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Abstract

This paper attempts to uncover the empirical relationship between the price-setting/consumer be-

havior and the sources of persistence in inflation and output. First, a small-scale New-Keynesian

model (NKM) is examined using the method of moment and maximum likelihood estimators with

US data from 1960 to 2007. Then a formal test compares the fit of two competing specifications in

the New-Keynesian Phillips Curve (NKPC) and the IS equation; i.e. forward- or backward-looking

behavior. Accordingly, the inclusion of a lagged term in the NKPC and the IS equation improves the

fit of the model while offsetting the influence of inherited and extrinsic persistence; it is shown that

intrinsic persistence plays a major role in approximating the inflation and output dynamics for the

Great Inflation period. However, the null hypothesis cannot be rejected at the 5% level for the Great

Moderation period; i.e. the purely forward-looking behavior of the NKM and its hybrid variant are

equivalent. Monte Carlo experiments illustrate the validity of the chosen moment conditions and the

finite sample properties of classical estimation methods. Finally, the performance of the formal test

is analyzed using the Akaike’s and the Bayesian information criterion.
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1 Introduction

In the New-Keynesian model (NKM), some extensions such as the habit formation and indexing behavior

have gained popularity for the ability to fit the macro data well; see Christiano et al. (2005), Smets and

Wouters (2003, 2005, 2007), and Rabanal and Rubio-Ramarez (2005). For example, the forward-looking

behavior of price indexation has been challenged by macroeconomists over the last decade, because a

hybrid variant of the model with the backward-looking behavior provides a good approximation of inflation

dynamics; see also Gali and Gertler (1999), Fuhrer (1997), Rudd and Whelan (2005, 2006). In the same

way, inertial behavior in the dynamics of the output gap can be better explained by the presence of the

habit formation in consumption rule; e.g. see Fuhrer (2000). Accordingly, the lagged dynamics in the

NKM influence the transmission of shocks to the economy; the backward-looking behavior in the price-

setting/consumption rules affects the degree of endogenous inflation/output persistence. This also implies

that a good approximation of the NKM to the data (e.g. the persistence of aggregate macro variables)

can provide a potential explanation for the monetary transmission channel to inflation and output; see

Amato and Laubach (2003, 2004) as well as Woodford (2003, Ch.3).

In a small-scale hybrid NKM, however, inflation and output depend on its expected future and lagged

values, which induce a non-linear mapping between structural parameters and the objective function

during estimation. Because of this, the structural system cannot avoid identification problems in the

model; in other words, the minimization problem in extreme estimators often does not have a unique

solution asymptotically; e.g. see Canova and Sala (2009). The purpose of this paper is to show to what

extent classical estimation methods cope with strucutural parameter estimates and how these can be used

to evaluate the model’s empirical performance. In particular, we draw attention to a system estimator

which is derived from an analytical solution of the model in estimation.1

More generally, we apply the formal test of Hnatkovska, Marmer and Tang (2012) [HMT henceforth]

and examine the significant influence of the lagged terms on the inflation and output dynamics. According

to HMT, the Vuong-type χ2 test accomodates the adequacy of a broad class of the goodness-of-fit measures

and allows for model misspecification; see also Linhart and Zucchini (1986) for model selection. Hence, the

test statistic used in our study can evaluate the discrepancy between the model-generated and empirical

moments, which refer to the goodness-of-fit of the model in the hypothesis testing. For example, Vuong

(1989) demonstrates how the likelihood ratio test can be used for non-nested models. Rivers and Vuong

(2002) generalize normal tests for model selection problems to the application involving a broad class of

estimation methods. Their procedure extends to somewhat complex model selection situations where one

or both models may be misspecified and the models may or may not be nested; see Golden (2000, 2003).

The advantage of the formal test of HMT is that the model’s empirical performance can be flexibly

evaluated according to the chosen moment conditions. The flexibilty is commonly associated with the

transparency to the fit of the model when the moment conditions are directly binding for parameter

1Alternatively, the common and simple strategy to provide a quantitative assement of inflation and output is to use a

reduced form (or single equation) estimation, calibration or simulation based inference; see also Gregory and Smith (1991)

as well as Nason and Smith (2008).
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estimation. Indeed, the limited information approach has been widely used to estimate parameters of

a monetary DSGE model starting from Rotemberg and Woodford (1997). For instance, one common

approach to this problem is to use impulse responses that are most informative about the DSGE model;

Dridi et al. (2007) and Hall et al. (2011) discuss the choice of binding functions and information criteria for

the selection of the valid response. Especially, when the model misspecifications and complex structural

system do not allow for efficient estimation, the adequacy of the model in fitting the data can be judged

by using binding functions; see Gourieroux and Monfort (1995). To provide parameter estimates using

the limited information approach without auxiliary model, Franke et al. (2011) examine a small-scale

DSGE model using analytical second moments of the sample auto- and cross-covariances up to lag 8 (two

years) for estimation as well as model selection. While their empirical results are contrasted with the ones

estimated by a Bayesian technique, however, the validity of the chosen moment conditions is not analyzed

by a statistical test.

In this paper, we discuss the efficiency of the method of moments (MM) estimation and examine the

validity of moment conditions in comparison with the maximum likelihood (ML) approach. To see this,

first, we conduct an investigation into the model’s empirical performance by using the relationship between

interest rate, inflation and output of US data. In particular, we attempt to assess the significance of the

lagged dynamics in inflation and output. From the ML and MM parameter estimates of the NKM, we

pinpoint an empirical link between the hybrid model structure and the persistence in inflation and output.

Next, the emprical performances of the NKM with the purely forward-looking behavior and its hybrid

variant are evaluated according to the model selection criterion. Accordingly, the inclusion of a lagged

term in the New-Keynsian Phillips Curve (NKPC) and the IS equation improves the fit of the model while

offsetting the influence of inherited and extrinsic persistence; it is shown that intrinsic persistence plays a

major role in approximating the inflation and output dynamics for the Great Inflation period. However,

the null hypothesis cannot be rejected at the 5% level for the Great Moderation period; i.e. the NKM

with purely forward-looking behavior and its hybrid variant are equivalent. Finally, we carry out a Monte

Carlo (MC) study to examine the statistical efficiency of the estimation methods.

The paper is organized as follows: Section 2 reviews the standard New-Keynesian three-equations

model and examines the importance of intrinsic persistence (or backward-looking behavior) for the co-

movement between inflation and output. Estimation methodologies and model selection procedures are

described in section 3. Section 4 presents the empirical results and the model comparison between the

NKM with the forward-looking behavior and its hybrid variant. Moreover, the finite sample properties of

MM and ML are investigated using the MC experiments in section 5. Finally, section 6 concludes. All

technical details are collected in the appendix.
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2 Expectation formation in a DSGE model

In this section, we present the standard New-Keynesian model featuring aggregate supply (AS), aggregate

demand (IS), and monetary policy equations.2 We explore the model specifications of the lagged dynamics

in the NKPC and the IS equation, with a focus on the backward- and forward-looking behavior.

2.1 The New-Keynesian three-equations model

Microfoundations of supply- and demand-side economy have been established as the key components of a

New-Keynesian model framework; e.g. the behavior of optimizing economic agents. The monetary policy

behavior is described by the Taylor rule where the lagged interest rate reflects gradual adjustment of

central banks. Thus the model is applicable to the dynamic analysis of economic changes. In our current

study, we attempt to examine the extent to which the gaps of interest rate, inflation and output influence

each other and affect the economy (π̂t := πt − π∗

t , r̂t := rt − r∗t ). The trend components of the quarterly

data are estimated by using the Hodrick-Prescott filter with the smoothing parameter of λ=1600.3

π̂t =
β

1 + αβ
Et π̂t+1 +

α

1 + αβ
π̂t−1 + κ xt + νπ,t

xt =
1

1 + χ
Et xt+1 +

χ

1 + χ
xt−1 − τ (r̂t − Et π̂t+1) + νx,t (1)

r̂t = φr r̂t−1 + (1− φr) (φπ π̂t + φxxt) + εr,t

νπ,t = ρπνπ,t−1 + επ,t (for indexing behavior) (2)

νx,t = ρxνx,t−1 + εx,t (for consumption behavior)

where the variable xt denotes the output gap, π̂t the inflation gap and r̂t the interest rate gap. The discount

factor and the slope coefficient of the Phillips curve are denoted by the parameters β and κ, respectively.

The parameters α and χ measure the degree of price indexation in the NKPC (0 ≤ α ≤ 1) and habit

formation of the household (0 ≤ χ ≤ 1) while τ relates to the intertemporal elasticity of substitution of

consumption (τ ≥ 0). In the Taylor rule, φr determines the degree of interest rate smoothing (0 ≤ φr ≤ 1).

The other parameters φx and φπ are the policy coefficients that measure the central bank’s reactions to

contemporaneous output and inflation (φx, φπ ≥ 0).

The shocks εz,t are normally distributed with standard deviation σz (i.i.d. with z = π, x, r). Since νπ,t

and νx,t are autoregressive processes, the persistences of the cost-push and the supply shocks are captured

2Smets and Wouters (2003, 2007) empirically examine a medium-scale version of the NKM. They estimate structural

parameters and idiosyncratic shocks with the Bayesian techinques. In our study we draw attention to a small-scale general

equilibrium model when investigating the role of optimizing behavior in the dynamics of inflation and output.
3Note here that we use the gaps instead of the levels for interest rate and inflation. Indeed, many empirical studies

provide evidence for a time-varying trend in inflation and the natural rate of interest; see Castelnuovo (2010), Cogley and

Sbordone (2008), Cogley et al. (2010) and many other studies. Moreover, the second moments are chosen to match the data

when we estimate the model parameters. As a result, if we would use the non-stationary data without making assumptions

about the data generating process, it would cause substantial bias in parameter estimates of the structural model.
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by the parameters ρπ and ρx, respectively (0 ≤ ρπ, ρx ≤ 1). In estimation, we do not take them together,

but treat them as being an independent case in order to directly disentangle the sources of inflation and

output persistence in the model.4

For the sake of simplicity, we present the above structural equations into a canonical form. We denote

yt by the vector of three observable variables: yt = (π̂t, xt, r̂t)
′.

AEtyt+1 + Byt + Cyt−1 + νt = 0 (3)

νt = Nνt−1 + εt, εt ∼ N(0,Σε)

To solve the system, we can express the derivation of the solution as the recursive equation with

matrices Ω and Φ. First, we use the method of undetermined coefficients to obtain the unique solution of

the system under determinacy (i.e., φπ ≥ 1). Second, we apply the brute force iteration method of Binder

and Pesaran (1995) to numerically evaluate the matrix Ω; see appendix B for some intermediate steps.

yt = Ωyt−1 + Φνt (4)

νt = Nνt−1 + εt

From the matrices Ω and Φ, it follows that the contemporaneous and lagged autocovariance process

of the model can be computed recursively using the Yule-Walker equations; see chapter 2 of Lütkepohl

(2005). On the whole, we only need to adjust the notation by changing the dating of the shocks and

rewrite Equation (4) as


 yt

νt+1


 =


 Ω Φ

0 N




 yt−1

νt


+


 0

I


 εt+1 (5)

Moreover, we can transform Equation (5) into the law of motion of zt = (y′t, ν
′

t+1)
′. This can be more

compactly written as

zt = A1zt−1 + ut, ut ∼ N(0,Σu), Σu = DΣεD
′ (6)

where the matrix A1 and the covariance matrix Σu are functions of the parameter vector θ. The shocks

are mapped into the vector of ut = D · εt+1 with D = (0 I)′. The estimation methodologies will be

discussed later.

4In the current study, we do not consider the presence of serially correlated shocks in the realizations of interest rate. It

is assumed here that the shock persistence parameter of the interest rate gap (ρr) is explained by the lagged interest rate

with its smoothing parameter (φr). See also Carrillo et al. (2007).
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2.2 Sources of persistence: backward- and forward-looking behavior

In the study of the model comparison, we put an emphasis on two polar cases of the behavior of economic

agents. For example, when the price indexation parameter α is set to zero, it is assumed in the model that

expectations are purely forward-looking. In this case, inflation persistence is exclusively driven by the

exogenous shock process and inherited persistence from the output gap (see Table 1). But allowing it to

be a free parameter, we assume that agents in the market can choose naive expectations. As a result, the

NKPC is affected by both expected future and lagged inflation. This allows the model to have a degree of

inertia in the NKPC, which can provide more insights on the co-movement between inflation and output.

Table 1: Sources of persistence in the NKPC and the IS equation

persistence inflation output gap

intrinsic indexing behavior (α) habit formation (χ)

extrinsic AR (1) of the shock (ρπ) AR (1) of the shock (ρx)

inherited slope of Phillips curve (κ) intertemporal substitution (τ)

In the same vein, Table 1 shows that we can distinguish between the backward and forward-looking

behavior in the IS equation. As long as each household chooses consumption optimally (i.e., without habit

formation χ = 0), the output dynamics in the economy are only driven by the exogenous shock and the

inherited persistence implied by the Euler condition for the intertemporal allocation of consumption. On

the contrary, if habit formation is present in the consumption rule (i.e., χ is now a free parameter), then

the persistence of the output is endogeneously sustained by the optimizing behavior. As a result, the

NKPC also depends on the lagged term in the output dynamics.

In the current study, we aim to disentangle the sources of inflation and output persistence using

classical estimation methods. Note here that we capture each phenomenon by separately considering AR

(1) of the shocks for the price indexing and consumption behavior.
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3 Estimation methodologies and model selection

In this section, we introduce our estimation methodologies, which are drived from the solution of the

NKM. And we show that a formal test can be used to compare the competing specifications in the NKPC

and the IS equations.

3.1 Method of moment and model comparison: HMT (2012)

From the law of motion in Equation (6), it follows that the second moments of zt can be analytically

computed. Thus the contemporaneous and lagged autocovariances of the first-order vector-autoregressive

(VAR (1)) are given by:

Γ(h) := E(ztz
′

t−h) ∈ RK×K , K = 2n, h = 0, 1, 2, · · · (7)

where n is the dimension of the vector of observable variables yt. Their computation proceeds in two

steps. First, Γ(0) is obtained from the equation Γ(0) = A1Γ(0)A
′

1 +Σu, which yields

vecΓ(0) = (IK2 −A1 ⊗A1)
−1vecΣu (8)

where the symbol ’⊗’ denotes the Kronecker product. The invertibility of the term IK2 − A1 ⊗ A1 is

guaranteed, because A1 is clearly a stable matrix; i.e. φπ ≥ 1. Second, the Yule-Walker equations are

employed, from which we can recursively obtain the lagged autocovariances as

Γ(h) = A1Γ(h− 1) (9)

This formula relates to a vector autoregressive process of the model. From Equation (9), it follows that

the model-generated second moments can be used to match the empirical counterparts during the MM

estimation.

For the purposes of the comparison between two models (A and B), we must estimate the model

parameters by minimizing a weighted objective function (chosen goodness-of-fit measures):

JI(θ) ≡ min
θI∈Θ

∥∥W 1/2(m̂T −mI(θI))
∥∥2

, I = A,B (10)

where mI is a vector of moments, and m̂ is a consistent and asymptotically normal estimator of true

moments m0. The norm of the matrix X is defined as ||X || =
√
tr(X ′X), where tr denotes trace.
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To examine the macroeconomic effects of the expected future and lagged term on the NKPC and the

IS equation, we use auto- and cross-covariances at lag 1 (15 moments) from the interest rate gap (r̂t), the

output gap (xt), and the inflation rate gap (π̂t); see also appendix A. With reference to the alternative

moment conditions, we present a case for the auto- and cross-covariances up to lag 4 (42 moments). The

empirical results of moment estimates and their robustness will be discussed later. Note here that we use

the second moments to evaluate the NKM’s empirical performance when implementing the formal test.

In order to construct the objective function, we must estimate the weight matrix W using the Newey-

West estimator (Newey and West (1987))5:

Ω̂NW = Γ̂T (0) +
5∑

k=1

(
Γ̂T (k) + Γ̂T (k)

′

)
(11)

where Γ̂T (j) is 1
T

∑T
t=j+1(mt − m̄)(mt − m̄)′, and k is the number of lags.6 In particular, we use the

diagonal components of the weight matrix and compute the inverse of Ω̂NW ; here we impose the zero

off-diagonal element restriction on the matrix Ω̂NW , because the correlation between the elements of the

weight matrix and the second moments is likely to be high when a small sample is used in estimation; e.g.

see Altonji and Segal (1996).

Under standard regularity conditions, the asymptotic distribution of the parameter estimates is given

by:

√
T (θ̂T − θ0) ∼ N(0,Λ) (12)

where we can numerically compute the covariance matrix Λ using the first derivative of the moments

at optimum; i.e. Λ = [(DWD′)−1]D′WΩWD[(DWD′)−1]′.7 Note here that D is a gradient vector of

moment functions evaluated at the estimated values:

D̂T =
∂m(θ;XT )

∂θ

∣∣∣∣
θ=θ̂T

(13)

Next, we consider hypotheses comparing the goodness-of-fit of the competing models. The null hy-

pothesis H0 is that two non-nested models fit the data equally:

5If large lags are included in the moments to be matched, the rows in the weight matrix are correlated to some extent.

To avoid the dependence of the moments, we employ diagonal components of the Newey-West variance-covariance matrix in

computing the weight matrix.
6The lag order is chosen following a simple rule of thumb for sample size (∼ T 1/4). For the GI and GM data, we have 78

and 99 quarterly observations respectively. Therfore k is set to 5.
7If the weight matrix is chosen optimally (Ŵ = Ω−1), Λ becomes (DWD′)−1; see chapter 1 of Anatolyev and Gospodinov

(2011) among others. However, in our study, the estimated confidence bands become wider, because the weighting scheme

in the objective function is not optimal.
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H0 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ = 0 (14)

The first alternative hypothesis is that model A performs better than model B when

H1 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ < 0 (15)

The second alternative hypothesis is that model B performs better than model A when

H2 :
∥∥W 1/2(m̂T −mA(θA))

∥∥−
∥∥W 1/2(m̂T −mB(θB))

∥∥ > 0 (16)

To carry out the model comparison, we define the quasi-likelihood-ratio (QLR) statistic as

Q̂LR = JB(θ̂B)− JA(θ̂A) (17)

Following HMT, we consider the relationship between two models (A and B): (i) nested, (ii) strictly

non-nested and (iii) overlapping models. As long as the models share conditional distributions for the

data generating process and neither model is nested within the other, we assume that two models are

overlapping. Then we can take two sequential steps of the hypothesis testing á la Vuong (1989). To

begin, we compute critical values of the QLR distribution for the first step of the model comparison.8 The

simulated QLR distribution is defined as the following χ2-type formula:

Z ′ Σ̂1/2
m W (V B − V A)W Σ̂1/2

m Z, where Z ∼ N(0, Enm
) (18)

where Σ is a positive definite covariance matrix of the moment estimates, and Z is drawn from the

multivariate (nm) normal distribution. The nI
θ by nI

θ matrix V I is defined in appendix E. If Q̂LR exceeds

the critical value from a 95% confidence interval, then the null hypothesis is rejected. Next, the second

step tests whether or not the source of the rejection asymptotically comes from the same goodness-of-fit.

The suggested test statistic has a standard normal distribution (z):

w0 = 2 ||W 1/2
0 (mB(θB)−mA(θA))|| (19)

8Appendix E presents intermediate steps for simulating the QLR distribution. The theoretical QLR distribution is derived

from the mean value expansion to a binding function (or moment conditions).
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The standard deviation w0 measures the uncertainty of the difference estimates between two models.

Accordingly, the null of the equal fits can be rejected when
√
T · QLR(θ̂B, θ̂A)/ŵ0 > z1−0.05/2 in which

case A is the preferred model, or
√
T ·QLR(θ̂B, θ̂A)/ŵ0 < −z1−0.05/2 in which case B is preferred.

3.2 Maximum likelihood and model selection

The ML estimator has been widely used to estimate parameters of the DSGE model over the last decade;

see Ireland (2004), Lindé (2005) and others. We briefly summarize the econometric steps for the ML

estimation and model selection. From Equation (4), we may write that:

yt = Ωyt−1 + Φ · (N · νt−1 + εt) (20)

= (Ω + ΦNΦ−1)yt−1 − ΦNΦ−1Ωyt−2 + Φ · εt

where we define the variable Φ ·εt as ηt. Now we assume that ηt follows a multivariate normal distribution.

ηt ∼ N(0,Ση), Ση ≡ Φ · Σε · Φ′ (21)

Hence we can obtain the following conditional probability for the vector of observable variables yt:

yt|yt−1, yt−2 ∼ N((Ω + ΦNΦ−1)yt−1 − ΦNΦ−1Ωyt−2, Ση) (22)

Given the normality assumption of shocks and data set, the likelihood function can be constructed as:

L(θ) = −n · T
2

ln(2π)− T

2
ln |Ση| −

1

2

T∑

t=2

η′t · Σ−1
η · ηt (23)

where n is the dimension of yt. Finally, we arrive at the ML estimates for the parameter θ in optimization:

θml = arg max
θ

L(θ) (24)

Under standard regularity conditions, the ML estimation is consistent and asymptotically normal:

√
T (θ̂ml − θ0) ∼ N(0, (Υ/T )−1) (25)

9



where Υ = E(∂2L(θ)/∂θ∂θ′) is the information matrix. In our study, Υ is numerically computed using

the Hessian matrix of the log likelihood function at optimum. For the purposes of the formal test, we use

the well-known approach to model selection, the Akaike information criterion (AIC):

AIC = − 2

T
· lnL(θ) +

2 p

T
(26)

where p is the dimension of the parameter θ. Then, we choose the model for which AIC is the smallest.

As an alternative to the AIC, which cannot respect the need for parsimony, we also consider the Bayesian

information criterion (BIC):

BIC = − 2

T
· lnL(θ) +

p · lnT
T

(27)

where the second term, p · lnT penalizes the model with additional parameters.
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4 Empirical application

In this section, we present the results of the parameter estimates by MM and ML with US data. First, we

show how the persistence in inflaion and output can be disentangled in estimation. Second, we examine

the empirical performance of the model using the formal test of HMT and discuss the similarities and

dissimilarites between the MM and ML estiamtes. Finally, we investigate the impact of choice of moments

on the parameter estimates.

4.1 Data

The data we use in this study comprise the GDP price deflator, the real GDP and the federal

funds rate. The series are taken from the US model datasets by Ray C. Fair; see the website

(http://fairmodel.econ.yale.edu/main3.htm) for details. The trend rates underlying the gap formula-

tion are treated as exogenously given. The trend from a Hodrick-Prescott (HP) filter is used with the

smoothing parameter of λ =1600. The data set covers the period 1960-2007. Due to the structural break

beginning with the appointment of Paul Volcker as chairman of the U.S. Federal Reserve Board, we split

data into two sub-samples: the Great Inflation (GI, 1960:Q1-1979:Q2) and the Great Moderation (GM,

1982:Q4-2007:Q2). The data split in the US economy is standard in much of the existing empirical work.

4.2 Basic results on method of moments estimation and model comparison

In this section, we apply the MM approach to the NKM and attempt to estimate the parameters of two

model specifications for inflation and output persistence. Auto and cross-covariances at lag 1 are used as

the chosen moment conditions; see appendix A. Next, we employ the model comparison method, which

provides a formal assessment of the performance of competing specifications.

4.2.1 Assessing the fit of the model to inflation persistence: 15 moments

We examine the performance of the two models for fitting the GI data. Table 2 reports the parameter

estimates for the model with forward-looking behavior and its hybrid variant. As long as the profit

maximizing rule (or purely forward-looking) determines the total amount of output in the economy, the

inflation dynamics are primarily captured by inherited and extrinsic persistence. Indeed, the model with

purely forward-looking behavior has much higher estimated values for the parameters κ and ρπ than its

hybrid variant; i.e. κ̂ = 0.12 (forward) > 0.05 (hybrid), ρ̂π = 0.51 (forward) > 0.0 (hybrid).

Turning to the formal test, we classify the two models into the nested case. Since the hybrid variant of

the model can generate richer dynamics due to the lagged inflation with the price indexation parameter

α, it nests the other model; the model with the forward-looking expectations does not allow the effects of

inherited persistence on the NKPC.

To test the null hypothesis that the two models have an equal fit to the data, we compare the estimated

loss function values (Ĵ(θ)). We find QLR = 1.94. The simulated 1% and 5% critical values are 2.42 and

1.31, respectively; see the left panel of Figure 3 in appendix F. Therefore we reject the null hypothesis at
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the 5% level. This implies that the backward-looking behavior plays a significant role in approximating

the inflation persistence of the GI.

Table 2: Parameter estimates for inflation persistence with 15 moments

GI GM

hybrid forward hybrid forward

α 0.768 0.0 (fixed) 0.105 0.0 (fixed)

(0.007 - 1.000) ( - ) (0.000 - 1.000) ( - )

κ 0.047 0.123 0.052 0.058

(0.009 - 0.084) (0.000 - 0.318) (0.000 - 0.136) (0.008 - 0.107)

ρπ 0.000 0.506 0.000 0.086

( - ) (0.078 - 0.933) ( - ) (0.000 - 0.269)

σπ 0.679 0.778 0.638 0.644

(0.103 - 1.255) (0.603 - 0.952) (0.454 - 0.823) (0.491 - 0.798)

χ 1.000 0.999 0.774 0.802

( - ) (0.441 - 1.000) (0.497 - 1.000) (0.499 - 1.000)

τ 0.094 0.089 0.000 0.000

(0.015 - 0.174) (0.000 - 0.192) ( - ) ( - )

ρx 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σx 0.727 0.662 0.404 0.369

(0.547 - 0.907) (0.416 - 0.909) (0.118 - 0.691) (0.068 - 0.671)

φπ 1.659 1.744 1.798 1.943

(1.000 - 2.334) (1.084 - 2.404) (1.000 - 4.039) (1.000 - 4.465)

φx 0.378 0.181 0.729 0.652

(0.026 - 0.731) (0.000 - 0.452) (0.226 - 1.231) (0.087 - 1.217)

φr 0.544 0.463 0.841 0.849

(0.323 - 0.765) (0.248 - 0.678) (0.698 - 0.984) (0.707 - 0.991)

σr 0.786 0.662 0.391 0.384

(0.382 - 1.190) (0.155 - 1.169) (0.099 - 0.684) (0.080 - 0.688)

J(θ) 1.30 3.24 2.26 2.44

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

This finding is shown in Table 3. In particular, the results show that the hybrid variant of the model

can approximate the inflation dynamics better than the other; e.g. see Cov(rt, xt−k), Cov(xt, πt−k),

Cov(πt, rt−k). Nevertheless, the fit of the nested model is not so bad, because the estimated values of

auto- and crosscovariances at lag 1 lie within the 95% confidence intervals of the empirical moments. Note

here that we do not aim to match the auto- and cross-covariances up to higher lags; this will be discussed

later.

Next, we take the same steps for the model comparison using the GM data. However, most parameter
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estimates of the two models do not differ too much. For example, the estimated value for the price

indexation is close to zero in the hybrid variant of the model; i.e. α̂ = 0.105. Accordingly, the result of the

formal test shows that the two models fit the data equally well. We find that the estimated QLR statistic

is small: QLR = 0.17. The simulated 1% and 5% criteria are 0.51 and 0.27, respectively; see the right

panel of Figure 3 in appendix F. Therefore the null hypothesis cannot be rejected.

Table 3: Empirical and model-generated moments for inflation persistence: 15 moment conditions

Label Emp. 95% CI hybrid forward Label Emp. 95% CI hybrid forward

Var(rt) 3.296 1.297-5.296 3.400 3.524 Cov(xt,x−1) 2.523 1.356-3.690 2.365 2.495

Cov(rt, r−1) 2.886 1.142-4.629 2.572 2.388 Cov(xt, πt) 0.069 -0.415-0.552 0.160 0.236

Cov(rt, xt) 0.232 -0.611-1.075 0.256 0.270 Cov(xt, π−1) -0.350 -1.239-0.539 -0.342 -0.234

Cov(rt, x−1) 0.991 0.235-1.746 0.946 0.782 Cov(πt, r−1) 1.288 -0.021-2.597 1.067 0.846

Cov(rt, πt) 1.535 -0.026-3.097 1.854 2.155 Cov(πt, x−1) 0.588 0.199-0.977 0.527 0.442

Cov(xt, π−1) 1.401 0.038-2.765 1.731 1.714 Var(πt) 1.989 0.615-3.364 1.713 1.921

Cov(xt, r−1) -0.450 -1.622-0.722 -0.490 -0.369 Cov(πt, π−1) 0.893 -0.216-2.001 1.033 0.789

Var(xt) 3.001 1.728-4.275 3.191 3.176

Note: 95% CI means the 95% asymptotic confidence intervals for empirical moments.

To save space, we do not report the model-generated moments for GM. Indeed, when we compare

trajectories of the model-generated moments (i.e. hybrid and forward), the model covariance profiles

almost overlap with each other. The two models provide a good fit to auto- and cross-covarainces at the

short lag. In other words, we conclude that the two models are not significantly different at the 5% level.

More ambitious attempts to take the model to data will be discussed using alternative moment conditions

later, because the model has a bad fit to the ones up to relatively large lags (two or three years).

4.2.2 Assessing the fit of the model to the output gap persistence: 15 moments

The estimated parameters for the model with or without a habit formation are displayed in Table 4; in the

purely forward-looking behavior, χ is set to zero, whereas this parameter is subject to the estimation in

the hybrid variant of the model. The MM estimates of the two models have almost similar values except

for the degree of the supply shock (σx), monetary policy shock (σr) and the Taylor rule coefficient (φπ).

It can be seen from the GI data that the estimated value for the supply shocks is two times higher

in the model of an optimal consumer behavior than the parameter value of the other model (σ̂x = 0.45

(forward) > 0.21 (hybrid)). This implies that the output gap dynamics are more or less driven by the

high level of the supply shocks when a simple rule of thumb behavior is not allowed in the IS equation.

As a result, the persistence from the supply shocks affects inflaction dynamics while offsetting the effects

of inherited persistence; this is is indicated by a lower value for the estimated price indexation parameter;

i.e. α̂ = 0.517 (hybrid) < 0.740 (forward). Moreover, concerning the model, which allows a fraction of

consumers to have a rule of thumb behavior, the estimation results indicate a low value for the monetary

coefficients on the inflation gap; i.e. φ̂π = 2.26 (forward) > 1.86 (hybrid). Put differently, central banks

react weakly to shocks due to the fact that the transmission of the shocks endogenously affect the output
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gap persistence; since the parameter estimates are imprecise with a large confidence interval, however,

this implication is not warranted. The reliability of the parameter estimates will be investigated later via

a Monte Carlo study.

Table 4: Parameter estimates for the output gap persistence with 15 moments

GI GM

hybrid forward hybrid forward

α 0.517 0.740 0.039 0.036

(0.044 - 0.990) (0.204 - 1.000) (0.000 - 0.215) (0.000 - 0.205)

κ 0.061 0.066 0.064 0.057

(0.011 - 0.112) (0.004 - 0.128) (0.000 - 0.130) (0.000 - 0.117)

ρπ 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.876 0.715 0.684 0.687

(0.576 - 1.175) (0.447 - 0.983) (0.545 - 0.824) (0.547 - 0.826)

χ 0.931 0.0 (fixed) 0.585 0.0 (fixed)

(0.000 - 1.000) ( - ) (0.000 - 1.000) ( - )

τ 0.441 0.422 0.480 0.506

(0.000 - 0.943) (0.000 - 0.995) (0.000 - 1.223) (0.000 - 1.315)

ρx 0.914 0.868 0.930 0.941

(0.756 - 1.000) (0.725 - 1.000) (0.864 - 0.996) (0.878 - 1.000)

σx 0.214 0.445 0.197 0.218

(0.039 - 0.390) (0.154 - 0.736) (0.000 - 0.452) (0.011 - 0.425)

φπ 1.857 2.256 1.109 1.354

(1.000 - 2.729) (1.000 - 3.661) (1.000 - 2.395) (1.000 - 2.905)

φx 0.838 0.797 1.526 1.438

(0.227 - 1.449) (0.244 - 1.349) (0.537 - 2.515) (0.464 - 2.412)

φr 0.725 0.835 0.863 0.898

(0.482 - 0.968) (0.681 - 0.989) (0.773 - 0.953) (0.804 - 0.993)

σr 0.695 0.240 0.294 0.215

(0.207 - 1.183) (0.000 - 1.326) (0.060 - 0.528) (0.000 - 0.612)

J(θ) 0.44 1.91 0.40 0.57

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

Now, we compute the loss function values to apply a formal test to the two specifications in the

IS equation. In GI, these values are respectively 0.44 and 1.91 for the model with and without habit

formation. The simulated 1% and 5% test criteria are 1.89 and 1.08, respectively; see the left panel of

Figure 4 in appendix F. Since the estimated value for QLR exceeds the criterion at the 5% level, we reject

the null hypothesis that the two models are equivalent. This implies that the output gap dynamics are

better approximated by the consumption behavior in a rule of thumb manner. This finding is shown in
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Table 5. For example, the covariance profiles of (rt, xt−k), (xt, xt−k) and (πt, πt−k) are better captured

by the hybrid variant of the model.

In the period of GM, the parameter estimates for the two models are found to be similar with each

other. This implies that the difference in the loss function values is small (i.e., QLR = 0.17). The simulated

1% and 5% test criteria are 7.58 and 12.37, respectively; see the right panel of Figure 4 in appendix F.

We cannot reject the null hypothesis that the two models are equivalent. To save space, we do not report

the model-generalted moments for the GM period; the covariance profiles of the two models more or less

overlap with each other.

Table 5: Empirical and model-generated moments for the output gap persistence: 15 moment conditions

Label Emp. 95% CI hybrid forward Label Emp. 95% CI hybrid forward

Var(rt) 3.296 1.297 ∼ 5.296 3.305 3.196 Cov(xt,x−1) 2.523 1.356 ∼ 3.690 2.468 2.187

Cov(rt, r−1) 2.886 1.142 ∼ 4.629 2.873 3.041 Cov(xt, πt) 0.069 -0.415 ∼ 0.552 0.094 0.073

Cov(rt, xt) 0.232 -0.611 ∼ 1.075 0.164 0.342 Cov(xt, π−1) -0.350 -1.239 ∼ 0.539 -0.417 -0.368

Cov(rt, x−1) 0.991 0.235 ∼ 1.746 0.984 0.789 Cov(πt, r−1) 1.288 -0.021 ∼ 2.597 1.048 1.025

Cov(rt, πt) 1.535 -0.026 ∼ 3.097 1.657 1.525 Cov(πt, x−1) 0.588 0.199 ∼ 0.977 0.578 0.579

Cov(xt, π−1) 1.401 0.038 ∼ 2.765 1.582 1.638 Var(πt) 1.989 0.615 ∼ 3.364 1.907 1.810

Cov(xt, r−1) -0.450 -1.622 ∼ 0.722 -0.252 -0.073 Cov(πt, π−1) 0.893 -0.216 ∼ 2.001 0.934 1.109

Var(xt) 3.001 1.728 ∼ 4.275 3.067 3.331

Note: 95% CI means the 95% asymptotic confidence intervals for empirical moments.

4.3 Basic results on the maximum likelihood estimation

For comparison purposes, we present the ML estimates of the NKM, because it is often uncommon to

see that the MM estimation includes all relevant information about the data generating process; the MM

estimation is likely to be as efficient as ML when the chosen moment conditions encompass as many features

of the data as possible. Table 6 shows that ML and MM give somewhat similar parameter estimates to

the hybrid variant of the model for inflation persistence. For example, the parameter estimates for the

price indexation α are 0.45 and 0.16 for the GI and GM data, respectively. The ML estimates also provide

evidence to the existence of intrinsic inflation persistence in the model. In other words, the backward-

looking behavior in the price-setting rule accounts for inflation persistence. Moreover, the ML estimation

gives a very small value for the slope of the Phillips curve (κ̂ = 0.0 (GI) and 0.04 (GM)). This implies that

individual firms are likely to be less responsive to changes in economic activity (i.e., the Phillips curve is

flat). Hence, inflation dynamics in GI are primarily driven by intrinsic (moderate) and extrinsic (strong)

persistence; i.e. α̂ = 0.446, σ̂π = 0.879.

As far as the output persistence is concerned, however, we find a slight difference for the parameter

estimation. For example, the comparison of the estimation results between ML and MM shows that the

former gives a much lower value for the habit formation parameter (χ=0.28 and 0.25 for the GI and

GM data). Further interesting observation from Table 6 is that the ML estimates for the intertemporal
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elasticity of substitution is found to be much lower (τ=0.08 and 0.03 for the GI and GM data). This

implies that intrinsic persistence in the output gap dynamics is less affected by the substitution effects

implied by the Fisher equation.

Overall, the slight difference between the ML and MM estimates can be attributed to the the assump-

tion of normality of the shocks; if the model is correctly specified, the ML estimates may be superior to the

ones obtained by MM. Since we do not know the true data generating process in almost all cases, however,

MM is likely to be a relevant choice for evaluating the model’s goodnese-of-fit to the data; the moment

matching results in a closer fit to the sample autocovariance. The statistical efficiency and consistency of

the parameter estimation adopted in this study will be investigated via a Monte Carlo study later.

Table 6: ML estimates for inflation and the output gap persistence

Inflation Persistence Output Gap Persistence

GI GM GI GM

α 0.446 0.157 α 0.478 0.126

(0.241 - 0.652) (0.149 - 0.164) (0.230 - 0.726) (0.008 - 0.243)

κ 0.000 0.036 κ 0.018 0.046

( - ) (0.034 - 0.037) (0.000 - 0.099) (0.015 - 0.077)

ρπ 0.000 0.000 ρπ 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.879 0.654 σπ 0.869 0.663

(0.740 - 1.019) (0.649 - 0.660) (0.737 - 1.002) (0.597 - 0.729)

χ 1.000 0.998 χ 0.281 0.254

( - ) (0.978 - 1.000) (0.245 - 0.316) (0.133 - 0.374)

τ 0.037 0.016 τ 0.081 0.027

(0.001 - 0.073) (0.014 - 0.019) (0.038 - 0.125) (0.014 - 0.040)

ρx 0.0 (fixed) 0.0 (fixed) ρx 0.808 0.763

( - ) ( - ) (0.735 - 0.880) (0.692 - 0.835)

σx 0.523 0.253 σx 0.211 0.098

(0.442 - 0.604) (0.252 - 0.255) (0.174 - 0.248) (0.093 - 0.104)

φπ 1.353 1.001 φπ 1.394 1.000

(1.000 - 2.760) (1.000 - 1.112) (1.000 - 2.661) ( - )

φx 1.180 1.275 φx 1.352 1.456

(0.295 - 2.064) (1.225 - 1.324) (0.710 - 1.995) (1.135 - 1.777)

φr 0.809 0.830 φr 0.803 0.843

(0.690 - 0.927) (0.827 - 0.833) (0.754 - 0.852) (0.828 - 0.857)

σr 0.734 0.477 σr 0.741 0.476

(0.618 - 0.850) (0.472 - 0.481) (0.622 - 0.859) (0.435 - 0.518)

L(θ) -308.86 -233.99 L(θ) -309.53 -231.84

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.
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Another point worth mentioning is that the high dimension of the parameter space can induce multiple

local minima in the likelihood function. Once we change the starting values in optimization, we often

obtain different values for the parameter estimates; more rigorous investigation with simulation-based

optimization methods (i.e., simulated annealing, random search method) would be worthwhile. However,

in the currrent study, we have a strong confidence in a global minimum for the parameter estimates,

because we tested the parameter estimates with different starting values and found that they converge to

a unique minimum.

To make a more systemic investigation on our choice of moments in estimation, the next section

examines the parameter estimates of the model using a large set of moment conditions.

4.4 Validity of extra moment conditions

In this section, we assess the sensitivity of the MM estimates to the changes in moment conditions. From

this investigation, we will find that alternative moment conditions do not induce qualitative changes in

the parameter estimation. To make our choice of moment condtions more reliable, we make a case for

the vector autoregressive (VAR) model with lag 4 as a reference model; see appendix C for optimal lag

selection criteria. Accordingly, we examine the persistence of the key macro data in the U.S. economy

using auto- and cross-covariances up to lag 4.

4.4.1 Assessing the fit of the model to inflation persistence: 42 moments

With a focus on alternative moment conditions (42 moments), we now estimate two specifications of the

NKM: forward-looking (α = 0) and hybrid case (i.e. α is a free parameter). Table 7 shows that the

parameter estimates speak for strong backward-looking behavior in the NKM; α̂ = 1.0 And the MM

estimates with a small and large set of moments give qualitatively similar values except for the policy

shock parameter (σr=0.0). Indeed, ML would avoid such an estimate provided that there is a stochastic

singularity with zero policy shock (i.e., the likelihood value becomes negative infinity at this point).

Next, we draw attention to the model comparison. In the GI data, we found that the price indexation

parameter is a corner solution. Accordingly we treat α as being exogenously fixed at unity, because it

is assumed in HMT that the estimated parameters are in the interior of the admissible region (see their

assumption 2.5 (b)). Put differently, since the price indexation parameter is set to different values, it

can be seen that two models are now equally accurate and identical in population. In this respect, we

treat two models as being overlapping and apply a two step sequential test for model comparison. On the

contrary, a value for the estimated price indexation parameter lies in the interior of the parameter space

for fitting the GM data (α = 0.525). In this case, the hybrid version of the model nests the one with the

purely forward-looking expectations.

In the period of GI, the hybrid variant of NKP has a better goodness-of-fit to the data (J = 11.93) than

the purely forward-looking version of the model (J = 42.77). Indeed, Table 7 shows that the estimated

AR (1) coefficient for the cost push shock has a strong influence on the purely forward-looking NKP;
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ρ̂π = 0.675.9 The results also show that inherited persistence has a smaller impact on the output gap

dynamics in the hybrid variant of the model (κ̂ = 0.044).

Table 7: Parameter estimates for inflation persistence with 42 moments

GI GM

hybrid forward hybrid forward

α 1.0 0.0 (fixed) 0.509 0.0 (fixed)

( - ) ( - ) (0.126 - 0.924) ( - )

κ 0.044 0.155 0.037 0.102

(0.018 - 0.069) (0.000 - 0.395) (0.000 - 0.075) (0.017 - 0.187)

ρπ 0.000 0.675 0.000 0.596

( - ) (0.387 - 0.964) (0.000 - 0.813) (0.367 - 0.825)

σπ 0.470 0.518 0.364 0.231

(0.000 - 1.686) (0.233 - 0.790) (0.048 - 0.680) (0.093 - 0.369)

χ 1.0 1.0 0.770 0.915

( - ) ( - ) (0.515 - 1.000) (0.518 - 1.000)

τ 0.092 0.063 0.020 0.027

(0.045 - 0.140) (0.008 - 0.118) (0.000 - 0.055) (0.000 - 0.074)

ρx 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σx 0.716 0.600 0.547 0.468

(0.462 - 0.970) (0.348 - 0.853) (0.202 - 0.820) (0.185 - 0.751)

φπ 1.740 1.809 2.025 2.218

(1.255 - 2.225) (1.221 - 2.397) (1.000 - 2.870) (1.141 - 3.114)

φx 0.080 0.157 0.563 0.564

(0.000 - 0.542) (0.000 - 0.528) (0.216 - 1.059) (0.154 - 0.974)

φr 0.267 0.458 0.765 0.732

(0.000 - 0.905) (0.224 - 0.692) (0.619 - 0.881) (0.592 - 0.872)

σr 0.000 0.000 0.486 0.545

( - ) ( - ) (0.303 - 0.727) (0.351 - 0.739)

J(θ) 11.93 42.77 23.97 27.47

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

In order to examine the significant difference of moment estimates between the two specifications,

we substract the objective function value of purely forward-looking NKM from the one of its hybrid

variant; i.e. QLR = 30.83. According to the simulated test distribution, critical values for the 99% and

95% confidence intervals are 16.99 and 9.96, respectively (see the left panel of Figure 5 in appendix F).

9The estimated value for the parameter σr hit the boundary. This makes the objective function ill-behaved and partial

derivatives numerically unstable. We set it to zero and compute the numerical derivatives of the other parameters for the

model comparison. See appendix D for the matrix notation.
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Since the test statistic exceeds the critical value at the 5% level, we proceed to take the second step of

the hypothesis testing, which asymptotically distinguishes the different moments of two models from the

profile of the empirical data.
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Figure 1: Covariance profiles for inflation persistence in GI (dashed: empirical, △: hybrid, *: forward)

Note: The empirical auto- and cross-covariances are computed using an unrestricted fourth-order vector au-

toregression (VAR) model. The asymptotic 95% confidence bands are constructed following Coenen (2005).

In the second step of the formal test, we examine the uncertainty of the estimated difference between the

two models for evaluating their fit to the data. We compute the plug-in estimate of ŵ0 (2.54). Under the

null hypothesis, the test static follows a standard normal distribution; i.e.
√
T ·QLR(θA, θB) ∼ N(0, w2

0).

The estimate of
√
T · QLR/ŵ is 1.37, which is smaller than a critical value at the 5% significance level

of the two-tailed test. Therefore the results show that both models have the same goodness-of-fit to

the profile of the empirical moments, and the null hypothesis cannot be rejected.10 Figure 1 presents the

model-generated moment conditions at three years for GI and contrasts them with the empirical estimates

using a VAR (4) process.

10This statistical inference does not remain the same if the price indexation parameter is allowed to exceed unity. The

contraint on habit formation parameter (χ) is also removed. See Franke et al. (2011) for details.
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Figure 2: Covariance profiles for inflation persistence in GM (dashed: empirical, △: hybrid, *: forward)

Note: The empirical auto- and cross-covariances are computed using an unrestricted fourth-order vector au-

toregression (VAR) model. The asymptotic 95% confidence bands are constructed following Coenen (2005).

In the period of GM (Table 7), it is shown that the hybrid variant of NKP fits the data better (23.97).

The estimation results offer evidence to support the (strong) inherited and extrinsic persistence in the

model with purely forward-looking behavior, because these can offset the impact of inherited persistence

on the output gap dynamics; i.e. κ̂ = 0.102 (forward) > 0.037 (hybrid), ρ̂π = 0.596 (forward) > 0.0

(hybrid). However, the other parameter estimates are not different in both specifications.

These empirical findings also seem to strengthen the relevance of backward-looking behaivior for the

GM data. However, the difference between the two models (3.49) does not exceed the critical value for

the 95% confidence intervals in the formal test; i.e., critical values for 99% and 95% confidence intervals

are 38.39 and 21.46, respectively. Also see the right panel of Figure 5 in appendix F. Put differently,

the effects of inherited persistence on the output gap can be adequately replaced by the inherited and

extrinsic persistence, which cannot distinguish the sources of the persistence in the IS equation. Therefore

we do not proceed to take the second step of the model comparison method and conclude that the null
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hypothesis cannot be rejected. Figure 2 presents the model-generated moment conditions at three years

for the GM data; the comparison between the model-generated and empirical moments by a VAR (4)

process is displayed here.

4.4.2 Assessing the fit of the model to the output gap persistence: 42 moments

Table 8 shows the MM estimates for the output gap persistence using alternative moment conditions.

Note here that the intertemporal elasticity of substitution of the both models has high estimated values

in the GI and GM data: τ̂ = 0.205 (hybrid), 0.676 (forward). In addition, we find that all the estimated

values for ρx exceed 0.7. In GI, this value increases substantially in the model with purely forward-looking

expectations, which can cover the absence of intrinsic persistence in the IS equation; i.e. χ=0.0 (fixed), τ̂

= 0.676.

Another point worthwhile mentioning here is that the estimation results of the purely forward-looking

model indicate high monetary policy coefficients on the interest rate gap, the inflation gap and the output

gap in GI; i.e. φ̂π = 2.05, φ̂x = 1.10, φ̂r = 0.89. Moreover, in the hybrid variant, the parameter χ is

almost a corner solution for both the GI and GM data, which strengthens a rule of thumb behavior in

consumption. This implies that the rule of thumb behavior reinforces the degree of endogenous persistence

in the output gap dynamics. However, as long as the model predicts that households behave optimally

(i.e. without a simple rule of thumb behavior, χ = 0), the result indicates the strong degree of the supply

shocks; the estimated value is more than twice as high as the one of the hybrid model; i.e. σ̂x=0.519

(forward) > 0.213 (hybrid) for GI, 0.340 (forward) > 0.140 (hybrid) for GM.

Turning to the model comparison with the GI data, we treat the two models as being overlapping,

because the habit formation parameter is now a corner solution. In the first step of the model comparison,

we compare the objective function values (QLR = 21.10). The simulated 5% and 1% criteria are 19.63 and

34.59, respectively (see the left panel of Figure 6 in appendix F). Since the estimated QLR exceeds the

5% criterion value for the model comparison, we support the hypothesis that two models have different

moments. In the second step, we estimate
√
T ·QLR/ŵ of which value is 1.02. However, this value does

not exceed the criterion in the standard normal distribution. As a result, we conclude that there is no

significant difference between two models in macthing the empirical moments; i.e. the two models have

different moments, but an equivalent fit to the empirical moments. To save space, we do not provide the

model covariance profiles for the output gap persistence. Note here that the result of the MM estimates

with a large set of moments provides a closer fit (i.e. the sample auto- and cross-covariances up to large

lags).

Now we draw attention to the model comparison with the GM data. Note here that we treat the

two model as being a nested case, since the estimated value for the habit formation parameter lies in an

interior point. The model without the habit formation is nested within the other. To begin, we compute

the difference between the objective function values of the two models (QLR = 3.06). Then we compare

this estimate with the simulated test criterion in the model comparison. Since the 5% and 1% criteria for

the simulated test distribution are 18.52 and 29.05, respectively (see the right panel of Figure 7), however,
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the null hypothesis cannot be rejected. Therefore we conclude that two models have an equal fit to the

empirical moments.

Table 8: Parameter estimates for the output gap persistence with 42 moments

GI GM

hybrid forward hybrid forward

α 1.0 0.998 0.186 0.203

( - ) ( - ) (0.000 - 0.396) (0.000 - 0.441)

κ 0.054 0.037 0.086 0.088

(0.005 - 0.102) (0.010 - 0.065) (0.037 - 0.134) (0.027 - 0.149)

ρπ 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

σπ 0.519 0.428 0.609 0.579

(0.099 - 0.939) (0.108 - 0.747) (0.461 - 0.757) (0.410 - 0.749)

χ 1.0 0.0 (fixed) 0.991 0.0 (fixed)

( - ) ( - ) ( - ) ( - )

τ 0.205 0.676 0.237 0.236

(0.000 - 0.436) (0.000 - 1.897) (0.000 - 0.547) (0.000 - 0.803)

ρx 0.707 0.890 0.854 0.790

(0.290 - 1.000) (0.743 - 1.000) (0.686 - 1.000) (0.583 - 0.997)

σx 0.213 0.519 0.140 0.340

(0.016 - 0.410) (0.169 - 0.869) (0.000 - 0.298) (0.037 - 0.642)

φπ 1.741 2.046 2.133 2.224

(1.154 - 2.327) (1.000 - 3.134) (1.000 - 3.279) (1.000 - 3.764)

φx 0.169 1.103 0.762 0.588

(0.000 - 0.584) (0.275 - 1.931) (0.189 - 1.335) (0.000 - 1.202)

φr 0.389 0.889 0.770 0.783

(0.000 - 0.853) (0.753 - 1.026) (0.640 - 0.900) (0.648 - 0.917)

σr 0.012 0.016 0.447 0.448

( - ) ( - ) (0.248 - 0.645) (0.212 - 0.685)

J(θ) 10.54 31.64 20.79 23.85

Note: The discount factor parameter β is calibrated to 0.99. The 95% asymptotic confidence intervals are given

in brackets.

In sum, the MM estimates using a large set of moment conditions provide a stronger evidence for the

backward-looking behavior in the price-setting and consumption rules compared to ML and MM with 15

moment conditions. This is a direct result when we include more sample second moments to be matched

in the objective function. However, the result of the model comparison becomes inconclusive, because the

estimated values for the price indexation and habit formation parameters were corner solutions; we used

the two-step sequential hypothesis testing and found that the null hypothesis cannot be rejected provided

that the sample size is small. An elaborate analysis of model selection will be discussed in the next section.
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5 Attaining efficiency from moment conditions

In this section, first, we study the finite sample properties of MM and ML; in addition, we investigate the

effect of model misspecification on the bias of the parameter estimation. Second, we discuss the empirical

performance of model selection methods using the Akaike’s and the Bayesian information criterion.

5.1 Monte Carlo study

The Monte Carlo (MC) experiment attempts to clearly demonstrate the statistical efficiency of the estima-

tion methods, which are used in the previous section. In this way, we aim to investigate the role of choice

of moments and its influence on the parameter estimates. To begin, we consider the model specification

of inflation persistence and set the parameters near to the values obtained by the MM estimation with

15 moments (see Table 2): e.g. high degree of backward-looking behavior (α=0.750), moderate inherited

persistence (κ=0.050) and no extrinsic persistence (ρπ=0.0). Next, we generate 1,000 time series each

consisting of 550 observations. The first 50 observations are removed as a transient period. Three sample

sizes are considerd: 100, 200 and 500. We use the Matlab R2010a for this MC study. In optimization, we

use the unconstrained minimization "fminicon" with the algorithm ’interior-point’; maximum iteration

and tolerance level are set to 500 and 10−6, respectively.

We conduct the MC experiments by considering two cases of model specification; i.e. correctly specified

and misspecified. In the former, we discuss the finite sample properties of the MM and ML estimation.

Turning to the latter, we consider the model with purely forward-looking expecations and examine the

degree of bias in the parameter estimates; i.e. (1) to what extent the extrinsic persistence (ρπ) is inflated

due to the misspecification and (2) how much the model misspecification affects the estimates for other

strucutral parameters.

The main findings for the correctly specified case in Table 9 can be summarized as follows:

• For both ML and MM, the estimate of the price indexation paramter α is downward-biased, whereas

the AR (1) coefficient of inflation shocks is estimated to be positive.

• ML has slightly poorer finite sample properties than MM. This implies that conventional Gaussian

asymptotic approximation to the sample distribution is not as much precise as MM, as long as the

sample size is small.

• The asymptotic efficiency of the ML estimates appears superior to MM, since the the mean of

standard errors over 1000 estimations shows that the confidence intervals for the MM estimates are

noticeably narrow. However, the large sample size remarkably improves the asymptotic efficiency of

the MM estimates; e.g. T=500.

• It can be seen from the MC results that the overall parameter uncertainty of MM with a large

set of moments is higher than ML and MM with a small set of moments. However, in this case,

the MM estimation provides the most precise estimate on the price indexation parameter α. Note

here that the advantage of statistical inference for the behavior of economic agents (i.e. backward-
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or forward-looking) comes at the cost of allowing for large uncertainty in the estimates of other

structural parameters; in other words, incorporating more second moments in the objective function

improves the fit of the model to the persistence of inflation dynamics, but reduces efficiency in the

estimates of other parameters.

• Another point, which is worthwhile to mention, is that we obtain the large asymptotic error for

the policy shock parameter σr; i.e. S.E = 1.407 for T=100. This is attributed to the fact that the

estimated values sometimes hit the boundary (i.e. σr = 0.0), which makes the numerical derivative

of the moments unstable. This problem does not occur in the case where the large sample size is

used (e.g. T=500).

Turning to the misspecified case, we found that the MC results exhibit the high correlation between

the price indexation and AR (1) coefficient of the inflation shocks; see appendix G. Indeed, it is shown

in Table G.2 that the AR (1) coefficient is strongly upward-biased for both MM and ML. The parameter

estimates offset the effects of intrinsic persistence on the inflation dynamics; e.g. ρπ = 0.616 (ML), 0.632

(MM with 15 moments), 0.598 (MM with 42 moments) when the sample size is 100. The large sample

size does not correct the bias of this parameter.

Similarly, the degree of the inflation shock σπ is more or less downward-biased. In addition, the slope

coefficient of the Phillips curve is upward-biased in ML, and the result of the MM estimates shows very

strong bias: κ̂ = 0.096 (ML), 0.176 (MM with 15 moments), 0.205 (MM with 42 moments) when T=100.

This implies that extrinsic (strong) and inherited (moderate) persistence offset the absence of intrinsic

persistence in the model misspecification. However, the other structural parameters are not influenced by

the model misspecification; i.e. we obtain the parameter estimates near to the true ones by using both

MM and ML. They converge at some reasonable rate towards the true parameters as the sample size gets

larger (consistency).
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Table 9: The Monte Carlo results on the MM and ML estimates, ( ): root mean square error, S.E : mean of standard error

ML MM with 15 moments MM with 42 moments

θ0 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

α 0.750 0.523 (0.375) 0.573 (0.322) 0.651 (0.228) 0.614 (0.256) 0.654 (0.196) 0.692 (0.121) 0.700 (0.245) 0.702 (0.205) 0.729 (0.118)

S.E : 0.162 S.E : 0.170 S.E : 0.175 S.E : 0.319 S.E : 0.222 S.E : 0.138 S.E : 0.281 S.E : 0.190 S.E : 0.113

κ 0.050 0.074 (0.076) 0.066 (0.081) 0.056 (0.014) 0.083 (0.057) 0.068 (0.030) 0.058 (0.015) 0.093 (0.075) 0.073 (0.042) 0.058 (0.018)

S.E : 0.054 S.E : 0.048 S.E : 0.041 S.E : 0.042 S.E : 0.025 S.E : 0.013 S.E : 0.050 S.E : 0.030 S.E : 0.014

ρπ 0.000 0.218 (0.330) 0.172 (0.284) 0.097 (0.198) 0.175 (0.255) 0.129 (0.194) 0.082 (0.124) 0.194 (0.299) 0.147 (0.241) 0.078 (0.144)

S.E : 0.112 S.E : 0.1000 S.E : 0.076 S.E : 0.327 S.E : 0.238 S.E : 0.152 S.E : 0.313 S.E : 0.230 S.E : 0.150

σπ 0.675 0.602 (0.330) 0.619 (0.125) 0.640 (0.073) 0.613 (0.113) 0.624 (0.085) 0.639 (0.056) 0.564 (0.1778) 0.584 (0.136) 0.618 (0.088)

S.E : 0.044 S.E : 0.047 S.E : 0.048 S.E : 0.143 S.E : 0.106 S.E : 0.068 S.E : 0.172 S.E : 0.130 S.E : 0.086

χ 1.000 0.935 (0.113) 0.949 (0.090) 0.967 (0.053) 0.932 (0.108) 0.948 (0.078) 0.962 (0.055) 0.941 (0.075) 0.956 (0.083) 0.966 (0.059)

S.E : 0.159 S.E : 0.183 S.E : 0.201 S.E : 0.173 S.E : 0.126 S.E : 0.082 S.E : 0.207 S.E : 0.151 S.E : 0.098

τ 0.090 0.089 (0.031) 0.088 (0.023) 0.087 (0.014) 0.101 (0.039) 0.095 (0.026) 0.091 (0.016) 0.105 (0.044) 0.097 (0.030) 0.092 (0.018)

S.E : 0.045 S.E : 0.047 S.E : 0.048 S.E : 0.040 S.E : 0.028 S.E : 0.017 S.E : 0.041 S.E : 0.029 S.E : 0.018

σx 0.700 0.695 (0.059) 0.697 (0.043) 0.699 (0.025) 0.743 (0.102) 0.735 (0.073) 0.724 (0.048) 0.738 (0.123) 0.729 (0.086) 0.721 (0.054)

S.E : 0.050 S.E : 0.052 S.E : 0.053 S.E : 0.086 S.E : 0.062 S.E : 0.039 S.E : 0.121 S.E : 0.089 S.E : 0.057

φπ 1.650 1.666 (0.183) 1.654 (0.118) 1.652 (0.074) 1.681 (0.194) 1.664 (0.123) 1.659 (0.076) 1.705 (0.229) 1.679 (0.145) 1.665 (0.088)

S.E : 0.345 S.E : 0.316 S.E : 0.274 S.E : 0.210 S.E : 0.147 S.E : 0.093 S.E : 0.214 S.E : 0.151 S.E : 0.098

φx 0.375 0.362 (0.124) 0.361 (0.083) 0.366 (0.052) 0.337 (0.148) 0.343 (0.100) 0.352 (0.063) 0.294 (0.191) 0.317 (0.129) 0.344 (0.082)

S.E : 0.227 S.E : 0.224 S.E : 0.228 S.E : 0.137 S.E : 0.097 S.E : 0.062 S.E : 0.156 S.E : 0.110 S.E : 0.071

φr 0.550 0.543 (0.048) 0.545 (0.034) 0.547 (0.021) 0.525 (0.063) 0.531 (0.045) 0.538 (0.027) 0.524 (0.080) 0.532 (0.056) 0.542 (0.034)

S.E : 0.068 S.E : 0.070 S.E : 0.077 S.E : 0.074 S.E : 0.052 S.E : 0.033 S.E : 0.086 S.E : 0.061 S.E : 0.039

σr 0.750 0.738 (0.056) 0.743 (0.038) 0.748 (0.024) 0.723 (0.087) 0.736 (0.057) 0.746 (0.034) 0.617 (0.269) 0.672 (0.173) 0.721 (0.053)

S.E : 0.053 S.E : 0.055 S.E : 0.056 S.E : 0.109 S.E : 0.076 S.E : 0.048 S.E : 1.407 S.E : 0.675 S.E : 0.087

L(θ) or J(θ) -385.76 -800.93 -2015.15 0.30 0.25 0.23 7.55 5.84 4.92
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5.2 Model selection and discussion

From the empirical investigation on the MM estimates with a large set of moments, we found that the

statistical power of the model comparison test is weak and the result becomes inconclusive; in this case, we

treat two models as being overlapping. Note here that we use the small sample to estimate the parameters

of the NKM in which the asymptotic test of the model comparison is likely to make a Type II error; i.e.

we accept the null hypothesis when the equal fit of moments is false.11

Table 10: Model selection using information criteria: inflation persistence

GI (T=78) GM (T=99)

ML hybrid forward ML hybrid forward

L(θ)/T -3.96 -4.41 -4.82 -2.36 -2.69 -2.69

AIC 8.20 9.02 9.90 4.95 5.61 5.58

BIC 8.53 9.43 10.20 5.24 5.90 5.84

Ranking 1 2 3 1 3 2

Note: The backward- and forward-looking behaviors are examined using auto- and cross-covariances

at lag 1.

To make the formal test more elaborate, we rank the model according to the well-known information

criteria in the ML estimation. For this purpose, we suppose that the MM parameter estimates are possible

solutions in the likelihood function. Table 10 and 11 report the mean value for the log-likelihood and the

model selection criterion: the case of inflation and output persistence, respectively. Note here that we

only present MM with a small set of the moment conditions (auto- and cross-covarainces at lag 1), because

MM with alternative moments (auto- and cross-covarainces at lag 4) yields the zero policy shock for the

GI data.

According to AIC and BIC, by definition, the ML estimates are preferred for both GI and GM data.

If the assumption of normality is not violated and the model is correctly specified, we believe that the

parameter estimates of the ML estimator are the most efficient; this statistical inference is verified by the

MC study in the previous section. Nevertheless, the values for AIC and BIC using the MM estimation do

not differ too much. This implies that matching the auto- and cross-covarainces at lag 1 provide more or

less the same efficiency as the ML approach. Also the statistical inference for the behavior of economic

agents does not change; i.e. the hybrid variant of the model can approximate inflation and the output

gap dynamics better than the model with forward-looking behavior for fitting the GI data. On the other

hand, the inconclusive result for the GM data shows that the model with forward-looking expectations of

the price-setting rule is preferred due to its parsimonious description of the data.

11Marmer and Otsu (2012) discuss the general optimality of comparison of misspecified models and propose a feasible

approximation to the optimal test which is more powerful than Rivers and Vuong (2002).
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Table 11: Model selection using information criteria: the output gap persistence

GI (T=78) GM (T=99)

ML hybrid forward ML hybrid forward

L(θ)/T -3.97 -4.62 -7.88 -2.34 -3.09 -4.22

AIC 8.22 9.51 16.01 4.91 6.41 8.64

BIC 8.55 9.85 16.31 5.19 6.69 8.90

Ranking 1 2 3 1 2 3

Note: The backward- and forward-looking behaviors are examined using auto- and cross-covariances

at lag 1.

In brief, we can see from our empirical application that the moment-matching method achieves a high

accuracy in taking the models to the data, but the parameter estimates are more uncertain than the ML

estimates; i.e. wide confidence intervals. Indeed, this empirical observations can relate to the uncertainty

of the model selection for the lagged term in the NKPC and the IS equation. Moreover, in our empirical

application, if we include additional second moments in the objective function, this improves the fit of

the model to the inflation and output dynamics, but will make the comparison results of two models

inconclusive.

To address this issue on the trade-off between the fit of the model and the power of the formal test,

we would evaluate the empirical performance of competing models in terms of their predictive power.

Alternatively, we can piece together to what extent the model selection procedure is connected with the

concept of model combination. For example, the method of the model averaging is proven to be a useful

tool in a Bayesian approach. The inclusion of this concept into the model comparison will challenge the

current framework for misspeicified models.
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6 Conclusion

This paper considered the structural estimation of the NKM and a formal comparison between the model

with purely forward-looking behavior and its hybrid variant. We examined the importance of the future

expected and lagged values in the inflation and output dynamics using US data; i.e. forward- and backward-

looking behavior in the NKPC and the IS equation. The models are estimated by the classical estimation

methods of MM and ML. In the former, we derived the analytical moments of the auto- and cross-

covariances under a linear system of the NKM; we estimate the the parameters by matching the model-

generated moments with their empirical counterparts. These empirical findings are compared with the

ones obtained by the ML estimation while their sensitivity to the moment conditions is also exmained.

According to the estimated loss function values obtained by MM, we evaluated two competing models

using the formal test of HMT when they are overlapping or one model is nested within another. The

results obtained with the GI and GM data show that the inclusion of the lagged term in the NKPC

and the IS equation improves the model’s empirical performance. In other words, the backward-looking

behavior in the NKM plays an important role in approximating the persistence of inflation and output.

This result suggests intrinsic persistence as the main source of the inflation and output dynamics in GI.

However, in GM, we cannot reject the null hypothesis at the 5% level, because the model with purely

forward-looking expecations and its hybrid variant have an equal fit to the data. These empirical findings

are verified using the MC experiments; we investigated the statistical efficiency of the estimators and the

implications for the model selection.

We close this paper by pointing out that (analytical) moment condtions provide information, which

can be used to estimate structural parameters in the model; from this, we directly compare the competing

specifications in the NKM using the formal test. Moreover, if the model does not have readily available

expressions for moment conditions due to its non-linear model structure, they can be replaced by an

approximation based on simulations. For example, the model of De Grauwe (2010) brings the discrete

choice theory into a monetary DSGE model where agents’ belief displays endogeneous waves of market

optimism and pessimism. However, the non-linear variant of the DSGE model does not have a simple

closed-form expression for a VAR (q) process. If this is the case, the simulated method of moments can

offer an empirical analysis of the model by approximating the non-linearities in the moment conditions;

e.g. see Jang and Sacht (2012) regarding simulation based inference for the non-linear group dynamics.

Another example would be a DSGE model with recursive preference and stochastic volatility (SV); i.e. see

also Caldara et al. (2012) for the comparison of the solution methods. The non-linearity from recursive

preferences and SV can be simply simulated and estimated via the method of moments adopted in this

paper. We leave it to future research to empirically examine this kind of non-linear models.
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Appendices

A Choice of moments

A.1 Auto- and cross-covariances at lag 1 (one quarter): 15 moment conditions

This section lists the moment conditions for the method of moment estimation. The auto- and cross-

covariances at lag 1 include the following 15 moment conditions after removing double counting of the

interest gap (r̂t), the ouput gap (xt), and the inflation gap (π̂t).

1. m1: Var (r̂t) 9. m9: Cov (xt, xt−1)

2. m2: Cov (r̂t, r̂t−1) 10. m10: Cov (xt, π̂t)

3. m3: Cov (r̂t, xt) 11. m11: Cov (xt, π̂t−1)

4. m4: Cov (r̂t, xt−1) 12. m12: Cov (π̂t, xt−1)

5. m5: Cov (r̂t, π̂t) 13. m13: Cov (π̂t, r̂t−1)

6. m6: Cov (r̂t, π̂t−1) 14. m14: Var (π̂t)

7. m7: Cov (xt, r̂t−1) 15. m15: Cov (π̂t, π̂t−1)

8. m8: Var (xt)

A.2 Auto- and cross-covariances at lag 4 (one year): 42 moment conditions

In the same vein, there are nine profies of the sample covariance functions. Counting all the combination

of three observable variables gives 42 moment conditions for the auto- and cross-covariances at lag 4. To

save space, we abstract its list here by using the following notation:

Cov(ut, vt−h), u & v = r̂t, xt, π̂t (A.1)

where h denotes the lag length used in the auto- and cross-covarainces (h = 0, 1, 2, 3, 4).
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B Reduced form of matrix and solution of the NKM

In this section we give a description of the matrix notation in Equation (3) and the solution procedure for

the system of the NKM. The matrices of A, B, C and N with yt = (π̂t, xt, r̂t)
′ are defined as follows.

A =




0 0 β
1+αβ

0 1
1+χ τ

0 0 0


 , B =




0 κ −1

−τ −1 0

−1 (1 − φr)φx (1 − φr)φπ




C =




0 0 α
1+αβ

0 χ
1+χ 0

φr 0 0


 , N =




0 0 ρπ

0 ρx 0

0 0 0




Using Equation (4), we redefine the vector of observable variables yt as terms of one-period-ahead.

yt+1 = Ωyt + Φνt+1

= Ω(Ωyt−1 + Φνt) + Φ(Nνt + εt+1)

= Ω2yt−1 + (ΩΦ + ΦN)νt + Φεt+1 (B.2)

Substitute Equations (B.2) and (4) into the canonical form of Equation (3).

Et

[
AΩ2yt−1 + A(ΩΦ + ΦN)νt + AΦεt+1 + BΩyt−1 + BΦνt + Cyt−1 + νt

]
= 0 (B.3)

Drop the expectation and rearrange things.

(AΩ2 + BΩ + C)yt−1 + (AΩΦ + AΦN + BΦ + In)νt = 0, where n = 3 (B.4)

This implies that the following equations must hold for all yt−1 and νt.

AΩ2 + BΩ + C = 0 (B.5)

(AΩ + B)Φ + AΦN + In = 0

An iterative method can provide the solution of the matrix Ω. The matrix Φ can be obtained by using

some matrix algebra; i.e. the solution of the Lyapunov equation.
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C VAR lag order selection

In our study, a VAR (q) model describes the relationship between the empirical auto- and cross-covariances

of interest rate, inflation and output. We employ the model of a K-dimensional multiple times series

yt := (y1t, · · · , yKt)
′ following Lütkepohl (2005):

yt = ν +A1yt−1 + · · ·+Aqyt−1 + ut (C.6)

where ν is a fixed (K×1) vector of intercept, and ut is a K-dimensional innovation process with E(ut) = 0,

E(utu
′

t) = Σu. The matrices Ai include fixed (K×K) coefficients. The following lag order selection criteria

are considered in Table C.1: final prediction error (FPE), Akaike information criterion (AIC), Hannan-

Quinn information criterion (HQ), Bayesian information criterion (BIC). The chosen lag order for both

periods is one year (VAR (4)).

Table C.1: VAR lag order selection criteria

GI GM

Lag FPE AIC HQ BIC FPE AIC HQ BIC

0 14931.714 9.534 9.534 9.534 8926.601 9.036 9.036 9.036

1 194.525 5.309 5.302 5.466 205.437 5.554 5.558 5.699

2 106.200 4.822 4.805 5.137 112.227 4.843 4.851 5.136

3 24.202 3.462 3.435 3.936 26.806 3.505 3.515 3.945

4 1.136 0.522* 0.482* 1.156* 1.696 0.839* 0.851* 1.427*

5 1.058 0.569 0.515 1.365 1.759 0.970 0.983 1.708

6 0.944* 0.571 0.501 1.528 2.094 1.238 1.251 2.127

7 0.970 0.709 0.620 1.830 1.611 1.068 1.081 2.110

8 1.050 0.893 0.783 2.177 1.563* 1.129 1.139 2.324

Note: The star (*) indicates an optimal lag length.
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D Matrix notation

This section gives a matrix notation for the derivative of the moment conditions. This notation is used

to implement the procedures for the model comparison of HMT; see appendix E. Let m(θ) be a mn by 1

vector. The parameter vector θ has a dimension of nI
θ. The gradient matrix ∂m(θ)

∂θ′
has dimension mmn

×
nI
θ. The second derivative matrix ∂

∂θI′
vec

(∂mI(θI)

∂θI′

)
has dimension mmn

· nI
θ × nI

θ

∂m(θ)

∂θ′
=




∂m1

∂θ1
∂m1

∂θ2
· · · ∂m1

∂θ
nI
θ

∂m2

∂θ1
∂m2

∂θ2
· · · ∂m2

∂θ
nI
θ

...
... · · ·

...

∂mmn

∂θ1

∂mmn

∂θ2
· · · ∂mmn

∂θ
nI
θ




.

∂

∂θI′
vec

(
∂mI(θI)

∂θI′

)
=




∂m1

∂θ1∂θ1
∂m1

∂θ1∂θ2
· · · ∂m1

∂θ1∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ1∂θ1

∂mmn

∂θ1∂θ2
· · · ∂mmn

∂θ1∂θnI
θ

∂m1

∂θ2∂θ1
∂m1

∂θ2∂θ2
· · · ∂m1

∂θ2∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ2∂θ1

∂mmn

∂θ2∂θ2
· · · ∂mmn

∂θ2∂θ
nI
θ

...
...

. . .
...

...
...

. . .
...

∂m1

∂θ
nI
θ

∂θ1
∂m1

∂θ
nI
θ

∂θ2
· · · ∂m1

∂θ
nI
θ

∂θ
nI
θ

...
...

. . .
...

∂mmn

∂θ
nI
θ

∂θ1

∂mmn

∂θ
nI
θ

∂θ2
· · · ∂mmn

∂θ
nI
θ

∂θ
nI
θ




.

36



E Technical note on the model comparison method

This section recapitulates the equations for the model comparision method of HMT. Assume that model

B is nested within model A. The quantitative goodness-of-fit of models to data is evaluated by using the

method of moments in section 3.1. The "full" model is tested against the "restricted" model.

Let mT be a nm vector of moments. m̂(θ) is the consistent estimator of mT . The uncertainty of

moment estimates is assessed by estimating a Newey-West type weighted sum of autocovariance matrices

(Σ̂m). Given the assumption of normality, we can consistently estimate the covariance matrix of moment

conditions.

√
T (mT − m̂(θ)) −→

d
N(0, Σ̂m) (E.7)

The estimates θ̂I are obtained at the point where a weighted objective function is minimized:

J(θI) ≡ min
θI∈Θ

∥∥W 1/2(m̂T −mI(θ̂I))
∥∥2

, I = A,B (E.8)

‖W 1/2(m̂T −mI(θ̂I))‖ is defined as

√
(m̂T −mI(θ̂))′W (m̂T −mI(θ̂)). The weight matrix W is set to the

diagonal components of 1/Σ̂m,ii (ii = 1, · · · , nm). The quasi-likelihood ratio test statistic is constructed

as the difference in fits between two models:

QLR(θ̂B , θ̂A) = JB(θ̂B)− JA(θ̂A) (E.9)

JI (I = A,B) is a minimum value of the objective function given parameter estimates from Equa-

tion (E.8). It is assumed that the chosen moment functions in the models are twice continuously differen-

tiable in neighborhoods of θI ⊂ ΘnI

θ . Further, the matrix F and M are non-singluar in neighborhoods of

θ.12:

F I =
∂mI(θI)′

∂θI
W

∂mI(θI)

∂θI′
−M I (E.10)

M I = (EI ⊗ (m̂T −mI(θI))′W )
∂

∂θI′
vec

(∂mI(θI)

∂θI′

)
, I = A,B (E.11)

EI is the identity matrix of which dimension is nI
θ × nI

θ. Note here that the dimensions of the matrices

∂mI(θI)

∂θI′
and ∂

∂θI′
vec

(∂mI (θI)

∂θI′

)
are nm × nI

θ and nm · nI
θ × nI

θ. The dimension of F I and M I are nI
θ by nI

θ.

The theorem 3.1 in HMT states that the quasi-likelihood ratio test T ·QLR converges in distribution

to Equation (18). The nI
θ by nI

θ matrix V I is defined as V I = V I
1 − V I

2 − V I
3 with I = A,B:

V I
1 =

∂mI(θI)

∂θI′
(F I′

)−1 ∂m
I(θI)′

∂θI
W

∂mI(θI)

∂θI′
(F I)−1 ∂m

I(θI)′

∂θI

V I
2 =

∂mI(θI)

∂θI′
((F I′

)−1 + (F I)−1)
∂mI(θI)′

∂θI

V I
3 =

∂mI(θI)

∂θI′
(F I′

)−1(M I′

+M I)(F I)−1 ∂m
I(θI)′

∂θI

12We use the built-in procedures gradp and hessp in the GAUSS software package. The optimal step size for the gradient

vector and the Hessian matrix is carefully adjusted, because difference approximations is likely to be imprecise provided that

the first derivative is small. See Gill et al. (1981, Ch.4, pp. 127-133) for the choice of the finite-difference interval.
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However, it is sometimes observed that the estimated V̂B − V̂A is not a positive-definite matrix where

some negative values are drawn in simulations. We should not discard the negative values of the test

distribution when making statistical inference for the model comparison. The hypothesis test is assessed

by critical values at the 1% and 5% confidence level (Q99, Q95) from the simulated asymptotic test dis-

tribution. When one model is nested within another, one rejects the null hypothesis at 5% level that two

models are equivalent if T ·QLR(θ̂A, θ̂B) > Q95.

F Simulated QLR distribution for model comparison

F.1 Auto- and cross-covariances at lag 1: 15 moment conditions
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Figure 3: Test distribution for inflation persistence: GI (left) and GM (right)
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Figure 4: Test distribution for the output gap persistence: GI (left) and GM (right)
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F.2 Auto- and cross-covariances at lag 4: 42 moment conditions
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Figure 5: Test distribution for inflation persistence: GI (left) and GM (right)
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Figure 6: Test distribution for the output gap persistence: GI (left) and GM (right)
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G The Monte Carlo result of the misspecified case

Table G.2: Monte Carlo results on the MM and ML estimates of the misspecified model, ( ): root mean square error, S.E : mean of standard errors

ML MM with 15 moments MM with 42 moments

θ0 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

κ 0.050 0.096 (0.186) 0.089 (0.212) 0.077 (0.031) 0.176 (0.140) 0.168 (0.125) 0.163 (0.118) 0.205 (0.175) 0.191 (0.152) 0.182 (0.136)

ρπ 0.000 0.616 (0.621) 0.618 (0.620) 0.617 (0.618) 0.632 (0.635) 0.646 (0.647) 0.653 (0.654) 0.598 (0.604) 0.614 (0.617) 0.623 (0.624)

σπ 0.675 0.491 (0.293) 0.487 (0.330) 0.474 (0.205) 0.560 (0.151) 0.543 (0.150) 0.531 (0.654) 0.661 (0.164) 0.633 (0.127) 0.612 (0.098)

χ 1.000 0.921 (0.132) 0.938 (0.100) 0.955 (0.066) 0.981 (0.053) 0.994 (0.020) 0.999 (0.015) 0.970 (0.083) 0.986 (0.047) 0.997 (0.014)

τ 0.090 0.085 (0.032) 0.085 (0.024) 0.085 (0.015) 0.089 (0.029) 0.086 (0.021) 0.084 (0.014) 0.088 (0.035) 0.083 (0.024) 0.080 (0.017)

σx 0.700 0.688 (0.064) 0.691 (0.046) 0.694 (0.026) 0.637 (0.123) 0.636 (0.103) 0.636 (0.082) 0.654 (0.132) 0.644 (0.106) 0.639 (0.083)

φπ 1.650 1.667 (0.182) 1.657 (0.118) 1.657 (0.075) 1.691 (0.182) 1.681 (0.117) 1.679 (0.075) 1.848 (0.291) 1.783 (0.203) 1.775 (0.156)

φx 0.375 0.352 (0.127) 0.352 (0.085) 0.356 (0.054) 0.227 (0.211) 0.227 (0.203) 0.226 (0.164) 0.315 (0.282) 0.238 (0.197) 0.237 (0.166)

φr 0.550 0.540 (0.049) 0.541 (0.035) 0.356 (0.054) 0.488 (0.086) 0.487 (0.077) 0.489 (0.067) 0.527 (0.070) 0.524 (0.053) 0.525 (0.038)

σr 0.750 0.738 (0.056) 0.743 (0.039) 0.748 (0.024) 0.733 (0.101) 0.744 (0.069) 0.756 (0.043) 0.597 (0.313) 0.616 (0.244) 0.649 (0.164)

L(θ) or J(θ) -398.38 -805.68 -2026.45 2.36 3.46 6.95 24.22 29.36 49.73

Note: The misspecified model does not include the parameter α in the NKPC. To save space, we also do not report the asymptotic standard errors for the parameter estimates,

because these are not different from the case of the correctly specified case.
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