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Fund Managers—Why the Best Might Be the Worst: 
On the Evolutionary Vigor of Risk-Seeking Behavior 

Björn-Christopher Witte 
University of Bamberg 

Abstract   This article explores the influence of competitive conditions on the evolutionary 
fitness of different risk preferences. As a practical example, the professional competition 
between fund managers is considered. To explore how different settings of competition param-
eters, the exclusion rate and the exclusion interval, affect individual investment behavior, an 
evolutionary model is developed. Using a simple genetic algorithm, two attributes of virtual 
fund managers evolve: the share of capital invested in a risky asset and the amount of excessive 
risk accepted, where a positive value of the latter parameter points to an inefficient investment 
portfolio. The simulation experiments illustrate that the influence of competitive conditions on 
investment behavior and attitudes towards risk is significant. What is alarming is that intense 
competitive pressure generates risk-seeking behavior and undermines the predominance of the 
most skilled. In these conditions, evolution does not necessarily select managers with efficient 
portfolios. These results underline the institutional need for the creation of a competitive 
framework in which risk-taking does not provide an evolutionary advantage per se, and 
indicate measures on how to achieve this. 
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1 Introduction 

Evolutionary selection leads to the predominance of the fittest. However, it is not 
always clear from the very beginning what the fittest behavior will be. This also 
applies to the field of economics. 

Of course, economics does not refer to evolution in the original sense of the 
reproduction of the superior and genetic progress between generations. Rather, we 
assume that selection is conducted by market competition rewarding the best with 
economic wealth and driving the worst into bankruptcy. To give an example, 
Milton Friedman (1953, p.23) stated that profit maximization is an “appropriate 
summary” of the conditions of survival, delivering an exemplar for the assumption 
that competition would favor agents who behave optimally, or rationally, from the 
angle of economic theory. Today, there is a myriad of studies, many using 
modeling techniques, which provide strong evidence that this assumption is 
sometimes misleading. Schaffer (1989), for instance, shows that Friedman’s 
proposition is not valid, if deviating from profit maximization is less harmful for 
the firm considered than for its contenders. 

The present study is related to the class of evolutionary models in which agents 
are represented by financial traders and ways of behavior are typically trading 
strategies. To provide a brief overview, models in this field can be classified into 
two groups. The first one has been described by Hommes (2001) as adaptive belief 
systems (ABS). ABS formed by boundedly rational traders having different 
expectations about the future. Traders select strategies with reference to the utility 
generated by the rules in the past. Typically, utility is measured by the realized net 
or risk-adjusted profits produced. Evolution is reflected in the change of fractions 
of beliefs or strategies in the population of traders. Normally, these strategies are 
either based on technical or fundamental analysis. One of the most important 
insights provided by ABS is that under certain conditions, apparently irrational 
noise traders are able to survive evolutionary competition and attain similar profits 
as fundamentalists, as demonstrated by Brock and Hommes (1998), DeLong et al. 
(1990, 1991), and Hommes (2001). 

Whereas ABS use to be simulation models, a second group of studies follows a 
purely analytical approach. Taking a more Darwinian perspective, these studies 
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evaluate the evolutionary fitness of a strategy in terms of its ability to survive 
market selection in the long run. In Blume and Easley (1992), for instance, this 
ability is determined by the expected growth rates of the wealth share. Based on 
this criterion, the authors develop a general equilibrium model of a dynamically 
complete asset market, in which prices are formed endogenously and the set of 
strategies available is constant. It is found that, contrary to the common belief, the 
market does not necessarily select investors with rational expectations. Evstigneev 
et al. (2002) confirm this result for incomplete markets, and Amir et al. (2005) 
explore its conditions for general strategies. In contrast, Sandroni (2000) illustrates 
that rational expectations do prevail if the intertemporal discount factor is equal 
among agents. The heterogeneity of findings is dissolved by Blume and Easley 
(2006) who show that for any Pareto-optimal allocation, the selection for or 
against rational expectations is determined entirely by discount factors and beliefs.  

The present article deals with one aspect of behavior which has been vastly 
ignored in the field of studies described above: differences in risk preferences.1 
Risk preferences are relevant if decisions are to be made under uncertainty, that is, 
when agents know merely the probabilities of the possible consequences of an 
action. A large body of experimental evidence has led to the notion that human 
beings behave in a risk-averse manner (at least when the situation of decision 
making is about the realization of monetary gains), that is, they prefer to get a 
definite payoff towards a lottery with an expectation equal to this payoff (Allais 
1953; Arrow 1971; Kahneman and Tversky 1979). Economic modelers adopt this 
finding by using CARA (Constant Absolute Risk Aversion) or CRRA (Constant 
Relative Risk Aversion) utility functions. Others assume agents to be risk neutral, 
meaning that they simply seek to maximize expected payoffs. Risk-seeking 
behavior, however, is usually excluded from consideration. 

With regards to the subprime crisis, the exclusion of risk-seeing behavior is not 
easy to justify. Hoping for supreme returns, professional investors deposited huge 

_________________________ 

1 The interest of such questions, however, is noted relatively early. In his eponymous study on “some 
elementary selection processes in economics”, M.J. Farrell (1970) develops two abstract probabilistic 
models of an evolutionary asset market and finds that “a large group of inept speculator will always 
be present”. Having regard to future research, he remarks: “Also interesting, […], is to allow the 
variance of the probability distribution of the outcome of the gamble to vary independently from 
expected return and so permit a comparison of the effects of selection on risk-seekers and risk-
averters.” 
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amounts of capital in assets whose fundamental value was far exceeded, and 
appeared not to avoid risk at all. How can that be? The finding that human beings 
behave in a risk-averse manner depends on the condition that the individuals’ goal 
is to maximize their own utility. However, when being in competition with each 
other, the criterion of selection is not necessarily individual utility but the payoff 
per se may be crucial for survival. As a result, risk-seeking behavior should not be 
excluded ex ante, and we should assume that it is adopted whenever it provides a 
competitive advantage. 

Previous research has already delivered several insights on the emergence of 
different risk-preferences in evolutionary environments. In one of the earliest 
contributions, Rubin and Paul Il (1979) present a simple, static model in which the 
goal of individuals is to achieve some threshold income, which is interpreted as the 
creation of offspring. Rubin and Paul Il argue that, if the functional dependency 
between evolutionary fitness and individual income is non-linear, maximizing the 
probability to meet the threshold can lead to a different behavior than maximizing 
expected income. In particular, if the population is already dense, youngsters are 
inclined to accept gambles, which might even be unfair. 

Robson (1992) assumes individual utility to directly depend on wealth (in a 
concave fashion) as well as on status, that is, the rank of one individual relative to 
others (in a convex fashion). Like in Rubin and Paul Il (1979), this implies a non-
linear utility function like the convex-concave-convex function discussed in 
Friedman and Savage (1948). Robson shows that in this setup, individuals may 
purchase insurance and gamble at the same time. This effect appears if increasing 
wealth leads to a greater boost of status than losing wealth causes a drawback.  

Robson (1996) elaborates another refinement of Rubin and Paul Il (1979) with 
polygyny. In his model, the threshold is derived from the behavior of females 
choosing men depending on their wealth. As multiple men are chosen, thresholds 
arise repeatedly, which produces discontinuities in the fitness function of men. 
Although the payoff function of men implies risk-aversion, it is shown that risk-
taking behavior – the acceptance of fair bets – may emerge with arbitrary 
extension. 

The observation that risk-taking behavior may improve individual chances to 
survive has coined the term of “gambling for redemption”. Malone (2011) sets this 
problem in the context of the fear of unemployment. In his model, he assumes a 
politician who is faced with the possibility of a sovereign default. It is shown that 
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under some conditions politicians are inclined to gamble by initiating policies 
which increase the variance of outcomes but may decrease the outcome 
expectation. The conditions are: (i) Default increases the probability of a job loss, 
and (ii) the rents from the job rise with the output of policies whereas in case of a 
default a minimum rent is paid which is independent from the magnitude of the 
default. In combination, (i) and (ii) create a convex utility-function, similar to 
Robson (1992, 1996). 

Gambling for redemption has also been tackled by financial research. Kareken 
and Wallace (1978) or Diamond and Dybvig (1986), for example, argue that 
deposit guarantees generate incentives for risk-taking behavior of one asset-owner, 
which is potentially harmful for other share-owners. Again, this result is obtained 
by a convexity of the individual payoff-function. 

The emergence of risk-taking behavior in the models above stems from the 
fact that achieving some extra income may produce a jump in utility, which is 
survival or reproduction, whereas there is “little to lose”. In this sense, taking risks 
per se is rational under some conditions. In contrast, Dekel and Scotchmer (1992) 
illustrate that evolutionary competition does not necessarily favor rational agents. 
Their model follows a game-theoretical approach, and evolution is based on the 
well-known replicator dynamics. The analysis shows that the evolutionary 
outcome is sensitive to what is inheritable. In particular, if players can only inherit 
pure strategies, strategies that are never a best reply can persist.2  We may 
conclude that rationality might not be a necessary condition for the survival of 
risk-seeking behavior. 

In the present study, the evolutionary fitness of different risk-preferences is 
investigated by agent-based modeling. Essentially, this leads to a highly dynamic 
model. A difference to most analytical models is that the threshold income 
emerges model-endogenously. This allows a complex interplay between the 
individual behavior towards risk and the outcome needed to survive. One goal is to 
check if individuals behave as predicted by traditional models, or if the agent-
based approach can uncover other relevant phenomena.   

_________________________ 

2 Jones (2001) points out that in reality, irrational behavior might also be a temporal phenomenon, 
which is “the product of a mismatch between the environment in which the brain evolved and the 
environment in which the brain now must operate”. 
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The article is divided into two major parts. The first part (section two) 
represents an abstract, theoretical reflection about the evolutionary potential of 
risk-seeking behavior. In the second part (section three), we present a practical 
example of a competitive scenario in which risk-preferences play a central role: 
the competition among fund managers. To explore this scenario, we construct an 
evolutionary model, in which agents differ in terms of the risk-return profile of 
their asset portfolio. Competitive pressure is created by exclusions of the worst 
performing managers. The discards are then replaced by newcomers, whose 
investment behavior results from a genetic algorithm. Competition parameters are 
the interval in which exclusions take place and the share of agents to be excluded. 
Specific research questions are: 

• Will evolutionary competition always lead to the prevalence of agents with 
efficient portfolios? 

• Which portfolios will be fittest under different settings of the competition 
parameters?  

Our experiments show that agents tend to build conservative but efficient 
portfolios if the exclusion rate is low. Agents’ risk-aversion becomes less if the 
exclusion rate rises, and/or if the exclusion interval is prolonged. Notably, if the 
exclusion rate is high and the exclusion interval is low, agents completely deviate 
from risk-averse behavior but take great risks, although the additional risk does not 
improve the expected return of their portfolios. Under these competitive 
conditions, even agents with inefficient portfolios can survive. These results are 
alarming as they suggest that intense competitive pressure triggers the acceptance 
of excessive risk and undermines the prevalence of the most skilled. 

2 A theoretical view on the evolutionary advantage of risk-
seeking behavior 

The rational choice between several actions implies the evaluation of the 
consequences of the alternatives. In reality, however, individuals usually do not 
know which consequence an action will have but estimate probabilities about the 
likelihood of a certain outcome – the decision has to be made “under uncertainty”. 
Decisions under uncertainty are frequent in economic contexts. Calculating the 
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profitability of a potential investment, for example, requires information about the 
future development of revenues, interest-rates, prices etc. Yet, as respective 
predictions may be subject to error, the present value of the investment cannot be 
identified definitely. Nevertheless, existing information can be used to establish a 
set of possible outcomes and to assign probabilities to each of them. If the set of 
outcomes is continuous (instead of discrete), the probability distribution over this 
set is often assumed to follow a normal distribution. The latter applies, for 
instance, for the future return of asset portfolios (Markowitz 1952, 1959).3 
Figure 1 shows the probability density functions of two normal distributions 
(profile 1 and 2). The curves may be interpreted as the payoff profiles of two ways 
of behavior, or more specifically, of two asset portfolios. The profiles differ in 
terms of the expected payoff, μ, and the payoff variance, ߪଶ. Obviously, economic 
theory would predict that individuals strongly prefer profile 1 towards 2, because 1 
affords the better expected payoff (ߤଵ ൐ ଵߪ) ଶ) at the lower varianceߤ

ଶ ൏ ଶߪ
ଶ), and 

subjects are commonly assumed to be risk-averse or risk-neutral. Adopting the 
latter assumption, portfolio theory (Markowitz 1952, 1959) distinguishes between 
efficient and inefficient portfolios. Profile 2 represent an inefficient portfolio, 
defined as any composition of assets for which there exists an alternative one 
which offers a better expected payoff without implying a greater payoff variance 
(here: profile 1). 
 

 

Figure 1: Probability density functions of two alternative behaviors 
 

_________________________ 

3 Although this is a simplification because financial dynamics reveal power-law behavior which 
leads to heavier tails of the return distribution than predicted by the normal distribution [15]. 
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From the angle of economic theory, the attractiveness of profile 1 towards 2 
seems, therefore, to be evident. From the perspective of evolutionary game theory 
(Weibull 1997), however, ranking the alternatives is more ambiguous. The reason 
is that in this theory, ways of behavior are not evaluated through the individual 
utility produced but through their ability to generate an outcome which assures 
survival. The degree to which a certain behavior improves survivability is called 
evolutionary fitness. The credo is that the fittest strategies will tend to dominate in 
the long-run as rivals die out sooner or later. Therefore, if individuals are in 
competition with each other, the fittest strategy must be established. 
Figure 1 indicates that this strategy cannot be identified uniquely. Rather, the 
evolutionary fitness of both profiles depends on the precise payoff needed to 
survive and, thus, on competitive conditions. This argument can be illustrated 
formally as follows: With k being the threshold outcome needed to survive, the 
evolutionary fitness, F, of some behavior ߙ, can be written as: 

ఈሺ݇ሻܨ ൌ ׬ ఈܨܦܲ
ஶ
௫ୀ௞ ሺݔሻ (1) 

Based on this principle, some behavior ߙ is fitter than any alternative behavior 
 .offers a higher probability to attain an outcome greater than k ߙ if and only if ߚ
Formally: 

	ߙ ≫ ߚ	 ↔ ఈሺ݇ሻܨ ൐  ఉሺ݇ሻ (2)ܨ

where “≫” should be read as “dominates”, in the sense of “fitter as”.  
For any ݇ with ݇ ൏ 	ܽ, it is easy to see that ׬ ଵܨܦܲ

௫ୀ௞
ିஶ

ሺݔሻ ൏ ׬ ଶܨܦܲ
௫ୀ௞
ିஶ

ሺݔሻ 
and, thus, ׬ ଵܨܦܲ

ାஶ
௫ୀ௞

ሺݔሻ ൐ ׬ ଶܨܦܲ
ାஶ
௫ୀ௞

ሺݔሻ. In other words, whenever preventing 
relatively bad outcomes (equal or smaller than a) is sufficient for survival, profile 
1 strictly dominates 2.  

In contrast, for any ݇ ൐ 	ܾ, it can be seen that ׬ ଵܨܦܲ
ାஶ
௫ୀ௞

ሺݔሻ ൏ ׬ ଶܨܦܲ
ାஶ
௫ୀ௞

ሺݔሻ. 
Accordingly, if survival requires large outcomes, profile 2 provides the better 
fitness.  

The considerations above are kept as simple as possible but convey an 
important message: A strategy which is worse than another with regards to its 
expected outcome but equipped with larger outcome variance may still be 
prevalent in a competitive environment if competitive conditions are appropriate. 
Proposition 1 takes this insight onto a more general level. 
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Proposition 1: Assume two behaviors, 1 and 2, whose outcomes are distributed 
normally with means ݑଵ and ݑଶ and variances ߪଵ

ଶ and ߪଶ
ଶ. Furthermore, assume 

that ݑଵ 	൐ ,ଵݑଶ with ሼݑ	 ଶሽݑ ∈ ሿെ∞;൅∞ሾ	 and ߪଵ
ଶ ൏ ଶߪ

ଶ. Then, for any setting of 
൛ݑଵ,ݑଶ, ଵߪ

ଶ, ଶߪ
ଶ	ൟ complying with the above conditions, there is some threshold 

payoff k for which behavior 2 dominates 1 according to definition (2). (Proof in 
appendix) 

Proposition 1 has a meaningful implication for the selection among agents. 
Why? Maximizing outcome expectation at a given outcome variance requires 
knowledge, skill, or other abilities. Portfolio theory, for example, teaches the 
theoretical knowledge to maximize expected return on investment at a given risk 
through intelligent composition of assets. To increase outcome variance at a given 
expectation, however, such abilities are not essential. Taking risks, respectively 
gambling, is sufficient. Against this background, proposition 1 can be read as 
follows. Under the assumption that undertaking risks increases the probability of 
attaining extreme outcomes, any less capable group can succeed in competition 
with a higher capable group if it undertakes enough risk and if the outcome needed 
to survive is sufficiently high. In respective scenarios, risk-seeking behavior per se 
provides evolutionary fitness.  

The evolutionary model presented in the next section aims at sharpening our 
understanding about how such competitive scenarios may arise in practice, and 
how the outcome needed to survive can result endogenously from competitive 
conditions. The insights gained in this section will be helpful to interpret the 
simulation results obtained.  

3 Example: An abstract model of the competition among 
fund managers 

This section highlights an evolutionary model of the professional competition 
among fund managers. This practical example is appropriate as it fulfills two 
important conditions: (i) Agents compete with each other through the outcome 
generated by their behavior, and (ii) risk-preferences are a crucial determinant of 
this behavior. Section 3.1 introduces the model, Section 3.2 describes the setup of 
the simulation experiments, and Section 3.3 presents the simulation results.  
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3.1 The model 

The competition among fund managers has been sketched recently by N.N. Thaleb 
(2001). The author, himself a fund manager for several years, indicates that 
fluctuation in the profession is large. Professional status is highly dependent on the 
profitability of the managers’ investments and changes quickly. In particular, 
unsuccessful managers are dismissed rapidly, no matter if their failing was due to 
chance or lack of skill. Empirical studies confirming and extending these insights 
include Chevalier and Ellison (1999a,b), Golec (1996), and Khorana (1996). 
Chevalier and Ellison (1999a) and Golec (1996), for instance, report that 
differences of the performance and the risk involved between mutual funds can be 
attributed to the behavior and different characteristics of the individual managers. 
Khorana (1996) shows that manager performance, which is either measured in 
terms of the adjusted asset growth rates or in terms of fund portfolio returns, is 
indeed used as selection criterion since “there is an inverse relation between the 
managerial performance and fund performance”. Finally, Chevalier and Ellison 
(1999b) delivers evidence that managers react to the resulting competitive pressure 
by adjusting their investment behavior, and more specifically, their attitude 
towards risk. For example, young managers are found to hold more conservative 
portfolios since they are more likely to be replaced when performing badly.  

In the following, a model which replicates the real competition in a stylized 
fashion will be introduced. As its principle, the approach rests on agent-based 
modeling. Agent-based modeling is the reproduction of complex systems through 
the formulation of specific assumptions about the behavior of agents and their 
interaction. The collective volumes by Rosser (2009) and Tesfatsion and Judd 
(2006) demonstrate the potential of this method for the analysis of social and 
financial systems. Note that our model is not meant to be a precise reproduction 
of reality but to uncover emergent phenomena on a general level and in a tractable 
framework. For a better overview, the framework will be described in three parts: 
(i) the investment logic, (ii) the selection mechanism, and (iii) the genetic 
algorithm, with (ii) and (iii) representing characteristic elements of an evolutionary 
model.  

(i) Investment Logic: 

The investment logic can be summarized by the following rules:  
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(1) Each agent i disposes of some amount of capital at some period t, denoted by 
  .௜,௧ is invested into two classes of assets: a riskless and a risky oneܥ .௜,௧ܥ

(2) Assets of the riskless class offer a constant, real return, ߤ௅. The real return 
produced by risky assets follows a normal distribution with mean ߤோ and 
variance ߪோ

ଶ, with ߤோ ൐ ோߪ ௅, andߤ
ଶ ൐ 0. 

(3) The share of capital invested in the risky asset by agent i is expressed by ݏ௜. 
-௜, reflects greater riskݏ ௜ is a mirror of i’s degree of risk-aversion: A lowerݏ
aversion, as i is willing to forego more payoff on average for the purpose of 
a lower likelihood of extremely bad payoffs.  

(4) Furthermore, agents can undertake additional risk, denoted by ߜ. The 
additional risk of the portfolio of agent i, ߜ௜, increases the variance of the 
portfolio without improving the expected return.  

(5) Portfolios pay-off in every period t, and the pay-off generated is reinvested 
instantly. Consequently, the evolution of capital results as: 

௜,௧ାଵܥ ൌ ሺ1 ൅ ݃௜,௧ሻܥ௜,௧, ௜,௧݃	݄ݐ݅ݓ ∈ ܰሺߤ௜, ௜ߪ
ଶሻ	, (3) 

where ݃௜,௧ stands for the real return of i’s portfolio in period t; ߤ௜ is the 
expected return and ߪ௜

ଶ the variance of i’s portfolio. Returns ݃௜,௧ are assumed 
to be independent between agents.   

The investment logic defined above is fairly simple but allows a large range of 
portfolios. In accordance with portfolio theory, the portfolio of some agent i can be 
described by its expected payoff, ߤ௜, and the payoff variance, ߪ௜

ଶ. In our model, 
both values are determined by the two attributes of the respective agents: the share 
of capital invested in the risky asset, ݏ௜, and the amount of additional risk taken, ߜ௜. 
We get: 

௜ߤ ൌ ௜ݏ ∗ ோߤ ൅ ሺ1 െ  ௅ (4)ߤ௜ሻݏ

and 

௜ߪ
ଶ ൌ ௜ݏ ∗ ோߪ

ଶ ൅  ௜  (5)ߜ

Figure 2 illustrates the resulting set of possible portfolios in the common form 
of a risk-return diagram (Brealey and Myers 2003).  
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Figure 2: Risk-return diagram of portfolios possible. 

The diagram shows that, depending on the choice of ݏ௜ and ߜ௜, efficient as well 
as inefficient portfolios may occur. If ߜ௜ ൌ 0 (black line), an efficient portfolio 
results because, given the respective payoff variance, it is not possible to achieve a 
better return expectation. For any ߜ௜ ൐ 0 and ݏ௜ ൏ 1 (gray area), the portfolio is 
inefficient since a higher expected return could be attained at equal risk by 
increasing ݏ௜. This is not possible if ߜ௜ ൐ 0 and ݏ௜ ൌ 1 (gray line); hence, the 
portfolio is efficient. In principle, portfolios can be any in the gray area and on its 
borders (including the infinite, omitted range following on the right which 
corresponds to a further rise of ߜ௜). 

Let us conclude by a brief comment on the variable ߜ௜. Through ߜ௜, the model 
setup implies that the variance of the portfolio return can be raised arbitrarily. This 
may appear to be an unrealistic assumption. However, achieving greater outcome 
variance in reality requires little. Placing the raw investment payoff on bets with 
an expected return of zero is sufficient, technically. The analogue of the financial 
world would be investments in speculative assets with the chance for extreme 
returns but relatively poor expectation (e.g. so-called Junk Bonds). Choosing such 
assets, or respectively a positive value of ߜ௜, can be interpreted as risk-seeking 
behavior. On the other hand, if ߜ௜ ൐ 0 implies an inefficient portfolio, a positive ߜ௜ 
can be read as lack of skill: The agent could attain a better expectation at equal risk 
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but she has simply not learned the appropriate investment behavior. In other 
words, we interpret “skill” as the ability to build an efficient portfolio. 

(ii) Selection Mechanism: 

The selection mechanism, as one of the principal elements of an evolutionary 
model, is essential for the evolution of the population. For this purpose, the 
selection alternatives (here: different investment behaviors represented by the 
agents using them) are evaluated by a defined criterion, setting them in 
competition with each other. The better an alternative fulfills the target, the higher 
the likelihood of spreading instead of dying out.  

In the present model, selections are undertaken by an external entity, which 
can be interpreted as the employing company. The rules of selection are: 
(6) In constant intervals of time, the worst agents are excluded. The length of 

this interval is specified by the parameter v. Another parameter, r, specifies 
the precise percentile of agents to be excluded.  

(7) The selection criterion is the return achieved by agents i in the v periods 
preceding to t, denoted by g୧,୲,୴. Due to (3), this return is mirrored by the 
relative change of individual investment capital. g୧,୲,୴ can thus be written as: 

   ݃௜,௧,௩ ൌ ሺܥ௜,௧ െ  ௜,௧ି௩ (6)ܥ/௜,௧ି௩ሻܥ

With v and r, the selection mechanism described above has two parameters, 
where v represents the “exclusion interval” and r the “exclusion rate”. Each 
parameter has a distinct function for the competition among agents. The exclusion 
rate has a direct effect on competitive pressure. The higher r is, the more agents 
are excluded, and the greater the outcome needed to survive. The exclusion 
interval, on the other hand, constitutes agents’ “probation period”. The higher v is, 
the more time agents have to produce investment returns.  

Of course, we do not believe that promotions and exclusions in reality follow 
the rigorous mechanism described above. Instead, v and r should be regarded as a 
stylized representation of the probation time and the performance needed to be 
promoted. This design accounts for our general goal to keep the model simple and 
tractable.  
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(iii) The Genetic Algorithm: 

By specifying the set of agents to be excluded, the selection mechanism 
determines the outflow from the population. In contrast, the genetic algorithm 
relates to the inflow by establishing the character of agents entering the 
population.4  

Genetic algorithms, originated by J.H. Holland (1975), are learning methods 
which mimic the biological process of evolution. A genetic algorithm creates 
“candidate solutions” from a defined set of building blocks, which can be 
interpreted as genes. The construction of candidates is based on two genetic 
operators: crossover and mutation. Crossover is combining two candidate 
solutions, the “parents”, to create a new one. Then, some of the genes of the new 
code are modified slightly, which is denoted as mutation. Typically, the resulting 
candidate solutions are not preselected by a defined fitness criterion but prove their 
fitness in competition with each other.  

The technique has considerable advantages. The modeler must not define an 
initial set of candidates to be evaluated but merely their building blocks. 
Therefore, less previous knowledge about possible solutions is required. 
Furthermore, the search space usually becomes extremely large. Thus, the solution 
finally found is likely to beat the best one in the limited set of alternatives the 
modeler would propose himself (with the restriction that the set of potential 
solutions is limited by construction rules and building blocks). 

Due to these features, genetic algorithms have proven to be a successful tool in 
many economic models – Safarzyńska and van den Bergh (2010) review some of 
them with focus on the modeling techniques used. Goals of application are in 
particular the derivation of optimal rules of trading and investment, as conducted 
by Lensberg (1999), Lensberg and Schenk-Hoppe (2007), Letteau (1997), Neely et 
al. (1997) and Potvin et al. (2004). Hauser and Kaempff (2011) represent a recent 
contribution from the Journal of Evolutionary Economics. A study which is related 
to the present one quite closely is Letteau (1997). Like in the present study, 
Letteau’s agents build a portfolio by choosing the share of capital, s, to be invested 

_________________________ 

4 It is also common to interpret the selection mechanism as a part of the genetic algorithm. From that 
point of view, (iii) is equivalent to the “reproduction mechanism”. However, we do not adopt this 
view for the present model, because our selection mechanism could be implemented without genetic 
programming, and thus, does not contribute to the genetic feature of the model. 
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in a risky asset; to find the optimal value, ݏ∗, the genetic algorithm is used. 
However, in contrast to the present study, the focus is not on professional investors 
and their competition, but agents seek to maximize their own utility function. The 
latter follows the standard CARA design (ܷሺݓሻ ൌ െexpሺെߛ ∗  being ߛ ሻ), withݓ
the risk-aversion coefficient and ݓ the investment payoff), which excludes risk-
seeking behavior ex ante. The goal of the study is to explore if evolution will lead 
to the optimal solution ݏ∗ – the one which generates the greatest utility on average. 
(Analytically, ݏ∗ is easy to derive: ݏ∗ ൌ ሺߤோ െ ோߪߛ/ோሻ݌

ଶ, with ݌ோ being the price 
of the risky asset). The author finds that this result is actually reached if simulation 
time is long enough. For shorter horizons, however, the solutions tend to exceed 
 The reason for the latter finding is quite interesting: In the short term, agents .∗ݏ
holding large shares of risky assets can be lucky and achieve great utility. This 
creates a bias towards greater solutions for s than ݏ∗. The influence of chance 
tends to decrease if the period under observation is longer. In a different fashion, 
this phenomenon will also be observable in the present study.  

The implementation of the genetic algorithm in our model is relatively easy 
because agents are characterized by two attributes only: the share of capital 
invested in the risky asset, ݏ௜, and the amount of additional risk undertaken, ߜ௜. 
The algorithm can be outlined as follows: 

(8) The excluded agents are replaced by “newcomers”. The investment behavior 
of the newcomers is determined by a genetic algorithm. 

(9) Each newcomer has two genetic parents, who are randomly chosen survivors 
of the present selection.  

(10) Initially, each of the two attributes of the newcomer is adopted identically 
from a different parent. This leads to a temporary setting of attributes.  

(11) The final setting is reached by a slight, random alteration of one randomly 
chosen attribute of the temporary setting. 

In the algorithm described above, rule (10) reflects crossover, and (11) 
mutation. Together with (9), (10) guarantees that an investment behavior is more 
likely to spread, the more successful it has proven to be for the survival of 
competition. Rule (11) effects that virtually any investment behavior, that is, any 
combination of values of ݏ௜ and ߜ௜ can emerge. In other words, any of the 
portfolios marked in figure 2 is actually possible. Regarding the world of fund 
managers, “crossover” stands for a combination of existing investment strategies, 
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e.g. considering different rules for the selection of assets simultaneously. On the 
other hand, “mutation” refers to the invention of completely new selection rules.5  
In the following, the evolutionary model is used to explore two principal research 
questions:  

• Will evolutionary competition always lead to the prevalence of agents with 
efficient portfolios? Transferred to the model world: Will there be any agents 
with ߜ௜ ൐ 0 and ݏ௜ ൏ 1 at the simulation end? 

• Which investment behavior is most successful in competition under different 
competitive conditions? Transferred to the model world: Which values of ߜ௜ 
and ݏ௜ will have emerged under different settings of competition parameters, v 
and r? 

To answer these questions, simulation experiments are conducted, whose setup 
will be described in the following section.  

3.2 Simulation Setup 

The model calibration consists in the setting of six parameters: the three asset 
parameters, ߤோ, ߤ௅ and ߪோ

ଶ; the two competition parameters, v and r; and the size 
of the population, N. According to rule (2) in Section 3.2, the asset parameters are 
subject to the restrictions ߤோ ൐ ோߪ ௅, andߤ

ଶ ൐ 0. Complying with these restrictions, 
we set ߤோ ൌ ௅ߤ ,3% ൌ 0%, and ߪோ ൌ 5%. Judged by empirical data, this setting 
can be regarded as rather conservative. For example, in the time from 1950 to 
2009, the inflation adjusted total return per year produced by US large company 
stocks (S&P 500) was 9.68% on average with a standard deviation of 17.40%.6 
Thus, the risky asset in our model still has a less risky profile than respective 
equivalents in practice.7 The competition parameters, v and r, represent the 
_________________________ 

5 Of course, the Darwinian approach of evolution described here is not an accurate representation of 
the evolution of strategies in reality. This is evident by the fact that fund managers do not use to have 
two fund manager parents. What is important for our purpose is that the algorithm is capable of 
uncovering the fittest behavior. 
6 Data Sources: Ibbotson Associates (Nominal Total Return); Bureau of Labor Statistics (Inflation 
Rates).  
7 The reason not to adopt empirical data is that the empirical values vary largely relative to the time 
frame considered, as economic conditions are continuously changing. For example, between 1990 
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independent variables. The exclusion interval v is incremented from 1 to 20 
period(s), while the exclusion rate r is altered from 0.05 to 0.95 in steps of 0.05. 
Each combination of v and r signifies a different setup of competition, which gives 
a total of 380 scenarios to be simulated. Finally, N is set to 10,000. The large 
number of agents makes sure that the result of evolution can be reliably attributed 
to a systematic advantage of the respective investment behavior. The simulation 
runs terminate either if convergence is reached such that no significant change of 
agent attributes occurs anymore, or, in case of no convergence, if the path of 
evolution is evident (the latter will sometimes occur with regard to ߜ௜, which tends 
to rise continuously under specific competitive conditions). The initial setting of 
portfolio parameters is ݏ௜ ൌ ௜ߜ ൌ 0.5, ∀݅ , which corresponds to an inefficient 
portfolio. Agents thus have to learn an efficient investment behavior. 

3.3 Results 

Figure 3 depicts the results of the simulation experiments in an illustrative two-
dimensional scheme. The upper lattice shows the share of capital invested in the 
risky asset, ݏ௜, the bottom one the risk undertaken additionally, ߜ௜. Each square 
represents a particular setup of competition, as specified by the setting of exclusion 
interval v and exclusion rate r. Different gray-levels indicate the corresponding 
value of the dependent variables at the simulation end. The general rule is: the 
darker the square, the greater the value of the respective variable. In particular, 
white can be read as “0”. With regard to ݏ௜, black stands for “1” (by definition ݏ௜ 
can never exceed 1). Regarding ߜ௜, black stands for extremely large values. The 
respective squares correspond to setups in which convergence is not reached. 
Hence, the values would continue to rise if the simulation went on. The lattices can 
be divided into five numbered areas. Each area represents a characteristic asset 
portfolio.  

_________________________ 

and 2009, the respective return is merely 2.79% with a variance of 19.52%. In conclusion, the 
empirical data are of little use for a reliable estimation of the risk-return profile of today’s risky 
assets. Therefore we choose an artificial setting that appears to be realistic but conservative in so far 
as risky assets with comparable profiles are likely to exist in reality. 
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Figure 3: Values of portfolio parameters at simulation end for variable settings of 
competition parameters. Greater values indicated by darker gray tone. 
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Area 1: In this area, the exclusion rate r is relatively low but the exclusion 
interval v is short, that is, exclusions take place relatively often. With these 
competitive conditions, evolution leads to the emergence of a portfolio which 
consists entirely of riskless assets (ݏ௜ ൌ 0) and does not involve any additional risk 
௜ߜ) ൌ 0). As explained in Section 3.1, this configuration belongs to the class of 
efficient portfolios. Related to the level of agents, the respective portfolio 
corresponds to investors embodying maximum risk-aversion and skill, with the 
latter being interpreted as the ability to find an efficient composition of assets. The 
reason for the emergence of maximally conservative but efficient investment 
behavior lies in the specific requirements for survival. Due to the low exclusion 
rate, the prevention of extremely bad outcomes is sufficient for not being 
discarded. Furthermore, due to the short exclusion interval, random effects have 
hardly leveled out before returns are evaluated. As a result, undertaking risks is 
perilous, as risks raise the likelihood of attaining insufficient outcomes. 

Area 2: The portfolios built in area 2 differ relative to area 1 in the parameter 
௜ߜ) ௜. Investors continue to avoid additional riskݏ ൌ 0) but now spend a positive 
fraction of capital on the risky asset (0 ൏ ௜ݏ ൏ 1). Comparing the competitive 
conditions of area 1 and 2 reveals that this difference can be due to two reasons: a 
slight rise of the exclusion rate (i), or of the exclusion interval (ii). The causal 
paths from (i) and (ii) to the increase of ݏ௜ are quite distinct. By (i), the return 
needed to survive is enhanced. Pure risk prevention does not imply the best 
probability of achieving the respective outcomes because the amount of return 
expectation foregone becomes too great. Investing some capital in the risky asset 
increases the return expectation and, thus, improves survivability. Accordingly, a 
mixture of risky and riskless assets provides the best evolutionary fitness. By (ii), 
the same result is obtained through an extension of probation time. If the exclusion 
interval is raised, return expectation carries more weight because random effects 
tend to level out, leading to an evolutionary boost of agents with a positive fraction 
of risky assets. In other words, undertaking risk becomes less perilous for being 
eliminated if probation time increases. Note that the respective portfolios remain 
efficient and investors still behave in a risk-averse manner, however, to a smaller 
degree than in area 1.  

Area 3: In area 3, the exclusion rate and the exclusion interval have increased 
further. As a result, the tendencies described above disembogue into an extreme. 
The fittest strategy is now simply to maximize return expectation as reflected by 
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the fact that portfolios are composed entirely of risky assets (ݏ௜ ൌ 1). This 
behavior reveals that risk-prevention does not provide any competitive advantage 
anymore. This result can be produced by a sufficient rise of any competition 
parameter; r or v. If r is raised sufficiently, any sacrifice of return expectation 
decreases evolutionary fitness because the relatively great outcomes needed are 
less likely to be attained. For a sufficient rise of v, any sacrifice of return 
expectation is harmful because return expectation tends to become the only 
criterion for survival.  

The investment behavior in area 3 corresponds to risk-neutrality. Risk-
neutrality implies that risks are not regarded as being a “value per se”, which can 
be verified by the fact that agents do not undertake any risk if it does not enhance 
return expectation (ߜ௜ ൌ 0). Apparently, undertaking additional risk deteriorates 
evolutionary fitness. The reason is that the exclusion rate is still low enough so 
that preventing extremely bad outcomes remains paramount towards seeking 
extremely good ones. Additional risk, hence, is not needed but rather destructive 
as it raises the probability of performing badly.  

Area 4: Area 4 differs from area 3 in the very inclination of agents to 
undertake additional risk, which now converges at some positive value (0 ൏ ௜ߜ ൏
൅∞). This behavior is risk-seeking because agents accept risks even if the latter do 
not contribute to the maximization of return expectation. In other words, risk is 
regarded as a “value per se”. The dominance of risk-seeking behavior is due to 
another rise of r, which has led to the transition of a critical level: 0.5 or 50%. To 
understand the phenomenon, assume that ݒ ൌ 1 and that the population consists of 
two groups: The first group obtains a sure periodical return of μ percent. The 
second group gets the same return μ but additionally plays a fair lottery which 
gives them a 50% chance for the return ߤ ൅ ߤ respectively ,ߪ െ  in case of ߪ
losing. It is easy to see that for both groups, the expected periodical return 
 is equal to μ. If the population is sufficiently large, μ is also the median (ሾ݃௜,௧,ଵሿܧ)
return; on average, half the population will achieve a return greater than μ whereas 
the other half falls below. However, if more than half of the population is excluded 
at selection periods (ݎ ൐ 0.5), the median return is not sufficient to proceed. This 
signifies a heavy competitive disadvantage for the first group because, in contrast 
to the second one, they never achieve a return greater than μ. The same occurs in 
the simulation. By choosing ߜ௜ ൌ 0, agents accumulate probability mass of their 
return distribution near their return expectation. This is disadvantageous as the 
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expected return does not suffice to survive. Similar agents with ߜ௜ ൐ 0 have 
greater fitness as more probability mass lies above the return needed. In 
conclusion, risk per se generates evolutionary fitness.  

Still, the explanations above do not capture all mechanisms driving the 
simulation results. For example, they suggest that whenever ݎ ൐ ௜ߜ ,0.5 ൐ 0, 
which, as shown by figure 3, is not true. Another fact left to clarify is the 
convergence of ߜ௜ on a specific value. Let us focus the latter phenomenon first. 
Basically, the convergence of ߜ௜ on ߜ∗ indicates that any agents with ߜ௜ ൐  is ∗ߜ
less fit than an agent with ߜ௜ ൌ  The degree of risk which provides a .∗ߜ
competitive advantage, hence, is limited. To understand the cause, reconsider the 
second group mentioned above, which plays the lottery, and assume that ݒ ൌ 2, 
which implies the selection criterion to be ݃௜,௧,ଶ. Then, on average, half of the 
agents win in one period and lose in the other. The resulting return ݃௜,௧,ଶ is 
ሺ1 ൅ ߤ ൅ ሻሺ1ߪ ൅ ߤ െ ሻߪ െ 1. It is easy to show that for any ߤ, this value decreases 
continuously with greater |ߪ|. In other words, agents who are moderately lucky 
achieve lower returns ݃௜,௧,ଶ (and thus are less likely to survive) if the variance of 
their periodical returns is greater. The same happens in the model. Agents with 
௜ߜ ൐ ௜ߜ require more luck than agents with ∗ߜ ൌ  to obtain the same return ∗ߜ
݃௜,௧,௩. This effect is absent if ݒ ൌ 1 but increases for ݒ being incremented above. 
As a result, agents chose lower values of ߜ௜ , the greater ݒ. This also explains why 
for some ݎ ൐ ௜ߜ ,0.5 ൌ 0. In the model, investing in the risky asset alone can 
generate the optimal return variance even without undertaking additional risk.  

Area 5: The results in area 5 differ sharply from all previous ones in several 
aspects. Technically, the competitive conditions in this area are the only ones 
which do not disembogue in a convergence of portfolio parameters. In particular, 
the tendency of ߜ௜ to rise does not settle down. Simultaneously, ݏ௜ fluctuates in a 
range below 1; an optimal weight of risky assets does not emerge. The chaotic 
pattern of different gray-levels confirms that the precise value of ݏ௜ at the 
simulation end is quite random. Because ݏ௜ ൏ 1 and ߜ௜ ൐ 0, the portfolios built are 
not efficient. In contrast to all previous ones, the competitive conditions in area 5 
do not provoke the predominance of agents able or willing to choose an efficient 
composition of assets.  

The peculiarity of these results shows that the competition in area 5 follows a 
logic which is very distinct. Apparently, skill is not an essential property to 
survive. Seeking risks, however, becomes vitally important. Any agent improves 
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her evolutionary fitness by raising ߜ௜. These results are caused by the particular 
setting of competition parameters. Due to the great value of r and relatively low v, 
agents require large profits in a short span of time. To increase their chance for 
such profits, they need to seek risks. However, investing in an equally risky 
manner than everyone else does not produce a competitive advantage. As a result, 
agents force each other into taking greater and greater risks in the attempt to excel 
their rivals. The counter effect described in area 4 – greater risks decreases the 
returns ݃௜,௧,௩ if being moderately lucky – is not relevant here because survival is 
only possible if very lucky.  

Agents following these incentives build portfolios which enable them to attain 
huge profits. The actual return of these high-risk portfolios depends largely on 
chance. In contrast, differences in periodical return expectation, as determined by 
the setting of ݏ௜, merely account for a minor part of actual returns. Hence, skill is 
of little importance. These findings mirror the insights from the theoretical 
analysis in chapter 2: Since the outcome needed to survive is relatively great, risk-
seekers possess greater evolutionary fitness than risk-averters, even though the 
outcome expectation of risk-seekers is worse. As a result, the competition between 
agents leads to the predominance of risk-seekers who have been lucky, but who 
are not necessarily skilled. 

Summary: The simulation results show that the fittest risk-preference is 
dependent significantly on competitive conditions. In this context, two competition 
parameters have proven to be decisive: the exclusion rate and the exclusion 
interval. The following relationships could be found: The greater the exclusion 
rate, that is, competitive pressure, the greater the advantage from risk-seeking 
behavior relative to risk prevention. Furthermore, the attractiveness of risky assets 
rises with greater exclusion interval, representing probation time, as chance tends 
to level out in the long run. Via these relationships, the setting of competition 
parameters can lead to various scenarios: risk-aversion, risk-neutrality, risk-
seeking behavior and any risk preference in between can be the fittest behavior.  

In addition, the simulation results reflect that the more risk involved by 
portfolios, the more actual returns are shaped by randomness and the less by the 
return expectation. As a result, skill is less important for survival, the more risks 
agents take. This logic can lead to an extreme scenario in which competition does 
not select the most skilled because skill is almost entirely blurred by chance. This 
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scenario tends to arise if competitive pressure is intense and the great returns 
needed to survive must be produced in a short span of time. 

Of course, the above insights raise the question about the actual competitive 
conditions in the fund manager profession. Analyzing empirical data from 1992 to 
1994, Chevalier and Ellison (1999b) find that fear of being dismissed motivates 
young managers to choose low-risk portfolios. Against the background of our 
insights, this behavior indicates that competitive pressure was in the lower range in 
the time of data gathering. Future research should check if competitive conditions 
have changed today, which might contribute to the explanation of the 
attractiveness of high-risk investments.  

3.4 Outlook 

The analysis above has shown that certain competitive conditions lead to the 
emergence of risk-loving agents. It is an interesting question how this behavior of 
individuals affects the behavior of the respective macro system. Financial markets 
represent such a macro system whose dynamic is driven by individual traders and 
their interaction. 

A model that touches this question is the Santa Fe Artificial Stock Market (SFI 
market) (summary by LeBaron et al. 1999). As in our study, agents in the SFI 
market can choose between a risky or riskless asset. Another common feature of 
the model framework is that the population of agents evolves via a genetic 
algorithm. The simulation experiments concentrate on two different settings of the 
learning rate which turns out to be a crucial parameter for the behavior of agents 
and for the dynamics of the market. A fast learning rate can be compared to a low 
exclusion interval (the parameter v in our model) because strategies have to prove 
their value in a short period of time. It is found that with a fast learning rate, agents 
tend to rely on technical instead of fundamental trading strategies. Technical 
strategies aim at returns beyond fundamental payoffs and can be compared with 
risk-seeking behavior. The interaction of these agents leads to a destabilization of 
the market in terms of greater excess returns and fatter tails of the return 
distribution. In this fashion, the article of LeBaron (1999) gives an idea about the 
connection between competitive pressure, the behavior of agents, and market 
dynamics. Future work could concentrate on this connection in more detail. For 
example, it would be interesting to expand our model to include a financial market 
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which is driven by the interaction of our agents, while feeding back to the profit of 
their strategies. This might produce a broader picture of the mechanisms driving 
real world scenarios.  

4 Conclusion 

The present article explores the relationship between various competitive 
conditions and the evolutionary fitness of different risk preferences. The analysis 
is conducted theoretically as well as by an evolutionary multi-agent model that 
reproduces an exemplary empirical case in a stylized fashion: the competition 
among fund managers. This case reflects the problem very well because the risk 
preference of managers is a central determinant for the composition of their asset 
portfolio whose return managers compete about. To simulate how fund managers 
develop their strategies, a genetic algorithm is applied, which ensures that virtually 
any combination of portfolio parameters can emerge as the fittest. 

On the whole, we observe that competitive environments have great influence 
on risk preferences and investment behavior. Hereby, two variables play a central 
role. On the one hand, there is the exclusion rate. A high exclusion rate means high 
competitive pressure and creates the need for large outcomes. This makes risk-
seeking behavior attractive because the probability of high outcomes is increased. 
On the other hand, the time conceded to agents to attain the outcomes is crucial as 
random effects tend to even out in the long-run. All in all, these mechanisms can 
cause the emergence of risk-aversion in any degree but also risk-seeking behavior. 

The latter fact gives raise to warnings. Under competitive conditions that favor 
risk-seeking behavior, the importance of skill (the ability to build an efficient 
portfolio) decreases because actual outcomes are determined mostly by chance. In 
the extreme case, survivors are not the most skilled but simply the luckiest risk-
seekers. The simulation model reflects this phenomenon by showing that, in the 
respective competitive conditions, agents with inefficient portfolios can survive, 
provided that they choose high risk investments. Such scenarios are dangerous on 
any economic level, not only with reference to the competition between fund 
managers, because of two reasons. First, because the predominance of the most 
capable is undermined, and second, because the risky behavior of agents implies 
unforeseeable outcomes which run counter to economic stability. An example is 
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the competition between banks. Banks that are in heavy competition with each 
other have greater incentives to invest in a risk-seeking way. As a consequence, 
they become more vulnerable to economic crises so that the economic breakdown 
is reinforced. 

To prevent these scenarios, our study yields two generic recommendations. 
First, competitive pressure must be held strictly below some critical level from 
which risks per se generate a competitive advantage. In the model, this is achieved 
by setting the exclusion rate to a low or moderate level. Second, ‘probation time’ 
should be sufficiently long such that skill instead of chance shapes individual 
outcomes. Of course, these recommendations need to be adapted to the particular 
case of application. 

By showing that competitive conditions can lead to the emergence of risk-
aversion or risk-taking behavior in various degrees, our model combines insight 
from previous research. Szpiro (1997), for example, uses a genetic algorithm to 
explain risk-aversion. On the other hand, Rubin and Paul Il (1979), Robson (1992, 
1996) and other contributions mentioned before, focus on risk-taking behavior. A 
nice feature of our model might be its ability to reproduce both scenarios in a 
relatively simple and illustrative agent-based framework that demonstrates the 
importance of competitive conditions. 

We believe that several mechanisms that drive the result of our simulations can 
be condensed algebraically. This is going to be a focal point for future research. 
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Appendix  
Proof of Proposition 1: 
 
To prove proposition 1, we have to show that the PDF of profile 2 is strictly 
greater than the one of profile 1 for ݔ → ൅∞. Since by assumption both profiles 
represent normal distributions, the inequality to prove can be expressed as follows: 
 

lim
௫→ାஶ
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మ ൐
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s.c.:  
(i) ߤଶ ൌ ଵߤ ൅ Δఓ with Δఓ ∈ 	 ሿെ∞;൅∞ሾ  
(ii) σଶ ൌ σଵ ൅ Δ஢ with Δ஢ ൐ 0 and ൓ሺσଵ → 0ሻ 
 
To start, replace ߤଶ and ߪଶ by its correspondences. Logarithmize, and simplify the 
result. This gives: 
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Next apply the equivalence 
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Expanding ܽ in the first term and rearranging the result leads to: 
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Expanding Z and subtracting 
ሺ௫ିఓభሻమ

௕
 from both sides finally yields: 

Δఓଶ െ 2Δఓߤଵ ൅ 2Δఓݔ

2σଵ
ଶ െ

ܽܿ
ܾሺܾ ൅ ܿሻ

൏ Logሾσଵሿ െ Logሾσଵ ൅ Δ஢ሿ 

 
It can been seen that the instance of ݔ with the highest power is included in ܽ with 
 approaches ൅∞ is thus determined by the term ݔ ଶ. The limit of the left side asݔ
െ

௔௖

௕ሺ௕ା௖ሻ
 whose limit is െ∞. Since due to (ii), the limit of the right side is greater 

than െ∞ , the inequality is true. 
q.e.d. 
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