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Abstract

This paper discusses the growth model with environmental constraints recently pre-
sented in (Acemoglu et al., 2011) which focuses on the redirection of technical change by
climate policies with research subsidies and a carbon tax. First, Acemoglu et al.'s model
and chosen parameters yield numerical results that do not support the conclusion that
ambitious climate policies can be conducted �without sacri�cing (much or any) long-run
growth�. Second, they select unrealistic key parameters for carbon sinks and elasticity of
substitution. We �nd that more realistic parameters lead to very di�erent results. Third,
the model leads to an unrealistic conclusion when used to analyse endogenous growth,
suggesting speci�cation problems.

Acemoglu et al. (2011) include �endogenous and directed technical change in a growth model
with environmental constraints and limited resources� in order to provide �a systematic frame-
work of the impact of di�erent types of environmental regulations on the direction of technical
change�. They conclude that a dual policy involving carbon taxation and research subsidies is
superior to a policy based only on a carbon price, and we agree with this conclusion1. However
they also suggest that successful mitigation �policies only need to be in place for a temporary
period� and �without sacri�cing (much or any) long-run growth�.

But a precise examination of the model results reveals a gap between these claimed con-
clusions and the numerical results. This gap is large enough to raise three sets of interlinked
questions, �rst about the interpretation of the results, second about the parameter choices,
and third about structural problems of the AABH model. We discuss these points in order.

1 Interpretative problems about numerical results

In the AABH economy, two intermediate goods Yj , a clean one j = c and a dirty one j = d,
are used to produce a unique �nal good Y through a constant elasticity of substitution (ε)
production function. The dynamics of production are governed by productivity factors Aj
in each sector. The growth rate of these Aj is the product of the (normalized) number of

1Conclusion derived by the three last IPCC reports (Hourcade et al., 1995, 2001; Gupta et al., 2007). For
recent contributions, see (Fischer and Newell, 2008; Gerlagh, 2008; Schmidt and Marschinski, 2009).
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researchers sj dedicated to producing innovations in sector j and of an identical maximum
growth rates γηj = 2 %. These Aj are calibrated so that the volumes of the dirty and clean
intermediate goods equate to the total of fossil and non fossil world primary energy supply
given by world energy balances. The AABH model calculates the evolution of this economy
under laissez-faire and with an optimal policy mix in the presence of a climate externality
caused by the dirty good. GDP departures from a maximum 2 % growth rate under laissez-
faire are generated when the combination of an innovation subsidy and a carbon tax spur
the productivity of the clean sector and cause the �nal producer to use more of the still
less productive clean technology. GDP departures last as long as the productivity of this
technology has not caught up the productivity of the dirty one.

Acemoglu et al. conduct three numerical experiments with two di�erent elasticities of
substitution between the clean and dirty good ε = 3, 10. The interpretative problem about the
modeling results concerns the statement that �excessive use of carbon taxes can be avoided�.
The article does not give the level of the assumed taxes but, after programming the same
model, we found that, with ε = 3 and ρ = 0.015, even a carbon tax2 reaching 400 $/tCO2

after 50 years (and tax revenues reach 23 % of output) does not allow to avoid catastrophic
climate change. A moderate initial 45 $/tCO2 tax is possible with the same ε = 3 only in case
of a low discount rate ρ = 0.001; but this tax is not �temporary� since it increases through
time and remains in place for more than a century and a half.

A low 10 $/tCO2 initial tax decreasing over time is possible only with a high elasticity
of substitution ε = 10 (see the table 1 in the Appendix). Surprisingly, although this low tax
takes only a 0.5 % of �nal output, the climate policy has a large negative impact on growth:
the �slow growth transition phase� lasts forty years and starts with a 0.5 % growth rate during
the �rst decade 3 (see the table 2 in the Appendix). This 75 % reduction from the baseline
growth rate 4 is beyond the �ndings of the most pessimistic empirical models (Fisher et al.,
2007) and would make climate policies politically unacceptable.

2 Implausible parameters choices

2.1 The elasticity of substitution

The less pessimistic case relies on a high elasticity of substitution between clean and dirty
inputs. Although Acemoglu et al. call for further research on the subject, they indicate
that ε = 10 is �empirically plausible� given that �fossil and non fossil fuels should be close
substitutes (at the very least, once non fossil fuels can be transported e�ciently)�. Possibly,

2The carbon tax is τ p̂d.Yd0/Y0.GDP0/E0 (it is proportional to the input tax τ times the dirty good price).
We use a world carbon intensity of GDP of E0/GDP0 = 0.5 kCO2/$.

3Note that scenarios with di�erent ε are hardly comparable. Indeed when ε varies, Ac and Ad need to be
adjusted, so that initial states of the world are di�erent which raises a methodological problem.

4This 2% world growth rate, a common assumption in modeling works for the long run, signi�cantly departs
from existing projections for the short and medium term: the IMF projects a 4.7% growth rate up to 2016
mainly because of the catch-up phase in emerging economies. We have no information about how the AABH
model would behave with realistic growth rates. Starting from a higher baseline the growth rate with climate
policy might be higher than 0.5% but baseline emissions would also be signi�cantly higher in a �rst period
which would magnify the decarbonization challenge and impose higher costs.
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all energy sources will be fairly substitutable, one day, as innovation widens the range of
technological possibility. But this is not the case over the short or medium term, because
neither gas nor coal can easily substitute for liquid fuels used in internal combustion engines.
In addition to the historical fact that a 1 % increase of the relative price of the fossil fuels
never triggered a 10 % decrease of their relative share in energy markets over a �ve year time
period, such an optimistic value neglects the fact that the capital stock for large sections of
the energy system lasts more than 50 years (Ha-Duong et al., 1997; Davis et al., 2010). The
low short and medium term elasticity is due to the inertia of existing equipments and to the
technical constraints imposed on the system by the energy carriers that transform primary
into �nal energy and into speci�c end-use energy services.

There is an extensive literature on substituability by energy economists but a comparison
of AABH assumptions with this literature is di�cult because AABH focuses on primary
energy instead of �nal energy5. Let us however try to link the elasticity of substitution of the
AABH model with available data about price-elasticity. We suggest that, the AABH price-
elasticity of demand for the dirty good calculated at �xed cost with other prices constant, is
tantamount to the price-elasticity of consumer demand (at �xed income) for the dirty good6.
With the AABH calibration, this gives a price-elasticity of demand for dirty good of −1.5
when ε = 3, and of −2.4 when ε = 10. Meta-analyses (Espey, 1998; Goodwin et al., 2004) of
the price-elasticity of gasoline7 give a value situated between −0.3 and −0.6. There are no
such meta-analyses for coal but Dahl (1993) surveyed the sparse results and ��nd the evidence
mixed but might be slightly more inclined to favor an inelastic price and income response�.
Since the price-elasticity is greater than −1 only when ε < 1, the elasticity of substitution is
certainly below 1.

With a more plausible value ε = 0.5, climate control (in the model) is impossible without
halting long-term growth (see Figure 1 of the Appendix); the carbon tax begins at 350 and
reaches 1000 $/tCO2 in thirty years. The increase of total output is achieved more e�ciently
by a higher use of the � initially small � clean sector and researchers make higher pro�ts in
this sector. They would thus redirect their e�ort without subsidy. This raises the question
about why, so far, the bulk of the research has occurred in the dirty sector.

2.2 Climate module and available carbon budget

The size of the carbon sinks in the AABH model, and thus the dynamics of the temperature
increase ∆ above pre-industrial levels, depends on the maximum possible increase ∆dis and
the natural regeneration δ. With the AABH calibration of these parameters, the tempera-
ture increase drops from +1.5 °C to +0 °C in eighty years. This contradicts lessons from

5The elasticity of substitution between primary energies does not make sense technically because of het-
erogeneous e�ciency in transformation channels between primary and �nal energy and because of the energy
accounting conventions to build energy balances.

6In AABH, one �nal good is made out of two intermediate goods. We can alternatively have a consumer
who directly consumes the intermediate goods; the �nal production function is then entailed in the utility
of this alternative consumer. Standard algebra gives a price-elasticity of demand for dirty good Yd that is
−ε− (1− ε)/(1 + (Yc/Yd)

(ε−1)/ε), the AABH calibration is Yc/Yd ' 0.16.
7which represents 30% of �nal energy consumption and 17% of CO2 emissions from the energy sector.
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climate modeling exercises which show that, even if we could stop now GHG emissions in the
atmosphere, the global mean temperature would rise for several decades. From Figure 1 of
(Acemoglu et al., 2011), the CO2 lifetime in the AABH scenarios appears to be situated in
the 50 years' range. However physical evidence suggests lifetime ranges beyond 10 000 years8.

Moreover, with ∆dis = +6 °C, the AABH model assumes that carbon sinks are positive
from +0 °C to +6 °C. This neglects the fact that climate science suggests the likelihood of
temperature thresholds beyond which ecosystems could abruptly switch from carbon sinks to
carbon sources. These possible switches of possible �tipping elements� (Arctic sea-ice, Green-
land ice sheet, Atlantic thermohaline circulation, Amazon rainforest) are located between
+2 °C and +5 °C (Lenton et al., 2008).

Running the AABH model with more plausible climate parameters shrinks the carbon
budget available to achieve climate control and increases the costs of achieving the decar-
bonization of the economy. Setting ∆dis at +4 °C instead of +6 °C halves the size of carbon
sinks and, with ε = 10, the carbon tax starts around 40 $/tCO2 and peaks at 100 $/tCO2 in
a century, whereas with ε = 3 the carbon tax starts around 200 $/tCO2, reaches 600 $/tCO2

in a century, but then keeps increasing.

3 Structural problems of the AABH model

3.1 A misrepresentation of climate irreversibility

In AABH, the law-of-motion of CO2 concentrations is Ct+1 − Ct = ξYdt + δ(Ct − Cdis). The
�rst right hand term is emissions from dirty goods Yd, the second is the natural removal of
CO2 from the atmosphere. This removal mechanism is proportional to the di�erence between
current concentration Ct and disaster concentration Cdis. The absorption capacity in the
model never saturates, which allows a return to pre-industrial concentration levels in a short
time period. In reality, the decay of CO2 exhibits a long tail because of interactions between
various carbon pools with di�erent characteristic times (Archer and Brovkin, 2008).

To check the consequences of this gross departure from climate science, we tested the be-
havior of the AABH model with a law-of-motion that follows the rule of thumb given by Archer
(2005) to approximate the lifetime of anthropogenic CO2: �300 years, plus 25 % that lasts
forever�. The concentration Ct of carbon is split between C1,t, a naturally degradable concen-
tration and C2,t, a concentration that �lasts forever� 9: C2,t+1 = 0.25ξYdt + C2,t. The carbon
sinks follow a bell-shaped curve: natural regeneration is 0 when degradable concentration is
at the pre-industrial equilibrium (280). It then increases to a peak and �nally decreases and
reaches 0 again when total concentration Ct is equal to Cdis, which we keep at the same value
as in AABH. This can be written as: C1,t+1 = 0.75ξYdt+C1,t−δ(Cdis−C1,t−C2,t)(C1,t−280).

With this more scienti�cally based climate dynamics, carbon taxes are never null even in
the most optimistic cases where the two inputs are strong substitutes. Independently of what
we said about parameters choices, this con�rms that the need for regulation is permanent and

8The lifetime of the CO2 concentration should not be confused with the atmospheric lifetime of individual
atoms, see Archer et al. (2009) for a discussion.

9The lifetime of this stock is actually in the order of magnitude of a hundred thousand years.
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not transitory (see the comparison in �gure 2 of the Appendix).

3.2 An incomplete endogenous growth model

In an endogenous growth model, the natural policy lever to reverse the above pessimistic
conclusions would be to increase the amount of research. This could o�set the long term
adverse e�ect on the overall productivity of crowding out �normal� investment in promoting
clean innovation. But the AABH is not a complete endogenous growth model. The long term
growth is exogenous, there is a �xed number of researchers and the research activity demands
no other component of the �nal good than the researchers' consumption. Technical change is
thus a costless manna from researchers substituted to the manna from heaven in the Solowian
models. The AABH planner allocates the researchers between sectors but misses one degree
of freedom, the global amount of research.

To clarify the trade-o� between consumption and savings or between investing in research
and production capacities, it is necessary, ceteris paribus, to allow a reallocation of labor
between production and research and to endogenize the level of research. Total labor, nor-
malized to 1, can now be allocated in clean or dirty production and in clean or dirty research:
Lct + Ldt + sct + sdt ≤ 1. At the optimum point, allocation is governed by an indi�erence
relation:

λtp̂ct(1− α)
Yct
Lct

= µctγηcAc,t−1

The left-hand side is the shadow-value of consumption (λt) times the marginal production
of a worker (p̂ct(1− α) YctLct

) and the right-hand side is the shadow-value of productivity (µct)
time the marginal increase of productivity of a researcher (γηcAc,t−1). From this relation,
when ε > 1, we are able to derive an implicit equation for the optimal proportion sc of
researchers (see A.2 of the Appendix for the derivation and numerical applications). This
equation can be used in two ways:

(1) �x long-term growth g, solve for the optimal level sc, and then deduce the research-
to-growth ratio. If the optimal long-term growth rate is �xed at 2 % per year, with a 1.5 %
pure-time preference, the optimal share sc is 37 %, meaning that almost two-�fth of the
population should be composed of researchers. But, if we apply this research-to-growth ratio
to a current share of, let's say, 10 %, then the achievable long-term growth rate is a low 0.55 %
in laissez-faire economies.

(2) Alternatively, if we suppose that 10 % of population being currently engaged in research
gives rise to a 2 % growth rate, this �xes the research-to-growth ratio. The central planner
can modify the level of research to the optimum sc = 47 %, calculated with the equation. This
results in an optimal growth rate of 8.2 %.

Thus, none of the numerical experiments conducted without the separation between work-
ers and researchers delivers plausible orders of magnitude. This is indicative of a structural
problem. In complete endogenous growth models, even without explicit physical capital, in-
vestments are often incorporated in the form of accumulated knowledge and an interest rate
governs households' trade-o� between consumption and savings, and the allocation of savings
to research and physical capital. In such models, the free entry in research imposes a no-pro�t
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condition and determines the interest rate10. All these mechanisms are frozen in AABH by a
�xed number of researchers, no savings and no interest rate.

Thanks to this separation between workers and researchers, the level of research e�orts
can be arbitrarily selected without the consistency check imposed by a complete endogenous
growth model. This in turn means that there is no way of controlling the relative productivity
of research vis-à-vis labor. This raises concerns about the value of a model where assumptions
about the social return to research does not elucidate the relative contribution of innovation
as a substitute for carbon taxes.

4 Conclusion

Acemoglu et al. fail to support their claim that innovation subsidies and a low carbon tax
would allow to meet ambitious climate mitigation objectives without large negative impacts
on growth. Simulations conducted with the same model in fact show the opposite, except in
case of implausibly optimistic parameters regarding the carbon budget and the elasticity of
substitution between clean and dirty technologies. We explain that this model relies on very
restrictive structural assumptions that make it impossible to detect levers to decouple carbon
emissions and economic growth without placing a high burden on current generations.

We can identify three avenues for removing these restrictive structural choices. The �rst is
to capture some important channels through which the ideas of researchers ultimately become
real products through engineering, testing, scale-up and marketing11; this requires a model
that, in contrast with that of Acemoglu et al., includes productive capital and learning-
by-doing mechanisms. The second is to analyze the up-front investment risks at all the
stages of the innovation chain and those resulting from the controversial nature of the division
line between �clean� and �dirty� technologies (as in the case of large scale biofuels, nuclear
energy for example). The third is to identify to which extent a shift toward a new growth
path must be achieved with the existing best available technologies; for example avoiding a
bifurcation towards a carbon intensive pathway in emerging economies depends on mobilizing
these techniques in transportation and energy infrastructures that will be built in the following
two decades.

The purpose of following these avenues is to incorporate, in alternative modeling frame-
works, mechanisms that are absent in the AABH model. Building on the large body of
literature in the �eld, this would allow to better understand how these mechanisms are ac-
tivated by subsidizing innovation and levying carbon taxes, with or without complementary
policies, in order to achieve an economically and environmentally sustainable growth path.

10A symptom of the incompleteness of the AABH model is that it allows a user to select arbitrarily the
discount rate ρ. Actually changing the ρ implies, for a given growth rate, a change in the productivity of
capital or the elasticity of the marginal utility of consumption.

11See Dosi (1982, 1988); Arthur (1989); Goulder and Schneider (1999); Arrow (1962); Grübler et al. (2002).
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A Appendix

A.1 Results of the AABH model

Table 1: Carbon tax ($/tCO2) in the AABH model

Years 5 25 50 75 100 125 150

ε = 10, ρ = 0.015 10 8.6 6.4 2.6 0 0 0
ε = 3, ρ = 0.001 47 48 52 60 74 92 110
ε = 3, ρ = 0.001 75 160 400 490 610 800 1100

Table 2: Growth rate of total production in the AABH model

Years 5 10 15 20 25 50 75 100

ε = 10, ρ = 0.015 0.36 0.65 1.0 1.2 1.5 2.0 2.0 2.0
ε = 3, ρ = 0.001 0.25 0.54 0.59 0.65 0.71 1.0 1.3 1.6

A.2 Calculation of the optimal level of research

In the optimal programme, we remove the separation between researchers and workers. We
allow labor to be allocated either in production or in research: Lct + Ldt + sct + sdt ≤ 1 (the
total labor is normalized to 1).

At the optimum, the shadow value of a unit of worker in the clean sector is the same as a
shadow value of a unit of clean researcher. Thus

λtp̂ct(1− α)
Yct
Lct

= µctγηcAc,t−1 (A.1)

where λt is the shadow value of consumption and µct is the shadow value of productivity.
The equation for µct is still equation (A.13) of (Acemoglu et al., 2011):

µct = λt

(
α

ψ

) α
1−α

(1− α)p̂
1

1−α
ct Lct + (1 + γηcsc,t+1)µc,t+1 (A.2)

From now on, we concentrate on the case ε > 1. We de�ne µ̃ct = µct/(λt

(
α
ψ

) α
1−α

(1 −

α)p̂
1

1−α
ct Lct). The equation is thus:

µ̃ct = 1 +
λt+1

λt

(
p̂c,t+1

p̂ct

) 1
1−α Lc,t+1

Lct
(1 + γηcsc,t+1)µ̃c,t+1 (A.3)

As research is totally devoted to the clean sector, Act → +∞, so, because ε > 1,
p̂c,t+1

p̂ct
∼ 1

and also
Lc,t+1

Lct
∼ 1. Let us denote sc the limit of sct. Then λt+1

λt
∼ (1+γηcsc)−σ

1+ρ . So µ̃ct ∼
1 + (1+γηcsc)1−σ

1+ρ µ̃c,t+1, thus:
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µ̃ct ∼
1

1− (1+γηcsc)1−σ

1+ρ

(A.4)

As Yct =
(
α
ψ p̂ct

) α
1−α

ActLct (equation (A.12) of (Acemoglu et al., 2011)) and Ac,t−1 =

Act/(1 + γηcsct) (equation (11) of (Acemoglu et al., 2011)), equation (A.1) becomes, after
simpli�cation

1 ∼ Lct

1− (1+γηcsc)1−σ

1+ρ

γηc
1 + γηcsct

(A.5)

Because Lct ∼ 1−sc and sct ∼ sc, we thus obtain an equality between limits, which writes,
after rearrangement:

1− (1 + γηcsc)
1−σ

1 + ρ
=
γηc(1− sc)
1 + γηcsc

(A.6)

This is the implicit equation (valid when ε > 1 between the optimal proportion sc, ρ is
the pure-time preference, the research-to-growth ratio γηc, the inverse σ of the elasticity of
intertemporal substitution. The (optimal) long-term growth rate is g = γηcsc.

In the text, we use this equation in two ways.
In the �rst case, we �x the long-term growth rate g = 2 %. The implicit equation becomes:

1− (1 + g)1−σ

1 + ρ
=
g/sc.(1− sc)

1 + g
(A.7)

We solve the equation, �nd sc = 37 %, and thus a research-to-growth ratio γηc. With this
research-to-growth ratio, a more realistic 10 % of population currently engaged in research
give rise only to a 0.55 % growth rate.

In the second case, we �x γηc, considering that, in laissez-faire economies, 10 % of pop-
ulation currently engaged in research give rise to a 2 % growth rate. We solve the implicit
equation, and �nd sc = 47 %, and thus an optimal growth rate g = 8.2 %.

For all the numerical applications, one has to keep in mind that the model is not time-
scale invariant (because of discrete time). So in the calculations, the values of growth rate
and pure-time preference have to be expressed in per �ve year (because the time-period lasts
�ve year) not in per year. The latter unit is however used to display the result; for example,
one has to set 1 + g = 1.025 =1.104 and 1 + ρ = 1.0155 = 1.077.

A.3 Comparative exercises with the AABH model
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Figure 1: Comparisons of the AABH model with ρ = 0.015 and ε = 10 (strong substitutes)
or ε = 0.5 (weak substitutes)
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Figure 2: Comparison of the AABH and Archer law-of-motion, when ε = 10, ρ = 0.015
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