

NOTA DI LAVORO 36.2012

Scanning for Global Greenhouse Gas Emissions Reduction Targets and their Distributions

By **Stefan P. Schleicher**, Wegener Center for Climate and Global Change at the University of Graz

Angela Köppl, Austrian Institute of Economic Research, Vienna

Climate Change and Sustainable Development Series Editor: Carlo Carraro

Scanning for Global Greenhouse Gas Emissions Reduction Targets and their Distributions

By Stefan P. Schleicher, Wegener Center for Climate and Global Change at the University of Graz

Angela Köppl, Austrian Institute of Economic Research, Vienna

Summary

If dangerous and irreversible climatic events are to be avoided, global average temperature should not increase by more than 2°C above pre-industrial levels. In order to achieve such a global target, a mitigation pathway has to limit global emissions to about 50 percent below 1990 levels by 2050. We want to investigate in this paper the radical change of the energy system that would be needed for entering the pathway for halving emission levels by applying a global analytical tool. A comprehensive data base with a global coverage including socio-economic data as well as data on energy and emissions has been set up. By dividing the world into six countries and regions which account for two thirds of global emissions and a region for the rest of the world we investigate in an analytical framework the key drivers and parameters of the energy system which refer to population dynamics, economic activity, energy and carbon intensity. Based on assumptions about the diffusion and convergence of these key parameters we derive implications for long-term emission reduction targets.

Keywords: Greenhouse Gas Emissions Reduction Targets, Energy Forecasts

JEL Classification: Q54, Q47

Address for correspondence:

Stefan P. Schleicher Wegener Center for Climate and Global Change at the University of Graz Universitätsstrasse 15/F4 A-8010 Graz, Austria E-mail: Stefan.Schleicher@wifo.at

Scanning for Global Greenhouse Gas Emissions Reduction Targets and their Distributions

Stefan P. Schleicher and Angela Köppl

March 2012

Abstract

If dangerous and irreversible climatic events are to be avoided, global average temperature should not increase by more than 2 °C above pre-industrial levels. In order to achieve such a global target, a mitigation pathway has to limit global emissions to about 50 percent below 1990 levels by 2050. We want to investigate in this paper the radical change of the energy system that would be needed for entering the pathway for halving emission levels by applying a global analytical tool. A comprehensive data base with a global coverage including socio-economic data as well as data on energy and emissions has been set up. By dividing the word into six countries and regions which account for two thirds of global emissions and a region for the rest of the world we investigate in an analytical framework the key drivers and parameters of the energy system which refer to population dynamics, economic activity, energy and carbon intensity. Based on assumptions about the diffusion and convergence of these key parameters we derive implications for long-term emission reduction targets.

Keywords:greenhouse gas emissions reduction targets, energy forecastsJEL codes:Q54, Q47

Stefan P. Schleicher Wegener Center for Climate and Global Change at the University of Graz Stefan.Schleicher@wifo.at

Angela Köppl Austrian Institute of Economic Research, Vienna Angela.Koeppl@wifo.at

1 Motivation

Targets for greenhouse gas emissions continue to be the cornerstone of climate policy despite the considerable shift of its global architecture from a Kyoto to a Copenhagen style regime. The majority of the world's countries are committed to limiting greenhouse gas emissions targets that limit global warming to 2 °C and there are a number of proposals how this temperature target translates into emission targets. Meinshausen et al. (2009) estimate that halving global emissions by 2050 compared to 1990 levels still leaves a 12 to 45 percent probability of exceeding a 2 °C target. UNEP (2011) states that emissions would have to peak before 2020 and afterwards to decline with more than 2 percent per year in order to maintain the chance of meeting the 2 °C target. In a roadmap for 2050 the European Commission suggested in March 2011a reduction target for the EU between 80 and 95 percent.

We want to investigate in this paper the radical change of the energy system that would be needed for entering the pathway for halving emission levels by applying a global analytical tool. A comprehensive data base with a global coverage including socio-economic data as well as data on energy and emissions has been set up. By dividing the word into six countries and regions which account for two thirds of global emissions and a region for the rest of the world we investigate in an analytical framework the key drivers and parameters of the energy system which refer to population dynamics, economic activity, energy and carbon intensity. Based on assumptions about the diffusion and convergence of these key parameters we derive implications for long-term emission reduction targets.

2 Identifying structures and dynamics of the global energy system

It goes without saying, that the global energy system is undergoing rapid changes. We will gather in this section evidence of these changes both on a global and on a regional scale. In addition we want to grasp a first impression about the drivers of these changes. Population and economic activity, measured by gross domestic product (GDP), are considered as the key causalities for energy demand which in turn determines via the carbon intensity of the energy mix the CO₂ emissions.

2.1 The global perspective

We obtain from Figure 2-1a first impression about the key indicators GDP (at constant 2000 prices and purchasing power parity), TES (total energy supply), CO₂ (carbon dioxide emissions), and population which have all expanded since 1990 with different dynamics. Remarkable is the nearly linear population path, the almost doubling of global GDP which is leveling off after a pronounced exponential growth and a similar path for energy. CO₂ emissions follow an almost identical path as total energy supply which is evidence of almost unchanged carbon intensity over the past two decades.

Figure 2-1: Key global indicators

Source: Own analyses based on IEA and UN databases

The composition of global total energy supply (TES) is visible in Figure 2-2. The steady decline of the share of oil since 2000 is overcompensated by a rapid increase of the share of coal. Slightly upward movements can be observed for natural gas and recently for renewables. There is a slight decline in the share of nuclear.

Figure 2-2: Composition of global energy supply

Source: Own analyses based on IEA databases

2.2 The regional perspective

We obtain valuable insights into the regional differences of population dynamics, economic activity, energy supply and CO_2 emissions by splitting the world into seven regions or countries, namely

- EU-27,
- USA,
- Japan,
- China,
- India,
- Russian Federation, and
- Rest of the World

The wide differences in the regional distribution of population, GDP, total energy supply and CO₂ emissions can be seen in Figure 2-3 and the accompanying Table 2-1. The USA, e.g. has shares in the global total of 5 percent for population and uniform 18 percent for GDP, total energy supply and CO₂. The corresponding numbers for the EU are 7 percent for population, 19 percent for GDP, 14 percent for energy, and 12 percent for emissions. Compared with the USA this reveals for the EU a lower GDP per capita but also considerable lower energy and emissions intensities.

Figure 2-3: Regional distribution of population, GDP, total energy supply and CO₂ emissions

Source: Own analyses based on IEA and UN databases

Table 2-1:Regional distribution of population, GDP, total energy supply (TES), and
CO2 emissions

2009	Population	GDP	TES	CO2
EU-27	7%	19%	14%	12%
USA	5%	18%	18%	18%
Japan	2%	5%	4%	4%
China	20%	19%	19%	24%
India	17%	7%	6%	5%
Russian Federation	2%	2%	5%	5%
Rest of the World	47%	30%	35%	32%
World	6,761	64,244	12,274	28,999
	Mill persons	Bill 2000 USD PPP	Mill to oe	Mill to CO2

Source: Own analyses based on IEA and UN databases

The regional dynamics of the key indicators population, GDP, total energy supply, and CO₂ emissions can be seen from Figure 2-4 to Figure 2-7 together with Table 7-9 to Table 7-12 in the appendix that reveal the following emerging evidence for the past two decades:

- China could increase its GDP about 530 percent, accompanied by an increase of energy of about 160 percent but an increase of emissions of about 210 percent with a population increase of only 17 percent.
- India could about triple its GDP accompanied by an increase of energy of about 110 percent and of emissions of about 170 percent with a population increase of to 36 percent.
- The USA could increase its GDP by about 60 percent together with an increase of energy of 13 percent and of emissions of 7 percent with a population growth of 23 percent.

- The EU exhibits a 40 percent growth of GDP with stagnating energy and a decline in emissions of 12 percent together with a 6 percent increase of population.
- Japan shows only a 17 percent increase of GDP together with an increase of 7 percent of energy and of 3 percent of emissions.
- The Russion Federation is facing a GDP and population decline of about 4 percent compared to 1990 levels together with a sharp decline of energy by 26 percent and emissions by 30 percent.
- The Rest of the World expanded GDP by 90 percent together with energy by 57 percent and emissions by 53 percent with a population growth of 40 percent.

Figure 2-4: Regional dynamics of population

Figure 2-5: Regional dynamics of gross domestic product (GDP)

Source: Own analyses based on UN databases

Source: Own analyses based on IEA databases

Source: Own analyses based on IEA databases

3 Searching for relevant indicators for greenhouse gas reduction targets

Suggestions for emission reduction targets are often based on single indicators as emissions per person, per GDP or per energy used. These single criteria indicators are sometimes weighted to obtain multi-criteria indicators.

In contrast to using single and weighted multiple indicators we suggest a more integrated approach by identifying a set of structural indicators based on the demand and supply structure of the energy system and related emissions.

3.1 Single criteria indicators

Indicators for emissions reductions which are based on a single criterion are popular, because they seem to convey obvious messages as the amount of emissions per person or the amount of emissions per unit of GDP.

In Figure 3-1we obtain insights about the regional disparities of greenhouse gas emissions per person. These indices can be easily compared since they are normalized on the EU value for 2005 which is set to 100. Obviously the USA has emissions per person which are more than twice above the EU levels but rapidly declining. In contrast this indicator has been strikingly increasing for China over the last decade and to a lesser extent for India.

Source: Own analyses based on IEA and UN databases

Another popular single criterion indicator is defined as emissions per unit of GDP as depicted in Figure 3-2 and normalized in the same way as the indicator for emissions per person. Quite different insights emerge from this emission intensity indicator related to economic activity since all regions have been able to improve with respect to this indicator. For China and above all the Russian Federation, however, economic activity is still coupled with a very high emission intensity. To a lesser extent this also holds for the USA and the Rest of the World. The EU has managed to produce one unit of GDP with the lowest emissions.

Source: Own analyses based on IEA and UN databases

These two popular single criterion indicators suggest that the information of just one indicator is insufficient since each indicator provides complementary information. Quite often, therefore, single indicators are weighted to a composite index. Because of the arbitrariness involved in the weighting scheme we suggest a set of indicators which are based on a structural model of the energy system.

3.2 Structurally integrated indicators

Starting point of our set of structurally integrated indicators is a basic model which describes the demand and supply structure of the energy system by the following key parameters:

- population (number of persons),
- economic activity (GDP per persons),
- energy intensity (TES per GDP), and
- carbon intensity (CO₂ per TES)
 - which results from the shares in TES of
- renewables,
- nuclear, and the
- carbon intensity of fossils (CO₂ per unit of fossils).

The analytical framework for this integrated indicator approach is a basic structural model of the energy system with the following variables:

- C CO₂ emissions
- P population
- Q GDP
- E total energy supply (TES)

The following identity is interpreted as the demand for emissions:

(1) $C = P \cdot (Q/P) \cdot (E/Q) \cdot (C/E)$

by defining as structural parameters

- (Q/P) economic activity (GDP per person),
- (E/Q) energy intensity (TES per GDP), and
- (C/E) carbon intensity (CO₂ per TES).

By defining the components of total energy supply as

- E_{fos} fossils,
- E_{res} renewables,
- E_{nuc} nuclear, and
- E_{oth} others

we describe the supply side by the energy mix as

(2) $E = E_{fos} + E_{res} + E_{nuc} + E_{oth}$

from which we obtain for the total carbon intensity

(3)
$$(C/E) = (C/E_{fos}) \cdot [1 - (E_{res}/E) - (E_{nuc}/E) - (E_{oth}/E)]$$

with the supply side parameters

- (C/ E_{fos}) carbon intensity of fossils,
- (Eres/E) share of renewables in TES,
- (Enuc/E) share of nuclear in TES, and
- (E_{oth}/E) share of others in TES.

Within this analytical framework CO_2 emissions can be traced according to equation (1) by the impact of

- population (as in Figure 2-4),
- economic activity (as in Figure 3-3),
- energy intensity (as in Source: Own analyses based on IEA and UN databases
- Figure 3-4), and
- carbon intensity (as in Figure 3-5).

This overall carbon intensity in turn is according to equation (3) determined by

- carbon intensity of fossils,
- share of renewables in TES,
- share of nuclear in TES, and
- share of others in TES.

Figure 3-4: Structural parameter for energy intensity

Carbon intensity

Source: Own analyses based on IEA databases

Source: Own analyses based on IEA databases

4 Simulating emissions targets and their distributions

We propose in this section a procedure for finding emissions reduction targets and their distribution among countries and regions based on the structural indicator model explained in equation (1) of the previous section by explaining the analytical framework and some simulation results.

4.1 Assumptions of the simulation procedure

We simulate in the structural indicator framework the changes in global CO_2 emissions based on a number of assumptions.

(a) Carbon emissions C are determined by a set of linked indicators, namely

- P population
- (Q/P) economic activity (GDP per person),
- (E/Q) energy intensity (TES per GDP), and
- (C/E) carbon intensity (CO2 per TES).

via the structural relationship equation (1)

 $C = P \cdot (Q/P) \cdot (E/Q) \cdot (C/E)$

(b) We compare a start period with and end period.

The start period is 2009, the latest available data period. The end period is tentatively 20 years later.

(c) We predict population for the end period by using UN population predictions for 2030.

(d) For the remaining structural parameters we assume an adjustment process towards harmonized global economic structures.

This adjustment process is based on an indicative change target value c und an adjustment of the regions and countries by an adjustment factor d with the following mechanism

(4) $x_{end,i} = x_{start,i} \cdot C - d \cdot (x_{start,i} \cdot C - 100 \cdot c)$

The rational for this adjustment mechanism is as follows. At the start period the global value of parameter x is 100 and the individual value of this parameter is $x_{start,i}$ for the i-th country of region. The indicative global target at the end period is $100 \cdot c$. The indicative individual target at the end period is $x_{start,i} \cdot c$. The adjustment factor d (defined between 0 and 1) determines to what extent the discrepancy between the indicative individual and global target at the end period is adjusted.

4.2 Simulation results

We demonstrate the usability of this procedure for determining global emission targets and their distribution among regions and countries by a simulation for the seven regions considered.

We want to obtain for a tentative end period of 2030 suggestions for a global emission reduction targets and a compatible distribution for the seven regions and countries considered so far.

Starting point is the UN population forecast for the end period 2030. Figure 4-1 indicates this forecast in comparison with the data at the start period 2009. All data are converted to an index with value 100 in 1990. Thus world population in 2009 is 28 percent higher than in 1990 with a forecast of a 57 percent increase by 2030.

Population 96 **Russian Federation** ■Start ■End Japan EU-27 China 128 USA India Rest of the World World 157 100 0 200 Index 1990 = 100

Figure 4-1: Forecasting the change of population

Next we apply our adjustment mechanism to the structural parameters of our modeling framework. For all parameters we need to define indicative targets and adjustment factors. We made the assumption of a uniform adjustment of 0.3 or 30 percent for all parameters between the global and individual target value.

For economic activity, defined as GDP per person, we assume an indicative increase of 20 percent over the next two decades. The results of this procedure can be seen in Figure 4-2. All countries exhibit further economic growth but with higher rates for the poor countries.

For energy intensity, defined as total energy supply (TES) per GDP, we assume an indicative reduction of 30 percent with results shown in Figure 4-3. All indicators for parameters are normalized as an index with value 100 for the EU-27 iin 2005. This means, e.g., that the EU-27 could improve its energy intensity by 2009 by 10 index points to 90 and is expected to reduce this parameter to 66 by the end period in 2030.

For carbon intensity, defined as CO₂ emissions per total energy supply (TES), we also assume an indicative reduction of 30 percent and obtain the results in Figure 4-4Figure 4-2. Remarkable is the position of China with a particular high carbon intensity.

Source: Own analyses based on UN data base and population forecast

Figure 4-2: Simulating the change of economic activity

Figure 4-3: Simulating the change of energy intensity

Source: Own analyses based on IEA databases

Source: Own analyses based on IEA and UN databases

Figure 4-4: Simulating the change of carbon intensity

The final result of our simulation of a global CO₂ emission reduction target and the distribution of this target amount the seven countries and regions can be seen in Figure 4-5 and in Table 4-1. Based on our assumption about rather ambitious reductions of energy and carbon intensities but also additional economic activity in particular for the poor regions we realize that only around 2030 global emissions might peak. Deep emission cuts will be required by the industrialized countries but also China which, however, will be counterbalanced by still rising emissions in India and the Rest of the World.

Further insight in the causes of these results are obtained from Table Table 4-2 which partitions the CO₂ reductions for countries and regions into five components, namely the impact of

- the changes from 2005 until the start period 2009,
- the expected population changes,
- the changes in economic activity,
- the changes of energy intensity, and
- the changes of carbon intensity.

Thus the expected change of global emissions of -1,2 percent compared to 2005 by the end period can be partitioned into results from realized changes until 2009 of +6.7 percent, from the impact of changes in population of 14.9 percent, from the increase of economic activity of 97.3 percent, fromj the energy intensity of -75.3 percent, and from the carbon intensity of -44.7 persent.

Source: Own analyses based on IEA databases

Figure 4-5: Targets for CO₂ emission reductions

Source: Own analyses based on IEA and UN databases

Table 4-1: Targets for CO ₂ emission reductions								
	CO2 Ir	ndex	CO2 %-Change					
	Start	End	from 1990	from 2005				
	88.3	54.4	-45.6	-44.6				
	106.7	60.9	-39.1	-48.6				
	102.7	55.0	-45.0	-52.0				
	308.9	255.0	155.0	11.4				
	272.3	504.0	404.0	153.0				
ı	70.3	40.6	-59.4	-41.6				
	152.9	193.9	93.9	37.5				
	138.3	128.2	28.2	-1.2				
	larg	Targets for CO: CO2 Ir Start 88.3 106.7 102.7 308.9 272.3 70.3 152.9 138.3	Baseline CO2 emission CO2 index Start End Start End 106.7 60.9 102.7 55.0 308.9 255.0 272.3 504.0 70.3 40.6 152.9 193.9 128.2	Baseline CO2 PMISSION reduction CO2 Index CO2 %-0 Start End from 1990 88.3 54.4 -45.6 106.7 60.9 -39.1 102.7 55.0 -45.0 308.9 255.0 155.0 272.3 504.0 404.0 70.3 40.6 -59.4 152.9 193.9 93.9 138.3 128.2 28.2				

Source: Own analyses based on IEA and UN databases

Table 4-2: Partition of the targets for CO₂ emission reductions

	Start	CO2 [Difference %-0	Change from	2005	End
	CO2	POP	GDP / POP	TES / GDP	CO2 / TES	CO2
EU-27	-10.1	0.9	17.8	-30.1	-22.9	-44.6
USA	-10.0	16.3	7.6	-38.9	-23.6	-48.6
Japan	-10.5	-6.7	13.3	-26.9	-21.3	-52.0
China	34.9	12.3	111.8	-86.4	-61.3	11.4
India	36.7	36.3	345.9	-152.3	-113.6	153.0
Russian Federation	1.1	-9.0	57.9	-65.1	-26.4	-41.6
Rest of the World	8.3	26.5	172.1	-113.0	-56.5	37.5
World	6.7	14.9	97.3	-75.3	-44.7	-1.2

. .

Source: Own analyses based on IEA and UN databases

5 Conclusions

In several respects the results obtained from our procedure for identifying global emission targets and their distributions among countries and regions seem to be surprising and sobering.

First, despite of rather strong assumptions about the reduction of energy and carbon intensities global CO2 emissions might be decline only around 2030 and not before 2020 as recommended from concerns about a 2 °C global warming target.

Second, the future dynamics of CO₂ emissions will greatly vary. Rest of the World but above all India might still strongly expand their emissions. China's emission might start declining soon and the industrialized countries need to contribute with deep emission cuts in order to stabilize global emissions.

Third, the main driver for expanding CO₂ emissions remain population growth in India and the Rest of the World and the increase of economic activity in the poor regions of the world.

Fourth, these results were obtained by postulating rather ambitious technological changes as to energy and carbon intensities, thus indicating the need for a rapid dissemination and implementation of the corresponding technologies.

6 References

- Aldy, Joseph E., and Robert N. Stavins (eds.) (2010), Post-Kyoto International Climate Policy: Implementing Architectures for Agreement. Cambridge: Cambridge University Press.
- Bosetti, Valentina and Jeffrey Frankel, "Global Climate Policy Architecture and Political Feasibility: Specific Formulas and Emission Targets to Attain 460 ppm CO2 Concentrations" (December 1, 2009). Fondazione Eni Enrico Mattei Working Papers. Working Paper 353.
- Bosetti, Valentina, et al. (2008), "Modelling Economic Impacts of Alternative International Climate Policy Architectures: A Quantitative and Comparative Assessment of Architectures for Agreement." Discussion Paper 08-20. Cambridge, MA: Harvard Project on International Climate Agreements. Available on the Internet at:

cbelfercenter.ksg.harvard.edu/files/carraroweb3.pdf> (last accessed on 1 August 2011).
- Congressional Budget Office (CBO) (2008), Policy Options for Reducing CO₂ Emissions. Washington, DC: Congress of the United States.
- de Coninck, Heleen et al. (2008). "International Technology-oriented Agreements to Address Climate Change." Energy Policy, Vol. 36: 335-356.
- European Commission (2011). A roadmap for moving to a competitive low carbon economy in 2050. COM(2011) 112.
- Meinshausen, Malte, Nicolai Meinshausen, William Hare, Sarah CB Raper, Katja Frieler, Reto Knutti, David J Frame, Myles R Allen (2009). Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458 (7242), 1158-1162.
- Moncel, Remi et al. (2011). "Building the Climate Change Regime: Survey and Analysis of Approaches. Summary for Stakeholder Comment." Washington, DC: World Resources Institute. Available on the Internet at: <http://pdf.wri.org/moving_forward_summary_for_stakeholder_comment.pdf> (last accessed 31 July 2011).

Oberthür, Sebastian (2011), "Global Climate Governance after Cancun: Options for EU Leadership," The International Spectator, Vol. 46, No. 1: 5–13.

UNEP (2011). Bridging the Emissions Gap. United Nations Environment Programme (UNEP).

ZhongXiang Zhang, "In What Format and under What Timeframe Would China Take on Climate Commitments? A Roadmap to 2050" (October 11, 2010). Fondazione Eni Enrico Mattei Working Papers. Working Paper 501

7 Appendix: Key energy indicators

Table 7-1: World							
World (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	25.4	22.8	25.3	26.0	26.4	27.0	27.2
Oil and oil products	36.7	36.6	35.0	34.5	33.9	33.1	32.8
Natural gas	19.0	20.7	20.7	20.6	21.0	21.1	20.9
Renewables	12.8	13.0	12.5	12.5	12.6	12.7	13.1
Nuclear	6.0	6.7	6.3	6.2	5.9	5.8	5.8
Electricity	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.1	0.2	0.2	0.2	0.2	0.2	0.2
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	28.3	29.8	31.3	31.4	31.1	31.3	31.3
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
La directoria	00.7	00.5	00.0	07.4	07.7	07.0	07.0
Industry	28.7	26.5	26.8	27.4	27.7	27.9	27.3
Iransport	25.1	27.7	27.8	27.8	27.8	27.5	27.3
Other	38.6	37.1	36.4	35.8	35.5	35.8	36.4
Non-energy use	7.5	8.7	9.1	9.0	9.1	8.8	8.9
World	1990	2000	2005	2006	2007	2008	2009
GDP (bill 2000 USD PPP)	33.340.6	45.799.1	55.547.2	58.677.7	62.111.5	64.095.3	64.244.4
%-change	2.6	4.8	5.0	5.6	5.9	3.2	0.2
%-change trend	2.6	3.2	3.5	3.7	4.0	3.9	3.5
Population (mill)	5,266,9	6.075.5	6.455.4	6.531.2	6.607.2	6.684.0	6.760.8
%-change	1.5	1.3	1.1	1.2	1.2	1.2	1.1
%-change trend	1.5	1.4	1.4	1.3	1.3	1.3	1.3
Total primary energy supply (ktoe)	8 782 276	10 031 854	11,466,610	11 777 216	12 052 953	12 273 672	12 149 845
%-change	1.0	2.0	2.6	2.7	2.3	1.8	-1.0
%-change trend	1.0	1.3	1.9	2.0	2.1	2.0	1.7
CO2 (mill to)	20 966 3	23 102 0	27 188 3	28 005 0	20 0/7 0	29 454 0	28 000 /
%-change	20,000.0	20,432.5	.3.1	.3.3	.34	20,404.0	-1.5
%-change trend	0.8	1.1	1.9	2.1	2.2	2.1	1.8
CDB / Bopulation (\$ 1,000)	6 220	7 500	0 605	0.004	0.404	0 590	0 502
GDF / FOPUlation (\$ 1.000) Enormy / CDP (kass / 1 mill \mathfrak{P})	262 114	210 040	200,00	0,904	9,401	9,009	9,003
	20.3411	219140	200.430	200.710	194.000	191.491	109.119
Energy / Population (kgoe)	1 667	1 651	1 776	1 803	1 824	1 826	1 707
Energy / Population (kgoe) CO2 / Population (kg CO2)	1,667	1,651	1,776	1,803 4 302	1,824	1,836	1,797

EU-27 (%-share)	1990	2000	2005	2006	2007	2008	2009
	27.0	10.0	17.0	10.0	10.7	17 4	16.1
Oil and oil products	21.0	19.0	17.0	10.3	10.7	17.4	10.1
Natural das	18.0	22.4	25.0	24.6	24.5	25.2	25.1
Renewables	4.3	5.8	6.5	24.0	24.0	8.2	92
Nuclear	12.7	14.6	14.6	14.5	13.9	14.0	14.1
Flectricity	0.2	0.1	0.1	0.0	0.1	0.1	0.1
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.2	0.4	0.4	0.4	0.5	0.5	0.6
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	31.3	30.6	30.3	30.4	30.8	30.3	30.3
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	30.3	26.2	25.1	24.6	25.1	24.3	22.1
Transport	22.9	26.0	26.1	26.7	27.5	27.0	27.9
Other	38.1	38.4	39.7	39.7	38.0	39.4	41.3
Non-energy use	8.7	9.4	9.1	9.0	9.5	9.2	8.8
EU-27	1990	2000	2005	2006	2007	2008	2009
	8 566 4	10 501 0	11 667 3	12 065 3	12 445 5	12 537 8	12 007 6
%-change	0,000.4	10,591.9	2 1	12,005.5	12,445.5	12,007.0	-12
%-change trend	1.4	2.1	2.0	2.2	2.3	2.1	1.5
Population (mill)	472.9	482.9	492.1	494.1	496.4	498.7	500.4
%-change	0.2	0.2	0.5	0.4	0.5	0.5	0.3
%-change trend	0.2	0.2	0.3	0.3	0.3	0.3	0.3
Total primary energy supply (ktoe)	1,636,250	1,685,513	1,779,442	1,779,114	1,757,170	1,751,287	1,655,792
%-change	0.0	0.7	0.1	0.0	-1.2	-0.3	-5.5
%-change trend	0.0	0.3	0.6	0.5	0.3	0.3	-0.3
CO2 (mill to)	4,051.9	3,831.2	3,978.9	3,996.2	3,941.9	3,868.3	3,576.8
%-change	-1.0	0.5	-0.8	0.4	-1.4	-1.9	-7.5
%-change trend	-1.0	-0.6	-0.1	0.0	-0.2	-0.3	-1.1
GDP / Population (\$ 1.000)	18,114	21,933	23,707	24,418	25,069	25,141	23,998
Energy / GDP (kgoe / 1 mill \$)	191,009	159,133	152,515	147,457	141,189	139,680	137,895
Energy / Population (kgoe)	3,460	3,490	3,616	3,601	3,540	3,512	3,309
CO2 / Population (kg CO2)	8,568	7,933	8,085	8,087	7,940	7,757	7,148

Table 7-2: European Union

Table 7-3: United States

USA (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	24.0	23.5	24.1	24.0	23.7	24.0	22.4
Oil and oil products	39.5	20.0	40.1	30.8	20.7	24.0	37.0
Natural das	22.9	24.1	21.9	21.9	23.2	23.8	24.7
Renewables	5.0	4 5	4.5	4.8	20.2 4 7	5 1	5.4
Nuclear	83	9.1	9.1	4.0	0.3	9.6	10.0
Flectricity	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Heat	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Waste non-renewable	0.0	0.0	0.0	0.0	0.0	0.0	0.0
waste horrenewable	0.2	0.4	0.2	0.0	0.0	0.2	0.5
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	32.5	32.0	32.3	31.9	32.3	32.4	32.4
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
la duata :	24.0	04.5	40.0	40.0	40.0	10.0	477
Thoustry	21.9	21.5	18.2	19.2	18.8	19.0	17.7
Other	37.7	38.0	39.7	40.0	39.8	39.1	39.5
Other	31.2	30.6	32.0	30.8	31.7	32.8	33.9
Non-energy use	9.2	9.9	10.2	10.0	9.7	9.0	8.9
USA	1990	2000	2005	2006	2007	2008	2009
GDP (bill 2000 USD PPP)	7.064.0	9.898.8	11,150,4	11,448.5	11.670.9	11.668.5	11.357.1
%-change	2.5	4.2	3.1	2.7	1.9	0.0	-2.7
%-change trend	2.5	3.3	3.0	3.0	2.9	2.6	2.0
— • • • • • • • • • • • • • • • • • • •							
Population (mill)	250.2	282.4	296.2	299.1	302.0	304.8	307.5
%-change	1.3	1.1	0.9	1.0	1.0	0.9	0.9
%-change trend	1.3	1.2	1.1	1.1	1.1	1.1	1.1
Total primary energy supply (ktoe)	1.914.996	2.273.332	2.318.861	2.296.686	2.337.014	2.277.034	2.162.915
%-change	1.5	2.8	0.5	-1.0	1.8	-2.6	-5.0
%-change trend	1.5	1.7	1.2	1.0	1.1	0.7	0.1
CO2 (mill to)	4 868 7	5 698 2	5 771 7	5 684 9	5 762 7	5 586 8	5 195 0
%-change	1 1	3.5	02	-1.5	1 4	-3.1	-7.0
%-change trend	1.1	1.5	1.0	0.8	0.8	0.4	-0.3
GDP / Population (\$ 1.000)	28,236	35,050	37,641	38,283	38,641	38,279	36,936
Energy / GDP (kgoe / 1 mill \$)	271,093	229,657	207,963	200,610	200,244	195,145	190,447
Energy / Population (kgoe)	7,654	8,049	7,828	7,680	7,738	7,470	7,034
CO2 / Population (kg CO2)	19,461	20,176	19,484	19,010	19,080	18,328	16,895

Table 7-4: Japan

Japan (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	17.4	18.7	21.1	21.4	22.6	22.9	21.5
Oil and oil products	57.0	49.2	46.7	44.9	44.6	43.1	42.5
Natural gas Ronowablos	10.1	12.7	13.0	14.9	10.1	16.9	17.1
Nuclear	12.0	16.2	15.2	15.2	13.2	13.6	15.0
Flectricity	0.0	0.0	10.0	13.2	0.0	0.0	13.4
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.0	0.1	0.2	0.2	0.2	0.2	0.2
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	31.7	33.5	33.3	33.5	33.6	35.6	33.6
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	3/ 3	28.0	28.0	28.4	28.5	27.2	26.2
Transport	23.9	20.9	20.0	20.4	20.0	27.2	20.2
Other	30.3	33.6	35.4	35.3	35.5	36.9	36.8
	00.0	00.0	00.1	00.0	00.0	00.0	00.0
Non-energy use	11.5	12.0	12.2	12.3	12.3	11.5	12.8
Japan	1990	2000	2005	2006	2007	2008	2009
GDP (bill 2000 USD PPP)	2,890.1	3,250.3	3,467.6	3,538.3	3,622.0	3,579.6	3,392.9
%-change	1.4	2.9	1.9	2.0	2.4	-1.2	-5.2
%-change trend	1.4	1.2	1.3	1.4	1.5	1.2	0.6
Population (mill)	123.6	126.9	127.8	127.8	127.8	127.5	127.3
%-change	0.3	0.2	0.0	0.0	0.0	-0.2	-0.1
%-change trend	0.3	0.3	0.2	0.2	0.2	0.1	0.1
Total primary energy supply (ktoe)	439.315	518,946	520.515	519,778	515,171	495.549	471.992
%-change	2.5	13	-0.4	-0.1		-3.8	-4.8
	2.0	1.0	-0	0.1	-0.9		
%-change trend	2.5	1.9	1.2	1.0	0.9	0.4	-0.1
%-change trend CO2 (mill to)	2.5 2.5	1.9 1.184.0	-0.4 1.2 1.220.7	1.0 1.205.0	-0.9 0.9 1.242.3	0.4 1.152.6	<i>-0.1</i> 1.092.9
%-change trend CO2 (mill to) %-change	2.5 2.5 1,064.4 <i>1.</i> 5	1.9 1,184.0 1.3	1.2 1,220.7 0.7	1.0 1,205.0 -1.3	-0.9 0.9 1,242.3 3.1	0.4 1,152.6 -7.2	- <i>0.1</i> 1,092.9 -5.2
%-change trend CO2 (mill to) %-change %-change trend	2.5 1,064.4 1.5 1.5	1.9 1,184.0 1.3 1.2	1,220.7 0.7 1.0	1.0 1,205.0 -1.3 0.8	-0.9 0.9 1,242.3 3.1 1.0	0.4 1,152.6 -7.2 0.2	-0.1 1,092.9 -5.2 -0.4
%-change trend CO2 (mill to) %-change %-change trend GDP / Population (\$ 1.000)	2.5 2.5 1,064.4 1.5 1.5 23,381	1.3 1.9 1,184.0 1.3 1.2 25,607	1,220.7 0.7 1.0 27,140	1.0 1,205.0 -1.3 0.8 27,693	-0.9 0.9 1,242.3 3.1 1.0 28,347	0.4 1,152.6 -7.2 0.2 28,073	-0.1 1,092.9 -5.2 -0.4 26,646
%-change trend CO2 (mill to) %-change %-change trend GDP / Population (\$ 1.000) Energy / GDP (kgoe / 1 mill \$)	2.5 1,064.4 1.5 1.5 23,381 152,006	1.3 1.9 1,184.0 1.3 1.2 25,607 159,662	1,220.7 0.7 1.0 27,140 150,107	1.0 1,205.0 -1.3 0.8 27,693 146,899	-0.9 0.9 1,242.3 3.1 1.0 28,347 142,236	0.4 1,152.6 -7.2 0.2 28,073 138,436	-0.1 1,092.9 -5.2 -0.4 26,646 139,113
%-change trend CO2 (mill to) %-change %-change trend GDP / Population (\$ 1.000) Energy / GDP (kgoe / 1 mill \$) Energy / Population (kgoe)	2.5 1,064.4 1.5 1.5 23,381 152,006 3,554	1.3 1.9 1,184.0 1.3 1.2 25,607 159,662 4,088	1,220.7 0.7 1.0 27,140 150,107 4,074	1,205.0 -1.3 0.8 27,693 146,899 4,068	-0.9 0.9 1,242.3 3.1 1.0 28,347 142,236 4,032	0.4 1,152.6 -7.2 0.2 28,073 138,436 3,886	-0.1 1,092.9 -5.2 -0.4 26,646 139,113 3,707
%-change trend CO2 (mill to) %-change %-change trend GDP / Population (\$ 1.000) Energy / GDP (kgoe / 1 mill \$) Energy / Population (kgoe) CO2 / Population (kg CO2)	2.5 1,064.4 1.5 1.5 23,381 152,006 3,554 8,611	1.3 1.9 1,184.0 1.3 1.2 25,607 159,662 4,088 9,328	1,220.7 1,220.7 0.7 1.0 27,140 150,107 4,074 9,554	1,205.0 -1.3 0.8 27,693 146,899 4,068 9,431	-0.9 0.9 1,242.3 3.1 1.0 28,347 142,236 4,032 9,723	0.4 1,152.6 -7.2 0.2 28,073 138,436 3,886 9,039	-0.1 1,092.9 -5.2 -0.4 26,646 139,113 3,707 8,583

Table 7-5: China

China (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	61.2	57.1	64.1	65.1	65.4	66.4	67.2
Oil and oil products	12.8	20.1	18.6	18.4	18.0	17.2	16.8
Natural gas	1.5	1.9	2.3	2.6	3.0	3.2	3.3
Renewables	24.5	20.5	14.2	13.3	12.8	12.3	11.9
Nuclear	0.0	0.4	0.8	0.8	0.8	0.8	0.8
Electricity	0.0	-0.1	0.0	0.0	0.0	-0.1	0.0
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	23.2	29.8	35.6	36.6	36.0	35.2	36.5
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	36.3	38.2	43.9	45.1	46.1	47.7	47.4
Transport	5.6	10.7	11.3	11.5	11.6	11.4	11.2
Other	51.7	44.3	37.1	35.7	34.6	33.3	33.2
Non-energy use	6.5	6.8	7.8	7.7	7.7	7.6	8.1
China	1990	2000	2005	2006	2007	2008	2009
	1 96/ 9	5 150 2	8 138 2	0 150 6	10 1/2 3	11 /127 1	12 /33 0
%-chango	1,304.3	3,130.2 8 <i>1</i>	11.2	3,133.0	14.0	0.4	12,400.0
%-change trond	11.9	10.4	10.1	12.0	14.0	9.4 10.6	10.0
	11.9	10.4	10.1	10.4	10.0	10.0	10.4
Population (mill)	1,140.9	1,269.3	1,310.5	1,317.9	1,324.8	1,331.6	1,338.5
%-change	1.2	0.8	0.6	0.6	0.5	0.5	0.5
%-change trend	1.2	1.1	0.9	0.9	0.8	0.8	0.8
Total primary energy supply (ktoe)	862.956	1.094.871	1.696.389	1.853.975	1.963.992	2.117.483	2.257.101
%-change	4.0	0.8	8.2	9.3	5.9	7.8	6.6
%-change trend	4.0	2.8	5.6	6.0	6.0	6.2	6.2
CO2 (mill to)	2 211 3	3 037 3	5 062 4	5 603 0	6 028 4	6 506 8	6 831 6
%-change	62	-0.3	11.2	10.7	7.6	7.9	5.0
%-change trend	6.2	3.8	6.9	7.3	7.3	7.4	7.2
CDB / Bopulation (\$ 1,000)	1 700	4.059	6 240	6 050	7 000	0 504	0.200
GDF/FOPUlation (\$ 1.000)	1,722	4,008	0,210	0,900	1,082	0,081	9,290
Energy/GDP (Kgoe/1mill\$)	439,194	212,586	208,447	202,408	188,080	185,303	181,528
Energy / Population (Kgoe)	/56	863	1,294	1,407	1,482	1,590	1,686
CO2 / Population (kg CO2)	1,938	2,393	3,863	4,251	4,550	4,886	5,104

Table 7-6: India

India (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	32.6	35.3	38.6	39.4	40.6	41.7	42.2
Oil and oil products	19.4	24.7	23.5	23.5	23.5	23.6	23.6
Natural gas	3.3	5.0	5.9	5.9	6.0	5.7	7.2
Renewables	44.1	34.0	31.1	30.2	29.0	28.2	26.1
	0.5	1.0	0.8	0.9	0.7	0.6	0.7
Electricity	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
waste non-renewable	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	20.5	30.3	33.4	33.1	33.9	33.9	33.5
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	27.0	27.3	20 /	30.1	30.0	30.7	30.3
Transport	10.8	10.0	23.4	10.2	10.7	11 /	11 5
Other	56.7	53.6	52.0	50.3	49.5	48.9	49.6
ould be a set of the s	00.7	00.0	02.0	00.0	40.0	40.0	40.0
Non-energy use	4.6	9.0	8.9	9.5	9.9	8.9	8.7
India	1990	2000	2005	2006	2007	2008	2009
India	1990 1 411 9	2000 2 402 0	2005	2006	2007	2008	2009
India GDP (bill 2000 USD PPP)	1990 1,411.9 5 1	2000 2,402.0 4.0	2005 3,363.6 9.3	2006 3,681.0 9 4	2007 4,035.6	2008 4,242.2 5 1	2009 4,567.0 7 7
India GDP (bill 2000 USD PPP) %-change %-change trend	1990 1,411.9 5.1 5.1	2000 2,402.0 4.0 5.4	2005 3,363.6 9.3 6.2	2006 3,681.0 9.4 6.5	2007 4,035.6 9.6 6.8	2008 4,242.2 5.1 6.7	2009 4,567.0 7.7 6.8
India GDP (bill 2000 USD PPP) %-change %-change trend	1990 1,411.9 5.1 5.1	2000 2,402.0 4.0 5.4	2005 3,363.6 9.3 6.2	2006 3,681.0 9.4 6.5	2007 4,035.6 9.6 6.8	2008 4,242.2 5.1 6.7	2009 4,567.0 7.7 6.8
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill)	1990 1,411.9 5.1 5.1 849.5	2000 2,402.0 4.0 5.4 849.5	2005 3,363.6 9.3 6.2 849.5	2006 3,681.0 9.4 6.5 849.5	2007 4,035.6 9.6 6.8 849.5	2008 4,242.2 5.1 6.7 849.5	2009 4,567.0 7.7 6.8 849.5
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill) %-change	1990 1,411.9 5.1 5.1 849.5 0.0	2000 2,402.0 4.0 5.4 849.5 0.0	2005 3,363.6 9.3 6.2 849.5 0.0	2006 3,681.0 9.4 6.5 849.5 0.0	2007 4,035.6 9.6 6.8 849.5 0.0	2008 4,242.2 5.1 6.7 849.5 0.0	2009 4,567.0 7.7 6.8 849.5 0.0
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill) %-change %-change trend	1990 1,411.9 5.1 5.1 849.5 0.0 0.0	2000 2,402.0 5.4 849.5 0.0 0.0	2005 3,363.6 9.3 6.2 849.5 0.0 0.0	2006 3,681.0 9.4 6.5 849.5 0.0 0.0	2007 4,035.6 9.6 6.8 849.5 0.0 0.0	2008 4,242.2 5.1 6.7 849.5 0.0 0.0	2009 4,567.0 7.7 6.8 849.5 0.0 0.0
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill) %-change %-change trend	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316 743	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457 214	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537 909	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565 000	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596.557	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619.024	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675 830
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill) %-change %-change trend Total primary energy supply (ktoe) %-change	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change %-change trend	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5
India GDP (bill 2000 USD PPP) %-change %-change trend Population (mill) %-change %-change trend Total primary energy supply (ktoe) %-change %-change trend	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to)	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 582.3	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 3.7	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 3.9 582.3 5.9	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 1,160.4 3.9	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change trend	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 3.9 582.3 5.9 5.9 5.9	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6 5.4	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 3.7 1,160.4 3.9 4.8	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9 5.1	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4 5.4	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5 5.4	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8 5.9
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change trend GDP / Population (\$ 1,000)	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 582.3 5.9 5.9 1.662	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6 5.4 2,828	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 1,160.4 3.9 4.8	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9 5.1 4 333	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4 5.4	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5 5.4	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8 5.9 5 376
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change trend CO2 (mill to) %-change trend GDP / Population (\$ 1.000) Energy / GDP (knoe / 1 mill \$)	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 3.9 582.3 5.9 5.9 5.9 1,662 224 338	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6 5.4 2,828 190 346	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 1,160.4 3.9 4.8 3,959	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9 5.1 4,333 153,492	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4 5.4 4,750	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5 5.4 4,994 145 921	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8 5.9 5,376
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change trend CO2 (mill to) %-change trend GDP / Population (\$ 1.000) Energy / GDP (kgoe / 1 mill \$) Energy / Population (kgoe)	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 582.3 5.9 5.9 5.9 1,662 224,338 373	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6 5.4 2,828 190,346 538	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 1,160.4 3.9 4.8 3,959 159,921 633	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9 5.1 4,333 153,492 665	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4 5.4 4,750 147,823 702	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5 5.4 4,994 145,921 729	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8 5.9 5,376 147,982 796
India GDP (bill 2000 USD PPP) %-change trend Population (mill) %-change trend Total primary energy supply (ktoe) %-change trend CO2 (mill to) %-change trend CO2 (mill to) %-change trend GDP / Population (\$ 1.000) Energy / GDP (kgoe / 1 mill \$) Energy / Population (kgoe) CO2 (% CO2)	1990 1,411.9 5.1 5.1 849.5 0.0 0.0 316,743 3.9 3.9 582.3 5.9 5.9 5.9 1,662 224,338 373 685	2000 2,402.0 4.0 5.4 849.5 0.0 0.0 457,214 2.0 3.8 972.5 3.6 5.4 2,828 190,346 538 1 145	2005 3,363.6 9.3 6.2 849.5 0.0 0.0 537,909 3.7 3.7 1,160.4 3.9 4.8 3,959 159,921 633 1,366	2006 3,681.0 9.4 6.5 849.5 0.0 0.0 565,000 5.0 3.8 1,252.0 7.9 5.1 4,333 153,492 665 1,474	2007 4,035.6 9.6 6.8 849.5 0.0 0.0 596,557 5.6 4.0 1,357.2 8.4 5.4 4,750 147,823 702 1,598	2008 4,242.2 5.1 6.7 849.5 0.0 0.0 619,024 3.8 4.0 1,431.3 5.5 5.4 4,994 145,921 729 1,685	2009 4,567.0 7.7 6.8 849.5 0.0 0.0 675,830 9.2 4.5 1,585.8 10.8 5.376 147,982 796 1487

Russian Federation (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	21.7	19.4	17.3	17.3	16.5	17.0	14.7
Oil and oil products	30.0	20.4	19.8	19.9	19.7	20.8	21.3
Natural gas	41.8	51.5	53.6	53.5	54.4	53.2	54.1
Renewables	3.0	2.9	2.9	2.8	2.9	2.6	2.8
Nuclear	3.6	5.6	6.0	6.1	6.3	6.2	6.6
Electricity	-0.1	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.0	0.5	0.5	0.6	0.4	0.4	0.5
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	28.9	32.4	36.7	36.6	36.3	36.8	34.6
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	33.4	30.7	29.9	30.4	29.4	28.8	29.4
Transport	18.5	17.8	21.5	21.5	21.6	22.4	21.2
Other	41.6	42.8	37.8	37.6	38.0	38.0	37.0
Non-energy use	6.4	8.7	10.7	10.5	11.0	10.9	12.3
Russian Federation	1990	2000	2005	2006	2007	2008	2009
GDP (bill 2000 USD PPP)	1,485.0	998.6	1,344.7	1,454.3	1,578.4	1,661.2	1,530.2
%-change	-9.0	10.0	6.4	8.2	8.5	5.2	-7.9
%-change trend	-9.0	-4.3	0.0	0.8	1.6	2.0	1.0
Population (mill)	147.7	147.7	147.7	147.7	147.7	147.7	147.7
%-change	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%-change trend	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total primary energy supply (ktoe)	879,193	619,265	651,712	670,673	672,591	688,483	646,915
%-change	-6.2	1.7	0.7	2.9	0.3	2.4	-6.0
%-change trend	-6.2	-3.8	-1.8	-1.3	-1.2	-0.8	-1.3
CO2 (mill to)	2,178.8	1,505.5	1,516.2	1,579.8	1,578.5	1,593.4	1,532.6
%-change	-6.2	2.6	0.2	4.2	-0.1	0.9	-3.8
%-change trend	-6.2	-3.9	-2.2	-1.6	-1.4	-1.2	-1.5
GDP / Population (\$ 1.000)	10,056	6,762	9,106	9,848	10,689	11,249	10,362
Energy / GDP (kgoe / 1 mill \$)	592,065	620,127	484,663	461,162	426,114	414,454	422,779
Energy / Population (kgoe)	5,954	4,194	4,413	4,542	4,555	4,662	4,381
CO2 / Population (kg CO2)	14,754	10,195	10,267	10,698	10,690	10,790	10,379

Table 7-7: Russian Federation

Rest of the World (%-share)	1990	2000	2005	2006	2007	2008	2009
Coal and coal products	27.8	19.0	17.8	18.3	18.7	17.4	16.1
Oil and oil products	36.7	36.7	35.5	35.2	34.5	34.6	34.7
Natural gas	18.0	23.4	25.1	24.6	24.6	25.2	25.1
Renewables	4.3	5.8	6.5	7.0	7.7	8.2	9.2
Nuclear	12.7	14.6	14.6	14.5	13.9	14.0	14.1
Electricity	0.2	0.1	0.1	0.0	0.1	0.1	0.1
Heat	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste non-renewable	0.2	0.4	0.4	0.4	0.5	0.5	0.6
Total primary energy supply	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Losses	31.3	30.6	30.3	30.4	30.8	30.3	30.3
Total final consumption	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Industry	30.3	26.2	25.1	24.6	25.1	24.3	22.1
Transport	22.9	26.0	26.1	26.7	27.5	27.0	27.9
Other	38.1	38.4	39.7	39.7	38.0	39.4	41.3
Non-energy use	8.7	9.4	9.1	9.0	9.5	9.2	8.8
Rest of the World	1990	2000	2005	2006	2007	2008	2009
GDP (bill 2000 USD PPP)	8,566.4	10,591.9	11,667.3	12,065.3	12,445.5	12,537.8	12,007.6
%-change	1.4	3.9	2.1	3.4	3.2	0.7	-4.2
%-change trend	1.4	2.1	2.0	2.2	2.3	2.1	1.5
Population (mill)	472.9	482.9	492.1	494.1	496.4	498.7	500.4
%-change	0.2	0.2	0.5	0.4	0.5	0.5	0.3
%-change trend	0.2	0.2	0.3	0.3	0.3	0.3	0.3
Total primary energy supply (ktoe)	1,636,250	1,685,513	1,779,442	1,779,114	1,757,170	1,751,287	1,655,792
%-change	0.0	0.7	0.1	0.0	-1.2	-0.3	-5.5
%-change trend	0.0	0.3	0.6	0.5	0.3	0.3	-0.3
CO2 (mill to)	4,051.9	3,831.2	3,978.9	3,996.2	3,941.9	3,868.3	3,576.8
%-change	-1.0	0.5	-0.8	0.4	-1.4	-1.9	-7.5
%-change trend	-1.0	-0.6	-0.1	0.0	-0.2	-0.3	-1.1
GDP / Population (\$ 1.000)	18,114	21,933	23,707	24,418	25,069	25,141	23,998
Energy / GDP (kgoe / 1 mill \$)	191,009	159,133	152,515	147,457	141,189	139,680	137,895
Energy / Population (kgoe)	3,460	3,490	3,616	3,601	3,540	3,512	3,309
CO2 / Population (kg CO2)	8,568	7,933	8,085	8,087	7,940	7,757	7,148

Table 7-8: Rest of the World

	1000						
POP (Index 1990 = 100)	1990	2000	2005	2006	2007	2008	2009
EU-27	100.0	102.1	104.1	104.5	105.0	105.5	105.8
USA	100.0	112.9	118.4	119.5	120.7	121.8	122.9
Japan	100.0	102.7	103.4	103.4	103.4	103.2	103.0
China	100.0	111.3	114.9	115.5	116.1	116.7	117.3
India	100.0	119.6	128.8	130.6	132.4	134.2	136.1
Russian Federation	100.0	99.1	96.7	96.3	96.0	95.8	95.6
Rest of the World	100.0	120.6	131.1	133.2	135.4	137.6	139.8
World	100.0	115.4	122.6	124.0	125.4	126.9	128.4
Source: Own analyses	pased on IEA c	ind UN do	atabases				

Table 7-9:	Population	
	4.00)	0

Table 7-10: Gross Domestic Product (GDP) at 2000 USD Purchasing Power Parity

GDP (index 1990 = 100)	1990	2000	2005	2006	2007	2008	2009
EU-27	100.0	123.6	136.2	140.8	145.3	146.4	140.2
USA	100.0	140.1	157.8	162.1	165.2	165.2	160.8
Japan	100.0	112.5	120.0	122.4	125.3	123.9	117.4
China	100.0	262.1	414.2	466.2	531.5	581.6	632.8
India	100.0	170.1	238.2	260.7	285.8	300.5	323.5
Russian Federation	100.0	67.2	90.6	97.9	106.3	111.9	103.0
Rest of the World	100.0	135.6	164.8	174.0	183.9	190.6	190.3
World	100.0	137.4	166.6	176.0	186.3	192.2	192.7

	57 - 1	- 1- 7 1	- /				
TES (index 1990 = 100)	1990	2000	2005	2006	2007	2008	2009
EU-27	100.0	103.0	108.8	108.7	107.4	107.0	101.2
USA	100.0	118.7	121.1	119.9	122.0	118.9	112.9
Japan	100.0	118.1	118.5	118.3	117.3	112.8	107.4
China	100.0	126.9	196.6	214.8	227.6	245.4	261.6
India	100.0	144.3	169.8	178.4	188.3	195.4	213.4
Russian Federation	100.0	70.4	74.1	76.3	76.5	78.3	73.6
Rest of the World	100.0	123.8	145.0	149.7	154.1	158.3	156.6
World	100.0	114.2	130.6	134.1	137.2	139.8	138.3
Source: Own analyses based on IEA and UN databases							

Table 7-11: Total Energy Supply (TES)

Source: Own analyses based on IEA and UN databases

CO2 (index 1990 = 100)	1990	2000	2005	2006	2007	2008	2009
EU-27	100.0	94.6	98.2	98.6	97.3	95.5	88.3
USA	100.0	117.0	118.5	116.8	118.4	114.7	106.7
Japan	100.0	111.2	114.7	113.2	116.7	108.3	102.7
China	100.0	137.4	228.9	253.4	272.6	294.3	308.9
India	100.0	167.0	199.3	215.0	233.1	245.8	272.3
Russian Federation	100.0	69.1	69.6	72.5	72.5	73.1	70.3
Rest of the World	100.0	120.9	141.1	146.0	152.1	155.0	152.9
World	100.0	112.1	129.7	134.0	138.5	140.5	138.3

Table 7-12: CO₂ Emissions

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:

http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1 http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=266659

http://ideas.repec.org/s/fem/femwpa.html http://www.econis.eu/LNG=EN/FAM?PPN=505954494

http://ageconsearch.umn.edu/handle/35978

http://www.bepress.com/feem/

NOTE DI LAVORO PUBLISHED IN 2012

CCSD	1.2012	Valentina Bosetti, Michela Catenacci, Giulia Fiorese and Elena Verdolini: <u>The Future Prospect of PV and CSP</u>
		<u>Solar Technologies: An Expert Elicitation Survey</u>
CCSD	2.2012	Francesco Bosello, Fabio Eboli and Roberta Pierfederici: Assessing the Economic Impacts of Climate
		Change. An Updated CGE Point of View
CCSD	3.2012	Simone Borghesi, Giulio Cainelli and Massimiliano Mozzanti: Brown Sunsets and Green Dawns in the
		Industrial Sector: Environmental Innovations. Firm Behavior and the European Emission Trading
CCSD	4,2012	Stergios Athanassoglou and Valentina Bosetti: Modeling Ambiguity in Expert Elicitation Surveys: Theory and
0000		Application to Solar Technology R&D
CCSD	5 2012	William Brock, Gustav Engerson and Anastasios Xenanadeas: Energy Balance Climate Models and the
CCSD	5.2012	Spatial Structure of Optimal Militation Policies
CCSD	6 2012	Spatial Structure of Optimal Willighton rollics
CCSD	0.2012	Gabriel Chan, Kobert Stavins, Robert Stowe and Richard Sweeney. <u>The SOZ Allowance Trading System and</u>
5514	7 0010	the Clean Air Act Amendments of 1990: Reflections on Iwenty Years of Policy Innovation
ERM	7.2012	Claudio Morana: Oil Price Dynamics, Macro-Finance Interactions and the Role of Financial Speculation
ES	8.2012	Gérard Mondello: <u>The Equivalence of Strict Liability and Negligence Rule: A « Trompe I'œil » Perspective</u>
CCSD	9.2012	Eva Schmid, Brigitte Knopf and Nico Bauer: <u>REMIND-D: A Hybrid Energy-Economy Model of Germany</u>
CCSD	10.2012	Nadia Ameli and Daniel M. Kammen: The Linkage Between Income Distribution and Clean Energy
		Investments: Addressing Financing Cost
CCSD	11.2012	Valentina Bosetti and Thomas Longden: Light Duty Vehicle Transportation and Global Climate Policy: The
		Importance of Electric Drive Vehicles
ERM	12.2012	Giorgio Gualberti, Morgan Bazilian, Erik Haites and Maria da Graca Carvalho: Development Finance for
		Universal Energy Access
CCSD	13 2012	Ines Österler Fossil Fuel Extraction and Climate Policy: A Review of the Green Paradox with Endogenous
CCDD	10.2012	Resource Exploration
FS	14 2012	Marco Alderight Marcella Nicolini and Claudio A. Piga: Combined Effects of Load Eactors and Booking
LJ	14.2012	Time on Early Inside that Nicola Andreas and the State of
	15 2012	Line Of rates, insights from the field Management of a Low-Cost Ainine
ERIVI	15.2012	Lion nirth: <u>The Market Value of Variable Renewables</u>
CCSD	16.2012	F. Souty, I. Brunelle, P. Dumas, B. Dorin, P. Clais and R. Crassous: <u>The Nexus Land-Use Model, an</u>
		Approach Articulating Biophysical Potentials and Economic Dynamics to Model Competition for Land-Uses
CCSD	17.2012	Erik Ansink, Michael Gengenbach and Hans-Peter Weikard: <u>River Sharing and Water Trade</u>
CCSD	18.2012	Carlo Carraro, Enrica De Cian and Massimo Tavoni: <u>Human Capital, Innovation, and Climate Policy: An</u>
		Integrated Assessment
CCSD	19.2012	Melania Michetti and Ramiro Parrado: Improving Land-use modelling within CGE to assess Forest-based
		<u>Mitigation Potential and Costs</u>
CCSD	20.2012	William Brock, Gustav Engstrom and Anastasios Xepapadeas: Energy Balance Climate Models, Damage
		Reservoirs and the Time Profile of Climate Change Policy
ES	21.2012	Alireza Naghavi and Yingvi Tsai: Cross-Border Intellectual Property Rights: Contract Enforcement and
		Absorptive Capacity
CCSD	22 2012	Banhael Calel and Antoine Dechezleprêtre: Environmental Policy and Directed Technological Change:
CCDD	22.2012	Evidence from the European carbon market
FDM	23 2012	Mattee Manara, Marcalla Nicolini and Ilaria Vignati: Peturne in Commodities Eutures Markets and Einancial
	23.2012	Fraction is A Multiveriate CADCH Approach
	24 2012	Speculation: A Multivariate CARCH Approach
ERIVI	24.2012	Alessandro Cologni and Matteo Manera: Oli Revenues, Etinic Fragmentation and Political Transition of
		Authoritarian Regimes
ERM	25.2012	Sanya Carley, Sameeksha Desai and Morgan Bazilian: <u>Energy-Based Economic Development: Mapping the</u>
		Developing Country Context
ES	26.2012	Andreas Groth, Michael Ghil, Stéphane Hallegatte and Patrice Dumas: The Role of Oscillatory Modes in U.S.
		Business Cycles
CCSD	27.2012	Enrica De Cian and Ramiro Parrado: <u>Technology Spillovers Embodied in International Trade: Intertemporal</u> ,
		regional and sectoral effects in a global CGE
ERM	28.2012	Claudio Morana: The Oil price-Macroeconomy Relationship since the Mid- 1980s: A global perspective
CCSD	29.2012	Katie Johnson and Margaretha Breil: <u>Conceptualizing</u> Urban Adaptation to Climate Change Findings from
		an Applied Adaptation Assessment Framework

alisa Percoco: <u>The</u>
<u>gonegrese National</u>
ndary Air Pollution
ndary Air Pollu

CCSD 33.2012 Antoine Dechezleprêtre, Richard Perkins and Eric Neumayer: <u>Regulatory Distance and the Transfer of New</u> Environmentally Sound Technologies: Evidence from the Automobile Sector

CCSD 34.2012 Baptiste Perrissin Fabert, Patrice Dumas and Jean-Charles Hourcade: <u>What Social Cost of Carbon? A</u> <u>mapping of the Climate Debate</u>

CCSD 35.2012 Ludovico Alcorta, Morgan Bazilian, Giuseppe De Simone and Ascha Pedersen: <u>Return on Investment from</u> <u>Industrial Energy Efficiency: Evidence from Developing Countries</u>

CCSD 36.2012 Stefan P. Schleicher and Angela Köppl: <u>Scanning for Global Greenhouse Gas Emissions Reduction Targets</u> and their Distributions