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1 Introduction

There are 2.3 million people behind bars at any moment of time in the United States and

that number continues to grow. It is the highest level of incarceration per capita in the

world. Moreover, since the crime explosion of the 1960s, the prison population in the United

States has multiplied fivefold, to one prisoner for every hundred adults—a rate unprecedented

in American history and unmatched anywhere in the world.1 Even as the prisoner head

count continues to rise, crime has not stopped falling, and poor people and minorities still

bear the brunt of both crime and punishment.

One possible way to reduce crime is to detect, apprehend, convict, and punish criminals.

This is what has been done in the United States and all of those actions cost money, currently

about $200 billion per year nationwide. This “brute force” policy does not seem to work

well since, for example, the cost of prison in California is higher than the cost of education2

and crime rates do not seem to decrease.

In his recent book published in 2009, Mark Kleiman argues that simply locking up more

people for lengthier terms is no longer a workable crime-control strategy. But, says Kleiman,

there has been a revolution in controlling crime by means other than brute-force incarcer-

ation: substituting swiftness and certainty of punishment for randomized severity, concen-

trating enforcement resources rather than dispersing them, communicating specific threats

of punishment to specific offenders, and enforcing probation and parole conditions to make

community corrections a genuine alternative to incarceration. As Kleiman shows, “zero

tolerance” is nonsense: there are always more offenses than there is punishment capacity.3

Is there an alternative to brute force? In this paper, we argue that concentrating efforts

by targeting “key criminals”, i.e. criminals who once removed generate the highest possible

reduction in aggregate crime level in a network, can have large effects on crime because of

the feedback effects or “social multipliers” at work (see, in particular, Sah, 1991; Kleiman,

1993, 2009; Glaeser et al., 1996; Rasmussen, 1996; Schrag and Scotchmer, 1997; Verdier and

Zenou, 2004). That is, as the fraction of individuals participating in a criminal behavior

increases, the impact on others is multiplied through social networks. Thus, criminal behav-

iors can be magnified, and interventions can become more effective. The impacts from social

1See Cook and Ludwig (2010) and the references therein.
2For example, the “Three Strikes” law passed in California in 1994 mandates extremely long prison terms

(between 29 years and life) for anyone previously convicted in two serious or violent felonies (including

residential burglary) when convicted of a third felony, even something as minor as petty theft.
3In the standard crime literature (Becker, 1968; Garoupa, 1997; Polinsky and Shavell, 2000), punishment

is seen as an effective tool for reducing crime.
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networks may also be particularly important for adolescents because this developmental pe-

riod overlaps with the initiation and continuation of many risky, unhealthy, and delinquent

behaviors and is a period of maximal response to peer pressure (Thornberry et al., 2003;

Warr, 2002).

It is indeed well-established that delinquency is, to some extent, a group phenomenon, and

the source of crime and delinquency is located in the intimate social networks of individuals

(see e.g. Sutherland, 1947; Sarnecki, 2001; Warr, 2002; Haynie, 2001; Patacchini and Zenou,

2008; 2011). Delinquents often have friends who have themselves committed several offences,

and social ties among delinquents are seen as a means whereby individuals exert an influence

over one another to commit crimes. In fact, not only friends, but also the structure of social

networks, matters in explaining individual’s own delinquent behavior. This suggests that the

underlying structural properties of friendship networks must be taken into account to better

understand the impact of peer influence on delinquent behavior and to address adequate and

novel delinquency-reducing policies.

Following Ballester et al. (2006), we first propose a theoretical model of criminal net-

works. Building on the Beckerian incentives approach to delinquency, we develop a model

where peer effects matter so that criminals are directly influenced by their friends. Indi-

viduals decide non-cooperatively their crime effort and we show that, in equilibrium, each

criminal effort is equal to one’s Katz-Bonacich centrality.4 The Katz-Bonacich centrality

measure is an index of connectivity that not only takes into account the number of direct

links a given delinquent has but also all his indirect connections. In our delinquency game,

the network payoff interdependence is restricted to direct network mates. But, because clus-

ters of direct friends overlap, this local payoff interdependence spreads all over the network.

In equilibrium, individual decisions emanate from all the existing network chains of direct

and indirect contacts stemming from each player, a feature characteristic of Katz-Bonacich

centrality.

We then consider different policies that aim at reducing the total crime activity in a

delinquent network. The standard policy tool to reduce aggregate delinquency relies on the

deterrence effects of punishment (Becker, 1968). By uniformly hardening the punishment

costs borne by all delinquents, the distribution of delinquency efforts shifts to the left and

the average (and aggregate) delinquency level decreases. This homogeneous policy tackles

average behavior explicitly and does not discriminate among delinquents depending on their

relative contribution to the aggregate delinquency level. As an alternative to this “brute

force” policy, we propose a targeted policy that discriminates among delinquents depending

4Due to Katz (1953) and extended by Bonacich (1987).
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on their relative network location. Removing a few appropriately selected targets from

the network alters the distribution of delinquency efforts, rather that just shifting it. To

characterize the optimal network targets, we use a new measure of network centrality, the

intercentrality measure, proposed by Ballester et al. (2006, 2010) and Ballester and Zenou

(2012). This measure solves the planner’s problem that consists in finding and getting rid

of the key player, i.e., the delinquent who, once removed, leads to the highest aggregate

delinquency reduction. We show that the key player is, precisely, the individual with the

highest intercentrality in the network.

These models (theory and policy) developed by Ballester et al. (2006) have two main

drawbacks: the decision to become criminal is not considered and the network is fixed and

taken as given. We extend these models to incorporate these two aspects. First, we add a

first stage where individuals decide whether to become criminal or not. Then, in the second

stage, those who become criminals play the effort game as in Ballester et al. (2006) while the

individuals who find it optimal not to be criminal obtain a fixed utility level. We are able to

fully characterize the subgame perfect equilibrium of this game and to show that observable

and unobservable characteristics of individuals play a major role in the crime decision.

Second, and a much more important extension, we endogenize the way individuals form

links. Indeed, so far, we assumed that individuals took the structure of the network as given.

This is referred to as the invariant case. This is a strong assumption, especially for the key

player policy, since once a criminal has been removed from the network, we assumed that

no one could create new links. This assumption could be justified in the short run where

policy makers take criminals “by surprise” in a network but, in the long run, criminals may

re-organize themselves by creating new links and thus changing the network structure. As a

result, we now develop a dynamic network formation model where, at each period of time,

a criminal is chosen at random and optimally decides with whom she wants to form a link,

anticipating the criminal effort game played by all criminals after the new link has been

added. There is a trade off since having one more link is always beneficial (due to local

complementarities) but there is an individual-specific cost of forming a new link. We study

the evolution of the network over time where, at each period of time, both link formation

and Nash equilibrium in criminal efforts are determined. We have a non-ergodic Markov

chain and the network converges to an equilibrium (or an absorbing state) when no criminal

has an incentive to create a new link. We then study the key player policy in this dynamic

network formation model. In this case, the planner will compare the total crime effort in the

equilibrium network with and without removing one criminal. The key player will be the

one who once removed reduces the total crime effort in equilibrium the most. Compared to
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the invariant case, the planner now considers the effect of removing the key player not only

in the short run but also in the long run, allowing other criminals to form new links with

individuals they were not linked with when the key player was removed.

Using the AddHealth data of adolescents in the United States, we then test the different

results of our theoretical analysis. To be consistent with our theoretical models, there are

basically three parts in our empirical analysis: (i) we test our static model to investigate

if there are peer effects in crime; (ii) we test our extended static model to examine what

drives the decision to become criminal, (iii) we estimate and simulate our dynamic model

to determine who is the key player.

(i) We first test whether or not there are peer effects in crime in the static model.

While the potential benefits of leveraging social networks to reduce criminal behaviors are

substantial, so are the empirical difficulties of uncovering how social networks form and

operate, and the strength of network effects on outcomes. These difficulties are partly

due to the lack of theoretical models that can help us understand the way these feedback

effects operate. They are also due to the lack of network data, as well as to the fact that

social networks are formed purposefully and that connected individuals share environmental

influences. These features of social networks complicate the estimation of causal impacts of

networks and reduce the ability to suggest policies to reduce bad behaviors and encourage

good behaviors. It is often difficult to disentangle whether the observation of two friends

skipping school, or smoking, with other adolescents is due to facing low punishment regimes,

because they influence each other to pursue risky behaviors, or because they choose to be

friends based on their common interest in pursuing risky behaviors.

We tackle the econometric issues in the estimation of peer effects in crime by extending

the recent method of Liu and Lee (2010). Using an instrumental variable approach as well

as network fixed effects, we estimate the first-order conditions of our theoretical model to

evaluate the intensity of peer effects and the role of centrality in crime. We also provide an

over-identifying restriction (OIR) test to show that our instruments constructed using the

social adjacency matrix are valid for the data we use. Hence the adjacency matrix of social

interaction can be considered as exogenous. If we consider an average group of 4 best friends

(linked to each other in a network), we find that a standard deviation increase in the level

of delinquent activity of each of the peers translates into a roughly 17 percent of a standard

deviation increase in the individual level of activity. This is a strong effect, especially given

our long list of controls. We also test this model by type of crime. We find that the impact

of peer effects on crime are much higher (almost double) for more serious crimes than for

petty crimes.
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(ii) We then estimate the determination to become criminal. To address the endogenous

participation (or selection) problem, from an econometric viewpoint, we consider a type-2

Tobit model. As in the theory, in the econometrics model, we have two equations. The first

equation (the participation equation) determines whether an agent will become a criminal

or not. For those individuals who decide to be criminals, the second equation (the outcome

equation) determines the effort level an agent decides to excert, as a function of her own

characteristics, and the characteristics and efforts of her direct friends. Interestingly, we

find that the individuals’ characteristics that affect the crime decision vary with the type

of crime committed. For example, we find that female teenagers are more likely to commit

petty crimes and much less likely to commit serious crimes than male teenagers. Similarly,

blacks are more likely to commit serious crime than whites while there are no statistically

differences between blacks and whites for petty crimes.

(iii) Finally, we test the key player policy using our dynamic network formation model.

For that, using the dynamic model, we structurally estimate all the parameters of the model

to determine the key player. We find that it is not straightforward to determine which

delinquent should be removed from a network by only observing his or her criminal activities

or position in the network. In other words, the key player is often not the criminal who has

the highest Katz-Bonacich centrality or the highest betweenness centrality. Once we have

determined the key player for each network, we can analyze his/her main characteristics.

Compared to other criminals, “key” criminals are less likely to be a female, are less religious,

belong to families whose parents are less educated and have the perception of being socially

more excluded. They also feel that their parents care less about them, are less likely to come

from families where both parents are married and have more troubles getting along with

their teachers. An interesting feature is that key players are more intelligent (i.e. higher

mathematics scores) than the average criminal and are more likely to have friends who are

older (i.e. in higher grades), more religious and whose parents are more educated. Also,

even though key players themselves do not have a better self-esteem, are not more physically

developed nor are they more likely to be urbanites than other criminals, their friends are.

The rest of the paper unfolds as follows. In the next section, we discuss the related

literature and explain our contribution. The theory section (Section 3) is divided into two

subsections: the static models (Section 3.1) and the dynamic ones (Section 3.2). All proofs

of the theoretical part can be found in Appendix 1, while examples illustrating the different

theoretical results are exposed in Appendix 2. Our data are described in Section 4, while

the estimation and empirical results of the impact of peer effects on crime are provided in

Section 5. Section 6 details the empirical analysis of the key player and gives the results. In
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Section 7, we discuss some policy implications of our results. Finally, Section 8 concludes.

2 Related literature

Our paper lies at the intersection of different literatures. We would like to expose them in

order to highlight our contribution.

Theories of crime with social interactions There is a growing theoretical literature

on the social aspects of crime. Sah (1991) was one of the first to develop a social interaction

crime model where the social setting affects the individual perception of the costs of crime,

and is thus conducive to a higher or lower sense of impunity. Glaeser et al. (1996) propose a

model where criminals are located on a circle where some of them are conformists (i.e. copy

what their neighbors do) while others decide their criminal activities by themselves. They

show that criminal interconnections act as a social multiplier on aggregate crime. Calvó-

Armengol and Zenou (2004), Ballester et al. (2006, 2010), Patacchini and Zenou (2008,

2012) were the first to embed criminal activities in a general social network. They study the

effect of the structure of the network on crime. They show that the location in the social

network of each criminal not only affects her direct friends but also friends of friends of

friends, etc.5 Ballester et al. (2006, 2010) also study the policy implications of the network

models of crime. They show that a key-player policy, which consists in removing from the

network the criminal who reduces total crime the most, can be more efficient than standard

punishment policies in reducing crime. Compared to this literature, we have the following

contributions. In all these models of crime with social interactions, the network is fixed and

taken as given. We relax this assumption by considering a dynamic network formation model

where criminals not only decide how much effort they put into crime but with whom they

want to form links. Furthermore, the key-player policy proposed by Ballester et al. (2006)

assumes that the network is invariant, i.e. when a criminal is removed from a network

nobody can form new links. This limits the policy implications of the model since, in this

case, it is just a short-run policy and, eventually, criminals can adapt their behavior in order

to avoid being targeted by this policy. We relax this assumption by allowing criminals to

form friendship relations (i.e. new links) after the removal of the key player.

5Other related contributions on the social aspects of crime include Silverman (2004), Verdier and Zenou

(2004), Calvó-Armengol et al. (2007), Ferrer (2010).
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Theories of network formation There is an important literature on dynamic net-

work formation.6 The first approach is to consider a random network formation (looking

at stochastically stable networks) and to study how emerging networks match real-world

networks (Ehrhardt et al., 2006; 2008; Vega-Redondo, 2006; Hofbauer and Sandholm, 2007;

Feri, 2007; Staudigl, 2011). While sharing some common features with this literature, our

model is quite different since agents do not create links randomly but in a strategic way, i.e.

they maximize their utility function. From the economic literature, there are also dynamic

network formation models with strategic interactions. Bala and Goyal (2000), Watts (2001),

Jackson and Watts (2002a), Dutta et al. (2005) are prominent papers of this literature.

Our dynamic network formation model is different than the ones developed in these papers

in the sense that we consider both dynamic models of network formation and agents’ opti-

mal actions. This allows us to give a microfoundation for the network formation process as

equilibrium actions transform into equilibrium utility functions.

There are also some papers that, as in our framework, combine both network formation

and endogenous actions. These papers include Bramoullé et al. (2004), Cabrales et al.

(2011), Calvó-Armengol and Zenou (2004), Galeotti and Goyal (2010), Goyal and Vega-

Redondo (2005), Goyal and Joshi (2003), Jackson and Watts (2002b). Most of these models

are, however, static and the network formation process is different. König et al. (2011) is the

closest to ours since it is both a dynamic network formation model and players choose effort

optimally. They, however, impose that individuals have to delete one of their links with some

probability, which leads to steady-state networks that have very specific properties (e.g. a

diameter of two). In our model, individuals do not delete links but bear a cost of forming

links.

Empirical aspects of criminal behavior with social interactions There is a also

a growing body of empirical literature suggesting that peer effects are very strong in criminal

decisions. Case and Katz (1991), using data from the 1989 NBER survey of youths living in

low-income Boston neighborhoods, find that the behaviors of neighborhood peers appear to

substantially affect criminal activities of youths. They find that the direct effect of moving

a youth, with given family and personal characteristics, to a neighborhood where 10 percent

more of the youths are involved in crime than in his or her initial neighborhood is to raise the

probability the youth will become involved in crime by 2.3 percent. Ludwig et al. (2001) and

Kling et al. (2005) explore this last result by using data from the Moving to Opportunity

(MTO) experiment that relocates families from high- to low-poverty neighborhoods. They

6See Goyal (2007) and Jackson (2008) for overviews on network theory.
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find that this policy reduces juvenile arrests for violent offences by 30 to 50 percent for

the control group. This also suggests very strong social interactions in crime behaviors.

Patacchini and Zenou (2008, 2012) find that peer effects in crime are strong, especially

for petty crimes. Damm and Dustmann (2008) investigate the following question: Does

growing up in a neighborhood in which a relatively high share of youth has committed

crime increase the individual’s probability of committing crime later on? To answer this

question, Damm and Dustmann exploit a Danish natural experiment that randomly allocates

parents of young children to neighborhoods with different shares of young criminals. With

area fixed effects, their key results are that one standard deviation increase in the share of

young criminals in the municipality of initial assignment increases the probability of being

charged with an offense at the age 18-21 by 8 percentage points (or 23 percent) for men.

This neighborhood crime effect is mainly driven by property crime. Finally, Bayer et al.

(2009) consider the influence that juvenile offenders serving time in the same correctional

facility have on each other’s subsequent criminal behavior. They also find strong evidence of

learning effects in criminal activities since exposure to peers with a history of committing a

particular crime increases the probability that an individual who has already committed the

same type of crime recidivates that crime.7 Compared to this literature, we use the network

structure as a source of identification of peer effects in crime. In particular, we improve

the identification strategy of peer effects proposed by Bramoullé et al. (2009) and Lee et

al. (2010) by addressing the case of a non-row-normalized matrix of social interactions.

More importantly, we structurally estimate a dynamic model of network formation with and

without the removal of a criminal, which allows us to determine who the key player is in each

network of adolescent friendship. To the best of our knowledge, this is the first paper that

empirically tests the importance of key players in criminal activities (or any other activity).

This paper’s contributions To sum-up, we have the following main contributions:

(i) We provide an explicit crime model where ex ante heterogeneous individuals decide

whether to become criminal or not and, if criminal, how much effort to put into criminal

activities;

(ii) We provide a dynamic network formation model without and with a key-player policy.

(iii) We improve the identification strategy of peer effects proposed by Bramoullé et al.

(2009) and Lee et al. (2010) by addressing the case of a non-row-normalized matrix of social

interactions;

7Building on the binary choice model of Brock and Durlauf (2001), Sirakaya (2006) identifies social

interactions as the primary source of recidivist behavior in the United States.
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(iv) We provide estimates of criminal outcomes that separate peer effects from contextual

and correlated effects;

(v) We structurally estimate our dynamic network formation model to determine the key

player in each network of adolescent friendships;

(vi) We identify the characteristics of the key players, study the significant differences

between key players and criminals and see if other measures of centrality can explain why

some key players are not the most active criminals in a network.

3 Theoretical frameworks

3.1 Static models with exogenous networks

We expose a network model of crime where the network is taken as given. We will analyze

the impact of network structure and peer effects on criminal outcomes.

3.1.1 Model and Nash equilibrium

We develop a network model of peer effects, where the network reflects the collection of

active bilateral influences.

The network N = {1, . . . , n} is a finite set of agents in a connected network g ≡ gN .

We keep track of social connections in a delinquency network g through its adjacency matrix

G = [gij ],
8 where gij = 1 if i nominates j (j 	= i) as i’s friend and gij = 0, otherwise. We set

gii = 0. For the ease of the presentation, we focus on directed networks so that G can be

asymmetric.9

Preferences Delinquents in network g decide how much effort to exert. We denote

by yi the delinquency effort level of delinquent i in network g and by y = (y1, ..., yn)
′ the

population delinquency profile in network g. Each agent i selects an effort yi ≥ 0, and

obtains a payoff ui(y, g) that depends on the effort profile y and on the underlying network

8Matrices and vectors are in bold while scalars are in normal letters.
9All our theoretical results also hold under undirected networks since the (a)symmetry of the adjacency

matrix G does not play any role in the proof of our theoretical results.
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g, in the following way:

ui(y, g) = (ai + η + ǫi) yi� �� �
Proceeds

− 1

2
y2i

����
moral cost of crime

− p · f · yi� �� �
cost of being caught

+ φ
n�

j=1

gijyiyj

� �� �
positive peer effects

(1)

where φ > 0. This utility has a standard cost/benefit structure (as in Becker, 1968). The

proceeds from crime are given by (ai + η + ǫi) yi and are increasing in own effort yi. The

costs of committing crime are captured by the probability of being caught 0 < p < 1 times

the fine f · yi, which increases with own effort yi, as the severity of the punishment increases

with one’s involvement in crime. Also, as is now quite standard (see e.g. Verdier and Zenou,

2004; Conley and Wang, 2006), individuals have a moral cost of committing crime equals to
1
2
y2i , which is also increasing in own crime effort yi. Finally, the new element in this utility

function is the last term φ
�n
j=1 gijyiyj, which reflects the influence of friends’ behavior on

own action. The peer effect component can also be heterogeneous, and this endogenous

heterogeneity reflects the different locations of individuals in the friendship network g and

the resulting effort levels.

Let us now comment on this utility function in more detail. In (1), η denotes the the

unobservable network characteristics, e.g., the prosperous level of the neighborhood/network

g (i.e. more prosperous neighborhoods lead to higher proceeds from crime) and ǫi is an error

term, which captures the unobservable characteristics of individual i and other uncertainty in

the proceeds from crime. Both η and ǫi are observed by the delinquents (when choosing effort

level)10 but not by the econometrician. Also, in (1), ai denotes the exogenous heterogeneity

that captures the observable differences between individuals. In this model, ai captures the

fact that individuals differ in their ability (or productivity) of committing crime. Indeed,

for a given effort level yi, the higher ai, the higher the productivity and thus the higher

the proceeds from crime aiyi. Observe that ai is assumed to be deterministic, perfectly

observable by all individuals in the network and corresponds to the observable characteristics

of individual i (e.g. sex, race, age, parental education, etc.) and to the observable average

characteristics of individual i’s best friends, i.e. average level of parental education of i’s

friends, etc. (contextual effects). To be more precise, ai can be written as:

ai =
M�

m=1

β1mx
m
i +

1

gi

M�

m=1

n�

j=1

β2mgijx
m
j (2)

10We will assume that ǫi is not observable by the delinquents when making link-formation decisions in the

dynamic network formation model described in Section 3.2.
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where xmi is a set of M variables accounting for observable differences in individual, neighbor-

hood and school characteristics of individual i, β1m, β2m are parameters, and gi =
�n
j=1 gij

is the connectivity of individual i.

To summarize, the utility function can be written as:

ui(y, g) = (ai + η̄ + ǫi)yi −
1

2
y2i + φ

n�

j=1

gijyiyj , (3)

where η̄ = η−pf . So when a delinquent i exerts some effort in crime, the proceeds from crime

depends on ability ai, the expected marginal cost of being caught pf , how prosperous is the

neighborhood/network η and on some random element ǫi, which is specific to individual i.

In other words, ai is the observable part (to the econometrician) of i’s characteristics while

ǫi captures the unobservable individual characteristics and other uncertainty in the proceeds

from crime. Note that the utility (1) is concave in own decisions, and displays decreasing

marginal returns in own effort levels.

The Katz-Bonacich network centrality For each network g with adjacency matrix

G = [gij ], the kth power of G given by Gk = G(k times)... G keeps track of direct and indirect

connections in g. More precisely, the (i, j)th cell of Gk gives the number of paths of length

k in g between i and j. In particular, G0 = I. Note that, by definition, a path between i

and j needs not to follow the shortest possible route between those agents. For instance, if

gij = gji = 1, the sequence ij → ji → ij constitutes a path of length three in g between i

and j.

Definition 1 (Katz, 1953; Bonacich, 1987) Given a vector u ∈ Rn+, and φ ≥ 0 a small

enough scalar, the vector of Bonacich centralities of parameter φ in network g is defined as:

bu (g, φ) = (I − φG)−1 u =
∞�

p=0

φpGpu. (4)

Because we are focusing on directed networks, we follow the approach of Wasserman

and Faust (1994, pages 205-210) who state that: “centrality indices for directional relations

generally focus on choices made”. In the language of graph theory, in a directed graph, a

link has two distinct ends: a head (the end with an arrow) and a tail. Each end is counted

separately. The sum of head endpoints count toward the indegree and the sum of tail

endpoints count toward the outdegree. Formally, as stated above, we denote a link from i to

j as gij = 1 if i has nominated j as her friend, and gij = 0, otherwise. The indegree of student

i, denoted by �gi, is the number of nominations student i receives from other students, that
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is �gi =
�
j gji. This is the column-sum of G corresponding to i. The outdegree of student

i, denoted by ḡi, is the number of friends student i nominates, that is ḡi =
�
j gij. This is

the row-sum of G corresponding to i. In the following, we measure the Bonacich centrality

in terms of outdegrees. This is consistent with our data where individuals nominate each

other since if individual i nominates j but j does not, it is then very possible that j is a role

model for i. In other words, i is learning from j even though j does not consider i as her

best friend.

Nash equilibrium

We now characterize the Nash equilibrium of the game where agents choose their effort

level yi ≥ 0 simultaneously. At equilibrium, each agent maximizes her utility (1) and we

obtain the following best-reply function for each i = 1, ..., n:

yi = φ
n�

j=1

gijyj + ai + η̄ + ǫi, (5)

where ai is defined by (2). Denote by µ1(G) the spectral radius of G, by αi = ai + η̄ + ǫi,

with corresponding non-negative vector α, we have:

Proposition 1 If φµ1(G) < 1, the peer effect game with payoffs (1) has a unique Nash

equilibrium in pure strategies given by:

y∗ ≡ y∗(g) = bα (g, φ) . (6)

This results shows that the Bonacich centrality is the right network index to account for

equilibrium behavior when the utility functions are linear-quadratic. In (1), the local payoff

interdependence is restricted to direct network contacts. At equilibrium, though, this local

payoff interdependence spreads all over the network through the overlap of direct friendship

clusters. The Bonacich centrality precisely reflects how individual decisions feed into each

other along any direct and indirect network path. Furthermore, the condition φµ1(G) < 1

stipulates that local complementarities must be small enough compared to own concavity.

This prevents multiple equilibria to emerge and, at the same time, rules out corner solutions

(i.e., negative or zero solutions).11 This condition also guarantees that (I − φG) is invertible

and its series expansion well defined. Observe that

bα (g, φ) = (I − φG)−1 α =
∞�

p=0

φpGpα (7)

11See Ballester et al. (2006) for a formal proof of this result.
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where α = a+ η̄ln+ǫ and where ln is an n-dimensional vector of ones. To simplify notation,

we drop the subscript α in bα (g, φ) and just write b (g, φ) whenever there is no ambiguity.

Let bi (g, φ) be the ith entry of b (g, φ). From Proposition 1, we have, for each individual i,

y∗i = bi (g, φ). Observe that, from (5), it is easy to show that:

ui(y
∗, g) = αiy

∗
i −

1

2
y∗2i + φ

n�

j=1

gijy
∗
i yj =

1

2
y∗2i =

1

2
[bi(g, φ)]

2 . (8)

3.1.2 Finding the key player in the static model

We would like now to expose the “key player” policy. The planner aims at finding the

key player, i.e. the delinquent who once removed generates the highest possible reduction

in aggregate delinquency level. We are assuming that, once a person is removed from the

network, the links of the remaining players do not change and that ai in (8) does not depend

on the adjacency matrix. Formally, the planner’s problem is the following:

max{Y ∗(g)− Y ∗(g[−i]) | i = 1, ..., n},

where Y ∗(g) =
�

i

y∗i (g) is the total level of crime in network g and g[−i] is network g without

individual i. When the original delinquency network g is fixed, this is equivalent to:

min{Y ∗(g[−i]) | i = 1, ..., n}. (9)

From Ballester et al. (2006, 2010) and Ballester and Zenou (2012),12 we now define a new

network centrality measure d(g, φ) that will happen to solve this program. Let M(g, φ) =

(I − φG)−1. Its entriesmij(g, φ) count the number of walks in g starting from i and ending at

j, where walks of length k are weighted by φk. The Bonacich centrality of node i is bi(g, φ) =�n
j=1 αjmij(g, φ), and counts the total number of paths in g starting from i weighted by the

αj of each linked node j. Let bi(g, φ) be the centrality of i in network g, B(g, φ) the total

centrality in network g (i.e. B(g, φ) = l′nMα ) and B(g[−i], φ) = l′nM
[−i]α[−i] the total

centrality in g[−i], where α[−i] is a (n− 1)× 1 column vector in which αi has been removed

andM [−i] = (I−φG[−i])−1 is a (n− 1)×(n− 1) matrix in which the ith row and ith column

corresponding to i has been removed from M . Finally, let α[i] be a (n× 1) column vector

where all entries but i are defined as α[−i], while entry i contains the initial αi, and let M [i]

be the n× n matrix such that each element is

m
[i]
jk =

mjimik

mii

12Ballester and Zenou (2012) extend the definition of the key player proposed by Ballester et al. (2006,

2010) to account for contextual effects.
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so that B(g[i], φ) = l′nMα[i] and l′nM
[i]α[i] = bα[i],i(g, φ)

�n
j=1mji(g, φ)/mii(g, φ). Ballester

and Zenou (2012) have proposed the following definition:

Definition 2 For all networks g and for all i, the intercentrality measure of delinquent i is:

di(g, φ) = B(g, φ)−B(g[−i], φ)

= l′nMα− l′nMα[i] + l′nM
[i]α[i]

= B(g, φ)−B(g[i], φ) +
bα[i],i(g, φ)

�n
j=1mji(g, φ)

mii(g, φ)
. (10)

The intercentrality measure (10) highlights the fact that when a delinquent is removed

from a network, two effects are at work. The first effect is the contextual effect, which is

due to the change in the contextual effect α (from α to α[i]) after the removal of the key

player while the network g remains unchanged. The second effect is the network effect, which

captures the change in the network structure when the key player is removed. More generally,

the intercentrality measure di(g, φ) of delinquent i accounts both for one’s exposure to the

rest of the group and for one’s contribution to every other exposure.

The following result establishes that intercentrality captures, in an meaningful way, the

two dimensions of the removal of a delinquent from a network, namely, the direct effect on

delinquency and the indirect effect on others’ delinquency involvement.

Proposition 2 A player i∗ is the key player that solves (9) if and only if i∗ is a delinquent

with the highest intercentrality in g, that is, di∗(g, φ) ≥ di(g, φ), for all i = 1, ..., n.

Observe that this result is true for both undirected networks (symmetric adjacency ma-

trix) and directed networks (asymmetric adjacency matrix). It is also true for adjacency

matrices with weights (i.e. values different than 0 and 1) and self-loops (delinquents have a

link with themselves). An illustrative example for Proposition 2 can be found in Appendix

2 (Example 1).

3.1.3 Is the key player always the more active criminal?

Definition 2 specifies a clear relationship between the Bonacich centrality and the inter-

centrality measures. Holding bi(g, φ) fixed, the intercentrality di(g, φ) of player i decreases

with mii(g, φ) of i’s Bonacich centrality due to self-loops, and increases with the fraction of

i’s centrality amenable to out-walks. As a result, it should be clear from Definition 2 that the

key player is very likely to be the criminal with the highest Bonacich centrality (i.e. the most

active criminal in the network) but not necessarily so. In Example 1 provided in Appendix
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2, the key player is criminal 1 and is also the most active criminal, i.e. the criminal with

the highest Bonacich centrality. In Appendix 2, we provide another example (Example 2)

where, even if the αs are identical for all individuals, there can be key players (highest inter-

centrality measures) who are not the most active criminals (highest Katz-Bonacich centrality

measures).

To summarize, the individual Nash equilibrium efforts of the delinquency-network game

are proportional to the equilibrium Bonacich centrality network measures, while the key

player is the delinquent with the highest intercentrality measure. As the previous example

illustrates, these two measures need not coincide.

3.1.4 Selection issues: The decision to become criminal

So far, we have assumed that the delinquency network was given. In some cases, though,

delinquents may have opportunities outside the delinquency network. Here, we expand the

model and endogenize the delinquency decision where individuals take a binary decision

whether to be delinquent or not.

Model and equilibrium Formally, we consider the following two-stage game. Fix

an initial network g connecting agents. In the first stage, each agent i ∈ N̄ = {1, ..., n̄}
decides whether to become a delinquent or not. This is a simple binary decision. These

decisions are simultaneous. Let ψi ∈ {0, 1} denote i’s decision, where ψi = 1 (resp. ψi = 0)

stands for becoming a delinquent (resp. not becoming a delinquent), and denote by ψ =

(ψ1, ..., ψn) the corresponding population binary decision profile. We assume that agents not

committing crime obtain some fixed utility level (a nonnegative scalar) ū > 0. The idea,

here, is that all students who are not committing crime enjoy the same utility level ū. The

payoff for delinquents is determined in the second stage of the game. As before, denote by

N = {1, ..., n}, with n < n̄, the set of players who decided to participate (i.e. to become

criminals). In the second stage, delinquents decide their effort level, which depends on the

first-stage outcome.

Definition 3 The extended game is a two stage game where:

• In stage 1, each player i = 1, ..., n̄ decides whether to participate (ψi = 1) in the crime

market or not (ψi = 0).

• In stage 2, the n persons who decided to be criminal in the first stage play the game in

gN .
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• The final utilities are:

ui(ψ,y, gN) =

�
(ai + η̄ + ǫi)yi − 1

2
y2i + φ

�n
j=1 gijyiyj if ψi = 1

ū otherwise
.

We study the subgame perfect equilibrium in pure strategies of this extended game.

Definition 4 The set N is supported in equilibrium if there exists a ū and a subgame perfect

equilibrium where the set of players who decide to participate is N , given the utility ū of not

being a criminal. N is also called an (equilibrium) participation pool of the game with ū.

The following result characterizes the class of sets that can be supported by some ū.

Proposition 3 Let N ⊆ N̄ and φµ1(G) < 1. Then, the set N is supported in equilibrium

by the outside option ū if and only if:

max
j∈N̄\N

bj(gN∪{j}, φ) ≤ 2
√
ū ≤ min

i∈N
bi(gN , φ). (11)

Given that the utility ū is fixed, it is clear that this two-stage game is supermodular, in

the sense that the payoffs of player i are increasing with respect to participation decisions

of other agents. Formally, for all N ⊆ T ⊆ N̄ and i ∈ N̄\T , it is clear that:

bi(gN∪{i}, φ) ≤ bi(gT∪{i}, φ)

because the right-hand side measures a higher number of walks. This property ensures the

existence of equilibrium for any utility ū. This is clearly due the local complementarity in

crime activities.

Proposition 3 means that some individuals will not commit crime while others will.

Indeed, each individual i has the option of either not participating in delinquent activ-

ities and getting a fixed utility ū > 0 or participating and obtaining a utility equal to
1
2
[bi(gN , φ)]

2, which depends on her position in the delinquent network gN . So the partic-

ipation decision depends on the comparison of these two options (i.e. utilities). Observe

that ū is exogenous and that the Bonacich centrality bi(gN , φ) is defined by the vector

b (g, φ) = (I − φG)−1α, where αi = ai + ǫi + η̄ (see (7)), which is increasing in both ai

(individuals’ observable characteristics such as gender, race, parents’ education, etc.) and

ǫi (individuals’ unobservable characteristics such as genes, ethics, etc.). Since ai + ǫi is a

realization of a continuous random variable, we can rank individuals according to their char-

acteristics a1 + ǫ1 < · · · < an̄−n + ǫn̄−n < an̄−n+1 + ǫn̄−n+1 < · · · < an̄ + ǫn̄. As a result, we

can write condition (11) as follows:

bn̄−n(gN∪{n̄−n}, φ) ≤ 2
√
ū ≤ bn̄−n+1(gN , φ). (12)
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Instead of Bonacich centralities, Proposition 3 can be written in terms of exogenous charac-

teristics as follows:

Proposition 4 Rank individuals such that a1+ ǫ1 < · · · < an̄−n+ ǫn̄−n < an̄−n+1+ ǫn̄−n+1 <

· · · < an̄ + ǫn̄. Assume that an̄−n + ǫn̄−n is sufficiently low compared to an̄−n+1 + ǫn̄−n+1.

Then all individuals with characteristics belonging to {a1 + ǫ1, ..., an̄−n + ǫn̄−n} will find it

optimal not to become delinquents while all individuals with characteristics belonging to

{an̄−n+1 + ǫn̄−n+1, ..., an̄ + ǫn̄} will become criminal.

If, for example, ai is an inverse measure of parental education and ǫi an inverse measure

of how strict the parents are in terms of ethics, then this proposition means that those with

high-educated parents and/or strong ethics are less likely to commit crime. In other words,

for these students, whatever their friends do, the cost of committing crime is too high and

they will therefore never commit crime. For others, who, for example, do not have a strong

ethics against crime, peers do matter. We assume that this decision whether to become

criminal, or not, is made once and for all and is irreversible. If we assume that the potential

crime benefit is a relatively small component of the crime decision (in our data, we are dealing

with teenage delinquents committing mostly petty crimes; see Section 4), then Proposition

4 means that the decision to become a criminal for each individual i is mainly based her

own characteristics ai+ ǫi. As a result, when a key-player policy is implemented, it will only

affect active criminals but not the ones who have already decided not to become criminals. In

other words, in our model, individuals decide whether or not to be criminal mainly based on

their observable and unobservable characteristics, but, if they become criminals, peer effects

matter greatly because they belong to criminal networks and are therefore mainly friends

with other criminals. In Appendix 2, we provide an example (Example 3) that illustrates

Proposition 4.

3.2 Dynamic network formation models

So far, we have assumed that the network was fixed and that, when the key player was

removed, no new links were formed. This means that, when the key player i is removed from

network g, the remaining network becomes g[−i] where the ith row and ith column in G

has been removed. In other words, we had an invariant assumption on the reduced network

g[−i]. This assumptions is realistic in the short run but clearly not in the long run.

We would like now to develop a dynamic model where both network formation and

effort decisions take place. Remember that we want to model students in grades 7-12 (see
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Section 4) who have to decide whether to commit crime or not. Following Proposition 4 and

the discussion after this proposition, we assume here that individuals make the decision to

become criminal or not once and for all before the dynamic network formation game takes

place. In other words, as stated in Proposition 4, we assume that, for some individuals,

their observable characteristics ai (gender, race, parents’ education, etc.) and unobservable

characteristics ǫi (how strict is their parents’ education, their own ethics, etc.) are such that

they will never commit a crime, whatever their friends do. Similarly, other individuals have

a ai and a ǫi, which are such that they will always commit a crime, whatever their friends

do. However, for the latter, their crime effort (i.e. how often they will commit a crime)

will depend on peer effects as modeled by the utility function (1). The decision to become

criminal or not is taken before the dynamic network formation game starts and thus we focus

on the way crime and link formation evolves over time for a network of only criminals. As

we will see below, in our data-set (see Section 4), we only observe the network at one point

in time (1994/1995) where crime decisions have already taken place. This will correspond to

our network at t = 0. Then, we will analyze how the network will evolve over time both with

and without a key player policy. So it seems reasonable to assume that the crime decision has

been taken by each individual before t = 0 and that this decision will not change afterwards.

What will change after t = 0 is the structure of the network as well as the crime effort each

criminal will provide. This will allow us to have a tractable framework, with an already

complicated model, where both link formation and crime effort are taken into account. Let

us now describe this dynamic model.

3.2.1 The model

At each period of time t, a person is chosen at random among the n criminals in the network

gt, and has to decide whether or not to create a link and, in case of link formation, with

whom she wants to create this link. Then there is a random shock and all individuals decide

how much crime effort to provide. We analyze this dynamic network game and characterizes

the equilibrium network. Let us now describe in more detail what happens within each

period. We call this game the morning-afternoon game.

At each period of time t, the timing of the game is as follows.

In the morning of day t, with equal probability, an agent (say, agent i) is chosen and

makes a link-formation decision under uncertainty as she does not know the realization of

a random shock ǫi. The shock is individual specific and i.i.d across individuals such that

E[ǫi] = 0 and Var[ǫi] = σ2ǫ > 0. We assume that the agent i who initiates a link formation

with agent j pays the cost ci and that she is myopic, i.e. agent i only maximize expected
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utility at the end of day t. Note that the chosen agent i is only allowed to create a new link

with an agent (say, agent j) if there does not exist a link from i to j at the beginning of day

t. Agent i is not allowed to delete an existing link. She is also not allowed to create a link

pointing from j to i. This means that we focus on directed networks so that, in terms of the

adjacency matrix G = [gij ], agent i is only allowed to change a non-diagonal element of the

ith row of G to one if that element was zero at the beginning of day t.13 Agent i can also

choose to keep the adjacency matrix unchanged.14

At noon of day t, a new network is formed, which is denoted by gt = g
(i,j)
t with the

adjacency matrix Gt = G
(i,j)
t . If j 	= i, then G(i,j)

t = Gt−1 + eie
′
j, where ei is the ith column

of the identity matrix. If j = i, then G
(i,j)
t = Gt−1.

In the afternoon of day t, the random shock ǫi is realized and its value becomes complete

information for all agents. As in Section 3.1.1, all agents in the (new) network simultaneously

choose their effort level to maximize their utility at time t. In particular, agent i (the agent

who is randomly chosen in the morning of day t to make a link-formation decision) will

choose an effort level yi,t ≡ yi,t(g
(i,j)
t ) to maximize the utility

ui,t(yt, g
(i,j)
t ) = (ai + η̄ + ǫi)yi,t −

1

2
y2i,t + φ

n�

k=1

gik,tyi,tyk,t − ci(ḡi,t − ḡi,t−1) (13)

where ḡi,t =
n�

k=1

gik,t and ci is the marginal cost of a link. Observe that utility (13) is exactly

as (3), apart from the fact that we add the link formation cost.

For each period of time t, we solve the model backwards, as usual. As in section 3.1.1,

the unique Nash equilibrium of the “afternoon game” (assuming that φµ1(Gt(i, j)) < 1; see

Proposition 1) is such that

y∗i,t = φ
n�

k=1

gik,ty
∗
j,t + ai + η̄ + ǫi (14)

or in vector form y∗t = (I − φGt)
−1 (a+ η̄ln + ǫ). Let M t ≡ M

(i,j)
t = (I − φG

(i,j)
t )−1,

with mi,t ≡ m
(i,j)
i,t being M t’s ith row and mij,t ≡ m

(i,j)
ij,t being its (i, j)th entry. Then

y∗i,t =mi,t(a+ η̄ln + ǫ).

13Remember that the outdegree of individual i, denoted by ḡi, is the number of friends individual i

nominates, that is ḡi =
�
j gij . This is the row-sum of G corresponding to i. As stated in Section 3.1.1, we

only consider outdegrees because it is an indication of role models.
14All our results are robust to undirected networks since a link proposal from i to j will always be accepted

by j because the latter does not pay the cost of the link and there are strategic complementarities. We find

it more convenient to present the model and results for the directed network case.
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For the “morning game”, as ǫ is unobservable in the morning, the chosen agent i makes

her link formation decision by maximizing her expected utility

E[ui,t(y
∗
t , g

(i,j)
t )] = (ai + η̄) E(y∗i,t) + E(ǫiy

∗
i,t)−

1

2
E[(y∗i,t)

2] (15)

+φ
n�

k=1

gik,tE(y
∗
i,ty

∗
k,t)− ci(ḡi,t − ḡi,t−1),

where E(y∗i,t) = mi,t(a + η̄ln), E(ǫiy
∗
i,t) = σ2ǫmii,t, E[(y∗i,t)

2] = [E(y∗i,t)]
2 + σ2ǫmi,tm

′
i,t and

E(y∗i,ty
∗
k,t) = E(y∗i,t)E(y

∗
k,t) + σ2ǫmi,tm

′
k,t. It is easily seen, as in Section 3.1.1 (see (8)), that

E[ui,t(y
∗
t , g

(i,j)
t )] =

1

2
[E(y∗i,t)]

2 + σ2ǫmii,t −
1

2
σ2ǫmi,tm

′
i,t (16)

+φσ2ǫ

n�

k=1

gik,tmi,tm
′
k,t − ci(ḡi,t − ḡi,t−1).

If chosen, an agent i will not create a link with any agent j if and only if

E[ui,t(y
∗
t , g

(i,i)
t )] ≥ max

j 
=i
E[ui,t(y

∗
t , g

(i,j)
t )], (17)

that is, i’s expected utility of not creating a link is higher than that of creating a link with

any agent j. Let

κi,t(g
(i,j)
t ) =

1

2
{E[y∗i,t(g(i,j)t )]}2 + σ2ǫm

(i,j)
ii,t −

1

2
σ2ǫm

(i,j)
i,t m

(i,j)′
i,t + φσ2ǫ

n�

k=1

g
(i,j)
ik,tm

(i,j)
i,t m

(i,j)′
k,t . (18)

Using (16), the inequality (17) gives the lower bound of ci:

ci,t = max
j
κi,t(g

(i,j)
t )− κi,t(g

(i,i)
t ), (19)

such that if ci ≥ ci,t then agent i will have no incentive to create a new link at period t.

3.2.2 Convergence of the link formation process

Let us now determine the convergence and the equilibrium of this dynamic formation model.

Let time be measured at countable dates t = 0, 1, 2, ... and consider a discrete time Markov

chain for the network formation process (gt)
∞
t=0 with gt = (N,Lt) comprising the set of

delinquents N = {1, ..., n} together with a set of links Lt at time t between them. (gt)
∞
t=0

is a collection of random variables gt, indexed by time t on a probability space (Ω,F ,P),
where Ω is the countable state space of all networks with n nodes, F is the σ-algebra

σ ({gt : t = 0, 1, 2, ...}) generated by the collection of gt, and P : F → [0, 1] is a countably

additive, non-negative measure on (Ω,F) with total mass
�
g∈Ω P (g) = 1. At every time

t ≥ 0, links can be created, or not, according to the game described above.

21



Definition 5 Consider a discrete time Markov chain (gt)
∞
t=0 on the probability space (Ω,F ,P).

Consider a network gt = (N,Lt) at time t with delinquents N = {1, ..., n} and links Lt.

Let g
(i,j)
t be the network obtained from gt−1 by the addition of the edge ij 	∈ Lt−1 be-

tween agents i, j ∈ N . Let ut(y
∗
t , gt) = (u1,t(y

∗
t , gt), ..., un,t(y

∗
t , gt)) denote the profile of

Nash equilibrium payoffs of the delinquents in gt following from the payoff function (13)

with parameter φ < 1/µ1(Gt). Then the delinquent j is a best response of delinquent i if

ui,t(y
∗
t , g

(i,j)
t ) ≥ ui,t(y

∗
t , g

(i,k)
t ) for all k ∈ N\Ni,t−1, where Ni,t = {j ∈ N : ij ∈ Lt} is the

neighborhood of individual i ∈ N at t. The set of delinquent i’s best responses is denoted by

BRi,t.

The key question is how individuals choose among their potential linking partners. This

definition shows that, at every t, an agent i, selected uniformly at random from the set

N , enjoys an opportunity of updating her current links. If an agent i receives such an

opportunity, then she initiates a link to agent j which increases her equilibrium payoff the

most. Agent j is said to be the best response of agent i given the network gt. In our

framework, agent j always accepts the link proposal because she does not pay the cost of

the link and her utility always increases following the creation of the link because of local

complementarities. If the utility of not creating a link is higher than that of creating a link

with individual i’s best response, then a link is not created and the network is unchanged.

In the previous section, we have shown that this is the case if ci > ci, where ci is defined by

(19).

Definition 6 We define the network formation process (gt)
∞
t=0 with gt = (N,Lt), as a se-

quence of networks g0, g1, ... in which, at every time t = 0, 1, 2, ..., a delinquent i ∈ N is

uniformly selected at random. This delinquent i initiates a link to a best response delinquent

j ∈ BRi,t. The link is created if BRi,t 	= ∅ and ui,t(y
∗
t , g

(i,j)
t ) ≥ ui,t(y

∗
t , g

(i,i)
t ). No link will be

created otherwise. If BRi,t is not unique, then i randomly selects one delinquent in BRi,t.

In this framework, the newly established link affects the overall network structure and

thus the centralities and payoffs of all other delinquents in the network. The formation of

links thus can introduce large, unintended and uncompensated externalities.

We now analyze in more detail the network formation process (gt)
∞
t=0 defined above, where

gt is the random variable realized at time t ≥ 0. Let us show that the network formation

process (gt)
∞
t=0 introduced in Definition 6 induces a Markov chain on a finite state space Ω.

Ω contains all unlabeled graphs with n nodes. Therefore, the number of states is finite and

the transition between states can be represented with a transition matrix T . Let us show
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that (gt)
∞
t=0 is a Markov chain. The network gt+1 is obtained from gt by adding a link to Lt

or doing nothing. Thus, the probability of obtaining gt+1 depends only on gt and not on the

previous networks gt′ for t′ < t, that is

P (gt+1|g0, g1, ..., gt) = P (gt+1|gt) .

The number of possible networks gt is finite for any time t and the transition probability

from a network gt to gt+1 does not depend on t. Therefore, (gt)
∞
t=0 is a finite state, discrete

time, homogeneous Markov chain. Moreover, the transition matrix T = [Tij] is defined by

Tij = P (gt+1 = gj | gt = gi) for any gi, gj ∈ Ω.

Let us explain what kind of equilibrium concept we are using for this dynamic network

formation model. As above, define E[ui,t(y
∗
t , g

(i,j)
t )] as the expected utility at time t for i to

create a link with j, for all j such that j 	= i and the (i, j)th element of the adjacency matrix

Gt−1 is zero and E[ui,t(y
∗
t , g

(i,i)
t )] as the expected utility at time t for i not to create a link

(see 16).

Definition 7 Consider the network formation process (gt)
∞
t=0 with gt = (N,Lt) described

in Definition 6, where, at each period of time t, the morning-afternoon game described in

Section 3.2.1 is played. We say that the network g0 at time t = 0 converges to an equilibrium

network gT at time t = T when each of the n delinquents in the network gT has no incentive

to create a new link at time t = T , that is, E[ui,t(y
∗
t , g

(i,i)
t )] > maxj E[ui,T (y

∗
t , g

(i,j)
t )] for all

i = 1, ..., n.

This definition says that the first time period for which each delinquent has no incentive

to create a new link is T . This means that at times T + 1, T + 2, etc., there are also

no incentive for them to create a new link. In that case, the network gT = (N,LT ) is an

equilibrium network. In terms of Markov chain, this means that the equilibrium network

gT is an absorbing state. From now on, when use the word “equilibrium” or “equilibrium

network” in the dynamic network formation model, we refer to the equilibrium concept

defined in Definition 7.

3.2.3 Finding the key player in the dynamic model

We will now implement a key-player policy in the dynamic network formation model. At

t = 0, before the dynamic network formation game described above starts, the planner will

choose the key player i∗ in the following way. The planner will compare the (expected) total
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crime that will emerge in equilibrium (Definition 7) when she does not remove a delinquent

and when she does. As in Section 3.1.2, the key player i∗ will be the delinquent who reduces

the total (expected) crime the most.

To be more precise, we can calculate the total expected crime in equilibrium when no

delinquent is removed. Let the adjacency matrix for the equilibrium network gT be denoted

by GT . The equilibrium effort level is given by:

y∗T = (I − φGT )
−1(a+ η̄ln + ǫ).

The expected equilibrium effort outcome is equal to:

E(y∗T ) = (I − φGT )
−1 (a+ η̄ln) .

Then the total expected crime for the equilibrium network is:
n�

j=1

E(y∗j,T ).

Let us now calculate the total expected crime of the equilibrium network after removing

a delinquent at t = 0. Let the adjacency matrix for the equilibrium network g
[−i]
T without

delinquent i be denoted by G
[−i]
T . In that case, the equilibrium effort level is given by:

y∗T (g
[−i]
T ) = (I − φG

[−i]
T )−1(a+ η̄ln−1 + ǫ)

and the expected equilibrium effort outcome is equal to:

E[y∗T (g
[−i]
T )] = (I − φG[−i]

T )−1(a+ η̄ln−1).

Then the total expected crime for the equilibrium network is:
n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )].

The planner’s objective to find the key player is to generate the highest possible reduction

in aggregate delinquency level by picking the appropriate delinquent. Formally, the planner’s

problem is now:

max
i

�
n�

j=1

E(y∗j,T )−
n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )] | i = 1, ..., n

�
.

This is equivalent to:

min
i

�
n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )] | i = 1, ..., n

�
. (20)

We would like, now, to test the different models exposed in Section 3. For that, we will

first describe the data, then expose the econometric methodologies and finally comment the

empirical results.
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4 Data description

Our analysis is made possible by the use of a unique database on friendship networks from

the National Longitudinal Survey of Adolescent Health (AddHealth).15

The AddHealth database16 has been designed to study the impact of the social environ-

ment (i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United

States by collecting data on students in grades 7-12 from a nationally representative sam-

ple of roughly 130 private and public schools in years 1994-95. Every pupil attending the

sampled schools on the interview day is asked to compile a questionnaire (in-school data)

containing questions on respondents’ demographic and behavioral characteristics, education,

family background and friendship. This sample contains information on roughly 90,000

students. A subset of adolescents selected from the rosters of the sampled schools, about

20,000 individuals, is then asked to compile a longer questionnaire containing more sensitive

individual and household information (in-home and parental data).17

For the purposes of our analysis, the most interesting aspect of the AddHealth data is the

information on friendships. Indeed, the friendship information is based upon actual friends

nominations. Pupils were asked to identify their best friends from a school roster (up to

five males and five females).18 Friendship relationships, however, are not always reciprocal.

We construct the geometric structure of the friendship networks using the outdegree of each

student i, denoted by ḡi =
�
j gij, which is the number of friends student i nominates. This

is the row-sum of G corresponding to i. We prefer to use outdegree (instead of indegree)

because if individual i nominates j but j does not, it is then very possible that j is a role

model for i. In other words, i is learning from j even though j does not consider i as her best

15This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bear-

man, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child

Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment

is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested

in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W.

Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). No direct support was received from

grant P01-HD31921 for this analysis.
16The AddHealth website http://www.cpc.unc.edu/projects/addhealth describes survey design and data in

details.
17The subjects of the in-home sub-sample are

interviewed again in 1995—96 (wave II), in 2001—2 (wave III), and again in 2007-2008 (wave IV). In this

paper, we do not use this panel information.
18The limit in the number of nominations is not binding (even by gender). Less than 1% of the students

in our sample show a list of ten best friends.
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friend.19 For each school, we thus obtain all the networks of (best) friends. By matching the

identification numbers of the friendship nominations to respondents’ identification numbers,

one can obtain information on the characteristics of nominated friends.

The in-home questionnaire contains an extensive set of questions on juvenile delinquency,

that are used to construct our dependent variable. Specifically, the AddHealth data-set

contains information on 15 delinquency items.20 The survey asks students how often they

participate in each of these activities during the past year.21 Each response is coded using

an ordinal scale ranging from 0 (i.e. never participate) to 1 (i.e. participate 1 or 2 times), 2

(participate 3 or 4 times) up to 3 (i.e. participate 5 or more times). Non-criminal individuals

are defined as those who report never participating in any delinquent activity. This data

allows us to get valid information on 6,993 (criminal and non-criminal) students distributed

over 1,596 networks, with network size ranging between 2 and 1,050 individuals.22 This

sample is used to investigate the decision to commit crime (see Section 3.1.4). Our analysis

on peer effects in crime focuses on networks of criminals only, once selection into crime

activity has been controlled for. Because the strength of peer effects may vary with network

size (see Calvó-Armengol et al., 2009), the large variation in network size forces us to exclude

networks at the extremes of the network size distribution. Indeed, our theoretical model

assumes homogenous peer effects in crime φ, and we thus need to estimate only one peer-

effect parameter.23 Our selected sample consists of 1,297 criminals distributed over 150

19As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally

focus on choices made.
20Namely, painting graffiti or signs on someone else’s property or in a public place; deliberately damaging

property that didn’t belong to you; lying to your parents or guardians about where you had been or whom

you were with; taking something from a store without paying for it; getting into a serious physical fight;

hurting someone badly enough to need bandages or care from a doctor or nurse; runing away from home;

driving a car without its owner’s permission; stealing something worth more than $50; going into a house

or building to steal something; use or threaten to use a weapon to get something from someone; selling

marijuana or other drugs; stealing something worth less than $50; taking part in a fight where a group of

your friends was against another group; acting loud, rowdy, or unruly in a public place.
21Respondents listened to pre-recorded questions through earphones and then they entered their answers

directly on laptop computers. This administration of the survey for sensitive topics minimizes the potential

for interview and parental influence, while maintaining data security.
22The large reduction in sample size with respect to the original AddHealth sample is mainly due to missing

values in variables and to the network construction procedure. Indeed, roughly 20% of the students do not

nominate any friends and another 20% cannot be correctly linked (for example because the identification

code is missing or misreported).
23From an empirical point of view, the estimation of heterogenous peer effects requires the exclusion of

network fixed effects, which are an important aspect of our identification strategy, allowing us to control for

unobserved factors.
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networks, with network size range between 4 and 77 individuals.24 The mean and standard

deviation of network size are roughly 9 and 12 pupils.25 To derive quantitative information

on crime activity using qualitative answers to a battery of related questions, we calculate

an index of delinquency involvement for each respondent.26 The delinquency index ranges

between 1.51 and 11.04, with mean equal to 2.35 and standard deviation equal to 1.09.

Table A.2 in Appendix 3 provides a description of the control variables used in our

study and Table A.3 collects the summary statistics distinguishing between criminals and

non criminals.27 As expected, Table A.3 shows that delinquent students are less likely to

be a female, religious, attached to the school and to come from less educated families than

non-delinquent students. They are also more likely to reside in urban areas. In Section 5.7,

we look more closely at these associations, uncovering some interesting differences between

different types of crimes. Looking at our selected sample of delinquents (last two columns), we

find that, on average, criminal adolescents feel that adults care about them but have troubles

getting along with the teachers. About 70 percent of our delinquent adolescents live in a

household with two married parents, although about 25 percent come from a single parent

family. The most popular occupation of the father is a manual one (roughly 30 percent)

and 21 percent of them have parents who work in a professional/technical occupations. The

average parental education is high school graduate and almost 60 percent of our adolescents

live in urban areas. The performance at school, as measured by mathematics score, is slightly

above the average. To the extent to which mathematics score is a good proxy for individual

ability or intelligence, this suggests that criminals are more “able” individuals. On average,

our criminals declare themselves being slightly more intelligent than their peers and their

level of physical development appears to be slightly higher than that of other boys/girls of

the same age.28

24Our results, however, do not depend crucially on these network size thresholds. They remain qualitatively

unchanged when moving the network size window slightly.
25On average, delinquents declare having 1.33 delinquent friends with a standard deviation of 1.29.
26This is a standard factor analysis, where the factor loadings of the different variables are used to derive

the total score.
27Information at the school level, such as school quality and teacher/pupil ratio, is unnecessary given our

fixed effects estimation strategy.
28When reading these summary information, one needs to keep in mind that, here, we deal with juvenile

delinquency, where some of the offences recorded as crimes (such as “paint graffiti” or “lie to the parents”)

are quite minor.
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5 Peer effects and network centrality

Let us now begin the test of the first part of our theoretical framework, namely the impact

of peers on own criminal activities when the network is exogenously given (Section 3.1). We

want to provide an appropriate estimate of peer effects in crime (φ). We first present our

empirical model and estimation strategy. We use the architecture of networks to identify

peer effects as described in Bramoullé et al. (2009) and Lee et al. (2010) but we consider

the case of a non-row-normalized G and we highlight the methodological improvements that

are achieved in our context. Our estimation method follows the 2SLS and GMM strategies

proposed by Lee (2007a) and refined by Liu and Lee (2010) to capture the impact of centrality

in networks. To be more specific, we will begin by explaining the empirical issues that hinder

the identification of peer effects and show to what extent it is possible to tackle each of these

issues with the AddHealth data-set.

5.1 Empirical model

Let r̄ be the total number of networks in the sample (150 in our data-set), nr be the number

of individuals in the rth network gr, and n =
�r̄
r=1 nr be the total number of sample

observations. Defining the ex ante heterogeneity ai,r of each individual in network gr as

ai,r = x′i,rβ1 +
1

ḡi,r

nr�
j=1

gij,rx
′
j,rβ2,

where xi,r = (x1i,r, · · · , xmi,r)′ and ḡi,r =
�nr
j=1 gij,r. The empirical model corresponding to (5)

can be written as:

yi,r = φ
nr�
j=1

gij,ryj,r + x
′
i,rβ1 +

1

ḡi,r

nr�
j=1

gij,rx
′
j,rβ2 + η̄r + ǫi,r, (21)

for i = 1, · · · , nr and r = 1, · · · , r̄, where η̄r = ηr − pf and ǫi,r’s are i.i.d. innovations with

zero mean and variance σ2 for all i and r.

5.2 Identification strategy

The identification of endogenous peer effects (φ in model (21)) raises different challenges.

Reflection problem In linear-in-means models, simultaneity in behavior of interacting

agents introduces a perfect collinearity between the expected mean outcome of the group

and its mean characteristics. Therefore, it is difficult to differentiate between the effect

of peers’ effort choice and peers’ characteristics that do impact on their own effort choice
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(the so-called reflection problem; see Manski, 1993). Basically, the reflection problem arises

because, in the standard approach, individuals interact in groups, that is individuals are

affected by all individuals belonging to their group and by nobody outside the group. In

other words, members in each group form a complete graph. In the case of social networks,

instead, this is nearly never true since the reference group has individual-level variation.

Take individuals i and k such that gik = 1. Then, individual i is directly influenced by�n
j=1 gijyj while individual k is directly influenced by

�n
j=1 gkjyj, and there is little chance

for these two values to be the same unless the network is complete (i.e. everybody is linked

with everybody). Formally, as shown by Bramoullé et al. (2009), social effects are identified

(i.e. no reflection problem) if I, G and G2 are linearly independent, where G2 keeps track

of indirect connections of length 2 in g.29 In other words, if i and j are friends and j

and k are friends, it does not necessarily imply that i and k are also friends. Because of

these intransitivities, G2X, G3X, etc. are not collinear with GX and they act as valid

instruments for Gy (under the situation that X is relevant). Intuitively, G2X represents

the vector of the friends’ friends attributes of each agent in the network. The architecture

of social networks implies that these attributes will affect her outcome only through their

effect on her friends’ outcomes. Even in linear-in-means models, Manski’s (1993) reflection

problem is thus eluded.30 Peer effects in social networks are thus identified and can be

estimated using 2SLS (Lee 2007; Lin, 2010). In Appendix 4, we detail, in a more technical

way, the identification of model (21). In particular, we highlight the difference between the

case with row-normalized G (Bramoullé et al., 2009) and our case with non-row-normalized

G.

Endogenous network formation/correlated effects Although this setting allows

us to solve the reflection problem, the estimation results might still be flawed because of the

presence of unobservable factors affecting both individual and peer behavior. It is indeed

difficult to disentangle the endogenous peer effects from the correlated effects, i.e. effects

arising from the fact that individuals in the same network tend to behave similarly because

29For example, complete networks do not satisfy this condition. In our dataset, where 150 networks are

considered (see above in the data section), many of them have different sizes but none of them are complete

and all satisfy the condition that guarantees the identification of social effects. Note that, even when networks

are all complete, Lee (2007) shows that identification can be achieved by exploring strengths of interactions

across networks of different sizes.
30These results are formally derived in Bramoullé et al. (2009) (see, in particular, their Proposition 3) and

used in Calvó-Armengol et al. (2009) and Lin (2010). Cohen-Cole (2006) presents a similar argument, i.e.

the use of out-group effects to achieve the identification of the endogenous group effect in the linear-in-means

model (see also Weinberg et al., 2004; Laschever, 2009). See Durlauf and Ioannides (2010) and Blume et al.

(2011) for an overview of these issues.
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they face a common environment. If individuals are not randomly assigned into networks,

this problem might originate from the possible sorting of agents. If the variables that drive

this process of selection are not fully observable, potential correlations between (unobserved)

network-specific factors and the target regressors are major sources of bias. Observe that

our particularly large information set on individual (observed) variables should reasonably

explain the process of selection into groups. However, a number of papers have treated the

estimation of peer effects with correlated effects (e.g., Clark and Loheac, 2007; Lee, 2007;

Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010). This approach is based on the

use of network fixed effects and extends Lee (2003) 2SLS methodology after the removal of

network fixed effects. Network fixed effects can be interpreted as originating from a two-

step model of link formation where agents self-select into different networks in a first step

with selection bias due to specific network characteristics and, then, in a second step, link

formation takes place within networks based on observable individual characteristics only.

An estimation procedure alike to a panel within group estimator is thus able to control for

these correlated effects. One can get rid of the network fixed effects by subtracting the

network average from the individual-level variables.31 As detailed in the next section, this

paper follows this approach.

Individual unobserved factors The richness of the information provided by the

AddHealth questionnaire on adolescents’ behavior allows us to find observable individual

variables as well as proxies for typically unobserved individual characteristics that may be

correlated with our variable of interest. Specifically, to control for differences in leadership

propensity across adolescents, we include an indicator of self-esteem and an indicator of the

level of physical development compared to the peers, and we use mathematics scores as an

indicator of ability. Also, we attempt to capture differences in attitude towards education,

parenting and more general social influences by including indicators of the student’s school

attachment, relationship with teachers, parental care and social inclusion.

To summarize, our identification strategy is based on the assumption that any troubling

source of heterogeneity (if any), which is left unexplained by our unusually large set of

observed characteristics can be captured at the network level, and thus taken into account

by the inclusion of network fixed effects.

To be more precise, we allow link formation (as captured by our matrix G) to be cor-

31Bramoullé et al. (2009) also deal with this problem in the case of a row-normalized G matrix. In their

Proposition 5, they show that if the matrices I, G, G2 and G3 are linearly independent, then by subtracting

from the variables the network average social effects are again identified and one can disentangle endogenous

effects from correlated effects. In our dataset this condition of linear independence is always satisfied.
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related with observed individual characteristics32 and contextual effects (G∗X, where G∗ is

row-normalized from G) and unobserved network characteristics (captured by the network

fixed effects). The presence of other remaining unobserved effect is very unlikely in our case

given our set of controls that include behavioral factors and, most importantly, because we

deal with quite small networks (see Section 4). In our empirical study, we provide a statistic

test to support this claim.

Deterrence effects So far, we have dealt with issues that are common to the identi-

fication of any kind of peer effects. There is, however, something that is specific to crime:

How deterrence effects (pf in our theoretical model) are measured. The identification of de-

terrence effects on crime is an equally difficult empirical exercise because of the well-known

potential simultaneity and reverse causality issues (Levitt, 1997), which cannot be totally

solved using our network-based empirical strategy. Network fixed effects also prove useful in

this respect. Because in our sample, networks are within schools, the use of network fixed

effects also accounts for differences in the strictness of anti-crime regulations across schools

(i.e. differences in the expected punishment for a student who is caught possessing illegal

drugs, stealing school property, verbally abusing a teacher, etc.). As mentioned above, net-

worked fixed effects account for any kind of school level heterogeneity. As a result, instead

of directly estimating deterrence effects (i.e. to include in the model specification observable

measures of deterrence, such as local police expenditures or the arrest rate in the local area),

we focus our attention on the estimation of peer effects in crime, accounting for network

fixed effects.

5.3 Econometric methodology

Let yr = (y1,r, · · · , ynr ,r)′, Xr = (x1,r, · · · ,xnr ,r)′, and ǫr = (ǫ1,r, · · · , ǫnr ,r)′. Denote the

nr × nr sociomatrix by Gr = [gij,r], and the row-normalized Gr by G∗
r. Then model (21)

can be written in matrix form as:

yr = φGryr + X̄rβ + η̄rlnr + ǫr,

where X̄r = (Xr,G
∗
rXr) and β = (β′1,β

′
2)
′. For a sample with r̄ networks, stack up the data

by defining y = (y′1, · · · ,y′r̄)′, X̄ = (X̄
′
1, · · · , X̄

′

r̄
)′, ǫ = (ǫ′1, · · · , ǫ′r̄)′, G = D(G1, · · · ,Gr̄

),

ι = D(lnr , · · · , lnr̄) and η̄ = (η̄1, · · · , η̄r̄)′, where D(A1, · · · ,AK) is a block diagonal matrix

in which the diagonal blocks are mk×nk matrices Ak’s. For the entire sample, the model is

y = Zθ + ιη̄ + ǫ, (22)

32As long as the link formation process between two individuals does not involve the characteristics of any

third individual.
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where Z = (Gy, X̄) and θ = (φ,β′)′.

We treat η̄ as a vector of unknown parameters. When the number of networks r̄ is

large, we have the incidental parameter problem. Let J = D(J1, · · · ,J r̄), where J r =

Inr − 1
nr
lnrl

′
nr . In order to avoid the incidental parameter problem, the network fixed effect

can be eliminated by the transformation J such that

Jy = JZθ + Jǫ. (23)

Let M = (I −φG)−1. The equilibrium outcome vector y in (22) is given by the reduced

form equation

y =M(X̄δ + ιη̄) +Mǫ. (24)

It follows thatGy = GMX̄δ+GMιη̄+GMǫ. Gy is correlated with ǫ because E[(GMǫ)′ǫ] =

σ2tr(GM) 	= 0. Hence, in general, (23) cannot be consistently estimated by OLS.33 If G

is row-normalized such that G · ln = ln, the endogenous social interaction effect can be

interpreted as an average effect. With a row-normalized G, Lee et al. (2010) have proposed

a partial-likelihood approach for the estimation based on the transformed model (23). How-

ever, for this empirical study, we are interested in the aggregate endogenous effect instead of

the average effect. Hence, row-normalization is not appropriate. Furthermore, we are also

interested in the centrality of networks that are captured by the variation in row sums (out-

degrees) in the adjacency matrix G. Row-normalization could eliminate such information.

However, asG is not row-normalized in this empirical study, the (partial) likelihood function

for (23) could not be derived, and alternative estimation approaches need to be considered.

In this paper, we estimate (23) using the 2SLS and generalized method of moments

(GMM) approaches proposed by Liu and Lee (2010). The conventional instrumental matrix

for the estimation of (23) is Q1 = J(GX̄, X̄) (finite-IV 2SLS). For the case that the adja-

cency matrix G is not row-normalized, Liu and Lee (2010) have proposed to use additional

instruments (IVs) JGι so that Q2 = (Q1,JGι) (many-IV 2SLS). The additional IVs JGι

are based on the row sums of G and thus use the information on centrality of a network.

Those additional IVs could help model identification when the conventional IVs are weak

and improve upon the estimation efficiency of the conventional 2SLS estimator based on

Q1. The number of such instruments depends on the number of networks. If the number

of networks grows with the sample size, so does the number of IVs. The 2SLS could be

33Lee (2002) has shown that the OLS estimator can be consistent in the scenario where each cross-sectional

unit is influenced by many neighbors whose influences are uniformly small when there are many separate

networks. However, in the current data, the number of neighbors are limited, and hence that result does not

apply.
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asymptotic biased when the number of IVs increases too fast relative to the sample size

(see, e.g., Bekker, 1994; Bekker and van der Ploeg, 2005; Hansen et al., 2008). Liu and

Lee (2010) have shown that the proposed many-IV 2SLS estimator has a properly-centered

asymptotic normal distribution when the average group size is large relative to the number

of networks in the sample. As detailed in Section 4, in this empirical study, we have a num-

ber of small networks. Liu and Lee (2010) have proposed a bias-correction procedure based

on the estimated leading-order many-IV bias. The bias-corrected many-IV 2SLS estimator

(bias-corrected 2SLS) is properly centered, asymptotically normally distributed, and efficient

when the average group size is sufficiently large. It is thus the more appropriate estimator

in our case study.

The 2SLS approach can be generalized to the GMM with additional quadratic moment

equations (finite-IV GMM, many-IV GMM ). While the IV moments use the information

of the main regression function of (24) for estimation, the quadratic moments explore the

correlation structure of the reduced form disturbances. Liu and Lee (2010) have shown

that the many-IV GMM estimators can be consistent, asymptotically normal, and efficient

when the sample size grows fast enough relative to the number of networks. Liu and Lee

(2010) have also suggested a bias-correction procedure for the many-IV GMM estimator

based on the estimated leading order many-instrument bias. The bias-corrected many-IV

GMM estimator (bias-corrected GMM ) is shown to be more efficient than the corresponding

2SLS estimator. Appendix 5 details the derivation and asymptotic properties of both the

2SLS and GMM estimators.

Our identification strategy and the validity of the moment conditions employed by the

2SLS and GMM estimators rest on the exogeneity of the adjacency matrixG (conditional on

covariates and network fixed effects). We test the exogeneity of G using the over-identifying

restrictions (OIR) test as described in Lee (2007a). If the OIR test cannot reject the null

hypothesis that the moment conditions are correctly specified, then it provides evidence

that G can be considered as exogenous. If the number of moment restrictions is fixed, the

OIR test statistic given by the 2SLS (or GMM) objective function evaluated at the 2SLS

(or GMM) estimator follows a chi-squared distribution with degrees of freedom equal to the

number of over-identifying restrictions (Lee, 2007b, Proposition 2). However, the OIR test

might not be robust in the presence of a large number of moment restrictions.34 Hence, we

only consider the OIR test for the 2SLS and GMM estimator based on IV matrix Q1.

34For the case with independent observations, Chao et al. (2010) have proposed an OIR test that is robust

to many IVs. However, no robust OIR test with many IVs is available when observations are spatially

correlated.
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5.4 Estimation results: all crimes

Table 1a collects the estimation results of model (21) when using the different estimators

discussed in the previous section.

As explained above, for the estimation of φ, we pool all the networks together by con-

structing a block-diagonal network matrix with the adjacency matrices from each network on

the diagonal block. Hence we implicitly assume that the φ in the empirical model is the same

for all networks. The difference between networks is controlled for by network fixed effects.

Indeed, the estimation of φ for each network might be difficult (in terms of precision) for

the small networks. Furthermore, it is of crucial empirical concern to control for unobserved

network heterogeneity by using network fixed effects.

For equation (7) to be well-defined, φ needs to be in absolute value smaller than the

inverse of the largest eigenvalue of the block-diagonal network matrix G (Proposition 1). In

our case, the largest eigenvalue of G is 3.11. Furthermore our theoretical model postulates

that φ ≥ 0. As a result, we can accept values within the range [0, 0.32). Table 1a (first row)

shows that all our estimates of φ are within this parameter space. The p-value of the OIR

test is larger than conventional significance levels, which means we cannot reject the null

hypothesis that the moment conditions based on an exogenous G are valid. This evidence

provides further confidence on the exogeneity of network structure (conditional on controls

and network fixed effects).

As explained above, we focus on the bias-corrected many-IV GMM estimator.35 In a

group of two friends, a standard deviation increase in the level of delinquent activity of the

friend translates into a roughly 5 percent increase of a standard deviation in the individual

level of activity. If we consider an average group of 4 best friends (linked to each other in

a network), a standard deviation increase in the level of delinquent activity of each of the

peers translates into a roughly 17 percent increase of a standard deviation in the individual

level of activity. This is a non-negligible effect, especially given our long list of controls.

[Insert Table 1a here]

35The first stage partial F-statistics (see Stock et al., 2002, and Stock and Yogo, 2005, for its statistical

properties) reveal that our instruments in the linear moment conditions are quite informative. Hence, the

different types of GMM estimators deliver similar results as their 2SLS counterparts with a better precision

in the estimation of φ.
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5.5 Estimation results: Petty versus serious crimes

We would like now to investigate whether peer effects are stronger in petty crimes than in

more serious crimes. The literature is unclear about this issue. For instance, Ludwig et al.

(2000) find that neighborhood effects are large and negative for violent crimes but have a

mild positive effect on property crimes. In contrast, Glaeser et al. (1996) show that social

interactions have a large effect on petty crimes, a moderate effect on more serious crimes

and a negligible effect on very violent crimes.

To investigate this issue, we split the reported offences between petty crimes and more

serious crimes. The first group (type-1 crimes or petty crimes) encompasses the following

offences: (i) painting graffiti or sign on someone else’s property or in a public place; (ii) lying

to the parents or guardians about where or with whom having been; (iii) running away from

home; (iv) acting loud, rowdy, or unruly in a public place; (v) taking part in a group fight;

(vi) damaging properties that do not belong to you; (vii) stealing something worth less

than $50. The second group (type-2 crimes or more serious crimes) consists of (i): taking

something from a store without paying for it; (ii) hurting someone badly enough to need

bandages or care from a doctor or nurse; (iii) driving a car without its owner’s permission;

(iv) stealing something worth more than $50; (v) going into a house or building to steal

something; (iv) using or threatening to use a weapon to get something from someone; (vii)

selling marijuana or other drugs; (viii) getting into a serious physical fight.

We obtain a sample of 1,099 petty criminals distributed over 132 networks and a sample

of 545 more serious criminals distributed over 75 networks. Petty crime networks have a

minimum of 4 individuals and a maximum of 73 (with mean equals to 8.33 and standard

deviation equals to 10.74), whereas the range for more serious crime networks is between 4

and 38 (with mean equals to 7.27 and standard deviation equals to 6.64).

We estimate model (21) for different types of crimes. The results for directed networks36

are contained in Tables 1b and 1c. All estimates are within the acceptable parameter space

[0, 1/µ1(G)) , which is [0, 0.32) for type-1 crimes and [0, 0.42) for type-2 crimes. In terms

of magnitude, it appears that the impact of peer effects on crime are much higher (almost

double) for more serious crimes than for petty crimes. Indeed, we find that in a group of

two friends, a standard deviation increase in the level of delinquent activity of the friend

translate into a roughly 4 percent and 8 percent increase of a standard deviation in the

individual level of activity for petty crimes and more serious crimes, respectively.

[Insert Tables 1b and 1c here]

36As stated above, the results for undirected networks are available upon request.
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5.6 Endogenous participation in criminal activities: Econometric

issues

In this section, we deal with the estimation of the model when the endogenous crime decision

is taken into account. We would like to write down an econometric model corresponding to

the theoretical model developed in Section 3.1.4, in particular Proposition 4. Remember

from Section 3.1.4 that, what mattered in the decision of whether to become criminal or

not was each individual i’s own observable and unobservable characteristics, ai and ǫi. This

decision was made once and for all and was irreversible. This implied, in particular, that

the decision of becoming a criminal did not depend on what others would do. However, if

someone becomes criminal, then peer effects will matter because she will belong to a criminal

network and will be friends with mostly other criminals.

Let us address this endogenous participation (or selection) problem, from an econometric

viewpoint, by considering a type-2 Tobit model. As in the theory, in the econometrics

model, we consider two equations. The first equation (the participation equation) determines

whether an agent will become a criminal or not among the n̄ individuals in the economy. This

corresponds to (12) (and Proposition 4). For those individuals who decide to be criminals,

the second equation (the outcome equation), which determines, for an agent i, the effort

level she decides to exert as a function of her own characteristics, and the characteristics and

efforts of her direct friends. This corresponds to (5).

Based on (12), Proposition 4 says that the observable and unobservable characteristics

of each individual i are the key determinant of the crime decision. To make this statement

explicit, we assume that the participation equation is given by:

y∗1n̄ =X n̄γ + ǫ1n̄, (25)

where y∗1n̄ = (y∗1,1, · · · , y∗n̄,1)′, X n̄ = (x1, · · · ,xn̄)′, and ǫ1n̄ = (ǫ1,1, · · · , ǫn̄,1)′. An agent i

will become a criminal if y∗i,1 > 0 and will not become a criminal if y∗i,1 ≤ 0. Since y∗i,1 ≤ 0

is equivalent to x′iγ + ǫi,1 ≤ 0, this corresponds to the ranking in terms of observable and

unobservable characteristics we made in Proposition 4 so that individuals i with a sufficiently

low x′iγ + ǫi,1 will not be a criminal.

Without loss of generality, we assume the first n (of the n̄) individuals will choose to

become criminals. For those who become criminals,

y∗1 =Xγ + ǫ1,

where y∗1 = (y∗1,1, · · · , y∗n,1)′ > 0, X = (x1, · · · ,xn)′ and ǫ1 = (ǫ1,1, · · · , ǫn,1)′, and their crime
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effort levels in vector form are given by the following outcome equation (see (5)):

y = φGy +Xβ1 +G
∗Xβ2 + ιη̄ + ǫ2, (26)

where y = (y1, · · · , yn)′ and ǫ2 = (ǫ1,2, · · · , ǫn,2)′. The reduced form equation is therefore:

y = (I − φG)−1 (Xβ1 +G
∗Xβ2 + ιη̄) + (I − φG)−1 ǫ2.

Let M = (I − φG)−1 and the ith row of M be mi. Then yi =mi(Xβ1 +G
∗Xβ2 + ιη̄) +

miǫ2. Given the participation decisions of the n̄ individuals in the first stage, the expected

crime effort of criminal i is equal to:

E[yi|y∗1 > 0] =mi(Xβ1 +G
∗Xβ2 + ιη̄) +miE [ǫ2|y∗1 > 0] (27)

The term E [ǫ2|y∗1 > 0] = E [ǫ2|ǫ1 > −Xγ] is the correction term for the sample selection.

Suppose, for i, j = 1, · · · , n,

	
ǫi,1

ǫi,2



∼ N

�	
0

0



,

	
1 σ12

σ12 σ22


�
,

and E (ǫi,1|ǫj,2) = 0 for i 	= j. Then, E [ǫ2|ǫ1 > −Xγ] = σ12λ, where λ = [λ (x′1γ) , ..., λ (x
′
nγ)]

′

and λ (x′iγ) = f (x′iγ) /Φ (x′iγ) (where f(.) is the density of a standard normal random

variable and Φ(.) is the distribution function of a standard normal random variable). By

substituting this value into (27), we obtain, in matrix notation,

E[y|y∗1 > 0] =M(Xβ1 +G
∗Xβ2 + ιη̄) + σ12Mλ. (28)

So we can now implement the Heckman’s two-step approach. In the first step, using the bias-

corrected IV estimator, we estimate γ from the participation equation (25) using a simple

probit model to obtain γ̂. In the second step, we estimate

y = φGy +Xβ1 +G
∗Xβ2 + ιη̄ + σ12λ̂+ ǫ. (29)

where λ̂ = [λ (x′1γ̂) , ..., λ (x
′
nγ̂)]

′ by finite-IV 2SLS.37 The details of the two-step approach

is given in Appendix 6.

37Because the estimated sample selection correction term introduces heteroskedasticity and correlation

into the error term of (29), many-IV 2SLS and GMM approaches are not applicable here.
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5.7 Endogenous participation in criminal activities: Empirical re-

sults

In Table 2, we report the probit estimation results for the participation equation (25), for all

crimes and different types of crimes separately. This table shows what individual character-

istics affect the decision to become criminal. Interestingly, these characteristics vary with the

type of crime committed. For example, other things being equal, female teenagers have the

same probability to become criminal as male teenagers in general (column 2). They are, how-

ever, more likely to commit petty crimes (column 3) and much less likely to commit serious

crimes (column 4) than male teenagers. Similarly, blacks are more likely to commit serious

crime than whites, while there are no statistically significant differences between blacks and

whites for petty crimes. Family background variables (in particular, parental education and

the social structure of families, for example living with two married parents or with only one

parent) show a significant and negative correlation with the propensity to commit serious

crime only. If mathematics score is taken as a proxy for ability, then delinquents appear

to be more able than non-delinquents. Interestingly, students that commit serious crimes

do not consider themselves as more intelligent than their peers. Not surprisingly, religious

practice is negatively correlated with the propensity to commit any type of crime. We also

find that students that are physically more developed, who do not feel too much attached

to the school, who have trouble getting along with teachers and feel that adults do not care

much about them are more likely to be criminal. This is also true for students residing in

urban areas.

In Table 3, we report the estimation results of our peer-effect crime model (21) with and

without endogenous participation for all crimes and by types of crime. For each panel (all

crimes, type-1 crimes, type-2 crimes), the results reported in the first column are the same

as in Tables 1a-1c, whereas the results reported in the second column are obtained when the

decision to select into criminal activities is taken into account (equation (29)). We find that

the results are virtually the same,38 pointing to the fact that an endogenous selection into

crime activity is not a matter of concern.

[Insert Table 2 and 3 here]

38We show the similarity using the 2SLS-1 estimator, as the heteroscedasticity introduced by the correction

in the error term renders the other estimators inappropriate.
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6 Who is the key player?

Let us now calculate empirically who is the key player in each of our real-world networks.

For this part, we will mainly use the dynamic network formation model developed in Section

3.2 and determine the key player as we did in Section 3.2.3, by solving the program given

by (20). We will structurally estimate this model. Let us explain in detail how we do it.

6.1 Description of the procedure: A structural approach

6.1.1 Determining the key player without endogenous participation

We first show how to determine the key player for each network gr (r = 1, · · · , r̄) as described

in Section 3.2.3 where we do not take into account the endogenous criminal decision. We deal

with the case with endogenous participation in the next subsection. To simplify notation,

we drop the subscript r when there is no ambiguity. To determine the key player, we need

first to estimate the total expected crime in equilibrium when a delinquent is removed, i.e.
n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )]. Remember that the expected equilibrium crime effort when i has been

removed is given by E[y∗T (g
[−i]
T )] = (I − φG

[−i]
T )−1(X̄β + η̄ln−1) and

n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )] is

the sum of each element of the vector E[y∗T (g
[−i]
T )]. We estimate E[y∗T (g

[−i]
T )] as

�
E[y∗T (g

[−i]
T )] = (I − φ̂G

[−i]
T )−1(X̄β̂ + 
̄ηln−1), (30)

where φ̂ and β̂ are the estimates obtained from the bias-corrected many-IV GMM estimation

procedure in Section 5, and η̄ can be estimated by the average of the estimation residuals.

The only parameter undetermined from the bias-corrected many-IV GMM estimation is

ci, the marginal cost of forming links. Let us assume that the network observed in the

AddHealth data is in equilibrium (t = 0), as per Definition 7, that is, no one has an incentive

to create a new link at day t = 1, and denote this network by G0 (i.e. the adjacency matrix

at day t = 0). For each i, ci = ci,1 is defined by (19).

Let M̂
(i,j)

t = (I− φ̂G(i,j)
t )−1, with m̂

(i,j)
i,t being M̂

(i,j)

t ’s ith row and m̂
(i,j)
ij,t being its (i, j)th

entry. As E(y∗i,t) =m
(i,j)
i,t (X̄β + η̄ln), from (18) κi,t(g

(i,j)
t ) can be estimated by:

κ̂i,t(g
(i,j)
t ) =

1

2
[m̂

(i,j)
i,t (X̄β̂ + ι
̄η)]2 + σ̂2ǫm̂

(i,j)
ii,t −

1

2
σ̂2ǫm̂

(i,j)
i,t m̂

(i,j)′
i,t + φ̂σ̂2ǫ

n�

k=1

g
(i,j)
ik,t m̂

(i,j)
i,t m̂

(i,j)′
k,t .
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Hence, in the simulations, we estimate ci by


ci = max
j
κ̂i,1(g

(i,j)
1 )− κ̂i,1(g

(i,i)
1 ). (31)

Observe that even if ci = ci for all i so that nobody will want to form a link, it will be

possible that links will be formed after the removal of the key player since ci(g) 	= ci(g
[−i]).

We will compare the determination of the key player that solves (20), i.e.

min
i

�
n�

j=1,j 
=i

E[y∗j,T (g
[−i]
T )] | i = 1, ..., n

�

with the key player calculated in the invariant case, i.e. the network is given and there is no

link formation. To be consistent with (20), in the invariant network case, we will calculate

the key player as the one whose removal leads to the largest expected total crime reduction39,

or equivalently, the key player i∗ will be the one that solves:

min
i

�
n�

j=1,j 
=i

E[y∗j,0(g
[−i]
0 )] | i = 1, ..., n

�
(32)

6.1.2 Determining the key player with endogenous participation

Let us now take into account the endogenous criminal decision in the dynamic formation

model exposed in Section 3.2.3. The timing is now as follows. The decision to become

criminal takes place before the existence of the network observed in the AddHealth data.

There are n̄ persons making this decision based on their own characteristics (see equation

(25)). The decision to become criminal is made once and for all and is irreversible. Among

them, n individuals choose to become criminals. These n criminals then play the morning-

afternoon game described in Section 3.2.1 to build a network until it converges to a stable

network. This is the network we observe in the AddHealth data at t = 0 (1994/1995 in

the data), which we denote by G0. Then the planner removes the key player so that the

network is now G
[−i]
0 . The remaining criminals then play the morning-afternoon again game

until the network converges to an equilibrium network after T periods, which we denote by

G
[−i]
T . As in the case without endogenous participation, we can determine the key player by

minimizing the total expected crime that emerges in this stable network.

For the estimation of these networks, we proceed as before by estimating φ and β from

the two-step estimation procedure described in Section 5 while η can be estimated by the

average of the estimation residuals. We also estimate ci by (31) described above. Finally, to

39Note this is different from the definition of the key player in Section 3.1.2.
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evaluate the expected utility, we need to estimate the variance of ǫ in (29), which includes

some additional noise due to the estimated selection bias correction term. The variance of ǫ

can be estimated by a similar approach as Lee and Trost (1978).40

6.1.3 Simulation results

We would like to comment on the results of the simulations, which use the methodologies

described in Sections 6.1.1 and 6.1.2. We have run many simulations and we can of course

not comment on all of them. First, we will focus on the simulation results of the key

player for the case without endogenous participation (Section 6.1.1) as both results are quite

similar.41 Second, for the case of all crimes, as described in Section 4, we have 1,297 criminals

distributed over 150 networks. For the dynamic structural model, we only retain networks

that satisfy the eigenvalue condition φµ1(G) < 1.42 Fortunately, only 5 networks do not

satisfy this condition and thus we end up with 1,038 criminals distributed over 145 networks.

The average network is size 7 with a minimum of 4 and a maximum of 64 delinquents. Figure

1 displayed the distribution of these 145 networks by their size. The distribution is clearly

very skewed to the left, meaning that small networks are over-represented. We have also

run the simulations for type-1 crimes or petty crimes (only 4 networks out of 132 networks

do not satisfy the eigenvalue condition) and type-2 crimes or more serious crimes (only 5

networks out of 75 networks do not satisfy the eigenvalue condition).43

40See Appendix 5 for details.
41The simulation results for the case with endogenous participation are available upon request.
42In fact, this condition needs to be satisfied for all networks during the dynamic link-formation process.

Since the eigenvalue of a network (and thus the largest eigenvalue condition) changes over time, we use

a sufficient condition: φ
��

i,j gij + n− 1 < 1, which uses an upper bound on the largest eigenvalue (see

Corrolary 1 page 1409 in Ballester et al., 2006). The main advantage of this new condition is that one does

not need to calculate the largest eigenvalue of the network at each period of time.
43Because some criminals conduct both type-1 and type-2 crimes, the sum of the networks for type-1 and

type-2 crimes is not equal to the total number of networks for all crimes.
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Figure 1: Distribution of networks by size for all crimes

Because of space constraints, in Tables 4a, 4b, 4c, and 4d, we report the simulation results

only for all crimes and for the first 20 networks for the expected utility case.44 Table 4a

displays the simulation results for the first 20 networks when the cost ci = ĉi (given by

equation (31)), which means that the network observed in the AddHealth is in equilibrium.

Table 4b displays the same results when the cost ci = ĉi − 0.05. Table 4c displays the

same results when ci = 0. Finally, Table 4d compares the three different cases (ci = ĉi,

ci = ĉi − 0.05, ci = 0) for small networks.45

Looking at Table 4a, we can see that, even for the first 20 networks, there are important

variations in network sizes (see also Figure 1). Some networks only have 4 criminals while

others have 51 or 64 criminals.

Column 2 gives the delinquent who has the highest betweenness centrality in the network.

Column 3 gives the delinquent who has the highest Bonacich centrality in the network, i.e.

the most active delinquent. Column 4 gives the key player when other delinquents cannot

create links after the removal of the key player, i.e. the key player calculated in Section 3.1.2

and determined by (10); this is referred to as the invariant case. And column 5 gives the

key player when other delinquents play the dynamic network formation game described in

Section 3.2.1 after the removal of the key player, i.e. the key player calculated in Section

6.1.1; this is referred to as the dynamic network formation case. Comparing these columns

one can see that, in most cases, the persons are different. In other words, only in 20 percent

44The simulation results for the 145 networks for all crimes, the 128 networks for type-1 crimes (petty

crimes) and for the 70 networks for type-2 crimes (more serious crimes) are available upon request.
45Because it takes much more time to converge to an equilibrium network, we only focus on networks of

small size (nr ≤ 10) when ci = ĉi − 0.05 and ci = 0.
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of the cases (4 out of 20 networks), these four columns are identical and this is only true for

very small networks (less than 6 delinquents). This means that it is not straightforward to

determine which delinquent should be removed from a network by only observing his or her

criminal activities or position in the network. If we compare columns 4 and 5, we see that in

70 percent of the cases (14 out of 20 networks), the key players are same in the invariant and

in the dynamic network formation cases, meaning that the invariant assumption is relatively

good, especially for small networks. In large networks, this is less true since individuals have

more possibilities to form new links after the removal of the key player.

Column 6 gives the total crime effort in the initial network observed in the AddHealth

data. Column 7 gives the total expected crime effort in the convergent network of the

dynamic network formation game when no delinquent is removed. Column 8 gives the total

expected crime effort in the invariant case when the key player is removed. And column

9 gives the total expected crime effort in the convergent network of the dynamic network

formation game when the key player is removed. Comparing these columns, we see that the

total crime effort in equilibrium is nearly the same for the invariant and for the dynamic

network formation cases for small networks. This is less true for large networks, even though

the difference is not very large.

If we now compare the density and the diameter (maximum distance) of the network

before and after the removal of the key player (columns 10, 11, 12 and 13), it can be seen

that networks tend to be denser with a smaller diameter after the removal of the key player.

Observe that, even if the diameter is 1, the density is not always equal to 1. Indeed, suppose

there are 4 delinquents in a network such 1 and 2 are friends and 1, 2 and 3 are all friends to

4. After delinquent 4 is removed, individuals 1 and 2 are still friends but 3 is now isolated

since he/she has no friend. In that case, the density is not equal to 1 but the diameter is

1. Finally, the number of days it takes for the network to converge to its equilibrium value

is always zero before the removal of the key player (this is by definition since ĉi is the cost

that ensures that the network is in equilibrium) and can take up to 5 days after the removal

of the key player.

Table 4b displays the results for lower values of ci. The results are relatively similar as

compared to the case when ci = ĉi with, however, two main differences. First, because it is

less costly to form links, the total expected crime in the dynamic model before and after the

removal of the key player (columns 7 and 9) is much higher. The same applies for the density

of the network (columns 11 and 13). Second, the number of days it takes for the network

to converge to an equilibrium network is much higher (see last column) since it can take up

to 21 days to converge for a network with 9 delinquents. Table 4c displays the same results
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when there is no cost of link formation. The results are even stronger and it takes sometimes

up to 63 days for the network to converge to an equilibrium network. Observe that, even if

ci = 0, the network does not always converge to the complete network. This is because of

contextual effects. Indeed, when someone creates a new link, the average characteristics of

his or her friends change (contextual effects) and thus, in some cases, it can be better not

to form a link even with local complementarities. This is because some characteristics take

negative values and the negative contextual effect can outweigh the positive effort effect.

[Insert Tables 4a, 4b and 4c here]

Finally, Table 4d compares the three different cases: ci = ĉi, ci = ĉi − 0.05 and ci = 0.

In nearly 70 percent of the cases (11 out of 16 networks), the key player is the same. This

implies that, in 30 percent of the networks, depending on the cost value, the delinquent the

planner wants to remove changes. For example, in network 11 (which has 9 delinquents),

the key player is delinquent 3 when the cost is very high (i.e. ci = ĉi) while it is delinquent

8 when the cost is lower or even zero. In terms of policy implications, this means that in

networks where the cost of forming delinquent friendships is relatively low (for example, for

people living in the same neighborhood), the person to target would be different than in

networks where this cost is high (for example, for people belonging to a gang). The same

types of comments apply for the reduction in total crime after the removal of the key player.

Consider, again, network 11. When ci = ĉi, crime is reduced by 15 percent (from 38.188 in

the initial AddHealth data to 33.208) while for ci = ĉi − 0.05, it decreased by 12 percent.

Even more interestingly, when ci = 0, total crime increases by 20 percent (from 38.188 to

46.009). Indeed, since the cost of forming links is zero, it takes 48 days for the network to

converge after the removal of the key player (see last column of Table 4d). As a result, many

new links are formed and this generates a lot of interaction between criminals, which end up

committing many crimes. This result has two policy implications. First, if the planner would

not have removed the key player, then total crime would have been much higher (equal to

56.666) when ci = 0 (see column 7 in Table 4c). Indeed, 56.666 is the (expected) total crime

of the network that, starting at the network observed in the AddHealth data in 1994/1995,

converges to an equilibrium network after 63 days when no criminal is removed, while 46.009

is the (expected) total crime of the network that converges to an equilibrium network after

48 days after the removal of the key player. So the right comparison is between 56.666

and 46.009, which is the way we calculated the key player. In that case, there is a crime

reduction of 23 percent. Second, if we had removed a delinquent at random, the reduction in

crime would have been less important. Indeed, to calculate the key player, for each network,
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we compare the (expected) total crime when no player is removed in the dynamic network

formation game and the (expected) total crime when one person is removed. The key player

is the one that reduces the (expected) total crime the most. In the case of network 11 with

ci = 0, the maximum possible reduction is 23 percent (Table 4c). Interestingly, in some

cases, the (expected) total crime after the removal of the key player can even be lower than

the initial total crime observed in the AddHealth data. Take, for example, network 12 with

6 delinquents. The initial total crime is 12.962, the (expected) total crime of the dynamic

game without the removal of any criminal is 15.327 and with the removal of the key player

is 11.637. In other words, total crime decreases by 11 percent compared to the initial total

crime and by nearly 32 percent compared to the (expected) total crime of the dynamic game

without the removal of any criminal.

[Insert Table 4d here]

6.2 Individual characteristics of key players

We would like now to identify the characteristics of the key player in our networks. For that,

we use the results of the simulations above, that identify, for each network. the key player

in the dynamic network formation game developed in Section 6.1.2, where the structural

estimation procedure is explained in Section 6.1.1. As explained in Section 6.1.3, we consider

1,038 criminals distributed over 145 networks for all crimes and identify the key players in

each of these 145 networks when ci = ĉi. As an illustration, the identity of the key players

for the first 20 networks was given in Table 4a. The cases when ci = ĉi − 0.05 and ci = 0

(whose results for the first 20 networks of size less than 10 delinquents were given in Tables

4b and 4c) were analyzed only as robustness checks. Indeed, it seems reasonable to assume

that the criminal networks observed in the AddHealth data in 1994/1995 are equilibrium

networks and thus, to guarantee that this is true, we need to set the cost ci of forming links

to be equal to ĉi.

Once we have identified the key player for each network, we can draw his or her “profile”

by comparing the characteristics of these key players with those of the other criminals in the

network.46 Table 5 displays the results only for the variables where the difference in means

between these two samples is statistically significant.

Compared to other criminals, “key” criminals are less likely to be a female, are less

46Since the results on key players for undirected networks are relatively similar, we will not discuss them.

They are available upon request.
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religious, belong to families whose parents are less educated and have the perception of

being socially more excluded. They also feel that their parents care less about them, are less

likely to come from families where both parents are married and have more trouble getting

along with teachers. An interesting feature is that key players are more intelligent (i.e. higher

mathematics scores) than the average criminal and are more likely to have friends who are

older (i.e. in higher grades), more religious and whose parents are more educated. Also,

even though key players themselves do not have a better self-esteem, are not more physically

developed nor are they more likely to be urbanites than other criminals, their friends are.47

[Insert Table 5 here]

An interesting and important question that was highlighted by our theoretical framework,

and that we seek to investigate empirically, is whether the key player is always the criminal

with the highest crime level (or equivalently with the highest Bonacich centrality in the

network). We have shown in the theoretical section that, in some cases, it is not the case (see

Section 3.1.3) because the two measures (Bonacich versus inter-centrality) differ substantially

in their foundation. Whereas the equilibrium-Bonacich centrality index (defined in (4))

derives from strategic individual considerations, the intercentrality measure (defined in (10))

solves the planner’s collective optimality concerns. In particular, the equilibrium Bonacich

centrality measure fails to internalize all the network payoff externalities delinquents exert

on each other, while the intercentrality measure internalizes them all.

As a result, for each of our 145 networks, we investigate whether the key player is also the

most active criminal in the network (i.e. has the highest Bonacich centrality). We find that

in 56 out of 145 networks (almost 40%), it is not the case. This interesting (and unexpected)

result is important for policy purposes since it means that, in some cases, we should not

always target the most active criminals in a network.

In Table 6, we compare the characteristics of key players who are the most active crimi-

nals in the network with key players who are not. As in Table 5, Table 6 only shows variables

whose differences in means between these two samples are statistically significant. Interest-

ingly, there are very few characteristics that are significantly different between the two types

of criminals, indicating that it is difficult to distinguish between them by only observing

their characteristics. We find that the typical key player who is the most active criminal

is more likely to be a male and is less likely to feel socially integrated and to live in bad

neighborhoods. He or she has friends who are more likely to reside in urban residential areas.

47Summary statistics of the other characteristics of the key players, as well as the ones of their best friends

are not reported for brevity. They remain available upon request.
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[Insert Table 6 here]

6.3 Petty versus serious crimes

We repeat our structural estimations for key players for different types of crimes. There are

935 criminals distributed over 128 networks for type-1 crimes or petty crimes (the average

network size is 8.33 and the minimum and maximum sizes are 4 and 73, respectively) and 404

criminals distributed over 70 networks for type-2 crimes or more serious crimes (the average

network size is 7.27 and the minimum and maximum sizes are 4 and 38, respectively). Using

the same procedure as in Section 6.1.3, we identify the key players in each of these networks

when ci = ĉi. Although the results of this exercise need to be taken with caution because

of the small sample size of students committing the more serious offences (404 of them), we

report our findings in Tables 7 and 8.

Tables 7 and 8 have the same structure as Table 5 but draw a profile of the key player

for petty and more serious crimes. Let us start with petty crimes. As compared to other

criminals, a key player is more likely to be a male, have higher mathematics scores, be more

physically developed and reside in an urban area. He or she also seems to be a student who

has trouble getting along with teachers and does not feel attached to the school. His/her

parents are more likely to have a managerial occupation and less likely to work in a manual

occupation than parents of other criminals. He/she feels that parents and adults, in general,

do not care very much about him/her. This last aspect is not true for his/her friends. Indeed,

compared to friends of other criminals, the friends of key players feel more often that their

parents care very much about them, are socially more integrated and feel more attached

to the school. They are also older, more religious and consider themselves slightly more

intelligent than the average.

If we compare these characteristics with those of a key player committing more serious

crimes, then five key variables do not appear here: mathematics score, parental care, social

inclusion, residential urban area, parent occupation manual. In other words, these five

characteristics express the difference between key players and other criminals for petty crime

but not for more serious crimes. Also, the distinctive features of friends of key players in

petty crime networks are many more than the ones for key players in more serious crime

networks.

[Insert Tables 7 and 8 here]
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Table 9 compares the characteristics of key players for different types of crimes. It is

interesting to see that they differ quite a lot. In particular, key players committing more

serious crimes are more likely to be African Americans and have friends who are themselves

African Americans, have a lower self-esteem, better parental care and better relation with

teachers than key players committing petty crimes.

[Insert Table 9 here]

Finally, Tables 10 and 11 have the same structure as Table 6 but for different types of

crimes. As in Table 6, we still find a sizable number of networks where the most “harmful”

criminal (the key player) is not the individual with the highest Bonacich centrality, i.e.

the most active criminal (37 percent for petty crimes and 40 percent for serious crimes).

Interestingly, the differences in characteristics between key players who are, and who are

not, the most active criminals are to be found mainly in more serious crimes. For these

types of crimes, the key players who are not the most active criminals are less attached to

religion, have worse parental care and feel less attached to schools, have a worse relationship

with teachers and are more likely to reside in urban areas.

[Insert Tables 10 and 11 here]

6.4 Key players and network topology

As in Section 3.1.3, let us now investigate the characteristics of these key players in terms of

other network centrality measures (i.e. other than Bonacich centrality).

So far, we have used the Bonacich centrality to capture the importance of network struc-

ture. This is because this measure has a precise behavioral foundation, coming from our

theoretical model. However, it counts all paths connecting one person to others, not just

the shortest paths. Let us thus consider two other standard measures of centrality that

are based on shortest paths, i.e. closeness and betweenness centralities, and a measure of

cliquishness of each node, i.e. the clustering coefficient. They are all defined in Appendix 7

and used in the theory section, (3.1.3.)

Table 12 provides information on the distributions of these measures for the key players

in our networks and compares them with the Bonacich centrality (which is equal to the crime

level of each individual). Looking at the betweenness centrality (which takes into account

the number of shortest paths going through each individual), we observe that at least 50

percent of our key players have a betweenness centrality equal to zero (i.e. the median is
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equal to 0). This indicates that there are few shortest paths that go through them. However,

if we consider the upper tail of this distributions, that is if we look at the key players with

the highest betweenness centrality, we see that a larger portion of them are key players who

are not the most active criminals. Indeed, above the 90th percentile of the distribution of

the whole sample, 71 percent of key players are those who are not the most active criminals.

This suggests that, even though some criminals do not commit much crime, they can be

key players because they have a crucial position in the network in terms of betweenness

centrality (for example, in the network described in Section 3.1.3, individual 1 who bridges

two otherwise separated networks is not the most active criminal but is the key player and

has the highest betweenness centrality).

When looking at the closeness centrality (how close each individual is in terms of shortest

paths to all individuals in the network he/she belongs to), the results are quite different.

Indeed, many key players are now quite central since the median is equal to 0.33. We also

find that less active key players tend to be less concentrated in the upper tail of the closeness

distribution (27 percent in the 90th percentile). Finally, the distribution of the clustering

coefficient (which indicates if friends of friends are also friends) shows that key players do not

operate in particularly tight networks (at least 75 percent of key players show a clustering

coefficient equal to 0) and more and less active key players appear equally distributed in the

upper 90 percent tail. The last column simply shows that in the large majority of the cases,

key players who are the most active criminals in the network they belong to are also among

the most active criminals in the overall sample.

[Insert Table 12 here]

In the lower panels of Table 12, we perform the same analysis for petty and serious crimes.

We find that, for petty crimes, key players have a higher betweenness centrality than for more

serious crimes. Indeed, if we look at p90 (lower 90 percent of the distribution), we see that,

among key players, at least 90 percent of them have a betweenness centrality less than 0.09

for serious crimes while, for petty crimes, this value is 0.33. Moreover, for petty crimes,

the most active key players seem also to be the more central ones in terms of betweenness

centrality while, for serious crimes, the most central key players in terms of betweenness

centrality tend to be the less criminal ones.

We also find that the clustering coefficient can be helpful to understand why individuals

who are not the most active criminals can be key players among delinquents that commit

similar crimes. Indeed, more than 70 percent of the key players with the highest clustering

coefficient (in the upper 90 percent tail) are not the most active criminals. This finding
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suggest that, even though some criminals do not commit much crime, they can be key

players because they operate in tighter networks of best friends.

The distribution of key players in terms of closeness centrality is instead not very dif-

ferent between petty and serious crimes and does not show anymore (i.e. when the crimes

committed are more homogeneous) that more active key players are over-represented in the

upper 90 percent tail.

Finally, in Table 13, we investigate the role of network characteristics (see Appendix 7

for all the definitions) in describing the differences between key players who are the most

active criminals and those who are not. In terms of statistical significance, the differences

are not very pronounced. If we only look at the qualitative evidence, then we see that, for

all crimes, the network diameter, network betweenness and the average distance are smaller

in networks where the key player is also the most active criminal. An interesting result is

that crime networks tend to be assortative, i.e. “popular” criminals tend to be friends with

other “popular” criminals.

[Insert Table 13 here]

7 Policy implications

We would like now to discuss the implications of our key-player policy. The first key issue

is when a key-player policy should be implemented and when it should not. Indeed, at the

policy level, we assume that targeting potential criminals based on key-player characteris-

tics does not impose any administrative costs. However, given the complex nature of some

of these characteristics (e.g., school attachment, troubled relationship with teachers, social

inclusion, religious practice, residential building quality, parental care, etc, one should ex-

pect that tagging key-players is likely to be a source of important costs for the government.

Therefore, it is not clear that targeting the relative key player rather that adopting a selec-

tion at random approach in the delinquency framework is optimal under strong targeting

administrative costs. In order to answer this question, for each of the 145 networks (all

crimes), we have calculated the reduction in total crime,48 following the removal of the key

player. Figure 2 (the horizontal axis is the index of the network and the vertical axis is the

total crime reduction in percent) displays the results. One can see that there are very large

variations in crime reduction between different networks. Indeed, for some networks, total

48This reduction is calculated as: [Expected total crime of the converged network (before the removal of

the key player) - Expected total crime of the converged network (after the removal of the key player)] /

Expected total crime of the converged network (before the removal of the key player).

50



crime is reduced by less than 5 percent while, for other networks, the reduction in crime can

be as high as 35 percent. As a result, one could argue that for the networks for which the

key player only reduces crime by less than say 5 or even 10 percent, it could be better not

to implement the key-player policy given the costs, while for the networks for which the key

player reduces crime by more than 10 percent, implementing a key-player policy could offset

the administrative costs associated with this policy.
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Figure 2: Distribution of networks by reduction in crime after the removal of the key player

In order to better understand this issue, we have reported in Figure 3 the relationship

between crime reduction and network size (the horizontal axis is the number of nodes and the

vertical axis is the total crime reduction in percent). Not surprisingly, the crime reduction is

much more important in small networks than in large networks. This is because we remove

only one key player and in large networks the effect is clearly lower than in small networks. A

way to capture the size effect is to fix an objective in terms of crime reduction (say 10 percent)

and analyze how many key players need to be removed in order to reach this objective. We

have performed this exercise49 by removing key players one by one,50 and show that this

number increases with the size of the network, even though there are large variations for

networks of the same size. For small networks (less than 10 delinquents), one key player is

often enough (see Figure 2) while for large networks (more than 40 delinquents), more than

three key players can be necessary to reach the objective of 10 percent reduction in crime.

49Not reported here to save space but available upon request.
50Ballester et al. (2010) have shown that the approximation error of implementing a greedy algorithm

that deletes key players one by one is small compared to deleting all key players at once, the latter being an

NP-hard problem.
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In that case, a planner would compare the costs of removing more than one key player with

its benefits as compared to targeting a criminal at random. It should be clear, however, that

it is indeed cheaper to implement a key-player policy for small networks since it is easier to

figure out the structure of smaller networks and the crime reduction effects are larger.
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Figure 3: Crime reduction and network size

To further investigate this issue, in Table 14a, for the first 20 networks, we have reported

the maximum crime reduction (key player policy, column 6) and the average crime reduction

from a random-target policy (column 7) when removing a delinquent from the network. One

can see that there are very large differences in crime reduction between implementing a

key-player policy and the average crime reduction. This is even true for small networks.

For example, in network 1 (six delinquents), by implementing a key-player policy, the crime

reduction is 5 points higher than the average crime reduction.

[Insert Table 14a here]

Figure 4 plots the average crime reduction for all the 145 networks when a key-player

(blue curve) and a random-target policy (red curve) is implemented. To plot this figure, we

have put together networks of the same size and calculated the average crime reduction for

this size of networks under the two policies. For example, for all networks of size 4 (horizontal
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axis), the average crime reduction is 29.94 percent on average when the key-player policy

(vertical axis blue curve) is implemented while it is 23.86 percent when a random-target

policy is implemented (vertical axis red curve). While Figure 4 focusses on networks of

size less than 16, Table 4b gives the results for all network sizes. This confirmed what we

obtained in Table 14a since the difference in crime reduction between these two policies can

be extremely large, especially for big networks where implementing a random-target policy

can backfire by increasing rather than decreasing crime.
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Figure 4: Difference between a key-player and a random-target policy

This implies that, if the administrative costs of implementing a key-player policy are large,

then the latter should be implemented when the crime reduction difference between a key-

player and a random-target policy is relatively high. We believe that we obtain these results

because targeting key players generate large multiplier and amplifying effects as opposed to

a random-target policy.

[Insert Table 14b here]

The second key issue is how to implement a key-player policy in the real-world. Indeed,

in the previous section, we have shown that the characteristics of key players can be used to

target some criminals if the information on networks is not known. However, several char-

acteristics that can be used by the government to identify the key-player can be endogenous
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to the teenager (e.g., religious practice, social inclusion,...). Therefore, as long as he/she has

some information regarding these characteristics, the teenager can change his/her behavior in

order not to be targeted as a key player. Furthermore, policies that explicitly tie punishment

to individual characteristics (e.g., family background and religious attachment) can raise a

whole host of other legal and equity issues. In other words, if one targets certain individuals

for greater scrutiny (e.g., racial or religious profiling),51 making punishments discriminatory

(e.g., based on attributes rather than crimes) could create legal issues.

First, in our description of the characteristics of the key player, there are some character-

istics that are truly exogenous and cannot be changed. These include (Table 5): mathematics

scores (it is difficult to improve one’s math scores for those who have difficulties at school),

physical development, gender, parent education. Furthermore, even if a planner targets a

key player based on his/her observable characteristics such as mathematics scores, physi-

cal development, gender, parent education, it does not mean that the key player is easy to

replace. Indeed, if this person is removed based on his/her observable characteristics, it is

possible that he/she has unobservable characteristics (such as leadership capacity, etc.) that

are crucial in becoming the key player. In other words, even if someone has exactly the same

observable characteristics, it does not mean that he/she can be the next key player since

he/she may have different unobservable characteristics.

Second, it is clear that targeting students in terms of race or religious attributes could

raise some legal issues. But here we put forward characteristics that are less controversial

such as mathematics scores, physical development or parent education. Also, we are dealing

with juvenile crime within schools. So for example, the head of a school could target students

who have the lowest decile of math scores, who are more physically developed, etc. In the

specific school context studied here, targeting students (key players) does not mean removing

them from schools or isolating them on the basis of their characteristics. On the contrary,

here, a key-player policy means to invest extra resources in the students. It is well known

that juvenile crime is often committed after school (say between 3pm and 5pm). The head

of the school can then “occupy” these kids (key players) by providing them some activities

(sports or art) during this time.

There is indeed a small literature that discusses and tests policies aiming at “neutral-

izing” disruptive kids because of negative peer interaction effects they have on other kids.

Lazear (2001) proposed a model showing that class size can be an issue if some kids are

disruptive. Using our results, we could define the key player as the most disruptive student

51There is an important literature on racial and religious profiling. For an overview of this literature and

a discussion on policy issues, see Risse and Zeckhauser (2004) and Durlauf (2006).
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in a classroom, i.e., the student who once removed generates the highest possible increase in

total education activity (as measured by the grades of the students). “Removing” the key

player would, here, mean putting this student in another class or investing special resources

in him/her (e.g. having an extra teacher). It is also often suggested that one way to re-

duce juvenile crime is to lengthen the school day or school year and/or to provide activities

for young people when school is not in session. The implicit notion behind such program-

oriented solutions to juvenile crime is a belief in the importance of incapacitation−that, as

Jacob and Lefgren (2003) put it: “idle hands are the devil’s workshop” and that keeping

kids busy will keep them out of trouble. Advocates of after-school and other youth programs

frequently claim that juvenile violence peaks in the after-school hours on school days and in

the evenings on non-school days.

All the potential effects of school attendance on crime are likely to be relevant to changes

in compulsory schooling, while the effects of in-service days and teacher strikes are likely to

be limited to incapacitation and social interactions (Lochner, 2011). Any social interaction

effects are likely to be magnified in the latter cases due to the universal nature of the policy.

Using our framework, we could recommend the same policies to reduce juvenile crime (i.e.

lengthen the school day or school year and/or to provide activities for young people when

school is not in session) by targeting “key players” instead of encompassing everybody. In

their conclusion, Jacob and Lefgren (2003) suggest that summer youth employment programs

or smaller, neighborhood-based after-school programs, that provide structured activities for

adolescents but do not substantially increase their concentration, may be the best way to

reduce juvenile crime. We could apply the same type of programs to “key players” that could

be identified using our framework. Targeting these “key players”, i.e. delinquents who once

removed generate the highest possible reduction in aggregate delinquent level in a network,

can have large effects on crime because of the feedback effects or “social multipliers” at work.

There is an important debate, especially in Canada, on youth pre-sentence reports

(PSRs). The pre-sentence report is a report prepared by a probation officer, typically at

the request of a judge. The report is used by judges to assist in determining sentencing out-

comes. Within the past five years, 9 of Canada’s 13 provincial and territorial jurisdictions

have adopted some form of risk assessment in the preparation of youth pre-sentence reports;

a number of others are following this trend (Hannah-Moffat and Maurutto, 2003). To do so,

actuarial tools have been used in sentencing wherein dispositions are determined on the basis

of how closely a young offender matches some profile of likely offences. PSRs have typically

constructed a narrative profile of offenders, including demographic data on age and gender,

evidence of previous contact with the police or the courts, and information about current
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and previous charges and convictions. For example, PSRs in Manitoba and Saskatchewan,

in an effort to ensure transparency, include a subsection identifying the precise tool used,

and the final numerical risk score is reported (Maurutto and Hannah-Moffat, 2007). Inter-

estingly, studies report as high as an 80 percent correlation between PSR recommendations

and dispositions (Hagan 1975; Boldt et al., 1983). A more recent study by Bonta et al.,

(2005) reports 87.4 percent satisfaction with PSRs for judges and found that 68 percent of

judges found them useful. One could easily use the key-player methodology to determine the

key characteristics that induce criminals to recidivate in order to calculate this numerical

risk score.

Finally, it is important to remember that all our results (especially in terms of charac-

teristics of key player) are only valid for the AddHealth data, that is for juvenile/adolescent

crimes where the network is composed of social relationships (best friends). Even for this

network, we have seen that the characteristics of key players vary a lot between different

types of crimes. This means that we cannot transpose our results in terms of individual and

network characteristics of the key players to other types of crime (like e.g. drunk driving),

other types of networks (like e.g. drug networks) and other types of criminals (like e.g.

adult criminals). We can, however, use the same methodology to identify key players in

other contexts. Our methodology requires knowing the network, which is something that

the police usually know quite well. For example, Sarnecki (2001) provides a comprehensive

study of co-offending relations and corresponding network structure for football hooligans

and right-wing extremists in Stockholm. Baker and Faulkner (1993) reconstruct the struc-

ture of conspiracy networks for three well-known cases of collusion in the heavy electrical

equipment industry in the U.S. In all these cases, one may directly use the available data

to determine the key player. In some other cases, though, ad hoc information gathering

programs have to be implemented. Interestingly, Costebander and Valente (2003) show that

centrality measures based on connectivity (rather than betweenness) are robust to mispeci-

fications in sociometric data, and thus open the door to estimations of centrality measures

with incomplete samples of network data. This, obviously, reduces the cost of identifying

the key player.52

52The idea behind these results is that these measures take into account all walks in the network. Thus,

generally the centrality of a player is not determined only by his/her direct links but by the complete

structure of the network. In this sense, the probability that a missing link affects the choice of the most

central/intercentral player is smaller than with other type of measures.
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8 Concluding remarks

In this paper, we analyze delinquent networks of adolescents in the United States. We first

develop a static model of peer effects where it is shown that the individual crime effort is

proportional to their Bonacich centrality. We also consider the decision to become criminal

before joining the criminal network. We then develop a dynamic network formation model

where delinquents decide how much effort to exert in criminal activities and with whom

they want to form friendship links. We are able to determine who the key player is, i.e.

the criminal who, once removed, generates the highest possible reduction in aggregate crime

level in equilibrium.

We test these models for adolescents in the United States (AddHealth data). We first

show that peer effects are important in crime. If we consider an average group of 4 best

friends in a network, we find that a standard deviation increase in the level of delinquent

activity of each of the peers translates into a roughly 17 percent increase of a standard

deviation in the individual level of activity. We also find that the impact of peer effects

on crime are much higher (almost double) for more serious crimes than for petty crimes.

Concerning the decision to become criminal, we find that the individuals’ characteristics

that affect the crime decision vary with the type of crime committed. For example, we find

that female teenagers are more likely to commit petty crimes and much less likely to commit

serious crimes than male teenagers. Similarly, blacks are more likely to commit serious crime

than whites while there are no statistically differences between blacks and whites for petty

crimes.

We then structurally estimate our model to determine who the key player is. We find that

it is not straightforward to determine which delinquent should be removed from a network by

only observing his or her criminal activities or position in the network. In other words, the

key player is often not the criminal who has the highest Bonacich centrality or the highest

betweenness centrality. We also draw a “profile” of the key player in terms of individual and

friends’ characteristics and show that no specific characteristic can be singled out. Indeed,

compared to other criminals, “key” criminals are less likely to be a female, are less religious,

belong to families whose parents are less educated and have the perception of being socially

more excluded. They also feel that their parents care less about them, are less likely to come

from families where both parents are married and have more troubles getting along with the

teachers. Those characteristics, however, vary with the type of crime committed.

To summarize, our analysis allows us to identify the key player and can help policy

makers identify the most “harmful” individual in crime networks. It can also be extended
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to identify the group of the most “harmful” criminals if a given crime reduction is targeted.

We believe that our key-player policy has more general policy implications and can be

applied to contexts other than crime and education. For example, the financial market is

very connected and can be considered as a network where links could be loans between banks

(Leitner, 2005; Cohen-Cole et al., 2011). A key-player policy would be to identify the key

bank that needs to be bailed out in order for the system to resist a financial crisis. We could

also apply the key player policy to the issue of adoption of a new technology in developing

countries. There is indeed strong evidence of social learning (Conley and Udry, 2010). One

could therefore identify key players and target them so that their influence on others will be

crucial in the adoption of a new technology. Another application of a key player policy could

be the political world. There is evidence that personal connections amongst politicians have

a significant impact on the voting behavior of U.S. politicians (Cohen and Malloy, 2010).

One could identify “key politicians” who should be promoted within the party because they

would have a significant impact on election outcomes.
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Appendices

Appendix 1: Proofs of theoretical results

Proof of Proposition 1. Apply Theorem 1, part b, in Calvó-Armengol et al. (2009)

to our problem.

Proof of Proposition 2. Apply Theorem 3 in Ballester et al. (2006) to our problem.

Proof of Proposition 3. The conditions φµ1(G) < 1 implies that bj(gN∪{j}, φ) is

well-defined for all N ⊂ N and j ∈ N̄\N . Given that µ1(gN∪{j}) ≥ µ1(gN), bi(gN , φ) is

also well-defined for all i ∈ N . On the other hand, by Proposition 1, this also implies the

uniqueness of the Nash equilibrium in the second stage game defined, respectively, by gN

and gN∪{j}, for all j ∈ N̄\N :

y∗i (gN ) = bi(gN , φ) for all i ∈ N (33)

y∗i (gN∪{j}) = bi(gN∪{j}, φ) for all i ∈ N (34)

Now, uniqueness in the second-stage allows us to concentrate on the pure strategy Nash

equilibria of the whole game where no agent j outside a sustainable N would be willing to

enter the game in the network gN to obtain uj
�
y∗(gN∪{j}), gN∪{j}

�
; and no agent i ∈ N would

be better off by obtaining ū, rather than ui (y
∗(gN), gN ). Formally, a set N is supported by

ū at equilibrium if and only if:

max
j∈N̄\N

uj
�
y∗(gN∪{j}), gN∪{j}

�
≤ ū ≤ min

i∈N
ui (y

∗(gN ), gN) .

The result follows by using (33) and (34) and (8).
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Appendix 2: Illustrative examples of the theoretical results

Example 1 (Intercentrality measure: who is the key player?)

To illustrate Proposition 2 and formula (10), consider the following symmetric undirected

network with four delinquents (i.e. n = 4):

4 21

3

Figure A1: A network with 4 criminals

The adjacency matrix is then given by:

G =




0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0




Assume φ = 0.3, β1 = β2 = 1 and that53

x =




x1

x2

x3

x4


 =




0.1

0.2

0.3

0.4




so that

α =




α1

α2

α3

α4


 =




0.4

0.4

0.45

0.5


 (35)

53The spectral radius of this graph is: 2.17 and thus the condition φµ1(G) < 1 is satisfied since 2.17×0.3 =
0.651 < 1.
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It is then straightforward to see that, using Proposition 1, we obtain:



y∗1
y∗2
y∗3
y∗4


 =




b1(g, φ)

b2(g, φ)

b3(g, φ)

b4(g, φ)


 =




1.4004

1.1881

1.2265

0.92016




so that the total activity level is given by:

Y ∗(g) = l′4Mα = y∗1(g) + y∗2(g) + y∗3(g) + y∗4(g) = B(g, φ) = 4.735

Individual 1 has the highest weighted Bonacich and thus provides the highest crime effort.

If we look at the formula in Definition 2, it says that the delinquent that the planner wants

to remove is:

di∗(g, φ) = B(g, φ)−B(g[−i], φ)

Let us remove delinquent 1. The network becomes:

4 2

3

Figure A2: The network when criminal 1 has been removed

We have now a network with three delinquents where we have deleted the first column

and first row in G to obtain:

G[−1] =




0 1 0

1 0 0

0 0 0




What is important is that the αs also change. Indeed, (α2, α3, α4) are no longer given by

(35) but by:

α[−1] =




α
[−1]
2

α
[−1]
3

α
[−1]
4


 =




0.5

0.5

0.4


 (36)
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Using the same decay factor, φ = 0.3, we obtain:54




y∗2
y∗3
y∗4


 =




b2(g
[−1], φ)

b3(g
[−1], φ)

b4(g
[−1], φ)


 =




0.71429

0.71429

0.4




so that the total crime effort is now equal to:

Y ∗(g[−1]) = y∗2(g
[−1]) + y∗3(g

[−1]) + y∗4(g
[−1]) = B(g[−1], φ) = 1.8286

Thus, player 1’s contribution is

B(g, φ)−B(g[−1], φ) = l′4Mα− l′4M [−1]α[−1] = 4.735− 1.8286 = 2.9064 (37)

Performing a similar exercise for individuals 2, 3, 4, we obtain:

B(g, φ)−B(g[−2], φ) = 2.4301,

B(g, φ)−B(g[−3], φ) = 2.6862,

B(g, φ)−B(g[−4], φ) = 1.735.

Criminal 1 is the key player since her contribution to total crime is the highest [REMOVED

"one"].

Let us now check if the formula (10) is correct, i.e.,

d1(g, φ) = B(g, φ)−B(g[−1], φ)

= l′4Mα− l′4Mα[1] + l′4M
[1]α[1]

= B(g, φ)−B(g[i], φ) +
bα[1],1(g, φ)

�n
j=1mj1(g, φ)

m11(g, φ)

It is easily verified that

M =




1.5317 0.65646 0.65646 0.45952

0.65646 1.3802 0.61101 0.19694

0.65646 0.61101 1.3802 0.19694

0.45952 0.19694 0.19694 1.1379


 ,

54Since individual 4 is now isolated, we have:

y∗4 = α4 = 0.4

70



M [1] =




1.5317 0.65646 0.65646 0.45952

0.65646 0.28135 0.28135 0.19694

0.65646 0.28135 0.28135 0.19694

0.45952 0.19694 0.19694 0.13786




and

α[1] =




α1

α
[−1]
2

α
[−1]
3

α
[−1]
4


 =




0.4

0.5

0.5

0.4




As a result, l′4Mα[1] = 4.9628 so that

l′4Mα− l′4Mα[1] = B(g, φ)−B(g[1], φ) = 4.735− 4.9628 = −0.2278

and

l′4M
[1]α[1] =

bα[1],1(g, φ)
�n
j=1mj1(g, φ)

m11(g, φ)
= 3.1342

We thus obtain:

d1(g, φ) = B(g, φ)−B(g[1], φ) +
bα[1],1(g, φ)

�n
j=1mj1(g, φ)

m11(g, φ)

= −0.2278 + 3.1342 = 2.9064 (38)

When comparing (37) and (38), we see that the values are the same and thus:

d1(g, φ) = B(g, φ)−B(g[−1], φ) = 2.9064

Example 2 (Is the key player always the most active player?)

Consider the network g in the following figure with eleven criminals.
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Figure A3: A bridge network with 11 criminals
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We distinguish three different types of equivalent actors in this network, which are the

following:

Type Criminals

1 1

2 2, 6, 7 and 11

3 3, 4, 5, 8, 9 and 10

From a macro-structural perspective, type−1 and type−3 criminals are identical: they all

have four direct links, while type −2 criminals have five direct links each. From a micro-

structural perspective, though, criminal 1 plays a critical role by bridging together two closed-

knit (fully intraconnected) communities of five criminals each. By removing delinquent 1, the

network is maximally disrupted as these two communities become totally disconnected, while

by removing any of the type−2 criminals, the resulting network has the lowest aggregate

number of network links.

We identify the key player in this network of criminals. If the choice of the key player were

solely governed by the direct effect of criminal removal on aggregate crime, type−2 criminals

would be the natural candidates. Indeed, these are the ones with the highest number of

direct connections. But the choice of the key player needs also to take into account the

indirect effect on aggregate delinquency reduction induced by the network restructuring that

follows the removal of one delinquent from the original network. Because of his communities’

bridging role, criminal 1 is also a possible candidate for the preferred policy target.

In order to focus on the role of location in the network, in this example, we assume that

criminals are ex identical so that α = l3 and thus b (g, φ) = (I − φG)−1 l3 and y∗i = bi (g, φ)

while di(g, φ) = B(g, φ) − B(g[−i], φ). We take φ = 0.2. The following table computes,

for criminals of types 1, 2 and 3, the value of delinquency centrality measures bi(g, φ) (or

equivalently efforts y∗i ) and intercentrality measures di(g, φ) for different values of φ. In each

column, a variable with a star identifies the highest value.55

Table A1a: Key player versus Bonacich centrality in a bridge network

Player Type 1 2 3

yi = bi 8.33 9.17∗ 7.78

di 41.67∗ 40.33 32.67

First note that type−2 delinquents display the highest Bonacich centrality measure.

These delinquents have the highest number of direct connections. Besides, they are directly

55We can compute the highest possible value for φ compatible with our definition of centrality measure

(i.e. the inverse of the largest eigenvalue of G), which is equal to 
φ = 2

3+
√
41
≃ 0, 213.
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connected to the bridge delinquent 1, which gives them access to a very wide and diversified

span of indirect connections. Altogether, they are the most central delinquents (in terms of

Bonacich centrality). Second, the most active delinquents are not the key players. Because

indirect effects matter a lot (φ = 0.2), eliminating delinquent 1 has the highest joint direct

and indirect effect on aggregate delinquency reduction. Indeed, when φ is not too low,

delinquents spread their know-how further away in the network and establishing synergies

with delinquents located in distant parts of the social setting. In this case, the optimal

targeted policy is the one that maximally disrupts the delinquency network, thus harming

its know-how transferring ability the most.

In Table A1a, we have shown that the key player is not the most active criminal (i.e.

does have the highest Bonacich centrality). To further understand this result, let us analyze

the characteristics of all criminals in terms of network position, as well as those of the

network described in Figure A3. For that, we will first use some measures of centrality

other than Bonacich. Indeed, over the past years, social network theorists have proposed a

number of centrality measures to account for the variability in network location across agents

(Wasserman and Faust, 1994).56 While these measures are mainly geometric in nature, our

theory provides a behavioral foundation to the Bonacich centrality measure (and only this

one) that coincides with the unique Nash equilibrium of a non-cooperative peer effects game

on a social network. Let us now calculate the other individual centrality measures for the

network given in Figure 3, namely: degree, closeness, betweenness centralities as well as the

clustering coefficient. Their mathematical definitions are given in Appendix 7. We obtain:

Table A1b: Characteristics of criminals in a network

where the most active criminal is not the key player

Player type 1 2 3

Degree centrality 0.4 0.5 0.4

Closeness centrality 0.625 0.555 0.416

Betweenness centrality 0.555 0.2 0

Clustering coefficient 0.33 0.7 1

Even if player 1 is not the most active criminal (she has the lowest degree centrality

and the lowest clustering coefficient), it is now even easier to understand why she is the key

player: she has the highest closeness and betweenness centralities. Observe that criminal 3

56See Borgatti (2003) for a discussion on the lack of a systematic criterium to pick up the “right” network

centrality measure for each particular situation.
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has a betweenness centrality equal to zero because there is no shortest path, between two

criminals that go through her.

Let us now examine the characteristics of the network described in Figure A3 where the

key player is not the most active criminal. We will consider standard network characteristics,

which are also all defined in Appendix 7. We obtain the following results:

Table A1c: Characteristics of the network

in which the most active criminal is not the key player

Network Characteristics

Average Distance 2.11

Average Degree 4.36

Diameter 4

Density 0.211

Asymmetry 0.125

Clustering 0.805

Degree centrality 7.78× 10−3

Closeness centrality 0.323

Betweenness Centrality 0.47556

Assortativity −3.49× 10−16

We see from Table A1c that the network described in Figure A3 has a low average

distance and low diameter (small-world properties), a very high clustering (0.805) and a

weak dissortativity. Furthermore, it is not very dense nor asymmetric, while having average

values of centralities measures.

Example 3 (Selection issue: who will be criminals?) Consider a population of

5 individuals, i.e., N̄ = {1, ..., 5}, where 3 of them become criminals, i.e., N = {3, 4, 5}.
Assume, for simplicity, that ǫi = 0 for all i = 1, ..., 5, η̄ = 0, φ = 0.2, and

a1 = 0.5 < a2 = 1 < a3 = 8 < a4 = 9 < a5 = 10

We would like to illustrate Propositions 3 and 4. The upper panel of Figure A4 describes

the network of 3 criminals.
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Figure A4: The decision to become criminal for 3 individuals

It is easily verified that:57




y∗3 (gN )

y∗4 (gN )

y∗5 (gN )


 =




b3 (gN , 0.2)

b4 (gN , 0.2)

b5 (gN , 0.2)


 =




10.913

11.913

14.566




so that the right-hand side of condition (11), i.e., 2
√
ū ≤ mini∈N bi(gN , φ) = b3(gN , φ), can

be written as:

2
√
ū ≤ 10.913

We also need to check the left-hand side of condition (11). For that, we take the individual

with the highest as among the non-criminals, that is individual 2, and construct the best

possible network for this individual to be connected with criminals 3, 4, and 5, and we obtain

the network displayed in the lower panel of Figure A4. For this network, it is easily verified

57It can be verified that φ = 0.2 < 1/
√
2 = 0.707 (condition on the largest eigenvalue), which guarantees

that the Nash equilibrium in efforts in the second stage is interior, unique and well-defined.
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that:58 


y∗2
�
gN∪{2}

�

y∗3
�
gN∪{2}

�

y∗4
�
gN∪{2}

�

y∗5
�
gN∪{2}

�


 =




b2
�
gN∪{2}, 0.2

�

b2
�
gN∪{2}, 0.2

�

b4
�
gN∪{2}, 0.2

�

b5
�
gN∪{2}, 0.2

�


 =




10.156

13.563

14.563

17.656




As a result, b2(gN∪{2}, 0.2) = maxj∈N̄\N bj(gN∪{j}, φ) ≤ 2
√
ū can be written as:

10.156 ≤ 2
√
ū

Putting these two inequalities together, condition (11) can be written as:

10.156 ≤ 2
√
ū ≤ 10.913

Hence, any value of ū such that 25.786 ≤ ū ≤ 29.773 satisfies condition (11) and thus the

network displayed in the upper panel of Figure A4 is an equilibrium criminal network with

endogenous participation.

58It can be verified that φ = 0.2 <
�
1 +

√
17
�
/2 = 0.39, which guarantees that the Nash equilibrium in

efforts in the second stage is interior, unique and well-defined.
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Appendix 3: Data appendix 
 

Table A2: Description of Variables  
 

 Variable definition 
  

Individual socio-demographic variables  

Female Dummy variable taking value one if the respondent is female. 

Religion practice Response to the question: "In the past 12 months, how often did you attend 
religious services", coded as 1= never, 2= less than once a month, 23= once a 
month or more, but less than once a week, 4= once a week or more. Coded as 5 if 
the previous is skipped because of response “none” to the question: “What is your 
religion?”  

Student grade Grade of student in the current year. 

Black or African American Race dummies. “White” is the reference group. 

Other races “ 

Mathematics score Score in mathematics at the most recent grading period, coded as4= D or lower, 
3= C, 2=B, 1=A. 

Self esteem Response to the question: "Compared with other people your age, how intelligent 
are you", coded as 1= moderately below average, 2= slightly below average, 3= 
about average, 4= slightly above average, 5= moderately above average, 6= 
extremely above average. 

Physical development Response to the question: "How advanced is your physical development 
compared to other boys/girls your age", coded as 1= I look younger than most, 2= 
I look younger than some, 3= I look about average, 4= I look older than some, 5= 
I look older than most 

Family background variables  

Household size Number of people living in the household.  

Two married parent family Dummy taking value one if the respondent lives in a household with two parents 
(both biological and non biological) that are married. 

Single parent family Dummy taking value one if the respondent lives in a household with only one 
parent (both biological and non biological). 

Parent education Schooling level of the (biological or non-biological) parent who is living with the 
child, distinguishing between "never went to school", "not graduate from high 
school", "high school graduate", "graduated from college or a university", 
"professional training beyond a four-year college", coded as 1 to 5. We consider 
only the education of the father if both parents are in the household. 

Parent occupation manager Parent occupation dummies. Closest description of the job of (biological or non-
biological) parent that is living with the child is manager. If both parents are in 
the household, the occupation of the father is considered. “none” is the reference 
group 

Parent occupation professional/technical ” 

Parent occupation office or sales worker ” 

Parent occupation manual ” 

Parent occupation military or security ” 

Parent occupation farm or fishery ” 

Parent occupation other ” 

Protective factors  

School attachment Response to the question: "You feel like you are part of your school coded as 5= 
strongly agree, 4= agree, 3=neither agree nor disagree, 2= disagree, 1= strongly 
disagree.  

Relationship with teachers Response to the question: “How often have you had trouble getting along with 
your teachers?” 0= never, 1= just a few times, 2= about once a week, 3= almost 
everyday, 4=everyday 

Social inclusion Response to the question: "How much do you feel that adults care about you, 
coded as 5= very much, 4= quite a bit, 3= somewhat, 2= very little, 1= not at all 

Parental care Dummy taking value one if the respondent reports that the (biological or non-
biological) parent that is living with her/him or at least one of the parents if both 
are in the household cares very much about her/him 

Residential neighborhood variables  

Residential building quality Interviewer response to the question "How well kept is the building in which the 
respondent lives", coded as 4= very poorly kept (needs major repairs), 3= poorly 
kept (needs minor repairs), 2= fairly well kept (needs cosmetic work), 1= very 
well kept. 

Residential area urban Interviewer description of the residential immediate area or street 
(one block, both sides). Dummy taking value 1 if the area is 
“urban” and  0 otherwise (“suburban”, “industrial properties - 
mostly wholesale” , “rural area”, “other type”)  

 
 
 



Table A3: Summary statistics  
 

  Non criminals 
(population) 
N = 6,993 

Criminals 
(population) 
N = 5,522 

Criminals 
(selected sample)

N = 1,297 
  Network size  

range 2-1,050 
Network size 
range 4-150 

VARIABLES range 
min-max 

mean sd mean sd mean sd 

        
Female 0-1 0.55 0.50 0.50 0.50 0.49 0.50 
Religion practice 1-5 3.85 1.36 3.66 1.39 3.73 1.40 
Student grade 7-12 9.41 1.66 9.63 1.58 9.01 1.56 
Black or African American 0-1 0.19 0.39 0.20 0.40 0.22 0.42 
Other races 0-1 0.14 0.35 0.16 0.36 0.05 0.23 
Mathematics score 1-4 2.14 0.99 2.36 1.04 2.19 1.01 
Self esteem 1-6 4.03 1.10 3.90 1.08 4.00 1.09 
Physical development 1-5 3.10 1.09 3.26 1.11 3.34 1.11 
Household size 1-11 4.57 1.48 4.60 1.51 4.39 1.33 
Two married parent family 0-1 0.73 0.44 0.71 0.45 0.71 0.45 
Single parent family 0-1 0.23 0.42 0.25 0.43 0.25 0.43 
Parent education 0-5 3.15 1.08 3.10 1.09 3.23 1.10 
Parent occupation manager 0-1 0.11 0.31 0.10 0.30 0.12 0.32
Parent occupation 
professional/technical 

0-1 0.18 0.38 0.19 0.39 0.21 0.41 

Parent occupation office or sales 
worker 

0-1 0.11 0.31 0.11 0.32 0.11 0.31 

Parent occupation manual 0-1 0.34 0.47 0.34 0.47 0.30 0.46 
Parent occupation military or security 0-1 0.03 0.18 0.03 0.16 0.02 0.14
Parent occupation farm or fishery 0-1 0.02 0.15 0.01 0.11 0.02 0.13 
Parent occupation other 0-1 0.13 0.34 0.14 0.34 0.14 0.35 
School attachment 1-5 4.07 0.88 3.88 0.98 4.06 0.92 
Relationship with teachers 0-4 0.52 0.77 0.92 0.96 1.08 1.01 
Social inclusion 1-5 4.52 0.76 4.40 0.79 4.46 0.76 
Parental care 0-1 0.94 0.24 0.91 0.28 0.92 0.28 
Residential building quality 1-4 1.53 0.80 1.58 0.80 1.53 0.81 
Residential area urban 0-1 0.67 0.47 0.72 0.45 0.61 0.49 
        

Variables in italics denote statistically significant differences in means between criminals and non-criminals 
at least at the 10 percent significance level 



Appendix 4: Identification of network models with
non-row-normalized adjacency matrices

Consider the following model

yr = φ0Gryr +Xrβ10 +G
∗
rXrβ20 + ηrlnr + ǫr

= [Gryr,Xr,G
∗
rXr, lnr ]ϑ+ ǫr, (39)

where G∗
r is the row-normalized Gr and ϑ = (φ0,β

′
10,β

′
20, ηr)

′. To achieve model identifica-

tion based only on the reduced form regression equation, we need that the deterministic part

of the right hand side variables, [E(Gryr),Xr,G
∗
rXr, lnr ], have full column rank, where

E(Gryr) = GrXrβ10 + φ0GrM rGrXrβ10 +GrM rG
∗
rXrβ20 + ηrGrM rlnr . (40)

First, we consider the case that Gr is row-normalized such that Gr = G∗
r. In this case,

(40) can be simplified as

E(Gryr) = G∗
rXrβ10 +G

∗
rM rG

∗
rXr(φ0β10 + β20) +

ηr
1− φ0

lnr .

To illustrate the challenges in identification, we consider three cases. (1) β10 = β20 = 0.

This is the case when there is no relevant exogenous variables in the model. In this case,

E(Gryr) =
η
r

1−φ0
lnr . Hence, the model is not identified because [ η

r

1−φ0
lnr ,Xr,G

∗
rXr, lnr ] does

not have full column rank. (2) φ0β10+β20 = 0. In this case, E(Gryr) = G∗
rXrβ0+

η
r

1−φ0
lnr .

The model can not be identified due to perfect collinearity. This corresponds to the case

where the endogenous effect and exogenous effect exactly cancel out. Lee et al. (2010)

have shown, in this case, the reduced form of (39) becomes a simple regression model with

(spatially) correlated disturbances. In the reduced form, there are neither endogenous nor

contextual effects. Interactions go through unobservables (disturbances) instead of observ-

ables. (3) φ0β10+β20 	= 0. For this case, Bramoullé et al. (2009) and Lee et al. (2010) have

derived some sufficient conditions for model identification, which are simpler to interpret.

The identification can still be hard to achieve when the network is dense. For example, the

“reflection problem”, where the endogenous effects can not be identified from the contextual

effects due to perfect collinearity, exists in the model of Manski (1993), which has the linear-

in-mean specification such that Gr =
1
nr
lnrl

′
nr . When Gr =

1
(nr−1)

(lnrl
′
nr − I) and networks

are of the same size such that nr = n/r̄, the model still can not be identified (see Moffitt,

2001). On the other hand, when Gr =
1

(nr−1)
(lnrl

′
nr − I) and there are variations in network

sizes, Lee (2007a) has shown that the model can be identified because the endogenous effect
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is stronger in small networks than in large networks. However, the identification can be weak

when all the networks are large.

Row-normalization of Gr has some limitations. First, as in the structural model in this

paper, one may be interested in the aggregate influence rather than average influence of peers.

Second, for some network structures, it is impossible to row normalize the adjacency matrix

Gr. For example, for an asymmetricGr, where agent i’s outcome affects peers’ outcomes but

he/she is not affected by peers, the ith row of Gr would be all zeros. It would be impossible

to normalize the ith row of Gr to sum to one. Finally, normalization may eliminate some

useful information of the network structure. For the undirected friendship network, Gr will

be a symmetric matrix. It should not be row-normalized because row-normalization would

destroy the symmetry property.

Indeed, GrM rlnr is the measure of centrality in Bonacich (1987). The ith entry of

GrM rlnr is the (weighted) sum of direct and indirect connections of agent i with others in

the network. When Gr is not row-normalized, the entries of GrM rlnr in general is not all

the same. The variation of this centrality measure in a network provides useful information

for model identification. Even for the case that β10 = β20 = 0, with non-row-normalized Gr,

[E(Gryr),Xr,G
∗
rXr, lnr ] = [ηrGrM rlnr ,Xr,G

∗
rXr, lnr ] can still have full column rank.

Hence, the model can be identified.

Under a certain regularity condition,M r =
�∞
j=0(φ0Gr)

j. It follows thatGrM rGrXr =�∞
j=0(φ0Gr)

jG2
rXr,GrM rG

∗
rXr =

�∞
j=0(φ0Gr)

jGrG
∗
rXr andGrM rlnr =

�∞
j=0(φ0Gr)

jGrlnr .

Hence, from (40) we can use terms like Grlnr as IVs for the endogenous effect in addition to

the “traditional” IVs like GrXr, G
2
rXr and/or GrG

∗
rXr to help model identification and

improve estimation efficiency (Liu and Lee, 2010).
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Appendix 5: 2SLS and GMM estimators

2SLS Estimation From the reduced form equation (24), E(Z) = [GM (X̄δ0+ιη̄), X̄].

The best (in terms of efficiency) instrumental matrix for JZ in (23) is given by

F = JE(Z) = J [GMX̄δ0 +GMιη̄, X̄], (41)

which is an n×(2m+1) matrix, where m is the dimension of X. However, this instrumental

matrix is infeasible as it involves unknown parameters φ0, δ0 and η̄. Note that F can be

considered as a linear combination of the IVs in Q0 = J(GMX̄,GMι, X̄). Furthermore,

as M = (I − φ0G)−1 =
�∞
j=0(φ0G)

j when |φ0µ1(G)| < 1, GMX̄ and GMι can be ap-

proximated by linear combinations of (GX̄ ,G2X̄, · · · ) and (Gι,G2ι, · · · ) respectively, and,

hence,Q0 can be approximated by a linear combination ofQ∞ = J(GX̄,G2X̄, · · · ,Gι,G2ι, · · · , X̄).

For the estimation of (23), let QK = J(G(p)
x ,G(p)

ι
, X̄) be an n ×K submatrix of Q∞,

where G(p)
x = (GX̄, ...,GpX̄) and G(p)

ι
= (Gι, ...,Gpι) for some p that increases as n

increases. As ι has r̄ columns, the number of IVs in QK is large if the number of groups r̄

is large. In general, more valid IVs would improve the efficiency of the estimator. However,

the IV-based estimator could be asymptotically biased in the presence of many IVs.

LetPK = QK(Q
′
KQK)

−1Q′
K. The many-IV 2SLS estimator is θ̂2sls = (Z ′PKZ)−1Z ′PKy.

Let ej denote the jth column of an identity matrix. Liu and Lee (2010) have shown

that, under some regularity assumptions, if K/n → 0 then
√
n(θ̂2sls − θ0 − b2sls)

d→
N(0, σ20(limn→∞

1
n
F ′F )−1), where b2sls = σ20tr(PKGM)(Z′PKZ)−1e1 = Op(K/n). The

term b2sls is a bias due to the presence of many IVs. When K2/n → 0, the bias term√
nb2sls converges to zero so that

√
n(θ̂2sls − θ0) d→ N(0, σ20(limn→∞

1
n
F ′F )−1). Hence, the

sequence of IV matrices {QK} gives the asymptotically best IV estimator as the variance

matrix attains the efficiency lower bound for the class of IV estimators.

To correct for the many-instrument bias in θ̂2sls, we can adjust the many-IV 2SLS esti-

mator by the estimated leading order bias. The bias-corrected many-IV 2SLS is given by

θ̂c2sls = (Z ′PKZ)−1Z ′PKY − b̂2sls, where b̂2sls is a consistent estimator of b2sls. Liu and

Lee (2010) have shown that, if K/n→ 0, then
√
n(θ̂c2sls−θ0) d→ N(0, σ20(limn→∞

1
n
F ′F )−1).

Note that the number of IVs K is proportional to the number of groups r̄. Hence,

K2/n → 0 implies r̄2/n = r̄/m̄ → 0, where m̄ is the average group size. So for asymptotic

efficiency of the many-IV 2SLS estimator, the average group size needs to be large relative

to the number of groups. On the other hand, K/n→ 0 implies r̄/n = 1/m̄→ 0. So for the

bias-corrected many-IV 2SLS to be properly centered and asymptotically efficient, we only

need the average group size to be large.

79



To summarize, the 2SLS estimators considered in the empirical studies of this paper are:

(i) Finite-IV 2SLS : θ̂2sls−1 = (Z ′P 1Z)−1Z ′P 1y, where P 1 = Q1(Q
′
1Q1)

−1Q′
1 and Q1

contains the linearly independent columns of J(GX̄, X̄).

(ii) Many-IV 2SLS : θ̂2sls−2 = (Z ′P 2Z)−1Z ′P 2y, where P 2 = Q2(Q
′
2Q2)

−1Q′
2 and Q2

contains the linearly independent columns of J(GX̄, X̄,Gι).

(iii) Bias-corrected 2SLS : θ̂c2sls−2 = (Z ′P 2Z)−1[Z′P 2y− σ̃2ntr(P 2GM̃)e1], where M̃ =

(I − φ̃G)−1, and σ̃2, φ̃ are
√
n-consistent initial estimators of σ20, φ0.

GMM Estimation The 2SLS approach can be generalized to the GMM with addi-

tional quadratic moment equations. While the IV moments use the information of the main

regression function of the reduced form equation for estimation, the quadratic moments can

explore the correlation structure of the reduced form disturbances. Let ǫ(θ) = J(y − Zθ)
with θ = (φ, δ′)′. The IV moments gl(θ) = Q′

Kǫ(θ) are linear in ǫ at θ0. The quadratic

moment is given by gq(θ) = ǫ′(θ)Uǫ(θ) where U = JGMJ − tr(JGM)J/tr(J). At θ0,

E[gq(θ0)] = 0, because E(ǫ′JUJǫ) = σ20tr(JU) = 0.59 The vector of combined linear and

quadratic empirical moments for the GMM estimation is given by g(θ) = [g′l(θ), g
′
q(θ)]

′.

In order for asymptotic inference to be robust, we do not impose the normality assumption

for the following results. For any n× n matrix A = [aij ], let As = A+A′ and vecD(A) =

(a11, · · · , ann)′. In general, µ3 and µ4 denote, respectively, the third and fourth moments of

the error term. The variance matrix of g(θ0) is given by

Ω = Ω(QK,U , σ
2
0, µ3, µ4) =

�
σ20Q

′
KQK µ3Q

′
Kω

µ3ω
′QK (µ4 − 3σ40)ω

′ω + σ40∆

�
,

where ω = vecD(U) and ∆ = 1
2
vec(Us)′vec(Us). The optimal many-IV GMM estimator is

given by θ̂gmm = argmin g′(θ)Ω−1g(θ).

The optimal weighting matrix Ω−1 involves unknown parameters σ20, µ3 and µ4. In

practice, with consistent initial estimators σ̃2, µ̃3 and µ̃4, Ω can be estimated as Ω̃ =

Ω(σ̃2, µ̃3, µ̃4). Let D = E[ ∂
∂θ′
gq (θ0)] = −σ20tr(UsGM)e′1 and B−1 = B−1(U , σ20, µ3, µ4) =

(µ4 − 3σ40)ω
′ω + σ40∆ − µ23

σ20
ω′PKω. Liu and Lee (2010) have shown that, if K3/2/n → 0,

the feasible optimal many-IV GMM estimator θ̂gmm = argminθ∈Θ g
′(θ)Ω̃

−1
g(θ) has the

asymptotic distribution

√
n(θ̂gmm − θ0 − bgmm) d→ N(0, [σ−20 ( lim

n→∞

1

n
F ′F )−1 + lim

n→∞

1

n
D̄
′
BD̄]−1), (42)

59Liu and Lee (2010) have shown that the quadratic moment g
2
(θ) = ǫ′(θ)Uǫ(θ) is the best (in terms of

efficiency of the GMM estimator) under normality.
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where bgmm = (σ−2Z ′PKZ + Ď
′
BĎ)−1tr(PKGM)e1 = O(K/n), Ď = D − µ3

σ20
ω′PKZ,

and D̄ =D − µ3
σ20
ω′F .

As the asymptotic bias bgmm is O(K/n), the asymptotic distribution of the GMM esti-

mator will be centered at θ0 only when K2/n→ 0. With the consistently estimated leading

order bias b̂gmm, Liu and Lee (2010) have shown that, if K3/2/n → 0, the feasible bias-

corrected many-IV GMM estimator θ̂cgmm = θ̂gmm − b̂gmm is properly centered and has the

asymptotic normal distribution as given in (42).

The asymptotic variance matrix of the many-IV GMM estimator can be compared with

that of the many-IV 2SLS estimator. As D̄
′
BD̄ is nonnegative definite, the asymptotic

variance of the many-IV GMM estimator is relatively smaller than that of the 2SLS estimator.

The many-IV GMM estimator with additional quadratic moments improves efficiency upon

the 2SLS estimator.

To summarize, the GMM estimators considered in the empirical studies of this paper are:

(i) Finite-IV GMM : θ̂gmm−1 = argminθ∈Θ g̃
′
1(θ)Ω̃

−1

1 g̃1(θ), where g̃1(θ) = [Q1, Ũǫ(θ)]
′ǫ(θ),

Ω̃1 = Ω(Q1, Ũ , σ̃
2, µ̃3, µ̃4), Ũ = JGM̃J − tr(JGM̃)J/tr(J), M̃ = (I − φ̃G)−1, and

σ̃2, µ̃3, µ̃4, φ̃ are
√
n-consistent initial estimators.

(ii) Many-IV GMM : θ̂gmm−2 = argminθ∈Θ g̃
′
2(θ)Ω̃

−1

2 g̃2(θ), where g̃2(θ) = [Q2, Ũǫ(θ)]
′ǫ(θ),

Ω̃2 = Ω(Q2, Ũ , σ̃
2, µ̃3, µ̃4), Ũ = JGM̃J − tr(JGM̃)J/tr(J), M̃ = (I − φ̃G)−1, and

σ̃2, µ̃3, µ̃4, φ̃ are
√
n-consistent initial estimators.

(iii) Bias-corrected GMM : θ̂cgmm−2 = θ̂gmm−2 − b̃gmm, where b̃gmm = [σ̃−2Z ′P 2Z +
�̌D
′

B̃ �̌D]−1tr(P 2GM̃)e1, where B̃ = B(Ũ , σ̃2, µ̃3, µ̃4),
�̌D = −σ̃2tr(Ũ s

GM̃)e′1− µ̃3
σ̃2
vecD(Ũ)′P 2Z,

M̃ = (I − φ̃G)−1, and σ̃2, µ̃3, µ̃4, φ̃ are
√
n-consistent initial estimators.
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Appendix 6: Estimation of selection-bias corrected outcome
equation

From (12), the infeasible selection-bias corrected outcome equation

y = φGy +Xβ1 +G
∗Xβ2 + ιη̄ + σ12λ+ ǫ∗,

where ǫ∗ = ǫ2 − σ12λ is the bias-corrected disturbances such that E(ǫ∗|y∗1 > 0) = 0. The

conditional variance of ǫ∗ is

Var(ǫ∗|y∗1 > 0) = E(ǫ∗ǫ∗′|y∗1 > 0) = σ22I − σ212A,

where A = D(λ(x′1γ)x
′
1γ +λ2(x′1γ), · · · , λ(x′nγ)x′nγ +λ2(x′nγ)), and A is evaluated at the

true parameter vector of γ.

For a two-stage estimation, let γ̂ be the probit MLE. The feasible outcome equation for

the second stage estimation is

y = φGy +Xβ1 +G
∗Xβ2 + ιη̄ + σ12λ̂+ ǫ,

where ǫ = ǫ2 − σ12λ̂ = ǫ∗ − σ12(λ̂ − λ). After we eliminate the fixed group effect by the

projector J , the outcome equation becomes

Jy = φJGy + JX̄β + σ12Jλ̂+ Jǫ,

where X̄ = (X,G∗X) and β = (β′1,β
′
2)
′. Let Q = J [GX̄, X̄,λ] be an (infeasible) IV ma-

trix and Q̂
′
= J [GX̄, X̄ , λ̂]. Let P = Q(Q′Q)−1Q′, P̂ = Q̂(Q̂

′
Q̂)−1Q̂

′
, Z = [Gy, X̄,λ],

and Ẑ = [Gy, X̄ , λ̂n]. Then the 2SLS estimator of θ = (φ,β′, σ12)
′ is given by:

θ̂ = (Ẑ
′
P̂ Ẑ)−1Ẑ

′
P̂ y = θ + (Ẑ

′
P̂ Ẑ)−1Ẑ

′
P̂ ǫ.

As, by the mean value theorem,

1√
n
Ẑ
′
P̂ ǫ =

1√
n
Ẑ
′
P̂ [ǫ∗ − σ12(λ̂− λ)] =

1√
n
Ẑ
′
P̂ ǫ

∗ − σ12
1√
n
Ẑ
′
P̂A(γ̄)X(γ̂ − γ)

the asymptotic variance of θ̂ is Avar
√
n(θ̂ − θ) = plim( 1

n
Z ′PZ)−1Σ( 1

n
Z ′PZ)−1, where

Σ =
1

n
Z′P [σ22I − σ212A+ σ212AX(X ′

n̄Λn̄X n̄)
−1X ′A′]PZ,

and Λn̄ = D(
f2(x′1γ)

Φ(x′1γ)(1−Φ(x
′

1γ))
, · · · , f2(x′

n̄
γ)

Φ(x′
n̄
γ)(1−Φ(x′

n̄
γ))

).

To estimate σ22, we consider E(ǫ∗ǫ∗′|y∗1 > 0) = σ22I − σ212A. Let ǫ̂∗ = Jy − JẐθ̂. Then

σ22 can be estimated by σ̂22 = ǫ̂∗′ǫ̂∗/tr(J) + σ̂212
1
n

�n
i=1[λ(x

′
iγ)x

′
iγ + λ2(x′iγ)].
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Appendix 7: Individual centrality measures and network
characteristics

The simplest index of connectivity of individual i in network g is the number of direct

friends divided by the maximum possible number of friends individual i can have (i.e. n− 1

individuals if everyone is directly connected to individual i), i.e. degree centrality :

δi(g) =
ḡi

n− 1
, (43)

where ḡi =
�n
j=1 gij.

The standard measure of closeness centrality of individual i in network g is given by:

c1i(g) =
n− 1�
j d(i, j)

(44)

where d(i, j) is the geodesic distance (length of the shortest path)60 in network g between

individuals i and j. As a result, the closeness centrality of individual i is the inverse of

the sum of geodesic distances from i to the n− 1 other individuals (i.e. the reciprocal of its

“farness”) divided by n−1, which is the maximum possible distance between two individuals

in the network. Compared to degree centrality, the closeness measure takes into account not

only direct connections among individuals but also indirect connections. However, compared

to the Bonacich centrality, the closeness measure assumes a weight of one to each indirect

connection, whereas the Bonacich centrality uses weights that depend on the strength of

social interaction within the network.

The closeness centrality is not very informative for a network that is not strongly con-

nected. As d(i, j) = ∞ if node j is not reachable from i, the closeness centrality of node i

will be zero if there is some node in the network that is not reachable from i. To tackle this

problem, we propose an alternative closeness centrality measure

c2i(g) =
1

n− 1

n�

j=1,j 
=i

1

d(i, j)
,

which is used in the empirical studies of this paper.

For a directed network g, the betweenness centrality measure of agent i can be defined

as:

fi(g) =
1

(n− 1) (n− 2)

n�

j=1

n�

k=1,k 
=j

ajk(i)

ajk
(45)

60The length of a shortest path is the smallest k such that there is at least one path of length k from i

to j. Therefore we can find the length by computing G, G2, G3, ..., until we find the first k such that the

(i, j)th entry of Gk is not zero.
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where j and l denote two given agents in g, ajl(i) is the number of shortest paths be-

tween j and l through i in g, ajl is the number of shortest paths between j and l in g

and (n− 1) (n− 2) is the total number of links in a complete directed network. Note that

betweenness centrality, as the degree and closeness centrality measures, is a parameter-free

index while the Bonacich centrality is not since it depends on the decay factor φ.

The clustering coefficient of individual i in network g is given by:

ψi(g) =

�
l∈Ni(g)

�
k∈Ni(g)

glk

ni(g) [ni(g)− 1]
for all i ∈ {i ∈ N | ni(g) ≥ 2} (46)

where N is the set of nodes in network g, Ni(g) = {j 	= i | gij = 1} is the set of i’s direct

contacts and ni(g), its size (or cardinality of this set). ψi(g) gives us the percentage of an

individual’s links who are linked to each other. This is an indication of the percentage of

transitive triads61 around individual i. It thus measures the probability with which two of

i’s friends are also friends.

Unit centralities in a network can have large or small variance. Networks where one unit

(or a low number of units) has (have) much higher centrality than other units are highly

centralized. On the other hand, if unit centrality measures do not differ significantly, the

centrality of a network is low.

From these individual measures we can compute the corresponding measures at the net-

work level using the definition provided by Freeman (1979). In our notation, the Freeman

(1979)’s network index for a given network g is

CA(g) =

�n
i=1(C

A
i∗ − CAi )

max
�n
i=1(C

A
i∗ − CAi )

where CAi∗ is the largest value of CAi for any individual in the network and max
�n
i=1(C

A
i∗−CAi )

is the maximum possible sum of differences in unit centrality for a network of n individuals.

The network index is thus a number between 0 and 1, being 0 if all units have equal value,

and 1, when one unit completely dominates all other units. The individual degree, closeness

(c1i(g)) and betweenness centrality measures then lead to the network degree, closeness and

betweenness centrality measures. For the alternative individual closeness centrality measure

c2i(g), the corresponding network closeness centrality is given by 1
n

�
i c2i(g). Let us finally

introduce other widely used network characteristics.

The average degree is the total number of links divided by n (i.e. 1
n

�
i ḡi).

61A triad is the subgraph on three individuals, so that when studying triads, one has to consider the

threesome of individuals and all the links between them. A triad involving individuals i, j, k is transitive if

whenever i→ j and j → k, then i→ k.
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The average distance of a network (also known as the average path length) is defined as

the average number of steps along the shortest paths for all possible pairs of network nodes

(i.e.
�

(i,j)∈C(g) d (i, j) /c(g), where c(g) is the size of C(g) = {(i, j)|i 	= j, d(i, j) 	=∞}).
The diameter of a network is the largest (shortest) distance between any two nodes in

the network given by max(i,j)∈C(g) d(i, j). The diameter is set to be zero if d(i, j) = ∞, for

all i, j. It thus provides an upper-bound measure of the size of the network.

Network density is simply the fraction of ties present in a network over all possible ones

(it is the average degree divided by n− 1). It ranges from 0 to 1 as networks get denser.

Network asymmetry is measured using the variance of connectivities given by 1
n−1

max(ḡi)/min(ḡi).

Note for directed G in the data, min(ḡi) could be zero and thus the measure is undefined.

Hence, we report the network asymmetry of the corresponding undirected G.

Network redundancy or clustering is the fraction of all transitive triads over the total

number of triads given by
�
i ni(g) [ni(g)− 1]ψi(g)/

�
j nj(g) [nj(g)− 1] . It measures the

probability with which two of i’s friends know each other.

Finally, network assortativity measures the correlation patterns among high-degree nodes.

If high-degree nodes tend to be connected to other high-degree nodes, then the network is

said to be positive assortative. The degree of assortativity of the network g is computed as:�
i

�
j (ḡi −m) (ḡj −m) /

�
i (ḡi −m)2, where m is the average degree in network g.
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Table 1a: 2SLS and GMM Estimations 
All Crimes 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Peer effects (φ) 0.0399*** 0.0282*** 0.0357*** 0.0505*** 0.0396*** 0.0462*** 
 (0.0150) (0.0118) (0.0118) (0.0132) (0.0111) (0.0111) 
Female -0.3007*** -0.2977*** -0.2996*** -0.3008*** -0.2969*** -0.2986*** 
 (0.0605) (0.0605) (0.0605) (0.0606) (0.0605) (0.0605) 
Student grade -0.0328 -0.0357 -0.0338 -0.0294 -0.0320 -0.0304 
 (0.0329) (0.0328) (0.0328) (0.0329) (0.0328) (0.0328) 
Black or African American 0.0489 0.0417 0.0464 0.0559 0.0491 0.0530 
 (0.1489) (0.1487) (0.1488) (0.1490) (0.1488) (0.1489) 
Other races -0.0095 -0.0149 -0.0114 -0.0107 -0.0202 -0.0177 
 (0.1539) (0.1538) (0.1538) (0.1540) (0.1538) (0.1539) 
Religion Practice -0.0177 -0.0174 -0.0176 -0.0173 -0.0168 -0.0170 
 (0.0257) (0.0257) (0.0257) (0.0257) (0.0257) (0.0257) 
Parental Education 0.0094 0.0101 0.0097 0.0080 0.0083 0.0079 
 (0.0352) (0.0351) (0.0352) (0.0352) (0.0352) (0.0352) 
Mathematics score 0.0749** 0.0741** 0.0746** 0.0750** 0.0739** 0.0743** 
 (0.0340) (0.0340) (0.0340) (0.0341) (0.0340) (0.0341) 
Self esteem 0.0065 0.0067 0.0066 0.0065 0.0067 0.0066 
 (0.0308) (0.0308) (0.0308) (0.0309) (0.0308) (0.0309) 
Physical development 0.0570** 0.0573** 0.0571** 0.0585** 0.0597** 0.0596** 
 (0.0271) (0.0271) (0.0271) (0.0272) (0.0271) (0.0271) 
Parental care -0.1738 -0.1782 -0.1754 -0.1719 -0.1781 -0.1755 
 (0.1165) (0.1164) (0.1164) (0.1166) (0.1164) (0.1165) 
School attachment -0.0457 -0.0452 -0.0455 -0.0453 -0.0440 -0.0443 
 (0.0350) (0.0349) (0.0349) (0.0350) (0.0350) (0.0350) 
Relationship with teachers 0.2544*** 0.2533*** 0.2540*** 0.2561*** 0.2555*** 0.2561*** 
 (0.0327) (0.0327) (0.0327) (0.0327) (0.0327) (0.0327) 
Social inclusion -0.0953** -0.0941** -0.0949** -0.0965** -0.0955** -0.0961** 
 (0.0433) (0.0433) (0.0433) (0.0433) (0.0433) (0.0433) 
Residential building quality 0.0873** 0.0871** 0.0872** 0.0871** 0.0865** 0.0866** 
 (0.0416) (0.0416) (0.0416) (0.0416) (0.0416) (0.0416) 
Residential area urban -0.2017** -0.2045** -0.2027** -0.1946** -0.1951** -0.1935** 
 (0.0854) (0.0854) (0.0854) (0.0855) (0.0854) (0.0854) 
Household size -0.0235 -0.0237 -0.0236 -0.0233 -0.0236 -0.0234 
 (0.0244) (0.0244) (0.0244) (0.0244) (0.0244) (0.0244) 
Two married parent family -0.2844* -0.2873* -0.2854* -0.2803* -0.2824* -0.2810* 
 (0.1606) (0.1605) (0.1605) (0.1608) (0.1606) (0.1607) 
Single parent family -0.2629 -0.2648 -0.2636 -0.2614 -0.2633 -0.2624 
 (0.1621) (0.1620) (0.1620) (0.1623) (0.1621) (0.1622) 
Parental occupation dummies yes yes yes yes yes yes 
Network fixed effects yes yes yes yes yes yes 
       
First stage F statistic 52.924*** 36.670***     
OIR test p-value 0.205   0.189   
Notes: Dependent variable: Index of delinquency. The number of observations is 1,297 individuals over 150 networks. Estimated 
coefficients and Standard errors (in parentheses) are reported. *,**,*** denote statistical significance at the 10, 5 and 1 percent level. 



Table 1b: 2SLS and GMM Estimations 
Type-1 Crimes 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Peer effects (φ)   0.0459***   0.0321***   0.0388***   0.0486***   0.0379***   0.0436*** 
  (0.0152)  (0.0124)  (0.0124)  (0.0134)  (0.0115)  (0.0115) 
Female  -0.3066***  -0.3035***  -0.3050***  -0.3069***  -0.3041***  -0.3054*** 
  (0.0705)  (0.0704)  (0.0704)  (0.0705)  (0.0704)  (0.0705) 
Student grade  -0.0377  -0.0417  -0.0398  -0.0372  -0.0410  -0.0394 
  (0.0378)  (0.0376)  (0.0376)  (0.0377)  (0.0376)  (0.0376) 
Black or African American  -0.0704  -0.0820  -0.0763  -0.0684  -0.0780  -0.0734 
  (0.1714)  (0.1710)  (0.1711)  (0.1713)  (0.1710)  (0.1711) 
Other races  -0.0611  -0.0713  -0.0663  -0.0604  -0.0721  -0.0682 
  (0.1820)  (0.1817)  (0.1818)  (0.1820)  (0.1817)  (0.1818) 
Religion Practice   0.0153   0.0155   0.0154   0.0154   0.0157   0.0156 
  (0.0300)  (0.0300)  (0.0300)  (0.0300)  (0.0300)  (0.0300) 
Parental Education   0.0247   0.0261   0.0254   0.0243   0.0252   0.0246 
  (0.0423)  (0.0422)  (0.0422)  (0.0423)  (0.0422)  (0.0422) 
Mathematics score   0.0695*   0.0692*   0.0694*   0.0696*   0.0693*   0.0694* 
  (0.0401)  (0.0401)  (0.0401)  (0.0402)  (0.0401)  (0.0401) 
Self esteem   0.0287   0.0287   0.0287   0.0283   0.0277   0.0277 
  (0.0361)  (0.0361)  (0.0361)  (0.0361)  (0.0361)  (0.0361) 
Physical development   0.0693**   0.0698**   0.0696**   0.0696**   0.0708**   0.0706** 
  (0.0317)  (0.0317)  (0.0317)  (0.0317)  (0.0317)  (0.0317) 
Parental care  -0.1933  -0.1987  -0.1960  -0.1928  -0.1988  -0.1964 
  (0.1359)  (0.1357)  (0.1358)  (0.1360)  (0.1358)  (0.1358) 
School attachment  -0.0548  -0.0528  -0.0538  -0.0549  -0.0524  -0.0532 
  (0.0407)  (0.0406)  (0.0406)  (0.0407)  (0.0406)  (0.0406) 
Relationship with teachers   0.2314***   0.2301***   0.2307***   0.2319***   0.2312***   0.2317*** 
  (0.0395)  (0.0395)  (0.0395)  (0.0395)  (0.0395)  (0.0395) 
Social inclusion  -0.1412***  -0.1391***  -0.1401***  -0.1413***  -0.1391***  -0.1399*** 
  (0.0495)  (0.0494)  (0.0494)  (0.0495)  (0.0494)  (0.0494) 
Residential building quality   0.0594   0.0602   0.0598   0.0594   0.0604   0.0600 
  (0.0486)  (0.0485)  (0.0485)  (0.0486)  (0.0485)  (0.0486) 
Residential area urban  -0.1462  -0.1502  -0.1483  -0.1442  -0.1448  -0.1432 
  (0.1002)  (0.1001)  (0.1001)  (0.1002)  (0.1001)  (0.1002) 
Household size  -0.0247  -0.0251  -0.0249  -0.0246  -0.0251  -0.0249 
  (0.0284)  (0.0284)  (0.0284)  (0.0285)  (0.0284)  (0.0284) 
Two married parent family  -0.4614**  -0.4659**  -0.4637**  -0.4595**  -0.4609**  -0.4590** 
  (0.1975)  (0.1972)  (0.1973)  (0.1976)  (0.1973)  (0.1974) 
Single parent family  -0.4627**  -0.4649**  -0.4638**  -0.4620**  -0.4627**  -0.4617** 
  (0.2007)  (0.2004)  (0.2005)  (0.2007)  (0.2005)  (0.2006) 
Parental occupation dummies yes yes yes yes yes yes 
Network fixed effects yes yes yes yes yes yes 
       
First stage F statistic 52.274** 38.247**     
OIR test p-value 0.528   0.580   

Notes: Dependent variable: Index of delinquency. The number of observations is 1,099  individuals over 132 networks.  Estimated 
coefficients and Standard errors (in parentheses) are reported. *,**,*** denote statistical significance at the 10, 5 and 1 percent level. 

 
  



Table 1c: 2SLS and GMM Estimations 
Type-2 Crimes 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Peer effects (φ)   0.0453   0.0336   0.0609**   0.0770**   0.0553**   0.0762*** 
  (0.0399)  (0.0286)  (0.0287)  (0.0317)  (0.0258)  (0.0257) 
Female  -0.3142**  -0.3126**  -0.3163**  -0.3102**  -0.3054**  -0.3077** 
  (0.1379)  (0.1378)  (0.1380)  (0.1383)  (0.1380)  (0.1383) 
Student grade  -0.0276  -0.0279  -0.0273  -0.0201  -0.0195  -0.0187 
  (0.0744)  (0.0744)  (0.0745)  (0.0747)  (0.0745)  (0.0747) 
Black or African American   0.0425   0.0423   0.0428   0.0421   0.0396   0.0407 
  (0.3062)  (0.3061)  (0.3065)  (0.3073)  (0.3066)  (0.3073) 
Other races  -0.1041  -0.1219  -0.0807  -0.1101  -0.1522  -0.1232 
  (0.3366)  (0.3339)  (0.3343)  (0.3351)  (0.3334)  (0.3342) 
Religion Practice  -0.0252  -0.0253  -0.0252  -0.0229  -0.0230  -0.0229 
  (0.0554)  (0.0554)  (0.0555)  (0.0556)  (0.0555)  (0.0556) 
Parental Education   0.0870   0.0874   0.0865   0.0866   0.0880   0.0868 
  (0.0722)  (0.0722)  (0.0723)  (0.0725)  (0.0723)  (0.0725) 
Mathematics score   0.0430   0.0429   0.0430   0.0459   0.0466   0.0465 
  (0.0714)  (0.0714)  (0.0715)  (0.0717)  (0.0715)  (0.0717) 
Self esteem  -0.0031  -0.0028  -0.0035  -0.0009   0.0002  -0.0007 
  (0.0637)  (0.0637)  (0.0638)  (0.0640)  (0.0638)  (0.0640) 
Physical development   0.1222***   0.1229***   0.1212***   0.1211***   0.1223***   0.1210*** 
  (0.0580)  (0.0579)  (0.0580)  (0.0582)  (0.0580)  (0.0582) 
Parental care  -0.1770  -0.1817  -0.1706  -0.1714  -0.1808  -0.1723 
  (0.2335)  (0.2332)  (0.2335)  (0.2341)  (0.2335)  (0.2340) 
School attachment  -0.1767***  -0.1773***  -0.1759***  -0.1776***  -0.1788***  -0.1776*** 
  (0.0693)  (0.0693)  (0.0693)  (0.0695)  (0.0693)  (0.0695) 
Relationship with teachers   0.2741***   0.2738***   0.2744***   0.2730***   0.2727***   0.2734*** 
  (0.0635)  (0.0634)  (0.0635)  (0.0637)  (0.0635)  (0.0637) 
Social inclusion   0.0196   0.0205   0.0184   0.0143   0.0154   0.0138 
  (0.0874)  (0.0873)  (0.0875)  (0.0877)  (0.0875)  (0.0877) 
Residential building quality   0.0852   0.0844   0.0863   0.0841   0.0824   0.0838 
  (0.0810)  (0.0810)  (0.0811)  (0.0813)  (0.0811)  (0.0813) 
Residential area urban  -0.1682  -0.1701  -0.1657  -0.1742  -0.1798  -0.1779 
  (0.1946)  (0.1945)  (0.1948)  (0.1952)  (0.1947)  (0.1952) 
Household size  -0.0436  -0.0430  -0.0443  -0.0422  -0.0406  -0.0416 
  (0.0447)  (0.0447)  (0.0448)  (0.0449)  (0.0448)  (0.0449) 
Two married parent family  -0.2383  -0.2376  -0.2392  -0.2330  -0.2302  -0.2316 
  (0.2736)  (0.2735)  (0.2739)  (0.2746)  (0.2739)  (0.2746) 
Single parent family  -0.3043  -0.3043  -0.3043  -0.3061  -0.3048  -0.3052 
  (0.2776)  (0.2776)  (0.2779)  (0.2786)  (0.2780)  (0.2786) 
Parental occupation dummies yes yes yes yes yes yes 
Network fixed effects yes yes yes yes yes yes 
       
First stage F statistic 11.865 15.497     
OIR test p-value 0.149   0.115   

Notes: Dependent variable: Index of delinquency. The number of observations is 545 individuals over 75 networks. Estimated coefficients 
and Standard errors (in parentheses) are reported. *,**,*** denote statistical significance at the 10, 5 and 1 percent level. 

 



Table 2: First step Heckman selection model 
 

 All crimes Type-1 crimes Type-2 crimes 

       

Female -0.0276 0.1258*** -0.3873*** 
 (0.0353) (0.0337) (0.0315) 
Student grade 0.0590*** 0.0718*** -0.0175* 
 (0.0114) (0.0109) (0.0103) 
Black or African American 0.0599 -0.0448 0.1838*** 
 (0.0480) (0.0451) (0.0427) 
Other races 0.1126** 0.1257** 0.1517*** 
 (0.0533) (0.0512) (0.0470) 
Religion Practice -0.0331** -0.0233* -0.0379*** 
 (0.0132) (0.0126) (0.0118) 
Parental Education -0.0077 0.0204 -0.0389** 
 (0.0193) (0.0182) (0.0171) 
Mathematics score 0.0611*** 0.0435** 0.1051*** 
 (0.0185) (0.0175) (0.0163) 
Self esteem -0.0318* -0.0232 -0.0419*** 
 (0.0174) (0.0166) (0.0155) 
Physical development 0.0863*** 0.0771*** 0.0736*** 
 (0.0160) (0.0152) (0.0143) 
Parental care -0.0985 -0.1010 -0.0444 
 (0.0719) (0.0678) (0.0609) 
School attachment -0.0431** -0.0336* -0.0833*** 
 (0.0199) (0.0187) (0.0172) 
Relationship with teachers 0.3109*** 0.2820*** 0.2627*** 
 (0.0227) (0.0207) (0.0183) 
Social inclusion -0.0439* -0.0693*** -0.0957*** 
 (0.0242) (0.0231) (0.0213) 
Residential building quality 0.0182 0.0152 0.0923*** 
 (0.0234) (0.0222) (0.0209) 
Residential area urban 0.1116*** 0.1105*** 0.1114*** 
 (0.0394) (0.0376) (0.0358) 
Household size 0.0129 0.0054 0.0238** 
 (0.0125) (0.0118) (0.0111) 
Two married parent family 0.0069 0.0834 -0.2588*** 
 (0.0941) (0.0879) (0.0835) 
Single parent family -0.0291 0.0442 -0.2345*** 
 (0.0954) (0.0891) (0.0848) 
Parental occupation manager 0.1276 0.1258 0.0002 
 (0.0860) (0.0818) (0.0777) 
Parent occupation professional/technical 0.2065*** 0.2061*** -0.0294 
 (0.0794) (0.0752) (0.0713) 
Parent occupation manual 0.1970** 0.2170*** 0.0745 
 (0.0832) (0.0789) (0.0745) 
Parent occupation office or sales worker 0.1105 0.1347** 0.0313 
 (0.0700) (0.0662) (0.0632) 
Parent occupation military or security 0.0045 -0.0113 -0.0566 
 (0.1211) (0.1159) (0.1111) 
Parent occupation farm or fishery -0.1137 -0.0788 -0.2638* 
 (0.1486) (0.1442) (0.1456) 
Parental occupation other 0.1790** 0.1568** 0.1000 

 (0.0794) (0.0750) (0.0715) 
Notes: Dependent variable: Probability to commit crime of a given type. The number of observations is 6,993 individuals over 1,596 
networks. Probit estimation result. Marginal effects and standard errors (in parentheses) are reported. *,**,*** denote statistical 
significance at the 10, 5 and 1 percent level. 
  



Table 3: 2SLS-1 Estimation results with/without endogenous participation  
 

 All Crimes Type-1 Crimes Type-2 Crimes 
Peer effects (φ)   0.0399***   0.0387   0.0459***   0.0455***   0.0453   0.0428 
  (0.0150)  (0.0145)  (0.0152)  (0.0153)  (0.0399)  (0.0466) 
Inverse Mills Ratio    2.1522*    1.5215    3.8481 
   (1.2006)   (1.5416)   (2.4440) 
Female  -0.3007***  -0.3334***  -0.3066***  -0.2249**  -0.3142***  -1.2035** 
  (0.0605)  (0.0723)  (0.0705)  (0.1154)  (0.1379)  (0.6155) 
Student grade  -0.0328   0.0158  -0.0377   0.0112  -0.0276  -0.0625 
  (0.0329)  (0.0468)  (0.0378)  (0.0649)  (0.0744)  (0.1009) 
Black or African American   0.0489   0.1086  -0.0704  -0.0906   0.0425   0.5342 
  (0.1489)  (0.1679)  (0.1714)  (0.1809)  (0.3062)  (0.5307) 
Other races  -0.0095   0.0810  -0.0611   0.0244  -0.1041   0.2378 
  (0.1539)  (0.1764)  (0.1820)  (0.2116)  (0.3366)  (0.4765) 
Religion Practice  -0.0177  -0.0429   0.0153   0.0012  -0.0252  -0.1023 
  (0.0257)  (0.0333)  (0.0300)  (0.0354)  (0.0554)  (0.0946) 
Parental Education   0.0094   0.0025   0.0247   0.0401   0.0870  -0.0070 
  (0.0352)  (0.0408)  (0.0423)  (0.0474)  (0.0722)  (0.1200) 
Mathematics score   0.0749   0.1248**   0.0695   0.0977*   0.0430   0.2664 
  (0.0340)  (0.0500)  (0.0401)  (0.0522)  (0.0714)  (0.1834) 
Self esteem   0.0065  -0.0249   0.0287   0.0098  -0.0031  -0.1201 
  (0.0308)  (0.0397)  (0.0361)  (0.0431)  (0.0637)  (0.1152) 
Physical development   0.0570**   0.1348**   0.0693**   0.1238**   0.1222**   0.2963** 
  (0.0271)  (0.0563)  (0.0317)  (0.0662)  (0.0580)  (0.1423) 
Parental care  -0.1738  -0.2476  -0.1933  -0.2535  -0.1770  -0.2262 
  (0.1165)  (0.1521)  (0.1359)  (0.1648)  (0.2335)  (0.3451) 
School attachment  -0.0457  -0.0773  -0.0548  -0.0746  -0.1767  -0.3398 
  (0.0350)  (0.0466)  (0.0407)  (0.0493)  (0.0693)  (0.1544) 
Relationship with teachers   0.2544***   0.4917***   0.2314***   0.4092**   0.2741***   0.8091** 
  (0.0327)  (0.1469)  (0.0395)  (0.1907)  (0.0635)  (0.3681) 
Social inclusion  -0.0953  -0.1289  -0.1412  -0.1866   0.0196  -0.1811 
  (0.0433)  (0.0551)  (0.0495)  (0.0717)  (0.0874)  (0.1869) 
Residential building quality   0.0873   0.1054**   0.0594   0.0709   0.0852   0.3004 
  (0.0416)  (0.0496)  (0.0486)  (0.0534)  (0.0810)  (0.1800) 
Residential area urban  -0.2017**  -0.1075  -0.1462  -0.0689  -0.1682   0.0894 
  (0.0854)  (0.1128)  (0.1002)  (0.1349)  (0.1946)  (0.3022) 
Household size  -0.0235  -0.0138  -0.0247  -0.0215  -0.0436   0.0114 
  (0.0244)  (0.0287)  (0.0284)  (0.0305)  (0.0447)  (0.0721) 
Two married parent family  -0.2844**  -0.2890  -0.4614**  -0.4072**  -0.2383  -0.7699 
  (0.1606)  (0.1858)  (0.1975)  (0.2177)  (0.2736)  (0.5465) 
Single parent family  -0.2629  -0.3035  -0.4627**  -0.4382**  -0.3043  -0.7940 
  (0.1621)  (0.1898)  (0.2007)  (0.2155)  (0.2776)  (0.5404) 
Parental occupation dummies yes yes yes yes yes yes 
Network fixed effects yes yes yes yes yes yes 
       
First stage F statistic 52.924 52.752 52.274 52.183 11.865 11.910 
OIR test p-value 0.205 0.276 0.528 0.543 0.149 0.654 

Notes: Dependent variable: Index of delinquency. Estimated coefficients and Standard errors (in parentheses) are reported. *,**,*** denote statistical 
significance at the 10, 5 and 1 percent level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4a: Dynamic network formation and key players for all crimes when ci = ci 
Network 
(# nodes) 

Highest 
Between 

Highest 
Bonacich 

KP 
Invariant 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Invariant 

KP 

ET crime 
Dynamics 

KP 

Density 
Initial 

(Diameter) 

Density 
Dynamics 
(Diameter) 

Density 
Invariant KP 
(Diameter) 

Density 
Dynamics KP 

(Diameter) 

# days 
Before 

(after KP) 
1  

(6) 
3 1 3 3 11.235 11.216 8.718 8.783 0.167 

(1)
0.167 

(1)
0.200 

(1)
0.250 

(1)
0 

(1)
2 

(4) 
2 4 3 3 7.732 7.762 5.489 5.489 0.333 

(3) 
0.333 

(3) 
0.500 

(2) 
0.500 

(2) 
0 

(0) 
3 

(5) 
2 2 2 2 12.631 12.616 9.222 9.222 0.300 

(3) 
0.300 

(3) 
0.333 

(1) 
0.333 

(1) 
0 

(0) 
4 

(4) 
1 1 1 1 8.117 8.138 5.532 5.663 0.250 

(2) 
0.250 

(2) 
0.167 

(1) 
0.500 

(1) 
0 

(2) 
5 

(64) 
28 57 35 62 148.653 148.204 144.184 144.858 0.0303 

(10) 
0.0306 

(10) 
0.0294 

(8) 
0.030 
(10) 

0 
(0) 

6 
(6) 

6 5 6 6 13.137 13.077 10.379 10.379 0.167 
(1) 

0.167 
(1) 

0.200 
(1) 

0.200 
(1) 

0 
(0) 

7 
(7) 

1 3 5 5 15.191 15.223 12.468 12.756 0.143 
(2) 

0.143 
(2) 

0.167 
(1) 

0.333 
(2) 

0 
(5) 

8 
(6) 

6 4 5 5 11.378 11.297 8.797 8.797 0.400 
(4) 

0.400 
(4) 

0.400 
(3) 

0.400 
(3) 

0 
(0) 

9 
(34) 

8 30 24 30 74.768 75.0138 69.923 72.055 0.0615 
(7) 

0.0615 
(7) 

0.057 
(7) 

0.063 
(7) 

0 
(0) 

10 
(30) 

30 13 26 26 79.651 79.665 75.546 75.546 0.0402 
(3) 

0.0402 
(3) 

0.037 
(3) 

0.037 
(3) 

0 
(0) 

11 
(9) 

4 5 4 3 38.188 37.939 32.819 33.208 0.125 
(2)

0.125 
(2)

0.054 
(1)

0.125 
(2)

0 
(0)

12 
(6) 

5 5 5 5 12.962 13.023 10.156 10.156 0.167 
(3) 

0.167 
(3) 

0.150 
(1) 

0.150 
(1) 

0 
(0) 

13 
(5) 

2 1 1 1 11.657 11.593 8.524 8.524 0.250 
(4) 

0.250 
(4) 

0.333 
(3) 

0.333 
(3) 

0 
(0) 

14 
(51) 

6 4 39 13 142.113 141.823 137.131 137.523 0.039 
(10) 

0.039 
(10) 

0.038 
(10) 

0.040 
(10) 

0 
(0) 

15 
(4) 

1 1 1 1 14.524 14.467 10.493 10.493 0.250 
(1) 

0.250 
(1) 

0.167 
(1) 

0.167 
(1) 

0 
(0) 

16 
(5) 

3 4 5 5 9.556 9.5605 7.233 7.547 0.300 
(3) 

0.300 
(3) 

0.333 
(2) 

0.417  
(2) 

0 
(1) 

17 
(4) 

2 3 4 4 7.366 7.367 5.119 5.217 0.417 
(3) 

0.417 
(3) 

0.50 
(2) 

0.667 
(2) 

0 
(1) 

18 
(4) 

3 1 3 3 10.884 10.847 7.226 8.106 0.333 
(2) 

0.333 
(2) 

0.167 
(1) 

0.667 
(2) 

0 
(3) 

19 
(9) 

9 6 6 1 23.911 23.736 20.528 20.945 0.139 
(5) 

0.139 
(5) 

0.107 
(5) 

0.161 
(4) 

0 
(1) 

20 
(5) 

3 1 2 5 14.123 14.109 10.787 10.868 0.350 
(3) 

0.350 
(3) 

0.417 
(3) 

0.333 
(1) 

0 
(0) 



Table 4b: Dynamic network formation and key players for all crimes when ci = ci – 0.05 (Small networks only) 
Network 
(# nodes) 

Highest 
Between 

Highest 
Bonacich 

KP 
Invariant 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Invariant 

KP 

ET crime 
Dynamics 

KP 

Density 
Initial 

(Diameter) 

Density 
Dynamics 
(Diameter) 

Density 
Invariant KP 
(Diameter) 

Density 
Dynamics KP 

(Diameter) 

# days 
Before 

(after KP) 
1 

(6) 
3 1 3 3 11.235 11.627 8.718 9.056 0.167 

(1)
0.333 

(2)
0.200 

(1)
0.400 

(1)
5 

(4)
2 

(4) 
2 4 3 4 7.732 8.363 5.488 5.671 0.333 

(3) 
0.750 

(2) 
0.500 

(2) 
0.333  

(1) 
5 

(1) 
3 

(5) 
2 2 2 2 12.631 13.674 9.223 9.223 0.300 

(3) 
0.550 

(3) 
0.333 

(1) 
0.333 

(1) 
5 

(0) 
4 

(4) 
1 1 1 1 8.117 8.852 5.532 5.663 0.250 

(2) 
0.667 
 (2) 

0.167 
(1) 

0.500 
(1) 

5 
(2) 

6 
(6) 

6 5 6 4 13.137 14.382 10.379 11.200 0.167 
(1) 

0.367 
(3) 

0.200 
(1) 

0.200 
(1) 

6 
(0) 

7 
(7) 

1 3 5 5 15.191 17.913 12.469 12.756 0.143 
(2) 

0.405 
(2) 

0.167 
(1) 

0.333 
(2) 

11 
(5) 

8 
(6) 

6 4 5 5 11.378 12.202 8.798 9.553 0.400 
(4) 

0.600 
(2) 

0.400 
(3) 

0.650 
(2) 

6 
(5) 

11 
(9) 

4 5 4 8 38.188 44.114 32.820 34.078 0.125 
(2) 

0.417 
(2) 

0.054 
(1) 

0.250 
(2) 

21 
(6) 

12 
(6) 

5 5 5 5 12.962 14.352 10.156 11.045 0.167 
(3) 

0.367 
(2) 

0.150 
(1) 

0.350 
(2) 

6 
(4) 

13 
(5) 

2 1 1 3 11.657 12.710 8.524 8.696 0.250 
(4) 

0.600 
(2) 

0.333 
(3) 

0.250 
(2) 

7 
(0) 

15 
(4) 

1 1 1 1 14.524 15.516 10.493 10.493 0.250 
(1)

0.583 
(2)

0.167 
(1)

0.167 
(1)

4 
(0)

16 
(5) 

3 4 5 5 9.556 10.933 7.235 7.548 0.300 
(3) 

0.550 
(3) 

0.333 
(2) 

0.417  
(2) 

5 
(1) 

17 
(4) 

2 3 4 4 7.366 7.885 5.119 5.216 0.417 
(3) 

0.833 
(2) 

0.50 
(2) 

0.667 
(2) 

5 
(1) 

18 
(4) 

3 1 3 3 10.884 11.866 7.227 8.108 0.333 
(2) 

0.667 
(3) 

0.167 
(1) 

0.667 
(2) 

4 
(3) 

19 
(9) 

9 6 6 1 23.911 26.383 20.525 20.945 0.139 
(5) 

0.264 
(3) 

0.107 
(5) 

0.161 
(4) 

9 
(1) 

20 
(5) 

3 1 2 5 14.123 15.010 10.789 11.211 0.350 
(3) 

0.550 
(2) 

0.417 
(3) 

0.500 
(2) 

4 
(2) 

21 
(4) 

2 3 2 2 7.348 7.752 4.775 5.3858 0.417 
(3) 

0.667 
(2) 

0.167 
(1) 

0.500 
(2) 

3 
(2) 

22 
(5) 

3 4 1 1 11.644 12.686 8.874 8.874 0.200 
(2) 

0.450 
(3) 

0.250 
(1) 

0.250 
(1) 

5 
(0) 

23 
(4) 

2 3 1 3 10.107 11.170 7.121 7.763 0.250 
(2) 

0.667 
 (2) 

0.333 
(2) 

0.667 
(1) 

5 
(2) 

24 
(4) 

3 1 3 2 8.501 8.855 6.210 6.452 0.250 
(1) 

0.417 
(1) 

0.167 
(1) 

0.500 
(1) 

2 
(1) 

 



 
Table 4c: Dynamic network formation and key players for all crimes when ci = 0 (Small networks only) 

Network 
(# nodes) 

Highest 
Between 

Highest 
Bonacich 

KP 
Invariant 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Invariant 

KP 

ET crime 
Dynamics 

KP 

Density 
Initial 

(Diameter) 

Density 
Dynamics 
(Diameter) 

Density 
Invariant KP 
(Diameter) 

Density 
Dynamics KP 

(Diameter) 

# days 
Before 

(after KP) 
1 

(6) 
3 1 3 3 11.235 12.578 8.718 9.329 0.167 

(1) 
0.833 

(1) 
0.200 

(1) 
0.800 

(1) 
20 

(12) 
2 

(4) 
2 4 3 4 7.732 8.724 5.488 5.671 0.333 

(3) 
1 

(1) 
0.500 

(2) 
0.333 

(1) 
8 

(1) 
3 

(5) 
2 2 2 2 12.631 14.579 9.223 10.222 0.300 

(3)
1 

(1)
0.333 

(1)
0.8333 

(2)
14 
(6)

4 
(4) 

1 1 1 1 8.117 8.960 5.532 5.789 0.250 
(2) 

1 
(1) 

0.167 
(1) 

0.833 
(2) 

9 
(4) 

6 
(6) 

6 5 6 6 13.137 16.298 10.379 11.587 0.167 
(1) 

1 
(1) 

0.200 
(1) 

0.550 
(2) 

25 
(7) 

7 
(7) 

1 3 5 5 15.191 18.981 12.469 15.175 0.143 
(2) 

0.643 
(2) 

0.167 
(1) 

1 
(1) 

21 
(25) 

8 
(6) 

6 4 5 5 11.378 13.007 8.798 9.983 0.400 
(4) 

1 
(1) 

0.400 
(3) 

1 
(1) 

18 
(12) 

11 
(9) 

4 5 4 8 38.188 56.666 32.820 46.009 0.125 
(2) 

1 
(1) 

0.054 
(1) 

1 
(1) 

63 
(48) 

12 
(6) 

5 5 5 5 12.962 15.327 10.156 11.637 0.167 
(3) 

1 
(1) 

0.150 
(1) 

0.350 
(2) 

6 
(4) 

13 
(5) 

2 1 1 3 11.657 13.438 8.524 9.291 0.250 
(4) 

1 
(1) 

0.333 
(3) 

0.750 
(1) 

15 
(6) 

15 
(4) 

1 1 1 3 14.524 15.961 10.493 11.000 0.250 
(1) 

1 
(1) 

0.167 
(1) 

0.333 
(1) 

9 
(1) 

16 
(5) 

3 4 5 1 9.556 11.970 7.235 8.877 0.300 
(3) 

1 
(1) 

0.333 
(2) 

1 
(1) 

14 
(7) 

17 
(4) 

2 3 4 4 7.366 8.059 5.119 5.403 0.417 
(3)

1 
(1)

0.50 
(2)

1 
(1)

7 
(3)

18 
(4) 

3 1 3 3 10.884 12.202 7.227 8.195 0.333 
(2) 

1 
(1) 

0.167 
(1) 

1 
(1) 

8 
(5) 

19 
(9) 

9 6 6 1 23.911 36.306 20.525 29.565 0.139 
(5) 

1 
(1) 

0.107 
(5) 

1 
(1) 

62 
(48) 

20 
(5) 

3 1 2 5 14.123 15.080 10.789 11.342 0.350 
(3) 

0.650 
(1) 

0.417 
(3) 

0.583 
(1) 

6 
(3) 

21 
(4) 

2 3 2 3 7.348 7.840 4.775 5.558 0.417 
(3) 

0.750 
(1) 

0.167 
(1) 

0.667 
(1) 

4 
(2) 

22 
(5) 

3 4 1 1 11.644 13.665 8.874 9.855 0.200 
(2) 

1 
(1) 

0.250 
(1) 

1 
(1) 

16 
(9) 

23 
(4) 

2 3 1 1 10.107 11.229 7.121 7.872 0.250 
(2) 

0.750 
(2) 

0.333 
(2) 

0.667 
(2) 

6 
(2) 

24 
(4) 

3 1 3 3 8.501 8.980 6.210 6.466 0.250 
(1) 

0.500 
(1) 

0.167 
(1) 

0.333 
(1) 

3 
(1) 



Table 4d: Dynamic network formation and key players for all crimes and with cost changes (Small networks only) 
 

Network 
(# nodes) 

KP 
Invariant 

KP 
Dynamics 

ci = ci 

KP 
Dynamics 

ci = ci -0.05 

KP 
Dynamics 

ci = 0 

T crime 
Initial 

ET crime 
Dynamics KP 

ci = ci 

ET crime 
Dynamics KP  

ci = ci -0.05 

ET crime 
Dynamics KP 

ci = 0 

Density 
Initial 

(Diameter) 

Density 
Dynamics KP 

(Diameter) 
ci = ci 

Density 
Dynamics KP 

(Diameter) 
ci = ci -0.05 

Density 
Dynamics KP 

(Diameter) 
ci = 0 

1  
(6) 

3 3 3 3 11.235 8.783 9.056 9.329 0.167 
(1) 

0.250 
(1) 

0.400 
(1) 

0.800 
(1) 

2 
(4) 

3 3 4 4 7.732 5.489 5.671 5.671 0.333 
(3) 

0.500 
(2) 

0.333  
(1) 

0.333 
(1) 

3 
(5) 

2 2 2 2 12.631 9.222 9.223 10.222 0.300 
(3) 

0.333 
(1) 

0.333 
(1) 

0.8333 
(2) 

4 
(4) 

1 1 1 1 8.117 5.663 5.663 5.789 0.250 
(2) 

0.500 
(1) 

0.500 
(1) 

0.833 
(2) 

6 
(6) 

6 6 4 6 13.137 10.379 11.200 11.587 0.167 
(1) 

0.200 
(1) 

0.200 
(1) 

0.550 
(2) 

7 
(7) 

5 5 5 5 15.191 12.756 12.756 15.175 0.143 
(2) 

0.333 
(2) 

0.333 
(2) 

1 
(1) 

8 
(6) 

5 5 5 5 11.378 8.797 9.553 9.983 0.400 
(4) 

0.400 
(3)

0.650 
(2) 

1 
(1) 

11 
(9) 

4 3 8 8 38.188 33.208 34.078 46.009 0.125 
(2) 

0.125 
(2) 

0.250 
(2) 

1 
(1) 

12 
(6) 

5 5 5 5 12.962 10.156 11.045 11.637 0.167 
(3) 

0.150 
(1) 

0.350 
(2) 

0.350 
(2) 

13 
(5) 

1 1 3 3 11.657 8.524 8.696 9.291 0.250 
(4) 

0.333 
(3)  

0.250 
(2) 

0.750 
(1) 

15 
(4) 

1 1 1 3 14.524 10.493 10.493 11.000 0.250 
(1) 

0.167 
(1) 

0.167 
(1) 

0.333 
(1) 

16 
(5) 

5 5 5 1 9.556 7.547 7.548 8.877 0.300 
(3) 

0.417  
(2) 

0.417  
(2) 

1 
(1) 

17 
(4) 

4 4 4 4 7.366 5.217 5.216 5.403 0.417 
(3) 

0.667 
(2) 

0.667 
(2) 

1 
(1) 

18 
(4) 

3 3 3 3 10.884 8.106 8.108 8.195 0.333 
(2) 

0.667 
(2) 

0.667 
(2) 

1 
(1) 

19 
(9) 

6 1 1 1 23.911 20.945 20.945 29.565 0.139 
(5) 

0.161 
(4) 

0.161 
(4) 

1 
(1) 

20 
(5) 

2 5 5 5 14.123 10.868 11.211 11.342 0.350 
(3) 

0.333 
(1) 

0.500 
(2) 

0.583 
(1) 

 



Table 5: Who is the Key Player?  
-Significant Differences- 

All crimes 
 

 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.53 0.50 0.23 0.42 0.0000 
Religion practice 3.65 1.41 3.28 1.57 0.0078 
Parent education 3.23 1.06 3.01 1.14 0.0279 
Mathematics score 2.18 1.00 2.53 1.05 0.0003 
Parental care 0.93 0.26 0.80 0.40 0.0002 
School attachment 4.12 0.87 3.71 1.07 0.0000 
Relationship with teachers 0.99 0.92 1.79 1.22 0.0000 
Social inclusion 4.47 0.74 4.23 0.86 0.0018 
Residential building quality 1.51 0.79 1.70 0.96 0.0226 
Two married parent families 0.74 0.44 0.61 0.49 0.0020 
Single parent family 0.22 0.42 0.30 0.46 0.0706 
Parent occupation manager  0.11 0.31 0.17 0.38 0.0704 
Parent occupation military or security 0.02 0.14 0.00 0.00 0.0000 
Parent occupation other 0.16 0.37 0.11 0.31 0.0673 
      
Friends’ characteristics      
Religious practice 2.52 1.98 3.02 1.80 0.0025 
Student grade 6.42 4.33 7.64 3.85 0.0006 
Parental education 2.30 1.66 2.61 1.54 0.0279 
Mathematics score 1.54 1.24 1.87 1.24 0.0033 
Self esteem 2.84 1.99 3.28 1.76 0.0066 
Physical development 2.44 1.76 2.69 1.52 0.0810 
Parental care 0.65 0.46 0.75 0.42 0.0152 
School attachment 2.90 1.99 3.35 1.74 0.0055 
Social inclusion 3.12 2.09 3.65 1.83 0.0019 
Residential building quality 1.05 0.89 1.19 0.83 0.0621 
Residential area urban 0.43 0.48 0.55 0.48 0.0033 
Household size 3.13 2.22 3.48 1.97 0.0474 
Single parent families 0.14 0.31 0.23 0.39 0.0105 
      
      
N.obs. 893  145   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Key Player versus Bonacich Centrality  
-Significant Differences- 

All crimes 
 

 Key Player 
Most Active 

Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Female 0.12 0.33 0.30 0.46 0.0080 
Social inclusion 3.98 0.86 4.39 0.82 0.0053 
Residential building quality 1.91 1.03 1.57 0.89 0.0459 
      
Friends’ characteristics      
Residential area urban 0.67 0.46 0.48 0.48 0.0231 
      
N.obs. 56  89   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 



Table 7: Who is the Key Player? 
-Significant Differences- 

Petty crimes 
 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.54 0.50 0.24 0.43 0.0000 
Mathematics score 2.17 1.00 2.44 1.01 0.0049 
Physical development 3.33 1.09 3.55 1.06 0.0325 
Parental care 0.93 0.25 0.74 0.44 0.0000 
School attachment 4.11 0.88 3.69 1.09 0.0001 
Relationship with teachers 0.99 0.94 1.62 1.16 0.0000 
Social inclusion 4.48 0.73 4.14 0.88 0.0001 
Residential area urban 0.56 0.50 0.65 0.48 0.0523 
Parent occupation manager 0.11 0.31 0.18 0.38 0.0463 
Parent occupation manual 0.33 0.47 0.22 0.41 0.0065 
      
Friends’ characteristics      
Student grade 6.53 4.39 7.66 3.95 0.0034 
Religion practice 2.29 1.65 2.69 1.57 0.0086 
Mathematics score 1.52 1.21 1.81 1.17 0.0108 
Self esteem 2.85 2.00 3.24 1.76 0.0224 
Parental care 0.65 0.46 0.75 0.42 0.0170 
School attachment 2.90 1.99 3.29 1.76 0.0251 
Social inclusion 3.12 2.09 3.62 1.86 0.0063 
Residential area urban 0.41 0.47 0.54 0.47 0.0047 
Single parent family 0.15 0.31 0.23 0.38 0.0181 
Parent occupation professional/technical  0.14 0.31 0.20 0.36 0.0646 
      
N.obs. 807  128   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
Table 8: Who is the Key Player?  

-Significant Differences- 
More serious crimes 

  All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.44 0.50 0.23 0.42 0.0004 
Physical development 3.25 1.11 3.69 1.04 0.0023 
School attachment 3.98 0.95 3.68 1.05 0.0271 
Relationship with teachers 1.16 1.04 1.97 1.35 0.0000 
Parent occupation manager 0.11 0.31 0.03 0.17 0.0022 
Parent occupation military or security 0.01 0.09 0.00 0.00 0.0833 
      
Friends’ characteristics      
School attachment 2.74 1.95 3.17 1.78 0.0721 
Social inclusion 3.07 2.11 3.53 1.96 0.0828 
Parent occupation military or security 0.01 0.07 0.00 0.00 0.0718 
Parent occupation farm or fishery 0.02 0.13 0.00 0.00 0.0115 
      
N.obs. 334  70   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 



Table 9: Key Player for Petty and Serious Crimes 
-Significant Differences- 

 
 Key Player 

Petty Crime 
Key Player 

More Serious Crime 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Black or African American 0.17 0.38 0.31 0.47 0.0308 
Self esteem 4.04 1.08 3.73 1.11 0.0542 
Parental care 0.74 0.44 0.90 0.30 0.0033 
Relationship with teachers 1.62 1.16 1.97 1.35 0.0723 
Social inclusion 4.14 0.88 4.47 0.70 0.0041 
Parent occupation manager 0.18 0.38 0.03 0.17 0.0002 
Parent occupation military or security 0.03 0.17 0.00 0.00 0.0451 
      
Friends’ characteristics      
Female 0.40 0.43 0.26 0.40 0.0315 
Black or African American 0.13 0.32 0.24 0.43 0.0539 
Relationship with teachers 0.70 0.71 1.05 1.03 0.0132 
Parent occupation manager 0.11 0.29 0.05 0.19 0.0825 
Parent occupation military or security 0.02 0.14 0.00 0.00 0.0575 
Parental occupation farm or fishery 0.02 0.11 0.00 0.00 0.1027 
      
N.obs. 128  70   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



 
Table 10: Key Player versus Bonacich centrality  

-Significant Differences- 
Petty crimes 

 
 Key Player 

Most Active 
Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Residential building quality 1.94 1.11 1.43 0.76 0.0073 
      
Friends’ characteristics      
Mathematics score 1.57 1.11 1.95 1.20 0.0690 
Relationship with teachers 0.57 0.58 0.78 0.76 0.0789 
      
N.obs. 47  81   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 
 
 

Table 11: Key Player versus Bonacich centrality  
-Significant Differences- 

More Serious crimes 
 

 Key Player 
Most Active 

Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Religion practice 3.96 1.26 3.40 1.41 0.0884 
Parental care 0.96 0.19 0.86 0.35 0.1056 
School attachment 3.92 1.01 3.52 0.99 0.1049 
Relationship with teachers 2.43 1.45 1.67 1.20 0.0256 
Residential area urban 0.61 0.50 0.81 0.40 0.0775 
      
Friends’ characteristics      
Other races 0.00 0.00 0.05 0.18 0.1031 
Relationship with teachers 1.31 1.15 0.87 0.91 0.0951 
Parental occupation professional/technical 0.23 0.42 0.07 0.20 0.0610 
      
N.obs. 28  42   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



Table 12: Key Players and Network Topology 
Individual centrality measures 

 
 All crimes 
 Betweenness Clustering Closeness Bonacich 

percentiles     
p50 0 0 0.33 2.49 
p75 0.02 0 0.50 3.51 
p90 0.20 0.17 0.75 5.20 
p95 0.33 0.50 0.83 5.83 
p99 0.42 1 1 6.99 

min 0 0 0 1.51 
max 0.5 1 1 9.39 
 Key Players Not the Most Active Criminals 
>p90 71% 58% 27% 21% 
 Petty crimes 
percentiles Betweenness Clustering Closeness Bonacich 

p50 0 0 0.33 2.78 
p75 0.05 0 0.57 3.63 
p90 0.33 0.17 0.75 5.51 
p95 0.33 0.5 0.83 6.23 
p99 0.5 1 1 7.31 

min 0 0 0 1.61 
max 0.5 1 1 7.60 
 Key Players Not the Most Active Criminals 
>p90 40% 72% 54% 8% 
 More serious crimes 
percentiles Betweenness Clustering Closeness Bonacich 

p50 0 0 0.40 2.50 
p75 0 0 0.67 4.21 
p90 0.09 0.21 0.67 6.70 
p95 0.17 1 0.75 7.62 
p99 0.5 1 1 11.37 

min 0 0 0 1.69 
max 0.5 1 1 11.37 
 Key Players Not the Most Active Criminals 
>p90 71% 71% 50% 14% 
     

 



Table 13: Key Players and Network Topology 
Network centrality measures 

 
 All crimes  
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal 
 

Network characteristics Mean St. dev Mean St. dev t-test  
      
Diameter 2.52 1.43 2.59 1.47 0.7534 
Average distance 1.43 0.44 1.44 0.41 0.8879 
Average degree 1.02 0.32 1.03 0.29 0.8402 
Density 0.23 0.10 0.24 0.10 0.6293 
Asymmetry 0.68 0.24 0.67 0.23 0.9666 
Network clustering 0.07 0.15 0.05 0.12 0.4527 
Network degree 0.12 0.12 0.13 0.12 0.7331 
Network closeness 0.30 0.12 0.30 0.14 0.5119 
Assortativity 1.60×10-17 1.81×10-16 5.27×10-18 1.06×10-16 0.6892 
Network betweeness- 0.13 0.12 0.15 0.12 0.3584 
N.obs. 56  89   
      

 Petty crimes  
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal 
 

Network characteristics Mean St. dev Mean St. dev t-test  
      
Diameter 2.53 1.40 2.62 1.53 0.7482 
Average distance 1.44 0.44 1.45 0.42 0.8793 
Average degree 1.04 0.33 1.03 0.29 0.8316 
Density 0.25 0.10 0.23 0.10 0.3710 
Asymmetry 0.68 0.22 0.66 0.22 0.6797 
Network clustering 0.05 0.14 0.06 0.12 0.7413 
Network degree 0.13 0.12 0.12 0.10 0.4249 
Network closeness 0.31 0.13 0.29 0.13 0.3919 
Assortativity 2.94×10-17 8.27×10-17 7.00×10-18 1.26×10-16 0.2275 
Network betweeness 0.16 0.13 0.14 0.12 0.3715 
N.obs. 47  81   
      

 More serious crimes  
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal 
 

Network characteristics Mean St. dev Mean St. dev t-test  
      
Diameter 2.36 1.03 2.21 1.16 0.5900 
Average distance 1.41 0.31 1.34 0.35 0.4370   
Average degree 1.04 0.33 0.98 0.23 0.4221 
Density 0.25 0.10 0.25 0.09 0.8746 
Asymmetry 0.73 0.20 0.76 0.20 0.1606 
Network clustering 0.06 0.14 0.05 0.11 0.7377 
Network degree 0.13 0.13 0.16 0.13 0.4338 
Network closeness 0.32 0.12 0.30 0.12 0.5638 
Assortativity 2.15×10-17 9.09×10-17 1.17×10-17 8.32×10-17 0.6481 
Network betweeness 0.18 0.15 0.13 0.13 0.1589 
N.obs. 28  42   
      
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 



Table 14a: Crime reduction when different policies are implemented (for ci = ci) 
Network 
(# nodes) 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Dynamics 

KP 

Reduction 
Crime 

KP (%) 

Reduction 
Crime 

AVERAGE (%) 
1  

(6) 
3 11.235 11.236 8.783 21.80 16.71 

2 
(4) 

3 7.732 7.740 5.489 29.08 21.78 

3 
(5) 

2 12.631 12.621 9.222 26.93 17.612 

4 
(4) 

1 8.117 8.130 5.663 30.35 24.64 

5 
(64) 

62 148.653 148.204 144.858 2.26 -3.27 

6 
(6) 

6 13.137 13.069 10.379 20.58 14.46 

7 
(7) 

5 15.191 15.208 12.756 16.13 11.84 

8 
(6) 

5 11.378 11.337 8.797 22.40 13.98 

9 
(34) 

30 74.768 75.014 72.055 3.94 -9.82 

10 
(30) 

26 79.651 79.665 75.546 5.17 1.53 

11 
(9) 

3 38.188 37.831 33.208 12.22 7.12 

12 
(6) 

5 12.962 12.990 10.156 21.81 12.88 

13 
(5) 

1 11.657 11.612 8.524 26.59 17.76 

14 
(51) 

13 142.113 141.823 137.523 3.032 -3.49 

15 
(4) 

1 14.524 14.420 10.493 27.23 25.55 

16 
(5) 

5 9.556 9.581 7.547 21.23 13.36 

17 
(4) 

4 7.366 7.3782 5.217 29.30 23.25 

18 
(4) 

3 10.884 10.850 8.106 25.29 22.319 

19 
(9) 

1 23.911 23.670 20.945 11.51 4.848 

20 
(5) 

5 14.123 14.138 10.868 23.13 18.92 

 



Table 14b: Average crime reduction when different policies are implemented by network size (for ci = ci) 
 

Network 
size 

Average % crime reduction of a 
key play policy 

Average % crime reduction of a 
random target policy 

4 28.94 23.86 
5 23.67 18.29 
6 20.21 14.05 
7 17.08 11.07 
8 15.46 10.44 
9 13.56 7.00 
10 12.87 6.29 
11 10.68 3.99 
12 10.72 2.18 
13 10.51 5.02 
15 8.28 0.60 
16 9.04 1.79 
26 5.05 0.96 
30 5.17 1.53 
34 3.94 -9.82 
37 3.73 0.23 
51 3.03 -3.49 
64 2.26 -3.27 
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