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1 Introduction

Stochastic di�erential equations (SDEs) are frequently used in such diverse

�elds as physics, biology and �nancial economics. Typical examples of applica-

tions of SDEs include many areas of statistical mechanics, population dynamics as

well as interest rate models or derivative pricing. In all of these areas, estimation

of the parameters of SDEs from discretely sampled data is a natural concern. In-

deed, a plethora of estimation methods exists in the literature that approach the

problem of statistical inference from quite diverse angles. Given its asymptotic

e�ciency and consistency, exact maximum likelihood (i.e., maximum likelihood

estimation based on a closed-form solution of the transient density of the state

variables) would be the method of choice where applicable. Unfortunately, the

applicability of exact maximum likelihood (EML) is mostly (except for the most

elementary linear cases) hampered by the absence of a closed-form solution for

the transient density.

With this unfortunate situation, a number of alternatives can be used. Hurn

et al. (2009) in their survey of estimation methods for single variable, time-

homogenous SDEs, distinguish between two classes of methods: Likelihood- based

approaches and what they call "sample DNA matching procedures". The latter

group is characterized by its attempt to match certain characteristics of the data,

e.g. moment conditions, the shape of the characteristic function or that of the

marginal density. Likelihood-based methods of inference, in contrast, take the

likelihood function as their starting point and are numerical or simulation-based

approaches for approximate maximization of the likelihood. In simulated ML, the

conditional density is approximated via Monte Carlo simulation. More re�ned

approaches in this area use importance sampling and Markov Chain Monte Carlo

techniques. As for numerical approximations of the likelihood function, the best-

known approaches are "discrete" ML using an Euler approximation and Hermite

polynomial expansions (Ait-Sahalia, 1999).

Unfortunately, the applicability of these methods is restricted by some serious

disadvantages: "discrete" ML comes with inconsistent parameter estimates, while

Hermite expansions are not always easy to apply. Hurn et al. (2009) note that,

in principle, a more generic approach would consist in a numerical approximation

to the transitional density. Since the transitional density of SDEs is known to

obey the so-called Fokker-Planck or forward Kolmogorov equation, a convenient

strategy in the absence of a closed-form solution would be numerical approxima-

tion of the dynamics imposed by the Fokker-Planck equation (FPE). Since the
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FPE is a partial di�erential equation, various numerical approximation schemes

could be used. Given the accuracy of an approximation method, one might in-

fer asymptotic e�ciency and consistency properties of the numerical likelihood

maximization (Poulsen, 1999). Hurn et al. (2010) use a Crank-Nicolson �nite

di�erence scheme as well as a related scheme adopted for the cumulative distribu-

tion function and demonstrate that in Monte Carlo simulations its performance

is among the best of a large variety of estimation methods. Besides e�ciency, the

main advantage of this approach is that it is the most generic method since its

basic building blocks can be encoded once for all and used for most families of

SDEs in exactly the same way. In contrast, many of the other methods require

a problem-speci�c design of the algorithm. Surprisingly, while numerical approx-

imations of partial di�erential equation are quite common in many areas, using

a numerical approximation of the FPE in order to perform maximum likelihood

estimation is a relatively new development. Even recent textbooks such as Iacus

(2008) do not mention this possibility. While Poulsen (1999) already discussed

this approach, the only subsequent applications to my knowledge are Jensen and

Poulsen (2002) and Hurn et al. (2009, 2010). Closely related, yet somewhat

di�erent in their scope are two papers by Lux (2009, 2012) whose aim is to es-

timate the parameters of a dynamic model of agents' interaction in a �nance or

economics setting. While this approach is not based on phenomenological SDEs,

the more complicated jump Markov process for an ensemble of agents can also

be approximated by a Fokker-Planck equation. Although the FPE is only an

approximate law of motion in this case (while it is exact for SDEs), statistical in-

ference proceeds along the same lines as outlined above. Lux (2012) estimates the

parameters of a dynamic process with two or three state variables which requires

the numerical approximation of a FPE in higher dimensions.

For SDEs, all available literature is restricted to the one-dimensional case. The

purpose of this paper is to go beyond univariate SDEs. I �rst introduce a general

framework for a system of two SDEs that covers a number of interesting cases

like the Ornstein-Uhlenbeck or Vasicek process, the double-well potential (Iacus,

2008, c. 1.13.8) or the stochastic cusp catastrophe model. The latter types have

highly nonlinear drift and have been occasionally used in economics to capture

multiple equilibria (e.g. Creedy et al., 1996; Rheinlaender and Steinkamp, 2004;

Barunik and Vosvrda, 2009). However, estimation of such models has so far been

based on the unconditional density which presumes a fast convergence towards

some equilibrium. In contrast, our approach is based on the transient density

and does not rely on any assumption of a system in equilibrium. The plan of

the subsequent sections is as follows: Section 2 states our problem and section
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3 reviews some popular �nite di�erence schemes that could be applied for the

numerical solution of the FPE in the bivariate and trivariate case. As it turns

out, correlation of innovations (i.e. the mixed derivative term of the di�usion

function) is somewhat problematic and requires particular attention. Section 4

reports results on Monte Carlo simulations with various �nite di�erence schemes in

the bivariate case for two correlated Brownian motions and various combinations

of processes with linear and nonlinear drift functions. Section 5 extends our Monte

Carlo analysis to the trivariate case. Using the best performing FD algorithm we

�nally proceed to an empirical application in section 6 investigating the joint

dynamics of two sentiment indices and the stock price index DAX of the German

share market. Section 7 concludes.

2 Problem Formulation

Our parameter estimation problem can be concretized as follows. Available is

an empirical sample of T+1 observations X0, ..., XT at times t0, . . . , tT where each

observation Xt is multi-variate with n di�erent variables, i.e. our sample consists

of {Xt}Tt=0 = {x1,t, x2,t, . . . , xn,t}Tt=0. Our hypothesized data-generating process

for this discrete multivariate sample is an n-dimensional time-homogenous system

of stochastic di�erential equation:

dX = µ(X; θ)dt+
√
g(X; θ)dW. (1)

In eq.(1), µ(X; θ) is the drift and g(X; θ) the di�usion of our system of equations,

θ is a vector of unknown parameters and W is an n-dimensional Wiener process

with components W 1,W 2, . . . ,Wn that are independent scalar Wiener processes.

The maximum likelihood estimates of θ are obtained by minimizing the negative

log-likelihood function:

−logL(θ) = −logf0(X0|θ)−
T−1∑
S=0

logf(XS+1|XS ; θ), (2)

where f0(X0|θ) is the density of the initial state and the remaining terms

f(XS+1|XS ; θ) are the transient densities obtained for each set of iterations at

time S + 1 conditional on the previous set of observations at time S.

When the drift and di�usion processes are su�ciently regular functions, the

transient density satis�es the so-called Kolmogorov forward or Fokker-Planck
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equation (cf. Kloeden and Platen, 1992, c.4):

∂f

∂t
= −

n∑
i=1

∂i[µi(X; θ)f ] +
1

2

n∑
i,j=1

∂i∂j [gi,j(X; θ)f ] (3)

with suitable initial conditions. Throughout this paper, the drift and di�u-

sion terms will satisfy standard regularity conditions so that the existence of

the Fokker-Planck equation and the uniqueness of its solution can be taken for

granted. In eq. (3), µi(.) denotes the scalar component of the drift function asso-

ciated with variable xi (i = 1, . . . , n) and gi,j(X; θ) denotes the scalar entry of the

matrix of di�usion coe�cients at position (i, j). In the current paper, we will fo-

cus on various forms of drift functions, but for the di�usion assume independence

of X, i.e. a matrix g of constant coe�cients.

If we could obtain a closed-form solution of eq.(3), exact maximum likelihood

would be feasible. However, except for very simple cases, closed-form solutions

are typically not known. Various numerical and simulation-based approaches can

be used to obtain quasi-maximum likelihood estimates in this case. As pointed

out by Hurn et al. (2009), numerical solution of the Fokker-Planck equation

appears to be the most generic approach although it has been introduced in the

literature only recently. Indeed, if a certain accuracy of the approximation can be

guaranteed, this approach should be able to overcome the problem of inconsistency

of simple approximations to the transient density such as the Euler-Maruyama

algorithm.

3 Some Popular Finite Di�erence Schemes in the

Bivariate Case

Numerical estimation based on a �nite di�erence approximation to the Fokker-

Planck equation in one dimension is considered in Poulsen (1999), Jensen and

Poulsen (2002), Hurn et al. (2009) and Lux (2009). Following many other ap-

plications in various �elds, the �nite di�erence scheme chosen by most authors is

the Crank-Nicolson algorithm. The reason for the almost unanimous preference

is that Crank-Nicolson is unconditionally stable (a necessary requirement in the

presence of unknown parameter values) and it is more accurate than many other

methods (e.g., a fully implicit scheme that also is unconditionally stable). It is

indeed well-known among applied researchers that Crank-Nicolson is very reli-

able and hard to beat even with re�ned methods for numerical solution of partial
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di�erential equations in the univariate case.

The picture, however, becomes more varied when moving from the univariate

case to higher dimensions. In the bivariate case, a large portfolio of �nite di�erence

schemes exists without such a clear preference as for the Crank-Nicolson scheme

in the univariate case.

Some of the most versatile schemes are known as alternating direction implicit

(ADI) schemes (cf. Marchuk, 1990; Ames, 1992; Morton and Mayers, 1994, and

Strikwerda, 2004). Some variants of ADI schemes will be introduced below. As

their de�ning characteristic, these approaches perform �rst a half (or auxiliary)

step into one of two space dimensions followed by a second half (or auxiliary)

step in the other direction. Using an implicit �nite di�erence scheme in both

half-steps, these algorithms boil down to computationally convenient tri-diagonal

systems of equations. A very similar approach has been developed by various

Russian authors under the name of splitting schemes (cf. Yanenko et al., 1971,

for a monograph covering most of this literature). Out of the large variety of ADI

and splitting schemes we select three of the more popular examples and explore

their applicability within our estimation context.

To set the stage, we start with a simple bivariate Wiener process to explore the

performance of various FD schemes within a numerical ML estimation exercise.

This amounts to a speci�cation of eqs.(1) and (3) with n = 2, vanishing drift

component µ(X; θ) = 0, and a constant variance-covariance matrix g. The vector

of parameters to be estimated, then, consists of the three parameters governing g,

i.e. θ = {σ1, σ2, ρ} with σ1 and σ2 the instantaneous di�usion of the two Wiener

processes and ρ their correlation. The pertinent parabolic Fokker-Planck equation

can be written as:

∂f

∂t
= (b11

∂2

∂x21
+ b12

∂2

∂x1∂x2
+ b22

∂2

∂x22
)f

with b11 =
1

2
σ21, b12 = ρσ1σ2, b22 =

1

2
σ22

(4)

Because of this important applications in �uid dynamics, equations of the for-

mat of (4) have been intensely studied in the literature. We review here the

following popular discretization schemes whose performance within a ML estima-

tion problem will be explored by Monte Carlo simulations subsequently:
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1. The Peaceman-Rachford Scheme (Strikwerda, 2004, c. 7)

Let us start with a de�nition of the grid with space and time coordi-

nates (x1,j , x2,l, ti). Grid points are de�ned by x1,j = x1,0 + jh1, j =

0, 1 . . . Nx1 ; x2,l = x2,0+ lh2, l = 0, 1, . . . , Nx2 , and ti = iκ, i = 0, 1, . . . , Nt.

Finally uij,l denotes the approximation of the density f at grid points

(x1,0 + jh1, x2,0 + lh2, iκ). Here h1, h2 and κ are the constant distances

between grid points along the two space axes and the time axis. The

Peaceman-Rachford scheme evaluates the second-order derivatives in one

space direction implicitly (i.e. forward in time) and the second one explic-

itly (backward in time) within a sequence of time steps of length κ/2. The

cross-derivative is always evaluated explicitly. We denote the �nite di�er-

ence approximations of the second derivatives by:

δ2x1 =
1

h2
(uij+1,l − 2uij,l + uij−1,l) (5)

for given coordinates i and l and analogously for δ2x2 , while

δx1δx2 =
uij+1,l+1 − uij+1,l−1 − uij−1,l+1 + uij−1,l−1

4h1h2
(6)

is the �nite di�erence approximation of the cross-derivative. The resulting

approximation of eq.(4) over a time interval of length κ requires the following

operations:

u
i+ 1

2
j,l − u

i
j,l

κ/2
= b11δ

2
x1u

i+ 1
2

j,l + 2b12δx1δx2u
i
j,l + b22δ

2
x2u

i
j,l,

ui+1
j,l − u

i+ 1
2

j,l

κ/2
= b11δ

2
x1u

i+ 1
2

j,l + 2b12δx1δx2u
i+ 1

2
j,l + b22δ

2
x2u

i+1
j,l .

(7)

Rearranging, we arrive at two tridiagonal systems of equations that can

easily be solved in an iterative way:

(1− κ

2
b11δ

2
x1)u

i+ 1
2

j,l = (1 +
κ

2
b22δ

2
x2)uij,l + κb12δx1δx2u

i
j,l

(1− κ

2
b22δ

2
x2)ui+1

j,l = (1 +
κ

2
b11δ

2
x1)u

i+ 1
2

j,l + κb12δx1δx2u
i+ 1

2
j,l .

(8)

This scheme is known to be of �rst-order accuracy in general, while it would

be second-order accurate in the absence of the mixed term, i.e. with b12 = 0.

7



2. The Splitting Scheme of Yanenko et al. (1971)

Pretty much at the same time when Western authors developed various ADI

schemes, Russian mathematicians pursued closely related avenues under the

heading of splitting schemes or methods of fractional steps. An approach

proposed for the bivariate case case with mixed derivatives resembles closely

the Peaceman-Rachford scheme, but in its two half-steps takes care of only

one space direction, respectively. Computationally, this is only slightly dif-

ferent from the previous scheme.

It amounts to the sequence:

u
i+ 1

2
j,l − u

i
j,l

κ
= b11δ

2
x1u

i+ 1
2

j,l + b12δx1δx2u
i
j,l

ui+1
j,l − u

i+ 1
2

j,l

κ
= b22δ

2
x2u

i+1
j,l + b12δx1δx2u

i+ 1
2

j,l

(9)

The monograph by Yanenko et al. (1971) notes that stability and conver-

gence of this scheme can be proved, but does not provide results on the

order of accuracy of this approximation.

3. The McKee-Mitchell Scheme

This is an alternative popular ADI scheme that goes back to McKee and

Mitchell (1970) and has been further elaborated on recently by Craig and

Snyd (1988) and McKee et al. (1996). The pertinent sequence of operations

is:

(1− λκb11δ2x1)ui+1∗

j,l = (1 + κ(1− λ)b11δ
2
x1 + κb22δ

2
x2

+
1

2
κb12δx1δx2)uij,l

(1− λκb22δ2x2)ui+1
j,l = ui+1∗

j,l − λκb22δ2x2u
i
j,l

(10)

In this scheme i+ 1∗ is an intermediate step and λ is a parameter that can

be adjusted to provide for unconditional stability.

In the present case of two space dimensions, λ ≥ 0.5 guarantees uncondi-

tional stability. In the absence of mixed derivatives, the choice of λ = 0.5

yields a scheme of second-order accuracy both in time and space whereas

both with a higher choice of λ or in the presence of mixed terms its accuracy
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is of lower order. In our Monte Carlo simulations below, we report results

for the choice of λ = 0.5. We have experimented with higher values but did

only �nd a tendency of deterioration of parameter estimates.

All three schemes will be used within a numerical ML estimation exercise in

the next section. Because of certain numerical problems for very high absolute

values of ρ outlined below, we also tried some re�nements of the baseline ADI

and fractional steps methods. One for which we report results is a correction of

the cross derivative term proposed recently by Bouchut and Frid (2006). The

potential problem with the cross derivatives is that they give rise to the negative

entries −uij+1,l−1 and −uij−1,l+1 that constitute a thread to the positivity of our

numerical solutions. As one can see, this thread materializes itself for high degrees

of (positive or negative) correlation, cf. Figs. 1 and 2. Bouchut and Frid propose

to add a correction of higher order1:

δ+x1δ
−
x1δ

+
x2δ
−
x2 b̃12 = (uj+1,l+1 − 2uj,l+1 + uj−1,l+1

− 2uj+1,l + 4uj,l − 2uj−1,l

+ uj+1,l−1 − 2uj,l−1 + uj−1,l−1)b̃12,

(11)

that should neutralize these entries. Here, b̃12 denotes an appropriate transforma-

tion of the original cross-derivative term for which they found the optimal choice

to be b̃12 = |b12|. In our Monte Carlo simulations reported in the next section, we

adopt this approach alongside with the three baseline methods introduced above,

i.e. we consider the performance of each of these schemes with and without the

Bouchut and Frid correction. Fig. 1 and 2 illustrate the in�uence of the mixed

derivatives. In Fig. 1, the set of parameters is σ1 = 0.2, σ2 = 0.1 and ρ = 0.5.

With this moderate level of dependency, positivity of solutions seems not endan-

gered and, indeed, we can hardly distinguish between the numerical solutions

produced by di�erent schemes. Fig. 2 has the same set of parameters except

for a much higher correlation of ρ = 0.95. Here the potential problem becomes

apparent: All methods generate a dent of the distribution where it should �atten

out because of the in�uence of large negative entries from the mixed term. Again,

di�erent schemes lead to virtually identical densities. Since the correction scheme

by Bouchut and Frid explicitly aims at removing the negative dent, it seems

worthwhile to explore its e�ect on estimation results. However, its performance

1δ+x1
and δ−x1

stand for the �nite di�erences δ+x1
= uj+1,l − uj,l, δ

−
x1

= uj,l − uj−1,l and analo-

gously for δ+x2
, δ−x2

.
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turns out to be disappointing as we will see below.2 We have also tried another

proposed remedy, smoothing the solution by time averaging as proposed in Craig

and Snyd (1988) for the scheme of McKee et al. and in Strikwerda (2004) for

the Peaceman-Rachford scheme. As it turned out, this re�nement had virtually

no e�ect on parameter estimates so that we abstain from giving details (numbers

would be almost exactly identical to those obtained for the respective original

schemes in Table 1).

Figs. 1 and 2 about here

4 Monte Carlo Results for Bivariate SDEs

4.1 Bivariate Di�usion

Now we turn to the results of this �rst set of Monte Carlo experiments using the

three �nite di�erence schemes presented in the previous Section. Table 1 reports

sample statistics of parameter estimates for the case σ1 = 0.2, σ2 = 0.1 and ρ from

the set {−0, .95,−0.9,−0.5, 0, 0.5, 0.9, 0.95}. We have dealt with the negative

dent of the numerical density in a hands-on way by replacing negative entries

for conditional probabilities by a very small positive number. The hope is that

these cases might be rare (as the true density would assume very small positive

numbers around the dent anyway) and, therefore, should not a�ect dramatically

our estimation results. Note that for our bivariate Brownian motion, we can

actually provide a closed-form solution so that we can also estimate the parameters

by exact maximum likelihood (EML). We perform simulations for time series of

length T = 200 and T = 500 to see whether the expected improvement with

sample size can be observed (which turns out to be the case). Here and in the

following tables, we report the mean parameter estimate across the Monte Carlo

repetitions together with its �nite sample standard error (FSSE) and the root-

mean squared error (RMSE) as evaluated against the "true" parameter.

We start with some very good news: The numerical approach provides estimates

whose statistical properties are almost completely equivalent to those from EML

for moderate levels of correlation (i.e. ρ = −0.5, 0 and 0.5 in our simulation). In

these cases, all methods give virtually the same accuracy in parameter estimation

2As pointed out by F. Bouchut, the cross derivative correction term might have di�erent impli-

cations for stability when applied together with di�erent �nite di�erence schemes. Unfortunately,

we cannot use it in our context together with the particular scheme applied by Bouchut and

Frid (2006) as the latter is not unconditionally stable.
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and except for a slight bias for the estimates of ρ are practically identical to those

obtained with EML. For higher positive or negative correlation the estimates of

σ1 and σ2 have still the same quality for EML like numerical ML while the stan-

dard errors for ρ increase somewhat. In these cases we also �nd small di�erences

in the e�ciency of di�erent schemes with the algorithm of McKee et al. (MK)

dominating those by Peaceman-Rachford (PR) and Yanenko (SP). However, as it

turns out, using the correction term by Bouchut and Frid (2006) strongly dete-

riorates the results for ρ, for true values |ρ| ≥ 0.9. The correction is, therefore,

achieved with a strong bias in the mixed term while our hands-on approach of

eliminating any negative entries gives much more satisfactory results with a very

moderate bias. The reason for this poor performance might be that the correc-

tion is not tailor-made for the present discretisation schemes. Since the scheme

developed by McKee et al. (1996) has a slight, but consistent advantage over the

other methods, we will concentrate on the later in our subsequent exercises and

applications.

Table 1 about here

4.2 A Nonlinear Simultaneous System

In the second set of Monte Carlo simulations, we allow for drift functions of

highly nonlinear form:

µ1(x1) = a1 + a2x1 + a3x
2
1 + a4x

3
1 + c1y1,

µ2(x2) = b1 + b2x2 + b3x
2
2 + b4x

3
2 + d1x1.

(12)

In economics, the study of such nonlinear drift functions has been motivated by

formalizations of catastrophe theory (Rheinlaender and Steinkamp, 2004; Barunik

and Vosvrda, 2009). Creedy et al. (1996) have estimated the parameters of a

similarly �exible model for univariate exchange rate data using the ergodic distri-

bution of the so-de�ned di�usion process. This approach, however, disregards the

transitional dynamics and assumes that the data at hand represents a statistical

equilibrium which would only hold if the sample size were su�ciently large. Our

approach, in contrast, allows to take stock of the transitional e�ects. Motivated

by the related approach of Lux (2012), we investigate one particular scenario: a

bivariate process in which one of the variables is driven by a bimodal drift func-

tion (also known as double-well model) whereas the second one obeys a unimodal

Ornstein-Uhlenbeck dynamics. In addition, we allow for cross-dependencies in

the drift as well as for di�erent levels of correlation in the innovations (i.e. the
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di�usion terms). The Fokker-Planck equation for the time development of the

probability density is now given by:

∂f

∂t
= − ∂

∂x1
[µ1(X)f ]− ∂

∂x2
[µ2(X)f ]

+

(
b11

∂2

∂x21
+ b12

∂2

∂x1∂x2
+ b22

∂2

∂x22

)
f,

(13)

where X = (x1, x2)
′ and b11, b12 and b22 are de�ned as in eq.(4). Because of the

slight advantage of the scheme proposed by Mckee et al. (MK henceforth), and

also because of computational concerns, we con�ne our interest in the following

to this particular algorithm. Note that computational cost is higher in the case of

system (12) as the Fokker-Planck equation has to be solved numerically for every

pair of adjacent observations (as the drift depends on the current realizations of x1

and x2) while it had only to be integrated once in the pure di�usion model for each

set of parameters. The necessary generalization of the scheme by McKee et al.

is obtained by adding appropriate convective (i.e. drift-related) terms in eq.(10).

This amounts to replacing κb11δ
2
x1 in eq.(10) by κ

(
b11δ

2
x1 − µ1(x1,j , x2,l)δx1

)
with

δx1 = 1
h1

(uij+0.5h1,l
−uij−0.5h1,l) and analogously for δx2 . McKee et al. (1996) note

that this scheme is of �rst order accuracy for the general case of a parabolic system

with mixed derivative terms and convective (drift) components. Note, however,

that their proof assumes linear drift functions so that our case is still more com-

plicated and their results do not apply immediately. Given the absence of strong

theoretical results, it is worthwhile to remark that no problems of convergence

have been encountered in our simulations.

To reduce the number of parameters, we set a1 = a3 = b1 = b3 = b4 = 0

which leaves the parameter set {a2, a4, c1, b2, d1, σ1, σ2, ρ} to be estimated. We

keep a2 = 1.5, a4 = −3.0 and b2 = −1.5 constant as well as σ1 = 1,

σ2 = 0.5 over all simulations for the baseline scenario of an intrinsic double-

well dynamics of variable x1 and a mean-reverting unimodal process for x2.

The correlation ρ is varied across the set {−0.9,−0.5, 0, 0.5, 0.9} and combined

with di�erent cross-dependencies in the drift functions. In scenario 1, cross-

dependencies are absent (c1 = d1 = 0), in scenario 2, a uni-directional in�uence is

assumed (c1 = 10, d1 = 0), and in scenario 3 both variables in�uence each other

(c1 = −10, d1 = 10). Table 2 exhibits the results of Monte Carlo simulations using

200 random repetitions for each scenario with T = 200 and T = 500 observations.

While �nite sample standard errors and root mean squared errors are higher for

the case of seven parameters to be estimated than for the pure di�usion, results

12



indicate that the means over all samples appear to converge to the true param-

eter values, with the only exception of a2 in the third scenario with ρ = 0.9. In

particular, despite the relatively small sample size, the bimodal and unimodal

character of the two drift functions are typically recovered by the parameter esti-

mates, and the estimation procedure is able to distinguish between correlation in

innovations and cross-dependencies in the drift term with satisfactory reliability.

Comparison between the two sample sizes (T = 200 and T = 500) shows mostly

nice agreement with
√
T consistency.

Table 2 about here

5 Numerical Maximum Likelihood for Trivariate SDEs

Although the computational demands of our approach increase quite signif-

icantly with the dimension of the time series, parallelization of the computa-

tional task still allows us to handle trivariate systems. To get some evidence

on the performance of the numerical ML approach, we again conduct simula-

tions for a pure di�usion process which now is characterized by six parameters

{σ1, σ2, σ3, ρ12, ρ23, ρ13}. One might note that the computational demands are

much lower for the pure di�usion than for models with non-zero drift compo-

nents: since the development in time of the transient pdf is independent of the

state variables {x1,t, x2,t, x3,t}, we only need to solve the Fokker-Planck equation

numerically once for each set of parameters. Hence, the necessary iterations of the

numerical scheme only depend on the number of iterations we need for the conver-

gence of the optimization routine for the likelihood function (we use a combination

of the Newton-Raphson and Broyden-Fletcher-Goldfarb-Shanno algorithms). In

contrast, with state-dependent drift functions, the number of iterations would also

depend on the number of observations (as each set of initial conditions would have

to be taken into account through a new numerical solution of the Fokker-Planck

equation). This feature allows us to perform a similar Monte Carlo study as with

the bivariate di�usion: We consider sample sizes of T = 200 and T = 500 obser-

vations and report results from 200 random repetitions for each scenario. Because

of the very promising previous experiences with the MK scheme, we stick to this

�nite di�erence algorithm and also dispense with any additional correction for

mixed derivatives. The MK scheme in three space dimensions is given by the
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following sequence of operations:

(1− λκb11δ2x1)ui+1∗

j,l,m = (1− λκb11δ2x1 +
3∑
r=1

κbrrδ
2
xr

+
1

2

3∑
r=2

2∑
s=1

κbrsδxrδxs)u
i
j,l,m

(1− λκb22δ2x2)ui+1∗∗

j,l,m = ui+1∗

j,l,m − λκb22δ
2
x2u

i
j,l,m

(1− λκb33δ2x3)ui+1
j,l,m = ui+1∗∗

j,l,m − λκb33δ
2
x3u

i
j,l,m,

(14)

where uij,l,m is the trivariate density evaluated at x1,j , x2,l, x3,m. Allowing for

convective terms (as in our empirical application below) could be accommodated

by adding the �nite di�erence approximations of the drift terms as described in

section 4.2. Setting λ ≥ 2/3 should guarantee unconditional stability for the case

of a pure di�usion as well as with linear convective terms added.

Table 3 exhibits the results for a selection of sets of parameter values. While

we have kept the variances unchanged, the correlations cover a range of possibili-

ties (note that positivity of the covariance matrix restricts the number of possible

combinations). Results are overall supportive, but also show some surprising fea-

tures. Again, we can compare our numerical results with those from exact ML as

the transient density of this simple process is, of course, given by a trivariate Nor-

mal distribution. The �rst surprising feature of Table 3 is that we see a hierarchy

of parameters: while σ1, σ2 and ρ12 tend to be estimated as accurately under the

numerical scheme as with EML, results for σ3, ρ23 and ρ13 show somewhat larger

variations. In particular, the later show a small bias that does not seem to vanish

with increasing T , and higher FFSE and RMSE than the former. Furthermore,

while the �rst set of parameters appears to be estimated with
√
T consistency,

the errors of the second set of parameters appear to decrease more slowly. Closer

inspection reveals some of the potential reasons for this behavior. In particular,

while the �rst three parameters have MC distributions that are well-approximated

by a Normal distribution, the others have more asymmetric distributions with a

long tail on one side. For instance, for the �rst set of parameters, σ3 is right-

skewed while ρ23 and ρ13 have a heavy left tail. Furthermore, the deviation of σ3,

on the one hand, and ρ23 and ρ13, on the other hand, are negatively correlated.

This speaks for some sort of near-collinearity of these variables. Our conjecture is

that the elimination of the mixed term from the auxiliary steps of the MK scheme

might be responsible for this distortion. It might, therefore, be worthwhile to also

experiment with alternative schemes that also take into account the in�uence of
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the mixed term beyond the �rst fractional step. It is, however, also worthwhile

to mention that the correlations are estimated with about the same precision un-

der the numerical ML scheme as with EML. The only parameter where a certain

inferiority of the numerical approach shows up consistently, is σ3.

Table 3 about here

6 An Empirical Application

Since despite certain problems, the numerical schemes get typically very close

to EML estimation results, we feel encouraged to proceed with an empirical ap-

plication. For an illustration of our methodology we revisit the data investi-

gated by Lux (2012). In this paper, various versions of a continuous-time asset

pricing model are estimated using weekly short-and medium run sentiment data

obtained from animusX-Investor sentiment (http://animusX.de) together with

German DAX data at the same frequency. Lux (2012) has modeled the dynamics

of both sentiment indices by a opinion formation process leading to a highly non-

linear bivariate di�usion. The price dynamics were assumed to follow a Wiener

process with a drift term depending on sentiment. One drawback of the opinion

dynamics studied in this paper was that it could not easily accommodate mixed

derivatives in the di�usion term (as the later was already highly nonlinear it-

self). It turned out that the estimation resulted in some ambiguity concerning

the signi�cance of short-run and medium-run sentiment in the drift of the price

equation. It was conjectured that such an ambiguity might have been due to

the negligence of mixed derivatives which could have been absorbed by the drift

function. Our more general setting con�rms that this could indeed have been

the case. Denoting by xt short-run sentiment, yt medium-run sentiment and pt

weekly DAX notations, our estimated trivariate model is:

dxt =
(
a1 + a2xt + a3x

2
t + a4x

3
t + c1yt + c2∆pt

)
dt+ σxdW1,

dyt =
(
b1 + b2yt + b3y

2
t + b4y

3
t + d1xt + d2∆pt

)
dt+ σydW2,

dpt = e0 + e1xt + e2yt + σpdW3,

(15)

withW1, W2, W3 scalar Wiener processes with correlations ρxy, ρyp, and ρxp, and

∆pt denoting the price change between unit time steps: ∆pt = pt−pt−1. Tables 4

to 7 exhibit parameter estimates �rst for restricted bivariate models for each set
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of two of our variables (with all reference to the third deleted) as well as �nally

of the complete trivariate model. The data used for estimation are the �rst 150

observations of the animusX data starting in the 29th calender week of 2004 plus

the pertinent DAX entries.

Tables 4 to 6 show the full bivariate models with estimates of all relevant pa-

rameters as well as reduced models obtained after a model reduction exercise.

For the later, various sub-models have been estimated and the one with the low-

est Akaike information criterion (AIC) has been retained to identify the set of

signi�cant parameters. To highlight the relevance of the mixed derivative, the

reduced model has been re-estimated also without a covariance term. As we can

see, the various models unambiguously support bimodality of xt (short-run sen-

timent) which might be explained by speculative exuberance, and unimodality of

yt (medium-run sentiment). We �nd that there is a consistent in�uence from yt

on xt but not vice versa (in harmony with Lux, 2011, 2012). Covariances appear

indispensable in all cases. Most importantly, only yt seemed to have an in�uence

on prices while xt dropped out consistently for the price equation in the model

reduction exercise.

These features are fully con�rmed in the estimation of the trivariate model (cf.

Table 7). For brevity, we only report those parameters that remained signi�cant in

a more parsimonious model under the AIC criterion (model I) as well as restricted

models in which each one of the covariances has been set to zero (models II through

IV). While Lux (2012) found a crucial inconsistency between his bivariate and

trivariate models concerning the determinants of price drift, the present results are

mutually consistent: while xt has the more interesting dynamics, it seems rather

autistic and does not drive prices but rather is driven itself by yt. In contrast, yt

exerts a signi�cant in�uence on subsequent returns both in the bivariate (Table

4) and the trivariate (Table 6) estimation exercises. This is also in harmony with

the �ndings for a purely statistical discrete-time vector autoregressive model (Lux,

2011).

Similarly as Lux (2012), we use the estimated model to forecast prices out-

of-sample. The out-of-sample period covers 192 observations from mid 2007 to

January 2011. Table 8 shows root mean-squared errors (RMSEs) of single week

and cumulative returns for horizons from one to eight weeks. As can be seen, our

forecasts provide a signi�cant improvement against the random walk benchmark

at longer horizons, while the model investigated in Lux (2012) was unable to

beat a pure random walk at any horizon. Apparently, the consideration of mixed

derivatives has improved performance against the restricted (and somewhat dif-
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ferent) framework explored before. While the mixed terms would, of course, not

provide forecasting power per se, their inclusion in the model may have prevented

us from confounding correlation in innovations with causal dependencies in the

drift term. Note that restricting covariances to zero is often re�ected in larger

changes of cross-dependencies in the drift term than in other parameters. This

highlights a certain danger of erroneously attributing correlation of innovations

to causal dependency if the former is not explicitely included in the model.

Tables 4 through 8 about here

7 Conclusion

Expanding a previous line of research initiated by Poulsen (1999) and Hurn et

al. (2009, 2010) we have explored the potential of numerical approximations of the

Fokker-Planck equation for maximum likelihood estimation of discretely sampled

di�usions. We have pointed out certain requirements like positivity and stability

that should be satis�ed by numerical schemes to be applied in this context. Monte

Carlo simulations of di�erent alternating direction �nite di�erence schemes for bi-

variate and trivariate series showed very promising results often undistinguishable

from the performance of exact maximum likelihood on the base of a closed form

solution of the transient density. Even known de�ciencies like negative dents for

high values of the mixed derivatives proved to cause no harm to the estimates

under a hands-on elimination of problematic entries. Our empirical application

suggests that a full-�etched multivariate system of di�erential equations might

capture both causal relationships between variables as well as correlation in in-

novations and could, thereby, reveal a rich spectrum of co-evolutionary dynamics

of the quantities of interest. Since we have only been experimenting with a lim-

ited range of possible �nite di�erence schemes, there is ample scope for further

work. In particular, our mixed results for the precision of estimates of di�erent

parameters in the trivariate case might suggest to use a more symmetric scheme

than the one proposed by McKee et al. (1996) that has a somewhat preferential

treatment of the �rst space dimension. Given potential instability of a range of

alternative schemes (which has not been encountered in all our examples), the

e�ect of upwinding for numerical stabilization on parameter estimates might also

be investigated. Indeed, where results on the precision of a certain scheme are not

available, our parameter estimation exercise might shed light on its performance

and possible distortions it could give rise to.
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Note: The table reports the statistics of 200 Monte Carlo runs of each parameter

set with sample sizes T = 200 and T = 500. Discrete observations have been

extracted at time intervals ∆t = 1/12. For the numerical approximations to

the likelihood function: the ADI method of McKee et al. has been used with

grid increments κ = 1/144 for the time dimension. For the space dimensions

the number of grid points has been kept �xed at Nx = Ny = 50, but for the

the grid borders some �exibility has been allowed: a grid symmetric about 0 has

been chosen with xmax and ymax the next higher multiples of 0.1 larger than the

maximum of the series of absolute observations of a simulation and xmin = −xmax,
ymin = −ymax. Note that the time scale of the discretely sampled data (with

∆t = 1/12 rather than ∆t = 1 as in the bivariate and trivariate di�usions of

Tables 1 and 3) is determined by the intrinsic time scale of the drift terms.
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Table 4: Parameter Estimates for Bivariate Model of Medium-Run Sentiment and

Prices

M-Sent and Prices

Param. Model I Model II Model III

b1 0.004
(0.017)

b2 -0.331 -0.316 -0.099
(0.157) (0.121) (0.055)

b3 0.029
(0.905)

b4 -0.009
(2.774)

d2 0.001 0.001 -0.001
(0.000) (0.000) (0.000)

e0 17.072 17.075 13.164
(12.983) (8.409) (11.265)

e2 174.413 174.413 175.340
(123.409) (105.237) (101.045)

σy 0.126 0.127 0.082
(0.017) (0.015) (0.006)

σp 110.490 110.490 105.029
(5.010) (4.768) (5.256)

ρyp -0.785 -0.797
(0.091) (0.073)

lkl -1109.042 -1109.163 -1115.610

AIC 2238.084 2232.327 2243.220

BIC 2268.124 2253.355 2261.243

Note: The model has been estimated via numerical approximation of the transient

density with a time increment of κ = 1/12 and Ny = Np = 100 equidistant space

increments in both dimensions. Standard errors of estimated parameters are given

in parentheses.
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Table 5: Parameter Estimates for Bivariate Model of Short-Run Sentiment and

Prices

S-Sent and Prices

Param. Model I Model II Model III

a1 0.091 0.106 0.057
(0.045) (0.052) (0.025)

a2 -0.328
(0.168)

a3 -0.093
(0.176)

a4 -1.595 -2.260 -3.017
(0.538) (0.290) (0.271)

c2 0.006 0.002 0.007
(0.001) (0.001) (0.000)

e0 34.519 27.188 26.320
(14.622) (12.252) (11.162)

e1 -44.070
(49.470)

σx 0.127 0.354 0.114
(0.058) (0.047) (0.035)

σp 110.646 106.088 104.291
(6.620) (5.014) (4.731)

ρxp 0.512 0.827
(0.178) (0.069)

lkl -1122.277 -1122.117 -1126.326

AIC 2264.554 2258.234 2264.652

BIC 2294.593 2279.261 2282.675

Note: The model has been estimated via numerical approximation of the transient

density with a time increment of κ = 1/12 and Nx = Np = 100 equidistant space

increments in both dimensions. Standard errors of estimated parameters are given

in parentheses.
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Table 6: Parameter Estimates for Interaction of Short-Run and Medium-Run

Sentiment

S-Sent and M-Sent

Param. Model I Model II Model III

a1 0.162 0.132 0.176
(0.131) (0.076) (0.086)

a2 1.249 1.284 1.285
(0.963) (0.944) (0.896)

a3 -0.375
(0.890)

a4 -7.399 -7.877 -7.751
(4.391) (4.209) (3.999)

c1 1.331 1.308 0.579
(0.644) (0.621) (0.470)

b1 0.017 0.017 0.017
(0.016) (0.011) (0.011)

b2 -0.294 -0.236 -0.233
(0.109) (0.068) (0.065)

b3 0.173
(1.040)

b4 0.427
(2.603)

d1 -0.011
(0.045)

σx 0.522 0.524 0.513
(0.099) (0.089) (0.086)

σy 0.095 0.095 0.095
(0.008) (0.007) (0.007)

ρxy -0.440 -0.444
(0.097) (0.080)

lkl -1152.817 -1153.457 -1162.595

AIC 2331.633 2324.915 2341.191

BIC 2370.685 2351.950 2365.222

Note: The model has been estimated via numerical approximation of the transient

density with a time increment of κ = 1/12 and Nx = Ny = 100 equidistant space

increments in both dimensions. Standard errors of estimated parameters are given

in parentheses.
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Table 7: Parameter Estimates for Trivariate Model of Short-Run Sentiment,

Medium-Run Sentiment and Prices

S-Sent, M-Sent and Prices

Param. Model I Model II Model III Model IV

a4 -2.605 -2.959 -2.736 -2.725
(0.290) (0.281) (0.298) ()

c1 0.869 0.723 0.375 0.407
(0.345) (0.216) (0.175) ()

c2 0.003 0.003 0.006 0.007
(0.001) (0.001) (0.001) ()

b1 0.024 0.018 0.024 0.021
(0.011) (0.010) (0.010) ()

b2 -0.248 -0.257 -0.250 -0.225
(0.079) (0.072) (0.068) ()

e2 236.772 138.077 223.465 203.201
(84.296) (72.894) (67.991) ()

σx 0.317 0.288 0.183 0.047
(0.041) (0.036) (0.043) ()

σy 0.099 0.098 0.096 0.092
(0.009) (0.0070) (0.007) ()

σp 107.102 106.311 104.198 102.984
(5.602) (6.332) (6.068) ()

ρxy -0.309 -0.040 -0.195
(0.062) (0.065) ()

ρyp -0.416 -0.342 -0.378
(0.058) (0.071) ()

ρxp 0.769 0.797 0.267
(0.074) (0.053) (0.198)

lkl -1196.146 -1369.984 -1266.590 -1327.501

AIC 2416.293 2761.968 2555.180 2677.001

BIC 2452.340 2795.012 2588.224 2710.045

Note: The model has been estimated via numerical estimation of the transient

density with a time increment of κ = 1/8 and Nx = Ny = Np = 50 equidistant

space increments in all three dimensions. Standard errors of estimated parameters

are given in parentheses. Since the covariance matrix of the parameters failed to

invert, no standard errors could be obtained for model IV.
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Table 8: RMSEs of Out-of-Sample Forecasts from Trivariate Model

horiz. single period cumulative returns

1 1.003 1.003

2 0.993 0.993

3 0.997 0.991∗

4 0.988∗ 0.973∗

5 0.992∗ 0.960∗∗

6 0.994 0.955∗∗

7 0.990∗ 0.945∗∗

8 0.993∗ 0.939∗∗

Note: The table shows relative root mean-squared errors (RMSEs) of single period

and cumulative forecasts of DAX returns from the trivariate model (i.e. model

I of Table 7) for single and cumulative forecasts over horizons ranging from one

to eight weeks. Relative RMSEs have been obtained by dividing the original

RMSE by that of Brownian motion with drift as benchmark. ∗ and ∗∗ denote

signi�cantly better predictive capability of the trivariate di�usion against the

Brownian benchmark at the 95 and 99 percent signi�cance level, respectively,

under the Diebold-Mariano test for forecast comparison of nested models.

37


