1. Prediction Step: The conditional mean of the factor is,

C∗
t+1|t =


a1 +A1C∗

t|t if st = 1

a2 +A2C∗
t|t if st = 2

.

The conditional variance of the factor is,

Pt+1|t =

 A1Pt|tA
0
1 +W1W

0
1 if st = 1

A2Pt|tA
0
2 +W2W

0
2 if st = 2

.

Using the conditional mean of the factor and the measurement equation
(11), we obtain the conditional forecast error:

U∗
t+1 − bU∗

t+1|t = H(C∗
t+1 −C∗

t+1|t) +Mt+1,

and its conditional variance:

E
h
(U∗

t+1 − bU∗
t+1|t)(U

∗
t+1 − bU∗

t+1|t)
0
i
= HPt+1|tH

0
+ ΣK.

2. Updating Step: First, the Kalman gain matrix is constructed:

Gt+1 = Pt+1|tH
0
n
E
h
(U∗

t+1 − bU∗
t+1|t)(U

∗
t+1 − bU∗

t+1|t)
0
io−1

.
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Then, as new information about the factor is obtained after observing
U∗
t+1, the Kalman gain is used to include it in the conditional mean of

the factor:

C∗
t+1|t+1 = C∗

t+1|t +Gt+1

³
U∗
t+1 − bU∗

t+1|t
´
,

and to update the conditional variance:

Pt+1|t+1 = (Ip −Gt+1H)Pt+1|t.

3.2 Posterior Draws of Markov States and Common
Factor

The main estimation problem in the model proposed is that the switches
in the Markov chain are not observable. As is well-known, this causes a
computational problem for standard maximum likelihood approaches, since
one has to keep track of the 2T possible values of the Markov sequence in
the sample. Kim (1994) suggests an maximum likelihood approach using an
approximation that truncates the exponential increasing number of terms at
each iteration in the Kalman filter. On the other hand, Bayesian simulation
techniques can be used to obtain the exact likelihood function of the common
factor Markov switching model, as proposed by Albert and Chib (1993) and
Shephard (1994).
In this paper we use Bayesian methods to extract the sample evidence

about the Markov sequence. In our model it is not possible to work out
analytically the properties of the posterior even if the common factor and
Markov states were directly observed. In these cases, Bayesians have in-
creasingly turned to simulation methods. These methods are based on the
intuition that, given a large enough random sample from a distribution, it
is possible to figure out the properties of that distribution (e.g. its mean,
median, variance, etc.). Geweke (1999) and Chib (2001a, 2001b) provide re-
cent surveys of the methods used for developing such posterior simulators.6

The advantage of posterior simulators in our case is that they can also be
developed to generate draws of the unobservables, which greatly simplifies
the estimation problem.

6A textbook-type explanation of the method can also be found in Kim and Nelson
(1999).
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Posterior simulators for many models can be developed by successively
drawing from a sequence of conditional posterior distributions. To moti-
vate such methods, let X and Y be random variables and suppose that we
are interested in the features of their joint distribution, p(X, Y ). Assume
that p(X, Y ) is difficult to simulate, but that we can easily obtain draws
from the marginal distributions p(X|Y ) and p(Y |X). Consider the strategy
where one selects an initial value, Y (0), and then successively draws X(j) from
p(X|Y (j−1)), and Y (j) from p(Y |X(j)). The resulting sequence, X(j), Y (j) for
j = 1, . . . , J will, under weak conditions, converge to a sample from p(X,Y )
as J increases. In practice, this means we can discard J initial draws to
mitigate startup effects. We can then treat X(j), Y (j) for j = J + 1, .., J as
an approximate sample from p(X, Y ), which can be used to estimate fea-
tures of interest. This is a simple example of a Gibbs sampler, which belongs
to a more general class of techniques known as Markov Chain Monte Carlo
methods.
Many commonly-used econometric models with latent variables can be

easily estimated using Gibbs sampling algorithms. In our particular model,
the Gibbs sampler generates random draws of {st}, which allows analysis as
if the sequence were known. However, in order to obtain inferences we also
need to obtain a random draw of the common factor.

3.2.1 Common Factor

The recursion to generate the random draw of the common factor is as follows
(see Fruhwirth-Schnatter, 1994, Carter and Kohn, 1994, or Shephard, 1994):

1. The last iteration of the Kalman filter gives:

C∗
T ∼ N(C∗

T |T ,PT |T ).

Thus, using standard methods a realization eC∗
T can be drawn from this

multivariate normal. Then, the draw of the most recent value of the
common factor is given by:

eCT = eeC∗
T .

where e =[1, 0, . . . , 0] is a p× 1 selection vector. In practice, one only
needs to draw from the univariate normal with mean given by the first
element of C∗

T |T and variance by the first diagonal element of PT |T .
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2. Given a draw at t+ 1 based on draws from t+ 2 to T the information
from the Kalman filter iterations are incorporated as if the filter were
running backwards combining prior information from its initial forward
run with the ‘sample’ information generated by the random draw:

ft = eCt+1 −
 α1 + φ1p(L)Ct|t if st = 1

α2 + φ2p(L)Ct|t if st = 2
,

pt =

 φ
0
1Pt|tφ1 + σ

2
1 if st = 1

φ
0
2Pt|tφ2 + σ

2
2 if st = 2

,

gt =

 Pt|tφ1/pt if st = 1

Pt|tφ2/pt if st = 2
,

C∗
t|T = C∗

t|t + gtft,

Pt|T =


³

Ip − gtφ
0
1

´
Pt|t if st = 1³

Ip − gtφ
0
2

´
Pt|t if st = 2

.

Thus, after observing the whole sample we obtain C∗
t ∼ N(C∗

t|T ,Pt|T ),
and standard methods can be used to obtain a random draw.

3. This iteration stops with C∗
p ∼ N(C∗

p|T ,Pp|T ), which is used to simul-
taneously draw the first p observations of the common factor.

3.2.2 Markov States

1. Given this realization of the common factor, the methods described
in Chib (1996) can be directly applied to investigate the pattern of
Markov states contained in the draw of the dynamic factor. Similarly
to the analysis of the common factor, the recursion starts by filtering
the “observations” on the common factor to construct a sequence of
prior and posterior distributions for the Markov state.
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In our case, we assume that the chain starts in the low mismatch state
2. Thus, we have S1 = · · · = Sp = 2. The prior distribution for the state at
time p+ 1 is then:

P [Sp+1 = 2|S1 = · · · = Sp = 2] = bbp+1 = ρ22.

The relevant sample information is contained in the likelihood for eCp+1, which
takes on the value:

`1( eCp+1) = (2πσ2
1)
−0.5 exp

h
−0.5( eCp+1 − α1 − φ1p(L) eCp)2/σ2

1

i
if Sp+1 = 1, and:

`2( eCp+1) = (2πσ2
2)
−0.5 exp

h
−0.5( eCp+1 − α2 − φ2p(L) eCp)2/σ2

2

i
if Sp+1 = 2. Thus, the posterior distribution P [Sp+1 = 2|S1 = · · · = Sp =

2, eCp+1] is given by

bbp+1 =
`2( eCp+1)ρ22

`2( eCp+1)ρ22 + `1( eCp+1)(1− ρ22)
.

This posterior is used to form a prior for Sp+2 = 2 from:

bbp+2 = bp+1ρ22 + (1− bp+1)(1− ρ11).

This process continues through the end of the sample and we obtain:

bT = P [ST = 2|S1 = · · · = Sp = 2, eCT ].
Next, the posterior distribution over the last sample value of the Markov

state is used to generate a draw of ST . This draw is easy to obtain from the
generation of a uniform random variable. If the draw is less than or equal
to the posterior probability that ST = 2, then we have eST = 2, otherwiseeST = 1.
Similarly to the draw of the common factor, a sequence of draws of {St}

is also generated going backwards through the sample. From the Markov
property and the exogeneity of the Markov chain, none of the future realiza-
tions of the observed time series { eCs : s > t} conditional on observing the
value of tomorrow’s state, st+1, are relevant for the estimate of today’s state.
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Using this restriction and ignoring the dependence on estimated parameters
and the restriction on the initial states, we have:

P [ST−1 = 2|ST = 2, eCT−1]

=
P [ST−1 = 2, ST = 2| eCT−1]

P [ST = 2| eCT−1]

=
P [ST−1 = 2| eCT−1]P [ST = 2|ST−1 = 2]bbT

=
bT−1ρ22bbT ,

and also:

P [ST−1 = 2, ST = 2| eCT ]
= P [ST−1 = 2|ST = 2, eCT ]P [ST = 2| eCT ]

= P [ST−1 = 2|ST = 2, eCT−1]bT

= ρ22

bT−1bbT bT .

This last expression can be used to generate a smoothed probability ebt
by averaging out over the values of ST :

ebT−1 = bT−1

Ã
ρ22

ebTbbT + (1− ρ11)
1−ebT
1−bbT

!
.

The first expression gives a direct method for drawing eST−1 using a random
uniform number. This iteration is repeated until the draw of eSP+1 using
P [Sp = 2, Sp+1 = 2| eCT ] = 1 is obtained.
3.3 Estimation by Gibbs Sampler

We initialize the Gibbs sampler running the Kalman filter on the observed
data with the following parameters: a Markov sequence given by the NBER
business cycle dates, factor loadings proportional to the sample means of
the unemployment rates, measurement error equal to 1/4 of the observed
variances of the unemployment rates with autoregressive coefficients equal
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to 1/3, and the prior means used for the common factor dynamic model
and loadings. The results of the Kalman filter are then used to draw a initial
sequence of realizations for the common factor { eCt}. Given this sequence and
the sequence of Markov states, it is relatively simple to update the draws of
the remaining parameters using the Gibbs sampler with appropriate choices
of prior distributions.
A summary of our choices is as follows: for the parameters of Ct we use a

restricted normal inverted gamma prior; for the factor loadings λ we use in-
dependent normal priors; for the measurement error variances, {σkk} we use
independent normal gamma priors; for the autoregressive coefficients in the
measurement error process we use restricted independent normal priors; for
the transition probabilities we use a Beta distribution. Section 5.1 contains
information of the exact prior distributions used and the appendix contains
more detailed information on the priors and the implied conditional posteri-
ors. Here we focus on some of the restrictions imposed on the parameters.
For both the parameters of Ct and the measurement error processes we

impose a stationarity condition. In the case of the measurement error process
the roots of the individual lag polynomials 1− θkq(L) all lie outside the unit
circle. For the common factor Markov switching model we use the sufficient
condition that the roots of each lag polynomial 1−φip(L) lie outside the unit
circle. For both sets of restrictions we use simple rejection sampling.
In addition to the stationarity restriction, we also impose the restriction

that η(1) > η(2) > 0. Since the regime specific means are nonlinear functions
of the underlying autoregressive parameters and the intercept, the restriction
is imposed sequentially as follows. First, we draw β2 and check whether
the stationarity and non-negativity conditions are satisfied. If they are not
we make a new draw. This process continues until a satisfactory draw is
obtained. Next, we draw β1and check whether both the stationarity and
mean inequality conditions hold. Again, we reject this draw if it does not
satisfy the conditions, continuing until a statisfactory draw is obtained.

3.4 Evidence for Markov Switching

We assess the observed sample evidence in favor of a Markov switching in the
common factor model by comparing the average (often called the marginal)
likelihood of the observed time series with and without switching. The ratios
of these two average likelihoods is the Bayes factor and it provides a direct
‘test’ of the usefulness of the additional complexity of the Markov switching
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model. On the other hand, classical testing of Markov switching models is a
somewhat unresolved area due to various non-standard aspects of the model.
We do not attempt to solve these issues here. Instead, we provide some
classical-type information by calculating F-statistics at each iteration of the
Gibbs sampler. Note that under the null hypothesis of no Markov switching
effect and uninformative priors we would expect these statistics to be draws
from a F-distribution with appropriate degrees of freedom. Since we are not
using non-informative priors the exact sampling distribution of this sequence
of F-statistics is unknown.7 However, we focus on the minimum value of this
statistic across iterations of the Gibbs sampler.
Although the calculation of marginal likelihoods involves multiple inte-

gration, it can be simplified using the following tricks. The Bayes factor is
the marginal likelihood of the ‘no-switching model’ divided by the marginal
likelihood of the ‘switching model’:

BNo Switching vs.Switching =

R
l(U|χ, {Ct})b(χ, )d{Ct}dχR

l(U|ϕ, {st}, {Ct})b(ϕ, s1 = 2)d{Ct}d{st}dϕ ,

if this ratio is larger than 1 the sample favors the simple model with no
switching. Notice that a ratio of 0.05 is not equivalent to a classical critical
value. Instead, it implies that the Markov switching model is 20 times more
likely than the simple model, given the observed data on unemployment rates.
Using the basic likelihood identity (see Chib 1995) we have:Z
l(U|ϕ, {st}, {Ct})b(ϕ, sp = 2)d{Ct}d{st}dϕ = l(U|ϕ, {st}, {Ct})b(ϕ, sp = 2)

p(ϕ|U) ,

for all points in the parameter space. In particular, consider the transforma-
tion of the parameter space for the Markov swtiching common factor model
from (β1, σ1,β2, σ2, ρ11,ρ22) to (β1, σ1,β2 − β1, σ2/σ1, τ ). If we evaluate the
transformation at β2 − β1 = 0,σ2/σ1 = 1, then there is no information in
the likelihood function about {st}. As discussed in Koop and Potter (1999),
one can use this lack of identification to simplify marginal likelihood calcula-
tions using the Savage-Dickey Density ratio. In this case, conditional on the

7The informative priors on the parameters of the Markov switching model used here
rule out some of the computationally based non-standard problems directly.
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generated sequence of { eCt, est} we have:R
l({ eCt, est}|β1,σ1)b(β1, σ1)dβ1dσ1R

l({ eCt, est}|β1, σ1,β2,σ2)b(β1,σ1,β2, σ2)dβ1dσ1dβ2dσ2

=
p(β2 − β1 = 0, σ2/σ1 = 1|{ eCt, est},U,ϕ−)

b(β2 − β1 = 0, σ2/σ1 = 1|ϕ−) ,

where ϕ− signifies the parameter space excluding the parameters of the com-
mon factor model.8 Using the methods of Koop and Potter (2000), the LHS
of this expression can be directly calculated at each iteration of the Gibbs
sampler, for normal inverted gamma prior distributions that are independent
across regimes. If this quantity is averaged across draws of ϕ− and { eCt, est}
from the Gibbs sampler we will have:

p(β2 − β1 = 0, σ2/σ1 = 1|U)
b(β2 − β1 = 0, σ2/σ1 = 1)

,

which is the Savage Dickey ratio for the Bayes factor of a ‘no-switching
common factor’ versus a ‘switching common factor model’.
Our choice of the prior distribution presents a difficulty when implement-

ing this approach, since the prior imposes some nonlinear restrictions on the
parameter space. Instead of attempting to directly incorporate these restric-
tions in the calculation of the conditional marginal likelihood, we calculate
the conditional marginal likelihood for the unrestricted case. In practice,
the differences in the conditional marginal likelihoods are so large that the
computer is rarely able to distinguish the conditional Bayes factor from zero.
Since we find few violations of the nonlinear restrictions on the parameter
space, an adjustment for the restrictions on the prior would not change the
overall result of strong support for the Markov switching model in the data.

4 Data Description
We use unemployment rates for seven age groups for the period from 1948Q1
to 2000Q2.9 The age groups are 16−19, 20−24, 25−34, 35−44, 45−54, 55−

8In practice, we use different priors between the no switching and switching models,
which require a generalization of the density ratio. For simplicity, we ignore this compli-
cation here.

9This is the earliest available starting point for high frequency and disaggregate unem-
ployment rates in the United States. For a descriptive analysis of unemployment statistics
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64, and 65 and over. We constructed the unemployment rates from the three-
month averages of the estimated total unemployment for each group, divided
by the three-month average of the estimated labor force for each group:

URkt =
TUkt
Lkt

.

These underlying data are not seasonally adjusted. We adjusted the age-
specific unemployment rates using a seasonal factor given by the ratio of the
published seasonally adjusted to the unadjusted total civilian unemployment
rates. We also constructed weights for each group given by equation (4).
Note that these weights are not seasonally adjusted. Our adjustment proce-
dure produces an overall unemployment rate that is virtually identical to the
published series. This would obviously not be the case if we also seasonally
adjusted the labor force weights.
Our focus in on the impact of demographic changes related to the entry

into the labor market and subsequent aging of the baby-boom generation,
which is illustrated in Figure 2. In particular, the figure shows the time path
of the civilian labor force for different age groups. The aging of the baby
boomers can be observed in the pattern of changes in the age composition
of the labor force over time. The wave of young workers (age 16-19) had its
peak at the end of the 1970s. Ten years later, some of these workers fell into
the 25-35 age category that peaked in 1990. Currently, the majority of the
workers is now between 35-44.

What are the implications of these demographic changes in the labor mar-
ket? In order to answer this question it is important to understand how the
unemployment rate behaves differently across different age groups. Table
1 contains some sample statistics on unemployment rates for different age
groups, while Table 2 contains information on the relative weights of each
group in the labor force, with the weights scaled by 100. The unemployment
rate for teenagers is much higher and more volatile than for the other age
groups. In fact, the mean and variance of the unemployment rate decrease
steadily as workers age. For example, teenagers have an average unemploy-
ment rate of 15.5%, workers between 35-45 have an average of 4%, while the
aggregate rate is 5.7% (Table 1).

over 120 years, see Denman and McDonald (1996).
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Table 1:Statistics for Unemployment Rates
Ukt\Statistic Mean St. Dev. Min Max
16-19 15.5 3.6 6.3 25.0
20-24 9.0 2.4 3.9 16
25-34 5.6 1.7 2.2 10.8
35-44 4.0 1.2 1.8 8.2
45-54 3.6 1.0 1.8 6.7
55-64 3.7 1.0 1.7 6.2
65+ 3.6 0.8 1.7 6.1

As a result of these differences, secular changes in the relative partici-
pation of young workers in the labor force has had a significant impact on
aggregate unemployment. In particular, as can be seen in Figures 1 and
2, the long secular upswing in the aggregate unemployment rate coincides
with the entry of young workers into the labor market. The participation of
teenagers in the labor market increased substantially in the 1960s reaching
a peak in the mid 1970s, while the participation of workers between 35-45
fell substantially during this period. The subsequent aging of the baby boom
generation in the 1980s and 1990s is associated with a reduced fraction of
teenagers in the labor force and a substantial increase in the proportion of
workers between age 35 and 55 (Figure 3 and Table 2).

Table 2: Statistics for Labor Force Weights
ωkt\Statistic Mean St. Dev. Min Max
16-19 7.3 1.4 5.1 10.7
20-24 11.8 2.0 8.4 15.3
25-34 24.2 3.2 18.7 29.6
35-44 22.7 2.2 17.6 27.5
45-54 18.7 2.2 14.8 21.8
55-64 11.8 1.7 8.8 14.2
65+ 3.6 1 2.5 5.3

Finally, we present the contemporaneous correlation matrix for the un-
employment rates ordered from the youngest to the oldest:
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Table 3: Correlation Matrix for Unemployment Rates
16-19 20-24 25-34 35-44 45-54 55-64 65+

16-19 1
20-24 0.88 1
25-34 0.84 0.96 1
35-44 0.79 0.92 0.97 1
45-54 0.68 0.86 0.91 0.95 1
55-64 0.50 0.70 0.76 0.84 0.92 1
65+ 0.28 0.43 0.39 0.45 0.53 0.64 1

It is interesting to notice how the unemployment rates are correlated be-
tween groups close in age, and much less so when comparing younger work-
ers with older workers. The reason is that unemployment rates for younger
workers are very volatile over the entire sample, and display particularly
accentuated oscillations over the business cycle. On the other hand, the
volatility of unemployment decreases monotonically as workers age. Table 1
shows that the standard deviation of teenager’s unemployment is more than
3 times higher than the standard deviation for workers age 35 or older. In
addition, the unemployment rates for older workers exhibit much smaller os-
cillations around business cycle turning points. As argued by Shimer (1998),
this may be explained by the fact that although younger workers do not have
trouble finding jobs, they are more frequently fired.10

Anticipating our empirical results, the resulting dynamic factor model is
broadly consistent with the sample moments given in Table 1 for the group of
workers 35−44. Notice that this is not only the mid-group, but it is also the
one with the highest relative participation in the labor force. On the other
hand, as it turns out to be somewhat striking given the contemporaneous
correlation between unemployment rates, our measure of latent unemploy-
ment constructed from the factor loadings and demographic weights tracks
almost exactly the overall unemployment rate.

10Young workers in the U.S. have a mean and median unemployment duration smaller
than older workers.
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5 Priors and Results

5.1 Properties of the Prior Distribution

We start by considering the choice of the hyperparameters of the normal-
inverted gamma priors for the common factor parameters in each regime,
under the restriction used in the estimation that the lag length is 1. These
priors are the most important ones for interpretation of the sample evidence.
We begin by eliciting a prior that is relatively noninformative, but accords
with our subjective prior beliefs. To simplify matters, the prior covariances
are assumed to be zero for all the conditional mean parameters in the model.
As we work with one lag in each regime, this does not seem controversial.
Since we are examining unemployment rates, it does not make economic
sense to assume that the prior means are zero. Instead, we specify the prior
means in terms of common empirical findings regarding asymmetries in the
unemployment rate.
The prior is specified in two steps. First we describe the unrestricted

prior, then we discuss various restrictions on the prior that are imposed as
in Geweke (1986). For the low unemployment regime, we specify a mean
of 0.4 for the intercept, and of 0.8 for the autoregressive parameter. The
respective variances of these parameters are 1 and 0.3. For the high unem-
ployment regime, we specify a mean of 2.5 for the intercept, and of 0.5 for
the autoregressive parameter. The variances of these parameters are 0.8 and
0.95, respectively. These are the priors used in generating candidate random
draws from the conditional posterior. These draws must satisfy stationarity
as well as the restriction η(1) > η(2) > 0. Finally, the degrees of freedom for
the inverted gamma priors are 3 for both regimes, and the prior mean of the
variance is set to 0.1.11

We simulate from this combined normal inverted gamma prior for two
regimes in order to obtain some prior features of interest. The prior means
of η are around 1% for the low unemployment regime, and around 13.5% for
the high unemployment regime. These values are reasonable, given that the
η’s are upper and lower bounds under the AR(1) assumption. About 32% of
the joint priors have η(1) > 6% and η(2) < 4%.
For the factor loadings, we use a normal prior centered at 1with a diagonal

variance matrix, individual variance of 4 for unemployment rates of workers

11The variance for the conditional mean parameters already takes into account the prior
mean for the variance of the errors.
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age 25 and over, and variance 1 for the unemployment rates of workers 16-19
and 20-24. Once again, this is an uninformative choice. Naturally, we impose
the degenerate prior that the factor loading is 1 for the unemployment rates
of workers age 35-44 in order to normalize the dynamic factor.
For the measurement error innovation variance, we use the minimally

informative inverted gamma prior with degrees of freedom 3 and mean 1.
For the autogressive structure of the measurement errors, we use a more
informative Gaussian prior. The prior mean is set to zero and the variance is
a diagonal matrix. The standard deviation of the autoregressive coefficient
for the group age 25 and older is set to 0.07, while for the 16-19 and 20-24
groups it is equal to 0.1. These priors are based on the fact that the Current
Population Survey currently follows a “4 month in 8 month out, 4 month in”
rotation for households. Thus, the measurement error in the survey across
households should not be too strong.
For the parameters of the Markov chain transition matrix, we use a com-

mon beta prior. For the probability of unemployment staying in the low
regime ρ22 or staying in the high regime ρ11, the parameters are (9, 1). This
is equivalent to having observed about 10 observations of the Markov chain.
Thus, it will be easily dominated by the sample information if there are
repeated switches. Using standard formula for the beta distribution, this im-
plies a very vague prior on the expected duration 1/(1− ρ22) or 1/(1− ρ11),
since the first moment does not exist. The median duration obtained from
the simulation is 13.6 quarters, with a probability equal to 0.09 that the du-
ration is longer than 25 years, and a probability of 0.08 that it is less than 1
year.

5.2 Empirical Results

The model is estimated with the order of the autogressive parameters q =
1, p = 1. The unemployment rate of the age group 35 − 44 is chosen as the
variable with factor loading equal to unity. The Gibbs sampler was run with
a burn-in phase of 200 iterations and a further 4000 iterations. Repeated runs
of the sampler with different initial conditions produced very few changes in
the posterior features suggesting that the sampler has converged.
As noted above, the difference in marginal likelihoods is so large between

a model with switching and no switching (a Bayes factor of 1019 in favor of
switching) that there is little information in the conditional Bayes factors.
Figure 4 shows evidence on the F-Statistics calculated at each iteration of
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the Gibbs sampler. Here we can see that the F-statistics are uniformly higher
than a 0.1% critical value of around 7 obtained from a F-distribution.
The resulting latent unemployment is highly correlated with total unem-

ployment rate (0.995). In addition, the latent factor is also centered with the
actual unemployment rate. With respect to the posterior mean of the factor
loadings, they show a pattern consistent with the differences in means and
standard deviations reported in Table 1. In particular, young labor market
participants have the highest factor loading, and the loadings decline with
age.12

Figure 5 plots the actual unemployment rate with posterior means of
the demographically adjusted bounds, calculated from equations (6) and (7).
The unemployment rate fluctuates inside the high-mismatch and low mis-
match averages almost the entire sample. In two main instances the bounds
are violated, which correspond to periods in which the unemployment rate
reached its minimum and maximum values in the sample. One was in the
early 1950s, when unemployment rates were very low (2.6%). The other was
in the early 1980s, when unemployment rates peaked at 10.7%. The role of
the demographic adjustment to the upper and lower bounds can also be seen
in this figure. The high and low mismatch averages display a hump in the
1970s, reflecting the entry and subsequent aging of the baby boom in the
labor market.

In order to further investigate the subsequent influence of the aging
baby boomers on unemployment, we compare changes in the unweighted and
weighted latent unemployment factors. First, recall that the weighted latent
unemployment can be decomposed into a factor effect and a demographic
effect, as described in Section 2.2. We consider the change in unemploy-
ment for 3 cases: from the earlier dates 1978, 1982, and 1992 to the present
(2000). For example, comparing unemployment in 2000 and 1982, equation
(10) becomes:

12Similar patterns are also found in the posterior means of the autogressive model for
the individual measurement errors.
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U2000 − U1982 =

(C2000 − C1982)
KX
k=1

ωktλk Factor Effect

+C1982

KX
k=1

(ωk2000 − ωk1982)λk Demographic Effect

For changes in unemployment from 1978 and 1982 to the present, we find
as a demographic effect a reduction of 75 basis points in the latent unem-
ployment rate. This is is very close to the ones obtained in Shimer’s (1998)
analysis of the actual unemployment rates. Since 1992, there has been a
mild demographic induced reduction in the latent unemployment of 10 basis
points.
Second, consider the case in which demographic changes have no effect

on the change in latent aggregate unemployment, that is, the factor without
demographic or factor loading weights, as described in equations (8) and (9).
Since we normalize the factor loading of the 35-44 year old group to unity,
the factor without demographic\factor loading weights is a measure of the
underlying state of the labor market for this group. In this case, equation
(8) becomes:

Ct

Ã
KX
k=1

ωktλk − 1
!
,

which gives the difference between latent unemployment and a hypothetical
labor market where all participants are in the 35-44 age group. Figure 6
shows the factor with and without demographic\factor loading weights, while
Figure 7 plots the difference between these two series, which corresponds to
the series derived from the equation above.
There are some interesting findings from this analysis. First, changes in

the composition of different age workers raise the aggregate unemployment
rate from a minimum of 0.61% in the early 1950s to a maximum of 3.07% in
1982. The average impact of age composition on unemployment is 1.55% with
a standard deviation of 0.54%. The entry of the baby boom into the labor
market in the 1960s and 1970s increased the aggregate unemployment rate
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by about 1.8%.13 The subsequent aging of the baby boomers has decreased
unemployment by around 1.7%.14 These findings are also similar to the ones
obtained by Shimer’s (1998).
A second interesting observation is that the baby boom effect induces

a steep increase in the unemployment rate at the beginning of recessions
in the 1970s and 1980s. In particular, the values of the difference between
the unweighted and weighted factors doubled during the 1970, the 1975,
and 1980-82 recessions. The reason is that the labor force weights of young
labor market participants were increasing at the time that these switches to
the high unemployment regime occurred. One can also observe that in the
1990 recession the impact of age on the unemployment rate was substantially
smaller.
The properties of the dynamic factor stochastic model are very similar

to those expected and broadly consistent with the sample moments given in
Table 1 for the group of workers 35-44. Notice that this is not only the mid-
group, but also the one with the highest relative participation in the labor
force. If we evaluate the parameters at their posterior means, the implied
model is:

Ct =

 1.41 + 0.75Ct−1 + ε1t if st = 1

0.16 + 0.94Ct−1 + ε2t if st = 2
,

with P [st+1 = 1|st = 1] = ρ11 = 0.81 and P [st+1 = 2|st = 2] = ρ22 = 0.93,
ε1t ∼ N(0, 0.48) and ε2t ∼ N(0, 0.15).
However, analysis of the posterior means can be misleading, since they

ignore the amount of uncertainty about each parameter and their joint vari-
ation. In order to gain some insight into the importance of this, we com-
pare the posterior means of η(1) and η(2) and the average duration in each
regime to those implied by the model evaluated at the posterior means
of the parameters. In the high unemployment state, η(1) =5.81 (com-
pared to α1/(1 − φ1) = 5. 64), while η(2) = 2.55, in state 2 (compared to

13More specifically, since the baby boomers correspond to births between 1946 and 1964,
here we calculate the average difference between the two factors using sample from 1962
to 1983. This period corresponds to the years in which the first and last generations of
the baby boomers were beween age 16-19.
14This is calculated using sample from 1981 on, which correponds to the year in which

the first generation of the baby boomers reached the age of 35.
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α2/(1 − φ2) = 2.66). For the posterior mean of duration, state 2 lasts 16.9
quarters (compared to 1/(1 − ρ22) = 14. 3 quarters), while state 1 lasts 5.9
quarters (compared to 1/(1− ρ11) = 5.3). Thus, the posterior means provide
a reasonably accurate summary of the differences between regimes in terms
of average dynamics.
Now, consider the following experiments with impact multipliers to il-

lustrate the asymmetries in unemployment, which consist of sharp increases
followed by long slow declines as implied by the model. Assume that the
dynamic factor is in regime 1 with an unemployment rate of 5.5%, and
that it switches to the low unemployment regime (state 2) with no fu-
ture shocks. At first unemployment stays high (α2 + φ2 × 5.5 = 5. 33)
and then it gradually declines. After 4 years, which is the typical du-
ration of the low missmatch regime, the unemployment rate is equal to
[α2/(1 − φ2)] + φ

16
2 × [5.5 − α2/(1 − φ2)] = 3.7. That is, it drops 63% of

the way to the long run low unemployment level. In contrast, if we start the
dynamic factor in regime 2 with an unemployment rate of 2%, upon a switch
to regime 1 unemployment immediately jumps to (α1+φ1×2) = 2. 91. After
6 quarters, which is the average duration of the high mismatch regime, unem-
ployment reaches a level of [α1/(1−φ1)]+φ

6
1× [2−α1/(1−φ1)] = 5.0, which

corresponds to a 82% increase of the way to the long run high unemployment
level.
One final aspect of interest in the estimated model is the large diference

in the size of the shocks hitting the high unemployment regime versus the
low unemployment regime. This difference implies that one should expect
quite smooth downward movements in unemployment but more irregular
upward movements, which is depicted in Figure 6. The asymmetries found
in unemployment are also summarized in Figure 8, which plots the posterior
mean of the high mismatch state. Unemployment switches to the high phase
right at the beginning of recessions, and switches back to a low unemployment
regime a couple of quarters after economic troughs, which illustrates the fast
and steep growth of unemployment and its slower and more gradual decline
around business cycle turning points. In addition, the high unemployment
state is less persistent and corresponds to periods in which unemployment is
more volatile, compared to the low unemployment state.
Overall, as shown by the Bayes factor and the collection of F-statistics

displayed in Figure 6, there are large differences between the two regimes of
unemployment. Furthermore, these differences are sensible and economically
important.
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6 Conclusions
This paper examines the secular and business cycle movements in unem-
ployment over the past 50 years. We develop a common factor model with
Markov switching to analyze disaggregate unemployment rates of workers
grouped by age. We find a strong statistical evidence in favor of the common
factor structure and of the switching between high and low unemployment
rate regimes. In particular, the latent factor exhibits the stylized asymme-
tries in unemployment associated with the phases of the business cycle. In
addition, the model captures the low frequency fluctuations in the U.S. un-
employment rate associated with secular demographic changes. We find that
demographic adjustments to the unemployment rate can account for a great
deal of secular changes in the U.S. unemployment rates. In particular, they
explain some of the increases in unemployment in the 1970s and 1980s, and
the subsequent decrease in the last 18 years.
The framework we have constructed is being extended in two main ways.

First, we are examining the introduction of a second factor, in order to model
short term fluctuations in disaggregate unemployment rates. In particular,
the factor is identified by including changes in inflation rates and in out-
put amongst the observed variables to identify business cycle patterns. The
model implies a time-varying Phillips curve associated with the phases of the
business cycle. Second, we are extending the framework to include a more
detailed demographic decomposition of the total unemployment rate, using
observations on unemployment rates by age, sex, education, and race.

7 Appendix
This appendix gives information on the prior distributions used in the Gibbs
sampler and the resulting conditional posterior distributions.

1. Factor Loadings: we assume that the factor loadings are a priori
normally distributed and independent of each other with mean µ(λk)
and precision τ (λk). Conditional on { eCt}, Θ(L),ΣK we draw the K×1
vector of factor loadings λ from (independent) normal distributions.
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For the generic loading λk we have the sample information:"
TX

t=q+1

C∗2
kt

#−1

,
TX

t=q+1

C∗ktU
∗
kt,

where C∗kt = eCt−θ1k
eCt−1−· · ·−θqk eCt−q. Thus, the conditional posterior

is normal with mean:

τ (λk)µ(λk) +
PT

t=q+1C
∗
ktU

∗
kt/σkk

τ(λk) +
PT

t=q+1C
∗2
kt /σkk

and precision: "
τ (λk) +

TX
t=q+1

C∗2
kt /σkk

#
.

For one of the elements of λ we impose the prior belief that it is equal
to 1.

2. Innovation Variance to Measurement Error: we assume that the
innovation variances to the measurement errors are a priori indepen-
dent inverted Gamma distributions with degrees of freedom of ξ and

scale s−2. Conditional on { eCt}, Θ(L),λ we draw the posterior of the
measurement error innovations variances as independent gamma distri-
butions. For the generic measurement error variance σkk we have the
sample information:

TX
t=q+1

(U∗kt − λkC∗kt)2, T − q,

which is combined with the prior degrees of freedom of ξ and “prior
sum of squares” ξs2 to obtain the posterior degrees of freedom ξ+T−q
and sum of squares ξs2 +

PT
t=p+1(U

∗
kt − λkC∗kt)2.

3. Measurement Error Autoregressive Parameters: we assume that
the measurement error autoregressive parameters are truncated normal
with the truncation determined by the stationarity condition. Since we
use rejection sampling to implement the truncated prior, we start by
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describing the proposal distribution. The location and scale parame-
ters of the truncated normal are given by the vector µ(θk) and matrix
τ(θk)

−1. Thus, without the stationarity condition we would have the
Gaussian prior. Conditional on { eCt},λ,ΣK we draw a proposed set
of the measurement autoregressive coefficients from independent mul-
tivariate Gaussian distributions. For the generic measurement error
autoregression k the sample information is:h

Z
0
kZk

i−1

,Z
0
kWk,

where Wk = [Ukq+1, · · · , UkT ]0 and

Zk =


Ukq · · · Uk1

Ukq+1 · · · Uk2
...

...
...

UkT−1 · · · UkT−q

 ,
and Ukt = Ukt−λkCt. This is combined with the unrestricted Gaussian
“prior” on the autoregressive coefficients in the standard way to obtain
a normal distribution with variance matrix:h

τ(θk) + Z
0
kZk/σkk

i−1

and mean:h
τ(θk) + Z

0
kZk/σkk

i−1 h
τ (θk)µ(θk) + Z

0
kWk/σkk

i
.

This distribution is used to generate draws until the stationarity con-
dition is satisfied.

4. Bayes Factor Calculation: conditional on { eCt}, {st} we calculate
the marginal likelihood of { eCt} under both the Markov switching model
and the no switching model priors. As discussed in the main text this
is an approximate calculation.

5. Dynamic Factor Model Parameters: as noted in the main text,
assuming that {βi, σi} are a priori distributed normal inverted gamma
and independently of each other simplifies the calculation of Bayes fac-
tors considerably. Conditional on { eCt}, {st} we make candidate draws
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of the autoregessive model parameters for the two regimes from the
posterior distributions, which are inverted-gamma normal distribution.
These draws are made sequentially starting with the low unemployment
regime first as described in the main text. Denote the prior precision
matrix of βi by τ (βi)σ

2
i and its prior mean by µ(βi). Let the prior

degrees of freedom of σ−2
i be νi and its mean be s

−2
i . The sample infor-

mation is contained in the draw of the common factor and the Markov
states. Let yit = 1(st = i) eCt and define the vector yi = [yi1+p, . . . yiT ]

0

and the matrix:

Xi =

 1 yip · · · yi1
...

... · · · ...
1 yiT−1 · · · yiT−p

 .
The posterior degrees of freedom of the variance in regime i are:

υi = νi +
TX
t=1

1(st = i).

The posterior scale of the inverted gamma is given by:

vs2
i = νis

2 + υs2 +
£
µ(βi)− βi

¤0
X0
iXi

£
µ(βi)−Xi

¤
+
h
µ(βi)− µ(βi)

i0
τ (β

i
)
h
µ(βi)− µ(βi)

i
,

where the posterior mean of βi is:

µ(βi) = τ (βi)
h
τ(β

i
)µ(β

i
) +X0

iyi
i
,

the posterior precision matrix is:

τ(βi) = τ(βi) +X0
iXi

and sample sum of squared errors is:

υs2 =
h
yi −Xi

bβii0 hyi −Xi
bβii .

In addition, bβi = [X0
iXi]

−1
X0
iyi.
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The candidate draws are obtained by first drawing a value of σ2
i from a

Gamma distribution with posterior degrees of freedom and scale given
above. This draw is then used to obtain the posterior variance of βi
as σ2

i τ(βi)
−1. This variance together with the mean described above is

used to obtain a candidate draw of βi. If the draw is rejected, we draw
σ2
i and βi again and repeat until a succesful draw is obtained.

6. Markov States: conditional on { eCt}, ρ11, ρ22,β1,β2, σ1, σ2,we draw the
sequence {st} as discussed in the main text using the methods of Chib
(1996) with the restriction that S1 = · · · = Sp = 2.

7. Transition Probabilities: we assume that the transition probabili-
ties are a priori independent with a Beta distribution. Under the Beta
distribution prior, the posterior is also in the Beta family. We focus on
updating the transition probabilities for state 1, as the case for state 2
follows analagously. The Beta density is proportional to:

ρ
δ11−1
11 (1− ρ11)

δ12−1, δ11 > 0, δ12 > 0.

The updating of the parameters of the Beta distribution is direct with:

δ11 = δ11 +
TX

t=p+1

P [St = 1, St−1 = 1| eCT ],
δ12 = δ12 +

TX
t=p+1

P [St = 2, St−1 = 1| eCT ].
8. Common Factor: conditional onΘ(L),λ,ΣK ,β1,β2, σ1, σ2, the Kalman
filter is run on the observed data. The Kalman filter is initialized at
the stationary distribution for {Ct} implied by β2,σ2. Then, using the
recursions described above, a draw of { eCt} is obtained and we return
to step 1 above. We also calculate various features of the latent unem-
ployment rate using the draw of the common factor and factor loading.
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