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Abstract

This paper introduces a generalized approach to canonical regression, in which a set of

jointly dependent variables enters the left-hand side of the equation as a linear

combination, formally like the linear combination of regressors in the right-hand side of

the equation. Natural applications occur when the dependent variable is the sum of
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which the appropriate timing of the dependent variable is not known a priori. The paper

derives a quasi-maximum likelihood estimator as well as its asymptotic distribution and

provides illustrative applications.

Key words: linear regression, time series, canonical correlations

Estrella: Federal Reserve Bank of New York (e-mail: arturo.estrella@ny.frb.org). The views

expressed in this paper are those of the author and do not necessarily reflect the position of the

Federal Reserve Bank of New York or the Federal Reserve System.



1. Introduction 

1.1 Motivation 

Linear regression assumes that there is a single dependent variable, which 

takes on a unique role within the equation. Frequently, however, the dependent 

variable is a sum of components that implicitly receive equal weights, or weights 

that are specified a priori in arbitrary fashion. For example, the dependent variable 

may consist of average GDP growth over four quarters, with equal weight 

assigned to each quarter. Alternatively, the dependent variable may be an 

accounting aggregate, such as total bank loans or total bank capital, which is the 

sum of several well-defined components. 

 However, some of those components may be more important than others 

in the equation, and some may not play a systematic role at all, contributing only 

noise. If some individual components are of special interest, they may be used as 

single dependent variables in separate regressions. However, in that case there is 

no unified basis for comparing the individual results. 

 In canonical regression, a set of jointly dependent variables enters the left 

hand side of the equation as a linear combination, formally like the linear 

combination of regressors in the right hand side of the equation. Canonical 

regression then determines simultaneously the best predictive linear combination 

on the right hand side and the most predictable linear combination on the left hand 

side of the equation.  

 In the traditional approach, canonical regression is an outgrowth of 

canonical correlation and is applied to zero-mean or demeaned variables. The 

analysis is generally based on least squares methods and does not consider 

explicitly either the stochastic properties of the variables or the stochastic 

distribution of coefficient estimates. Examples of empirical applications in the 

literature are relatively few. 
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 This paper takes a generalized approach to canonical regression, allowing 

for variables with nonzero means and general distributions, including possibly a 

constant term. More importantly, the analysis focuses on the asymptotic 

distribution of coefficient estimates and on statistical inference with regard to the 

coefficients. Generalized canonical regression is interpreted as the conditional 

expectation of a linear combination of jointly dependent variables, and a quasi-

maximum likelihood estimator is constructed using relatively weak assumptions 

about the underlying data-generating process.  

 Using the asymptotic distribution, all coefficients in a generalized 

canonical regression may be subjected to the standard variety of statistical tests, 

including individual significance tests and tests of the equal-weight restrictions 

implicit in the use of a sum or average as a single dependent variable. The 

technique may be applied to structural or non-structural models. 

 

1.2 Related earlier literature 

 Canonical regression was developed by Bartlett (1938) as an extension of 

the canonical correlation analysis of Hotelling (1935, 1936). Whereas canonical 

correlation analysis focuses on correlations between linear combinations of two 

sets of variables, canonical regression deals with the estimation of a regression 

equation that corresponds to the largest, or “first,” canonical correlation.  

Although the term “canonical regression” does not appear explicitly in this 

early literature, it is used later by Tintner (1950) and Bartlett (1951) in reference 

to Bartlett (1938). Waugh (1942) used the term “regression” in the context of 

canonical correlation analysis, but did not present a regression equation as such. 

Rather, he considered the coefficients of the pair of canonical variates, or linear 

combinations, corresponding to the first canonical correlation. These coefficients 

were scaled separately and did not conform to a single regression equation. A 

similar approach is taken in Tintner (1946) and more recently in Margulis (1998).  
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 Vinod (1969), Gyimah-Brempong and Gyapong (1991), and Ruggiero 

(1998) return to the canonical regression form of Bartlett (1938). In each paper, 

the relationship between the first pair of canonical variates is given explicitly in a 

single regression equation, with conformably scaled point estimates of the 

coefficients.  

 The glaring omission in traditional canonical regression analysis is some 

notion of the stochastic distribution of coefficient estimates, and therefore the 

ability to perform inference with regard to these estimates. Although the 

computation of the coefficients is straightforward, computation of their 

covariance matrix has been seen as more of a challenge. Trippi (1977) is 

exceptional in giving standard errors for the estimated coefficients of a canonical 

regression, but does not indicate the method used to compute them.  

Recently, Anderson (1999, 2002) provided a methodology for calculating 

asymptotic variances and covariances for all coefficient estimates in standard 

canonical correlation analysis, under the assumption that the data are generated by 

a structural linear model with normally-distributed variables and iid disturbances. 

If these conditions hold, the coefficients of the first canonical pair correspond to 

those in a canonical regression, up to scaling, and the asymptotic distribution may 

be used for statistical inference about the coefficients. Anderson (1999, p. 11) 

gives explicit expressions in the case when variables are demeaned and . 

The asymptotic covariances of the first set of canonical coefficients are functions 

of all the estimated canonical coefficients and correlations, not just the first. 

K J=

 The generalized canonical regression approach of the present paper differs 

from standard canonical regression in two principal respects. First, the regression 

equation is expressed directly and conformably in terms of linear functions of 

jointly dependent variables and regressors, with fairly non-restrictive 

distributional assumptions. As noted earlier, the variables may or may not be 

zero-mean and the equation may or may not contain a constant term.  
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The second and more important difference is that the stochastic properties 

of the parameter estimates are explicitly considered, and their asymptotic 

distribution is derived under fairly general assumptions. If the variables are 

normally distributed and the errors are independent, parameters are computed by 

maximum likelihood estimation. If not, parameters may be estimated consistently 

by a quasi-maximum likelihood estimator, whose asymptotic distribution is 

calculated. Inference with regard to parameters is then straightforward. Moreover, 

generalized canonical regression allows for the computation of the asymptotic 

distribution based only on the first canonical relationship. 

 Generalized canonical regression has a superficial similarity to a single 

equation in a simultaneous equations model, in that several jointly dependent 

variables are linearly related to a set of regressors.1 An important difference 

between the two formulations, however, is that the coefficients in a simultaneous 

equation model are assumed to be structural and identifiable in general only with 

reference to the whole system, whereas generalized canonical regression is a 

conditional expectation in which the coefficients are not necessarily structural and 

do not require information outside the equation for identification and estimation.  

The method of alternating conditional expectations (ACE) of Breiman and 

Friedman (1985) is similar in that it derives both an optimal predictor and an 

optimal predicted variable. Like generalized canonical regression, the resulting 

relationship maximizes the  of the equation among all admissible equations. 

However, the dependent variable in ACE is a nonlinear function of a single 

dependent variable, rather than a linear combination of several jointly dependent 

variables, as in canonical regression. 

2R

                                                 
1 Regressors correspond heuristically to exogenous variables in simultaneous equations. See, e.g., 

Fisher (1966). Note that Hooper (1959) proposes canonical correlation (not regression) analysis as 

a means of assessing the overall fit of simultaneous equation models. 
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It should be noted that generalized canonical regression is not at all like 

models with lagged dependent variables, including ARMA models as in Box and 

Jenkins (1970) and dynamic regression models estimated by maximum likelihood 

as in Engle (1980). Lagged dependent variables are subject to orthogonality 

conditions that do not apply to the jointly dependent variables in generalized 

canonical regression. More broadly, treating any of the jointly dependent 

variables as regressors tends to produce very different results. 

 

2. Model formulation 

2.1 Definition 

Generalized canonical regression takes the form 

  (1) t ty a x b u′ ′= + t

= … ty

                                                

where for observations ,  is a vector of J jointly dependent 

variables,  is vector of K explanatory variables or regressors,  is a scalar 

disturbance, and a and b are vectors of J and K coefficients, respectively.

1, ,t n

tx tu

2 In 

standard linear regression,  and the single variable  has a unique 

role in the equation. In generalized canonical regression, all the J dependent 

variables in the vector  are treated analogously. 

1J a= = ty

ty

As in standard regression,  represents the best predictor of the 

dependent variable. In this case, however, the dependent variable  is the most 

predictable linear combination of the jointly dependent variables . “Most 

predictable” may be defined in a least squares sense as minimizing the sum of 

square residuals in proportion to the variance of the linear combination, 

tx b′

ty a′

ty

 
2 The terms “jointly dependent variables” and “explanatory variables” are used in the sense of 

White (1996, Definition 4.3). 
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(( ))22
t tt t
u a y y′ −∑ ∑ , or in the sense of maximizing the likelihood of the 

model among all linear combinations of  with a given variance.ty
3 The regression 

may be viewed as a conditional expectation  or, alternatively, 

.  

( )|t t tE y a x x b′ = ′

}

t

( )| 0t tE u x =

 Some geometric intuition may be obtained by considering equation (1) as 

defining a hyperplane  in the space of jointly 

dependent variables, where . For the purposes of the model, only 

movement in the direction orthogonal to the plane is important, that is, movement 

along the gradient . Movement within  has absolutely no effect in 

the model.  

{ |Jc t tP y y a c′= ∈ =\

tc x b u′= +

( )ty a a′∇ = cP

More precisely, any given change in the vector ty  may be decomposed as 

 ( )t
t

y ay
a a

a r
′Δ

Δ =
′

+ , (2) 

where the first term represents movement along a  and the remainder  is 

orthogonal to a  ( ). A change  in one of the regressors, holding the 

others fixed, produces a translation of the plane by a magnitude 

r

0r a′ = kx⋅Δ

( )/ ( ) / /t t ky a a y a a b x a⋅′ ′Δ = Δ = Δ k  in the direction /a a . Any further 

movement in ty  is orthogonal to a  and does not figure in the model. The 

coordinates of a  are thus indicative of the relative importance of the respective 

jointly dependent variables in the equation. 

 

                                                 
3 The “most predictable” criterion may be traced back to Hotelling (1935). 
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2.2 Maximum likelihood estimator (MLE) 

The generalized canonical regression model (1) may be expressed in 

matrix form by stacking observations in the standard way 

 , (3) Ya Xb u= +

where we assume that X and Y are of full rank. If , the log 

likelihood function of the model is 

2(0, )u N Iσ∼

 2
2

1

1
log log ( ) log(2 ) log

2 2 2

n

t
t

n n
L uφ π σ

σ=

′= = − − −∑ u u , (4) 

where  is the standard normal density function and  is the variance of . 

To estimate the model, we maximize this expression, given the variance of , 

to obtain a maximum likelihood estimate of the parameter vector 

( )φ ⋅ 2σ tu

ty a′

( )2, ,a bθ σ ′′ ′= .  

For simplicity and without loss of generality, we assume that  has unit 

variance. This condition is necessary to avoid the trivial solution  and to 

identify a unique nonzero solution. It is clear from 

ty a′

0θ =

(1) and (4) that if 

( )2, ,a bθ ′′ ′= σ  is a solution, so is ( )2 2, ,a bλθ λ λ λ σ ′′ ′=  for any real . 

The unit variance condition fixes the absolute scale of θ .

0λ ≠

4 The sign of ( ,  is 

arbitrary but may be set, for instance, with regard to the sign of a single 

coefficient or a linear function of coefficients. 

)a b

 

                                                 
4 In fact, if θ  is the solution obtained under the unit variance condition, we may rescale the results 

by using λθ  for any 0λ ≠ . This rescaled solution is equivalent to a constraint that the variance 

of  is ty a′ 2λ . Inference about parameter significance or relative magnitudes is not affected. 
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2.3 Quasi-maximum likelihood estimator (QMLE) 

 Suppose now that the exact distribution of ( ),t tx y  is unknown, but that 

we are most interested in the conditional expectation 

 . (5) ( )|t t tE y a x x b′ = ′

In that case, we can use the log likelihood function (4) to construct a quasi 

maximum likelihood estimate of the parameter vector , subject to the unit 

variance constraint on , which under certain conditions will produce 

consistent estimates of the parameters a and b. The following set of assumptions 

may be used to prove consistency of the QMLE. 

θ

ty a′

 

Assumption Set 1: 

(i) The observed data are a realization of the stochastic process 

 on a complete 

probability space 

{ }( , ) : , , , 1,2,K J
t tX Y K J t+′ ′ ′ Ω → ∈ =\ ` …

( )0, ,PΩ F , where  and ( )K J+ ∞Ω = \

( )( )K J+ ∞= \F B .  

(ii) For any nonzero vector , the conditional mean of  given 

 is a collection of sequences 

, where 

 includes the elements of a, Θ  is a compact subset of 

,  is measurable–

Ja ∈ \ ta Y′

tX

{ } { }( ) : , ( ) (, ) : K J
tμ θ θ μ θ μ θ += ∈ Θ = ⋅ →\M \

K Jθ +∈ \
K J+\ (, )tμ θ⋅ ( )K J+\B , and  is continuous 

on Θ , a. s.– ,  for a given choice of regressors { } . 

( , )t tXμ ⋅

0P 1,2,t = … tX

(iii) tE Y < ∞  and there is a  such that 

 a. s.– ,  

0θ ∈ Θ

0( , ) ( | )t t t tX E a Yμ θ ′= X 0P 1,2,t = …

(iv) For each ,  exists and is finite,  θ ∈ Θ log ( , , )t tE f X Y θ 1,2,t = …

8 



(v)  is continuous on ,  log ( , , )t tE f X Y ⋅ Θ 1,2,t = …

(vi) { }log ( , , )t tf X Y θ  obeys the strong (weak) uniform law of large 

numbers. 

(vii) The sequence 
1

1
log ( , , )

n

t t
t

f X Y
n

θ
=

⎧ ⎫⎪⎪⎨⎪⎪ ⎪⎩ ⎭
∑ ⎪⎪⎬⎪

}

 has identifiably unique 

maximizers  subject to the condition that  has unit 

variance. 

{ *
( )nθ ta Y′

 

Using the foregoing assumptions and definitions, we can state the following 

result, which is analogous to results in White (1996, Section 5). 

 

Proposition 1. If Assumption Set 1 holds, the constrained QMLE derived from 

 as in log ( , , ) logt tt
f X Y Lθ =∑ (4) is a consistent estimator of the parameters 

, even if u is not normally distributed and iid.θ 5

 

Assume for the moment that the variables ( ),t tx y  have zero means and 

nonsingular variance covariance matrix. These assumptions are relaxed in Section 

2.3.4 below. To compute the QMLE (or MLE) of the generalized canonical 

regression model, we maximize the likelihood function (4) subject to the unit 

variance constraint, which may be expressed as 

 . (6) a Y Ya n′ ′ =

To do so, form the Lagrangian 

 . (7) (logL a Y Yaμ ′ ′= − −L )n

                                                

and calculate the QMLE ( ,  as )θ μ� �

 
5 Proofs of propositions are sketched out in the appendix. 
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 . (8) ( , ) argmin ( , )θ μ θ μ=� � L

 

2.3.1 First order conditions 

 Since the particular likelihood function and constraint used here are 

continuous and twice differentiable, the constrained optimization problem may be 

solved by solving first order conditions and verifying that second order conditions 

are met. 

 The first order conditions are 

 2 2
2 4

1
2 0

2 2
n

Y u Y Ya X u u uσ μ σ
θ σ σ

− − ′∂ ⎡ ⎤′ ′ ′ ′= − − − + =⎢ ⎥∂ ⎣ ⎦
L  (9) 

as well as the constraint in (6). The second and third blocks of conditions in (9) 

are fairly standard, mutatis mutandis. The third condition implies that 

 , (10) 2 /u u nσ ′=� � �

where u Y , which is a standard maximum likelihood result. The 

second block may be expressed as 

a Xb= − �� �

 , (11) ( ) 1b X X X Y−′ ′=� �a

�

=

which parallels the standard linear regression result for the vector of regressor 

coefficients, with the linear combination Ya  taking the place of the usual single 

dependent variable. Clearly, the generalized canonical framework has no 

significant consequences for the estimation of the right hand side of the equation. 

�

 In contrast, the first condition represents a clear departure from standard 

regression: 

 , (12) ( ) ( ) 121 2 Y Ya Y Xb Y X X X X Yaμσ −′ ′ ′ ′ ′+ = =��� �

where the second equality makes use of (11). Rewriting as 

 , (13) ( ) ( ) ( )1 121 2 0I Y Y Y X X X X Y aμσ − −⎡ ⎤′ ′ ′ ′+ −⎢ ⎥⎣ ⎦�� �
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we see that  is an eigenvalue of ( ) . The 

solution is obtained by setting , where  is the largest 

eigenvalue of ( ) . The estimate a  is the corresponding 

eigenvector, scaled to satisfy constraint 

21 2μσ+ �� ( )1 1Y Y Y X X X X Y− −′ ′ ′ ′

r

′

2 2
11 2 Rμσ+ = =�� 1r

( )1 1Y Y Y X X X X Y− −′ ′ ′ �

(6).  

 As mentioned earlier, the quadratic variance constraint does not determine 

the sign of ( , . This indeterminacy is not a problem in general, since it does not 

affect the signs of ratios of the form 

)a b��

j ka b�� . However, if one regressor, say , is 

of particular interest, it may be convenient to choose the sign of  and adjust the 

signs of a  and b  accordingly. To summarize, we have the following. 

kx⋅

kb�

� �

 

Proposition 2. The QMLE of a is the eigenvector corresponding to the largest 

eigenvalue of ( ) , scaled to satisfy ( )1 1Y Y Y X X X X Y− −′ ′ ′ ′

                                                

(6) and a sign 

constraint. The QMLEs of b and  are obtained more conventionally from 

expressions 

2σ

(11) and (10). In addition,  and . 2 21 Rσ = −� 1/2μ = −�

 

This proposition may be used to clarify the relationship between 

generalized canonical regression and canonical correlations. If, as assumed thus 

far, the variables  and  have zero means,  is the first squared canonical 

correlation between  and , and the QMLE a  is proportional to the vector of 

coefficients of the first canonical component of  with respect to .

tx ty 1r

tx ty �

ty tx
6 These 

equivalences may not hold if the variables have non-zero means, as seen in 

Section 2.3.4. Moreover, the scaling conventions in canonical correlation analysis 

 
6 See, for instance, Theil (1971, Section 7.4). 
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are typically different; the coefficients of  and  are scaled independently and 

are not in general conformable in a regression setting.  

ty tx

 A final note with regard to the first order conditions highlights an 

important feature of generalized canonical regression. In contrast to standard 

regression, in which all variables but one are orthogonal to the residual, the first 

block of (9) shows that none of the jointly dependent variables are orthogonal to 

the residual. Equation (6) and  (see proof of Proposition 2) imply 

that , from which follows that 

. Thus, the variance of the residual is 

apportioned among all of the dependent variables, with weights determined by 

their coefficients.  

2a Y Xb nR′ ′ =��
2(1 )a Y u n R nσ′ ′ = − =� � �2

= �( ) 2

1

cov , (1/ )
J

j j
j

a y u n a Y u σ⋅
=

′ ′=∑ � � � �

 

2.3.2 Second order conditions 

Let 
2

( , )θ μ
θ θ
∂

=
′∂ ∂
� �2

L
L  be the Hessian of the Lagrangian with respect to 

the parameters, evaluated at the QMLE, and define  so that 

that the unit variance constraint may be expressed as . A sufficient 

second order condition for  to be a maximum subject to  is that 

 for  in the tangent plane .

( )g a Y Yaθ ′ ′= n−

( ) 0g θ =

( , )θ μ� �L ( ) 0g θ =�

0θ θ′ <2L 0θ ≠ { }: ( ) 0T gθ θ θ′= ∇ =� 7  

 

Proposition 3. The QMLE ( ,  satisfies the sufficient second order condition for 

maximizing the constrained likelihood function.  

)θ μ� �

 

                                                 
7 See, e.g., Luenberger (1965, Section 10.3). 
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2.3.3 Asymptotic distribution of QMLE 

 To derive the asymptotic distribution of the QMLE, we need to state a 

series of assumptions with regard to the asymptotic properties of the likelihood 

and constraint functions, evaluated at the QMLE. 

 

Assumption Set 2:  

(i) 
21 log

( )
L

E
n

θ
θ θ

∂
′∂ ∂
�  converges in probability to a finite nonsingular 

matrix for any sequence { }*
( )nθ  such that . *

( )lim np θ θ=

(ii) 1
Y Ya
n

′ �  converges in probability to a finite vector. 

(iii) 1 log
( )
L

n
θ

θ
∂
∂

�  converges in probability to , where (0, )N V

( )( )1 log log
lim ( ) ( )

L L
V E

n
θ θ

θ θ

⎡ ⎤′∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

� � . 

 

 Now consider the probability limits of the expected negative Hessian 

21 log
( )n
L

H E
n

θ
θ θ

⎡ ⎤∂⎢= −⎢ ′∂ ∂⎢ ⎥⎣ ⎦
� ⎥
⎥

n−

, the gradient  of the constraint 

function , and the information matrix 

1/ ( )nG n g θ= ∇ �

( )g a Y Yaθ ′ ′=

( )(1 log log
( ) ( )n
L L

E
n

θ
θ θ

⎡ ⎤′∂ ∂⎢= ⎢ ∂ ∂⎢ ⎥⎣ ⎦

�I )θ ⎥
⎥

�

                                                

, all evaluated at the QMLE. Under some 

circumstances, for instance when the maximum likelihood specification is correct, 

the matrices  and  are asymptotically the same.nH nI
8

 

 
8 See, e.g., White (1996, Chapter 6).  
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Proposition 4. Under Assumption Sets 1 and 2, the constrained QMLE  is 

asymptotically normally distributed with 

θ�

( ) ( )1 10, n n nn Nθ θ − −−� ∼ H I H , 

where ( ) 11 1 1 1
n n n n n n n nH H G G H G G H

−− − − −′ ′= −H 1
n
−

n

1−

. If , then 

. 

nH = I

1 1
n n n n
− − =H I H H

 

 Using the explicit form of  in generalized canonical regression, from 

equation 

logL

(4), we may construct the estimates 

 

( )

2

2

2 2

1
1

0

1 0 2

n

Y Y Y X Y Ya

H X Y X X
n

a Y Y n

σ

σ
σ σ

⎡ ⎤′ ′− −⎢ ⎥
⎢ ⎥

′ ′⎢ ⎥= −
⎢ ⎥
⎢ ⎥′ ′−⎢ ⎥⎣ ⎦

� �
�

�
� � �

′

, (14) 

 1/ 2 0 0nG n a Y Y ′⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦
� � , and (15) 

 ( ) 11 1 1 1
n n n n n n n nH H G G H G G H

−− − − −′= −� � � � � � � � �H 1
n
−′ . (16) 

If the information matrix equality holds, the estimated covariance matrix of θ  is �

11
nn
−H . If not,  may be estimated by nI

 4

0

1
0

0 0

L L

l t t t l t l l t t t l t l
l L t l L t
L L

n l t t t l t l l t t t l t l
l L t l L t

w y u u y w y u u x

w x u u y w x u u x
n

n

σ

− − − −
=− =−

− − − −
=− =−

⎡ ⎤
⎢ ⎥′ ′−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

� � � �

� � � � �
�

I

/2

, (17) 

which accommodates various methods proposed, for instance, in White (1980), 

Hansen (1982), Newey and West (1987) and Andrews (1991) for constructing  
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heteroskedasticity and autocorrelation consistent variances and covariances. The 

weights  are determined by the particular method applied to a lag window of 

 periods. The estimated covariance matrix of θ  is then 

tw

L± � 1 11
n n nn
− −� � �H I H . 

 

2.3.4 Variables with non-zero means 

 If we allow the means of ( ),t tx y  to be non-zero, there are three 

alternative approaches to generalized canonical regression: demeaning, including 

a constant term, and suppressing a constant term with non-zero means.  

 Traditional canonical correlation analysis calls for extracting the sample 

means of the variables, since the focus is on centered correlations. Demeaning is 

also an option in generalized canonical correlation. Let t ty y= −� y  and 

t tx x= −� x

t

 be the demeaned variables and consider the model 

 . (18) t ty a x b u′ ′= +� �

Since this equation has the same properties as (1), it clearly may be estimated 

using the QMLE techniques presented so far. Written in terms of the original 

variables, the model becomes 

 t ty a x b y a x b u′ ′ ′ ′= + − + t , (19) 

which is the same as (1) except for the addition of an implicit constant term 

y a x b′ − ′ . If this constant term is acceptable but of no intrinsic interest, 

demeaning is a reasonable solution. 

 If there is interest in the value of the constant term itself, or in testing 

whether it is statistically significantly different from zero in the sample, an 

explicit constant term may be added to the generalized canonical regression 

specification. As in a standard regression, adding a constant term has effects 
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similar to demeaning, but allows for calculation and inference with regard to the 

constant.  

Say , the first variable in , is a vector of ones. The orthogonality 

conditions in the second block of 

1x⋅ tx

(9) imply that  

 . (20) ( ) ( )1 1
1

0
n

t t
t

x u x Ya Xb y a x b⋅ ⋅
=

′ ′ ′ ′= − = − =∑

Thus 

 
1 1

1 1n n

t t
t t

y a y a x b x b
n n= =

′ ′ ′= = =∑ ∑ ′ . (21) 

Subtracting (21) from each row of (3), the model may be written and estimated in 

terms of the demeaned values of   and , excepting the constant. We may then 

insert the original (non-demeaned) values of  and  in equation 

tx ty

tx ty (11) to obtain 

the value of the constant, and in (14) to (17) to estimate the asymptotic 

distribution of the coefficients. Since the constraint is expressed in terms of the 

variance, note that the term Y Y  that appears twice in  and once in  must 

be replaced by 

a′ � nH� nG�

( ) (Y Y Y Y a′− − �) , where Y  is like Y but with y ′  replacing  

in every row. 

ty ′

 Demeaning and the introduction of a constant term may be thought of as 

alternative ways of imposing the assumption that  in the empirical 

model. If there are theoretical reasons in the underlying model that suggest that 

this assumption should not be imposed, the QMLE setting may still be used with 

non-demeaned variables and no constant term. However, the analytical 

expressions developed above are not directly applicable and the correspondence 

with canonical correlation does not hold. The most practical approach in this case 

is to solve the likelihood maximization problem numerically. 

( )|t tE u x = 0
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3. Dynamic generalized canonical regression 

 A natural application of generalized canonical regression arises in the 

special case in which the jointly dependent variables in the vector  represent 

leads and lags of a single scalar dependent variable. For example, let  be the 

monthly level of the consumer price index. A variable like 

ty

tP

( )(12)
12log /tt P Pπ += t

π

)6

                                                

, average CPI inflation over the year from month t to 

month t+12, might be used as the dependent variable in a standard linear 

regression used for prediction. However, this variable may be expressed as a 

weighted sum of monthly inflation rates , with weights 

assumed to be  for . Are the 12 monthly rates equally 

important in a particular predictive equation, or do weights differ optimally across 

horizons?  

12
(12) (1)

1
jt t j

j

aπ +
=

= ∑

1ja = 1,...,12j =

It may be, for instance, that the explanatory variables  are best suited for 

predictions up to 6 months only. One alternative then would be to run the 

equation with  as the dependent variable. If the precise predictive lead time is 

unknown, one could try in turn all possible horizons up to, say, 24 or 36 months.

tx

(6)
tπ

9  

Generalized canonical regression presents the option of testing all 

predictive leads simultaneously. In the foregoing example, the jointly dependent 

variables may be defined as  and dynamic generalized 

canonical regression may be used to estimate optimal weights  for 

. The importance of each of the dependent variables can then be 

assessed by testing the statistical significance of the associated coefficients.  

( (1) (1)
1 3,...,t t ty π π+ +′ =

ja

1,..., 36j =

 
9 The technique of testing multiple individual lead times has been applied, for instance, in Bernard 

and Gerlach (1997) and Estrella and Mishkin (1997).  
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 More generally, for scalar dependent variables , dynamic 

generalized canonical regression takes the form 

1 2, ,t tz z …

 . (22) (
11 12 21 221 1 2 2, , , , ,t j t j t j t j t tz z z z a x b+ + + +

′ ′= +… …) u

As the equation suggests, it is possible to have leads and lags of more than one 

scalar dependent variable and to include nonconsecutive lags. It is also possible to 

have lags of several regressors on the right hand side.  

 The format of dynamic generalized canonical regression may raise 

concerns that the disturbances  are serially correlated. As noted earlier, 

heteroskedasticity and autocorrelation consistent (HAC) estimates of the 

information matrix  may be computed, for instance, using the methods of 

Hansen (1982), Newey and West (1987), or Andrews (1991).  

tu

nI

 

4. Empirical illustrations 

 This section provides three illustrative applications of generalized 

canonical regression, each of which is analogous to estimates found in the earlier 

literature. In each case, the dependent variable in the earlier research is the sum of 

two or more components that receive equal weights. As suggested above, 

generalized canonical regression is used to allow the weights to differ across 

components. 

 

4.1 Cross section (panel) application: bank capital ratios 

Using annual data for 24 of the 25 largest banking institutions in the 

United States in 1997, Hirtle (1998) finds that most of them reduced their 

regulatory capital ratios over the year. One explanation is that they started off the 

year with high capital ratios, and that there is a tendency for banks to revert to 

some mean level of the ratio. If this explanation holds, banks with higher ratios 

should have experienced larger declines in the ratio.  
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For a given bank, let  represent risk-weighted assets and  be total 

capital at the end of year t. Hirtle (1998) reports on the regression 

tA tK

 , (23) 0 1 1r c c r ε−Δ = + +

where  and  for t=1997. The paper 

finds that the coefficient  is indeed significantly negative, as the proposed 

explanation would entail. 

1/ /t t t tr K A K A−Δ = − 1− 1−1 1 /t tr K A− −=

1c

 To obtain a larger sample, the first row of Table 1 shows estimates of 

equation (23) using annual data for the same 24 banks from 1995 to 1997.10 The 

table shows unadjusted standard errors (first entry in parentheses below each 

coefficient estimate) as well as standard errors allowing for heteroskedasticity as 

in White (1980) (second entry). The relationship between the dependent variable 

and the regressor is shown graphically in Figure 1. 

 

Table 1. Results for bank capital models, 1995-97 

Equation κΔ  1κΔ  2κΔ  αΔ  1r−  0c  2R  

(23)     -.49 

(0.10,0.10) 

.059 

(.013,.012)

.243

(25) 88.0 

(5.03,6.79)

  -100.8 

(4.69,6.33)

-46.8 

(9.61,9.13) 

5.44 

(1.21,1.11)

.247

(27)  67.6 

(10.4,12.1)

118.2 

(11.8,13.5)

-95.5 

(5.74,7.76)

-48.3 

(9.50,9.70) 

5.73 

(1.20,1.19)

.264

Note: Standard errors are shown in parentheses. The first is computed under the 

iid assumption, the second corrects for heteroskedasticity as in White (1980). 

 

                                                 
10 The author is grateful to Beverly Hirtle for making available the data from her paper. 
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Figure 1 
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Now, if we define 

 
1 1

t

t t

K K
A

κ α
− −

Δ
Δ = Δ = t t

t

A
A A

Δ

α

ε

1a

1a

 (24) 

as the contributions of the numerator and the denominator, respectively, to the 

change in the capital ratio, we note that . The corresponding 

generalized canonical regression is 

r κΔ = Δ −Δ

  (25) 1 2 0 1 1a a c c rκ α −Δ + Δ = + +

and we note that equation (23) imposes the restriction  on 2a = − (25).  

Estimates of this generalized canonical regression are provided in the 

second row of Table 1. The scale of the coefficient estimates is different because 

of the unit variance assumption imposed on the left hand side of the equation, but 

the significance level of the regressor is clearly about the same, as is the 

regression . A statistical test of  using the asymptotic distribution of 

the QMLE cannot reject that the parameters are of equal magnitude. The p value 

is .189, or .331 correcting for heteroskedasticity. In this case, generalized 

2R 2a = −
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canonical regression does not produce any information that was not contained in 

the standard regression. 

 An additional level of detail is obtained by recognizing that total capital is 

the sum of Tier 1 and Tier 2 components, . The most important 

component of Tier 1 capital is equity, whereas Tier 2 capital includes 

subordinated debt and loan loss reserves. Are these two components equally 

important in the regression, as equations 

(1) (2)
t tK K K= + t

(23) and (25) maintain? If we now define 

 
(1) (2)

1 2
1 1

t

t t

K
A A

κ κ
− −

Δ
Δ = Δ = tKΔ

α

ε

3

2

3

, (26) 

we have that , which suggests the generalized canonical 

regression 

1 2r κ κΔ = Δ + Δ −Δ

 . (27) 1 1 2 2 3 0 1 1a a a c c rκ κ α −Δ + Δ + Δ = + +

Equation (23) imposes the restrictions  on 1 2a a a= = − (27). 

 Results for this equation appear in the third row of Table 1. Estimates of 

 and  are not very different from their counterparts in 3a 1c (25), but we see here 

that the weights on the two components of capital are very different. The test of 

 has p value of .011. (.016 correcting for heteroskedasticity) and the test 

of  has p value of .015 (.035 correcting for heteroskedasticity). 

Thus, generalized canonical regression indicates that a weighted sum of changes 

in Tier 1 and Tier 2 capital is most predictable when significantly greater weight 

is assigned to Tier 2 capital. At this level of detail, generalized canonical 

regression uncovers more information than standard regression. 

1a a=

1 2a a a= = −

 

4.2 Dynamic generalized canonical regression (1): Yield curve and growth 

For simplicity, we focus on two examples of dynamic generalized 

canonical regression in which there is only one scalar dependent series and one 
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regressor, since such examples suffice to illustrate the distinctive properties of 

generalized canonical regression. Consider first the equation 

 , (28) 
24

(1)
1

1

|j t tt j
j

E a y s b s b+
=

⎛ ⎞⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ 2

where  is growth (first difference of log) in industrial production in month t 

and  is the difference between the 10-year U.S. Treasury constant maturity rate 

and the 3-month secondary-market Treasury rate on a bond equivalent basis. 

Rates are monthly averages of daily data. This equation is analogous to the two-

year cumulative equation in Estrella, Rodrigues and Schich (2003, Table 4), but 

here the weights on the monthly growth rates are allowed to differ. 

(1)
ty

ts

 The sample period is from February 1959 to September 2003. The early 

end of the sample is necessary to accommodate a maximum predictive horizon of 

36 months, used in the next example. As in earlier literature using equal weights, 

the term spread is significant. The parameter  (taken to be positive) is estimated 

as .361 with a standard error of .030 and the regression  is .216. Rather than 

list the coefficient estimates of the 24 jointly dependent variables and their 

standard errors, Figure 2 presents the coefficient values graphically, along with 

asymptotic 95% confidence intervals.  

1b

2R
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Figure 2 

Dynamic generalized canonical regression results for G
95% confidence bands
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The pattern of the dependent variable weights is roughly consistent with 

using a 12-month average as the single dependent variable, which is relatively 

standard in the literature. However, equality of the weights is formally rejected at 

the 5% level. For instance, the restriction that the  are equal has an asymptotic 

p value of .001 for j = 1, …, 24 and of .028 for j = 1, …, 12. The restriction that 

 for j = 13, …, 24 has a p value of .000. 

ja

0ja =

As in standard regression, one important concern in this type of predictive 

equation is that overlapping predictive horizons may give rise to moving-average 

errors. Thus, we apply a Newey-West (1987) correction with 24 lags. The 

standard error of  is .102, higher than without the adjustment but still indicative 

of statistical significance. HAC standard errors for many of the estimated 

dependent variable coefficients are lower than the unadjusted values, as shown in 

Figure 3. 

1b
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Figure 3 

Dynamic generalized canonical regression results for G
95% confidence bands, HAC standard errors, LAGS = 24
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With HAC standard errors, the qualitative conclusions about equality of the 

dependent variable coefficients remain the same. The restriction that the  are 

equal has an asymptotic p value of .000 for j = 1, …, 24 and of .001 for j = 1, …, 

12. The restriction that  for j = 13, …, 24 has a p value of .000. 

ja

0ja =

 

4.3 Dynamic generalized canonical regression (2): Yield curve and inflation 

 An analogous equation for inflation is 

 , (29) 
36

(1)
1

1

|j t tt j
j

E a s b sπ +
=

⎛ ⎞⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ 2b

where  is CPI inflation (first difference of log CPI) in month t and  is as 

before. This equation is similar to estimates in Estrella and Mishkin (1997), but 

uses monthly instead of quarterly data.  

(1)
tπ ts

Again, the sample period is from February 1959 to September 2003. As in 

related earlier research, the term spread is found to be significant in this equation. 

The parameter  (taken to be positive) is estimated as .435 with a standard error 1b
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of .028. The regression  is .313. Estimates of the dependent variable 

coefficients are show in Figure 4. 

2R

 

Figure 4 

Dynamic generalized canonical regression results for P
95% confidence bands

Dependent variable weights, leads from 1 to 36
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The pattern of weights that emerges for the dependent variables is 

generally increasing, which is consistent with economic theory. For instance, 

theoretical models in Mishkin (1990) and Estrella (2005) suggest that the term 

spread should be a useful predictor of increases in inflation, rather than levels. In 

both cases, the term spread is seen as predicting changes of the form 

, which is roughly consistent with Figure 4 where we 

see that early leads have significantly negative coefficients and leads in the 

vicinity of two years have significantly positive coefficients. However, a strict 

hypothesis of this form with equal weights in each term is rejected by the data. 

( ) ( )(1/ ) (1/ )n
t m tn mπ + − mπ

With Newey-West HAC correction with 36 lags, the standard error for  

is .135, again higher that the unadjusted estimate but indicative of statistical 

significance. Standard errors are generally lower for the dependent variables, as 

1b
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shown in Figure 5, though the qualitative conclusions about parameter 

significance are similar. 

 

Figure 5 

Dynamic generalized canonical regression results for P
95% confidence bands, HAC standard errors, LAGS = 36
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5. Conclusions 

 Generalized canonical regression extends the format of standard 

regression by allowing the left side of the equation to consist of a linear 

combination of jointly dependent variables. Natural applications arise when the 

dependent variable in a standard regression is the sum of equally-weighted terms 

that could conceivably have unequal optimal weights. To illustrate, the paper 

provides examples using cross-sectional or panel data, as well as examples of 

dynamic generalized canonical regressions in which the dependent variables are 

leads of a single series. 

 In contrast to the earlier literature, this paper constructs an estimate of the 

asymptotic distribution of the QMLE estimates, which allows for statistical 

inference with regard to the parameters. Moreover, the asymptotic distribution of 
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the parameters is consistent in the presence of heteroskedasticity and 

autocorrelation. 

 

Appendix: Proofs 

Proposition 1. The proof is analogous to the closely related Corollary 5.3 in White 

(1996). The main difference is that we consider the conditional distribution of a 

linear combination of the dependent variables, rather than of all the individual 

dependent variables (Assumptions 1(ii) and 1(iii)). Moreover, the likelihood 

function is maximized with regard to the linear combination of the dependent 

variables, as well as with regard to the linear combination of regressors  

(Assumption 1(vii)). 

 

Proposition 2. From equation (13), we see that  is an eigenvalue of 

 or, equivalently, of 

. The latter matrix is symmetric and 

positive definite, hence all its eigenvalues are real and positive. Premultiplying 

21 2μσ+ ��

( ) ( )1 1Y Y Y X X X X Y− −′ ′ ′ ′

−

�
1

r

′

( ) ( ) ( )1/2 1 1/2Y Y Y X X X X Y Y Y− −′ ′ ′ ′ ′

(12) by a  and dividing by a Y Y  ( = n), ′ a′ ′�

 ,(30) ( ) ( ) ( )1 12 21 2 a Y X X X X Ya a Y Ya b X Xb a Y Ya Rμσ − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = = =� ��� � � � � � �

where the last equality defines  as the proportion of the variance of the linear 

combination in the left hand side of the equation that is explained by the linear 

combination in the right hand side. Thus, we take , where  

is the largest eigenvalue of ( ) . The estimate a  is the 

eigenvector corresponding to the largest eigenvalue, scaled to satisfy constraint 

2R

2 2
11 2 Rμσ+ = =�� 1r

( )1 1Y Y Y X X X X Y− −′ ′ ′ �

(6).  
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To complete the solution of the first order conditions, we compute the 

variance of the disturbance and the Lagrange multiplier. Equations (6) and (30) 

imply that  

 . (31) 2b X Xb a Y Xb nR′ ′ ′ ′= =� � ��

Hence, , from which it follows that  and 

.  

2(1 )u u n R′ = −� � 2 21 Rσ = −�

1/2μ = −�

 

Proposition 3. In the case of generalized canonical regression, 

  (32) 

2 2 2 4

2 2
2

4 4

0

0 /

R Y Y Y X Y Ya

X Y X X

a Y Y n

σ σ σ

σ σ

σ σ

− − −

− −

− −

⎡ ⎤′ ′ ′−⎢ ⎥
⎢ ⎥

′ ′⎢ ⎥= −
⎢ ⎥
⎢ ⎥′ ′ −⎢ ⎥⎣ ⎦

� � �

� �

� � �

L

2

�

}

2

and . Thus, we need that { } {: ( ) 0 : 0T g a a Y Yaθ θ θ′ ′ ′= ∇ = = =� �

  (33) 
( )

( )

2 2 4 4

2 2 4 4

2 /

(1 ) /2

R a Y Ya a Y Xb b X Xb n

u u R a Y Ya n

θ θ σ σ σ

σ σ σ

− −

− −

′ ′ ′ ′ ′ ′ ′= − − + −

′ ′ ′= − − − −

� �

� �

2L

is negative for nonzero Tθ ∈ . Since  and the QMLE 

minimizes , we have that . Equality 

holds only if a  for real , but then a . Hence, the strict inequality 

holds for all a , as required by the second order condition. 

2 11 (R u u a Y Ya −′ ′ ′− = � � � �)

)

a

1(u u a Y Ya −′ ′ ′ 2(1 ) 0u u R a Y Ya′ ′ ′− − ≥

λ= � 0λ ≠ T∉

T∈

 

Proposition 4. The proof follows from Aitchison and Silvey (1958), with one 

modification. Aitchison and Silvey (1958) assume from the outset that the 

information matrix equality  holds and show that the asymptotic 

variance of 

nH = In

nθ�  is . Refraining from this assumption and following the 

same steps as in that paper leads to the more general result . Gallant 

(1987, Section 3.7) has a similar result. 

1
n
−H

1
n n n
−H I H 1−
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