NOTA DI LAVORO
42.2012

Intermediation in Networks

By Jan-Peter Siedlarek, Department of Economics, European University Institute
Climate Change and Sustainable Development Series
Editor: Carlo Carraro

Intermediation in Networks
By Jan-Peter Siedlarek, Department of Economics, European University Institute

Summary
This paper studies bargaining and exchange in a networked market with intermediation. Possibilities to trade are restricted through a network of existing relationships and traders bargain over the division of available gains from trade along different feasible routes. Using a stochastic model of bargaining, I characterize stationary equilibrium payoffs as the fixed point of a set of intuitive value function equations and study efficiency and the relationship between network structure and payoffs. In equilibrium, trade is never unduly delayed but it may take place too early and in states where delay would be efficient. The inefficiency arises from a hold-up threat and the inability of bargaining parties credibly to commit to a split in a future period. The model also shows how with competing trade routes as trade frictions go to zero agents that are not essential to a trade opportunity receive a payoff of zero.

Keywords: Stochastic Games, Bargaining, Random Matching, Middlemen, Network

JEL Classification: C73, C78, L14

I am particularly grateful to Fernando Vega-Redondo for extensive discussions and advice throughout and to Douglas Gale for guidance on an early version of this project. Thanks to Heski Bar-Isaac, Edoardo Gallo, Piero Gottardi, Debraj Ray, Tomás Rodríguez Barraquer, Matan Tsur as well as seminar participants at the EUI, Microsoft Research, NYU and the 17th Coalition Theory Network Workshop for helpful comments and suggestions. All remaining errors are mine.

This paper was presented at the 17th Coalition Theory Network Workshop organised by the Centre d’Économie de la Sorbonne of the Université Paris 1 Panthéon-Sorbonne, held in Paris, France, on 3-4 February 2012.

Address for correspondence:
Jan-Peter Siedlarek
Department of Economics,
European University Institute
Florence, Italy
E-mail: janpeter.siedlarek@eui.eu

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Intermediation in Networks

Jan-Peter Siedlarek *
janpeter.siedlarek@eui.eu

WORKING PAPER
This version printed: 30 April 2012

Abstract

This paper studies bargaining and exchange in a networked market with intermediation. Possibilities to trade are restricted through a network of existing relationships and traders bargain over the division of available gains from trade along different feasible routes. Using a stochastic model of bargaining, I characterize stationary equilibrium payoffs as the fixed point of a set of intuitive value function equations and study efficiency and the relationship between network structure and payoffs. In equilibrium, trade is never unduly delayed but it may take place too early and in states where delay would be efficient. The inefficiency arises from a hold-up threat and the inability of bargaining parties credibly to commit to a split in a future period. The model also shows how with competing trade routes as trade frictions go to zero agents that are not essential to a trade opportunity receive a payoff of zero.

JEL Classification: C73, C78, L14

Keywords: stochastic games, bargaining, random matching, middlemen, network

*Department of Economics, European University Institute, Florence, Italy. I am particularly grateful to Fernando Vega-Redondo for extensive discussions and advice throughout and to Douglas Gale for guidance on an early version of this project. Thanks to Heski Bar-Isaac, Edoardo Gallo, Piero Gottardi, Debraj Ray, Tomás Rodríguez Barraquer, Matan Tsur as well as seminar participants at the EUI, Microsoft Research, NYU and the 17th Coalition Theory Network Workshop for helpful comments and suggestions. All remaining errors are mine.
1 Introduction

This paper presents a model of bargaining and exchange to study intermediation in networks. The network perspective focuses on the study of markets in which existing relationships matter for the interaction of economic agents. Such networked markets appear in a variety of settings, including for example markets for agricultural goods in developing countries as well as financial markets involving assets that are traded over-the-counter (OTC). Recent years have seen a significant increase in such off-exchange trading\(^1\) which often involves brokers and market makers that provide intermediation services. The network structure of trade relationships amongst banks is documented by Upper and Worms (2004) and Craig and von Peter (2010) who report a tiered structure in the German interbank market. Their data match a core-periphery structure with many peripheral banks that do not trade directly with others but only through the well-connected intermediaries of the core.

In this paper I employ an explicit network perspective on exchange with intermediation to focus attention on the role and value of relationships used to facilitate transactions between parties that otherwise might lack the opportunity to conduct trade directly. Such reliance on existing relationships might arise from reputational concerns, trust or the need for collateral provisions to be in place, for example from previous transactions. Existing relationships may also help in overcoming significant search costs involved in identifying trade opportunities or finding a suitable counterparty for more specialized asset classes. It is the provision of intermediation in settings where such relationships are critical to trade that this paper deals with. I present a model of bargaining and exchange with intermediation in a network setting, investigating the patterns to intermediation and their dependence on the network structure as well as the payoffs for intermediaries and trading parties.

The paper is structured as follows. Section 2 provides the literature context for the research questions investigated. Section 3 sets out the main model and Section 4 provides

\(^{1}\)The Bank of International Settlements in quarterly data reports the total amount of OTC derivative contracts outstanding increasing from about US$ 80,000bn at the end of 1998 to over US$ 600,000bn at the end of 2010, with a peak of US$ 673,000bn in June 2008. Source: BIS Quarterly Review, September 2011
equilibrium analysis as well as the key results of the paper concerning efficiency and the relationship between structural features and payoffs. Section 5 concludes.

2 Literature Context

This paper contributes to the literature on intermediaries as well as the growing literature on networked markets, and financial networks in particular.

The provision of intermediation services and middlemen activities which this paper investigates in a network setting has been investigated in other non-structural frameworks by several authors, with overviews provided in Bose (2001) and Spulber (1999). Intermediaries have been credited with a number of different functions, including the provision of immediacy (Demsetz, 1968) or acting as a screening device between different types of traders that might be prevented from engaging directly with each other as in Bose and Pingle (1995) or Brusco and Jackson (1999). In the latter, an intermediary arises endogenously to overcome inefficiencies in trade across competitive markets. A seminal contribution in this literature is provided by Rubinstein and Wolinsky (1987), who investigate a setting with three types of agents: buyers, sellers and middlemen. Trade is conducted on the basis of stochastic pairwise matching and a steady state equilibrium is derived.2 A key insight of that paper is that the outcome of trade and the terms of trade depend on whether the middleman take ownership of the good from sellers or work on a consignment basis. In the first case, the market is biased in favor of buyers, whereas in the second case symmetry between parties is restored.

In the financial markets literature on intermediation in markets, classic contributions include Glosten and Milgrom (1985) and Kyle (1985) who consider the impact of private information in asset markets with intermediaries acting as market makers. An explicit discussion of OTC markets is provided by Duffie et al. (2005) who construct a model of OTC markets as

\footnote{In steady state equilibrium the outflow of pairs of traders which conclude a trade is exactly balanced by an exogenously given inflows of agents.}
search and bargaining with buyers, sellers and market-makers. As the other papers cited above, their model is free of explicitly structural features and thus does not provide insights into the role of structural patterns, which are the focus of this paper.

In contrast to the work cited above, structural features are at the core of a growing literature on exchange in networks, which has been a very active field recently with numerous contributions. Seminal early works in this field include Corominas-Bosch (2004) on bargaining in networks and the exchange model in Kranton and Minehart (2001). Both adopt a bipartite networks approach, precluding an analysis of intermediation. More recent contributions in this direction include Manea (2011) and Elliott (2011). Models which take explicit account of intermediation are provided by Gale and Kariv (2007) and Blume et al. (2009). The latter is probably closest in outlook to the present paper. There the authors investigate a trading network with price setting traders. Traders set bid and ask prices and buyers and sellers choose from the offered menu. The authors establish existence and efficiency of trade equilibria and link payoffs to network structure, showing that positive payoffs depend on the traders adding marginal value to the network. However, their model cannot show that such traders indeed extract positive surplus as their framework permits multiple equilibria, which limits predictive power. In contrast to their work, I consider a setting with explicit bargaining in which surplus is allocated in a dynamic setting.

The literature on financial networks employs network tools to analyze various aspects of financial markets, including risk sharing and contagion amongst financial institutions. An overview is provided in Allen and Babus (2009). Babus (2010) provides a network perspective to OTC trading and investigates the incentives for financial institutions seeking to exchange assets to form relationships. In her model, links describe relationships which allow banks to use repeated interactions instead of costly collateral to implement and enforce exchange agreements.

Finally, at a technical level, this paper employs the framework of stochastic bargaining games with perfect information analyzed in detail in Merlo and Wilson (1995, 1998) and
extends it for use in analyzing games on networks. The contribution of the paper to this literature concerns a new source of inefficiency in stochastic bargaining settings.

3 Model

This section presents a model of exchange with intermediation on a network. We consider a setting in which agents’ interactions are restricted by a network of relationships. Agents have access to trade opportunities that generate surplus, e.g. an asset trade between a buyer and a seller. Agents are matched along the network of existing relationships and bargain over the allocation of the available surplus within feasible trade routes. The bargaining protocol allows for the random selection of trade routes as well as the identity of proposer, incorporating the notion of competition between different alternative routes.

Players and Network Let the set $N = \{1, 2, ..., n\}$ denote a set of agents. Agents interact according to an undirected network denoted by $G = (N, E)$ where the set of edges E describes the set of feasible bilateral trades. Agents can trade with each other directly only if there exists a link between them. As will be described in greater detail below, trade between two nodes that are only indirectly connected is feasible through intermediaries if there exists at least one path between them.

Trade opportunities There is an agent $A \in N$ – the seller – who holds a single, indivisible good that she can sell to each of a set of other nodes, $B = \{B_1, B_2, \ldots\}$, who are characterized by their valuation of the good b_i. Remaining nodes in N have zero valuation for the good but may act as intermediaries. I focus on a single trade opportunity specific to a given seller, reflecting the notion of thin markets. This assumption approximates trade in highly individualized products such as the complex financial securities commonly traded in OTC markets. This is in contrast to thick markets of more generic assets such as commodities or standard financial products.
where there may be many buyers and sellers in the market at the same time.\footnote{The labels of buyers and sellers can be reversed without consequence for further analysis. The key simplification of the model is that there is just one trade opportunity with one side of the market being a single node.} Whilst this paper labels the trading agents buyers and sellers, the model may also be interpreted as capturing other value adding interactions between two parties, such as liquidity provision between banks, R & D cooperation between firms or joint entrepreneurial efforts.

Routes For each buyer/seller pair, trade is feasible if there exists one path in the given network G connecting them. We label the set of paths connecting A and a given buyer B_i as *routes*. Depending on the network N for each given buyer-seller pair there may be several feasible routes.

Matching and bargaining protocol The model operates in discrete time. In each period, traders are matched and bargain under a stochastic route selection and bargaining protocol adapted from Merlo and Wilson (1995) as follows. At the beginning of each period, a stochastic process σ determines both a trade route and an order of play for agents on this route. Based on this draw, players that are on the route bargain according to the order prescribed within the state.

Specifically, σ generates a state $s \in S$ in each period characterized by three elements:

1. A buyer $B(s) \in B$ and associated valuation $b(s)$, representing the surplus available if trade is concluded in this state.

2. A route $R(s) \subset N$ connecting the pair of agents who have the trade opportunity. Note that any $R(s)$ contains A and $B(s)$. The route is drawn from the set of shortest paths between seller and buyer.

3. A permutation $\rho(s)$ on $R(s)$ which denotes the order in which the traders move in the bargaining protocol. $\rho_i(s)$ denotes the player moving in ith position.
Following Merlo and Wilson (1995) we denote by $\kappa(s) \equiv \rho_1(s)$ the first mover in the order, labeled “proposer”.

To simplify the analysis, I assume that the process σ is independent across periods, such that each period’s draw is independent of the previous period’s state. This assumption allows me to dispense with conditioning on the current state whenever expectations about future realizations are formed and is in the spirit of standard alternating bargaining games. Much of the analysis will carry through to more general stochastic processes with suitable modifications.

On realization of state s, trader $\kappa(s)$ may propose an allocation or pass. If a proposal is made, this takes the form of an n-dimensional vector x such that $\sum_{i \in N} x_i \leq b(s)$ which represents a split of available surplus amongst all players, allocating a share x_i of the good to each trader in N. The other traders on the route then respond sequentially in order given by $\rho(r)$ by accepting or rejecting the proposal. This process continues until either (i) one player rejects proposal x or (ii) all players in $R(s)$ have accepted it.

If all responders accept x, the proposed split is implemented and the game ends. If the proposer passes or at least one responder rejects the proposed split, bargaining terminates and the game moves to the next period in which a new state – s' – consisting of both a route $r(s')$ and a new order of play $\rho(s')$, is redrawn and the bargaining process is repeated. This sequence is continued until an allocation is accepted by all players.

Payoffs Payoffs are linear in the share of surplus allocated, with common discount factor $\beta \in (0, 1)$. If proposal x is accepted in period t, player i receives utility:

$$u_i(x) = \beta^t x_i$$

We assume that the surplus to be allocated is bounded above by $\bar{b} \geq b(s) \forall s$ and thus
\[u_i(x) \to 0 \text{ as } t \to \infty \] without agreement being reached.

The model forms an infinite horizon dynamic game. Players take a decision in two distinct roles: as proposer and as responder. As proposer, a player either passes or suggests a split of surplus on a given route conditional on the route selected and being selected as proposer. As responder, players have to decide whether to accept or reject a proposed surplus division. A responder’s decision is conditioned on the selected route and proposer as well as the surplus division on the table.

Note that bargaining in the model is multilateral and the good remains with the seller unless agreement with all intermediaries on the selected route to the buyer has been reached. Potentially interesting considerations which arise from the good “traveling” along the route, such as hold-up issues\(^4\) or counterparty risk associated with disappearing resale opportunities, thus remain outside the model. The setting here is more directly applicable to markets in which intermediators act as a broker rather than a market-maker.\(^5\)

Histories and strategies are defined as usual. A history is a sequence of realized states and actions taken by players. A strategy specifies a feasible action at every history when a player must act. We restrict attention to pure strategies.

4 Equilibrium Analysis

This section develops the equilibrium analysis of the model. We restrict attention to Markov perfect equilibria (MPE) in pure strategies, that is, subgame perfect equilibria consisting of

\(^4\)See the discussion in Rubinstein and Wolinsky (1987) concerning the difference between middlemen taking ownership of the good and acting on consignment. A model exploring trade in networks in which the good travels on a bilateral basis from seller to buyer is provided in Gofman (2011)

\(^5\)Reporting of corporate bond markets suggests that in the wake of the 2008 financial crisis brokers increasingly showed the behavior implied in the model: “In the wake of the financial crisis and ahead of tighter regulatory constraints, large Wall Street dealers have become far less willing to hold the risk of owning corporate bonds, known in market parlance as ‘inventory,’ in order to facilitate trading for their clients. Instead, they are increasingly trying to match buyers and sellers, acting more as a pure intermediary, rather than stockpiling bonds and encouraging a liquid market for secondary trading.” Source: Financial Times, November 8, 2011

strategies which are history independent and condition only on the drawn state, that is, the selected route and the order of proposals, and the offer on the table in the given period.

4.1 Equilibrium Payoff Characterization

A unique MPE in pure strategies exists and can be characterized through an intuitive set of recursive equations using results derived in Merlo and Wilson (1998) and extending the analysis to the setting of networked markets.

As additional notation, denote by \((S^\mu, \mu)\) a stationary outcome where \(S^\mu \subseteq S\) denotes the set of states in which agreement is struck and \(\mu(s)\) specifies the allocation that is proposed and accepted if \(s \in S^\mu\) is reached. Associated with outcome \((S^\mu, \mu)\) is a stopping time \(\tau\) (a random variable dependent on the realization of \(\sigma\)) and an expected payoff vector for each state \(s\) defined by \(v^\mu(s) = E[\beta^\tau \mu(\sigma_\tau)|\sigma_0 = s] = E[\beta^\tau \mu(\sigma_\tau)]\), where the last step uses independence in the stochastic process.

Proposition 1. The bargaining game has a unique MPE, characterized by payoff function \(f(s)\) as follows:

\[f_i(s) = \begin{cases} b(s) - \beta E \left[\sum_{j \in R(s) \setminus \{i\}} f_j(s') \right] & \text{for Proposer } i = \kappa(s) \\ \beta E [f_i(s')] & \text{for Responder } i \in R(s) \setminus \kappa(s) \\ 0 & \text{for Excluded } i \notin R(s) \end{cases} \]

(2)

a. If \(b(s) \geq \beta \sum_{j \in R(s)} E[f_j(s')]\):

\[f_i(s) = \begin{cases} b(s) - \beta E \left[\sum_{j \in R(s) \setminus \{i\}} f_j(s') \right] & \text{for Proposer } i = \kappa(s) \\ \beta E [f_i(s')] & \text{for Responder } i \in R(s) \setminus \kappa(s) \\ 0 & \text{for Excluded } i \notin R(s) \end{cases} \]

b. If \(b(s) < \beta \sum_{j \in R(s)} E[f_j(s')]\):

\[f_i(s) = \beta E [f_i(s')] \quad \forall i \in N \]

(3)

The proof has been relegated to Appendix A.1. The equilibrium payoff function distinguishes two cases:
1. If available surplus exceeds the total expected value of moving to the next stage for players on the selected route, then f indicates that the proposer extracts from responding parties on the selected route all surplus over and above their outside option value given by $E[f(s')]$, leaving zero to traders not included on the route.

2. If available surplus in a given state s is less than the expected value of moving to the next stage for players on the selected route, f assigns that payoff to each player.

Note that whilst excluded players receive a zero payoff in the first case, in the latter case they have a positive expected payoff reflecting the fact that they may be included in negotiations in the next period. The result allows the analysis of equilibrium outcomes and payoffs for a wide range of possible trade networks and buyer valuations on the basis of a set of equations describing value functions in a recursive manner.

4.2 A Solved Example

As an illustration consider Example 1 in Figure 1. There is a single buyer with a valuation of 1 and two possible intermediation routes, both of which generate a surplus of $b_i = 1$. The state space thus contains 12 elements: two routes, three proposers per route and two possible orders for responders for each proposer. For the purposes of this example we consider a simple uniform stochastic process and assume that each state is equally likely under σ. The states are listed in Table 1. Note that for the purposes of the equilibrium characterization, many states fall into pairs that are equivalent. For example, states 1 and 2 share the same buyer, the same route as well as the same partition of agents into proposer and responders. Proposition 1 implies that responders receive equal payoffs irrespective of their position in the order of play amongst the group of responders.

By Proposition 1 equilibrium payoffs are characterized by the following conditions, where $V_i(j)$ describes expected payoff for player i in a state where player j is proposer.
Figure 1: Example 1 - Two intermediaries

• For the seller A:

$$f_A(A) = 1 - f_{I_1}(A) - f_{B_1}(A)$$ \(4\)

$$f_A(A) = 1 - f_{I_2}(A) - f_{B_1}(A)$$ \(5\)

$$f_A(I_1) = \frac{\beta}{6} [2f_A(A) + f_A(I_1) + f_A(I_2) + 2f_A(B_1)]$$ \(6\)

$$f_A(B_1) = \frac{\beta}{6} [2f_A(A) + f_A(I_1) + f_A(I_2) + 2f_A(B_1)] = f_A(I)$$ \(7\)

• For the buyer B_1 analogous to the seller.

• For the intermediary I_1 (and analogous for I_2):

$$f_{I_1}(I_1) = 1 - f_A(I_1) - f_{B_1}(I_1)$$ \(8\)

$$f_{I_1}(A) = \frac{\beta}{6} [f_{I_1}(A) + f_{I_1}(I_1) + f_{I_1}(B_1)]$$ \(9\)

$$f_{I_1}(B_1) = \frac{\beta}{6} [f_{I_1}(A) + f_{I_1}(I_1) + f_{I_1}(B_1)]$$ \(10\)

Solving this system payoffs for each state can be computed for each player:
Table 1: State space for Example 1

<table>
<thead>
<tr>
<th>State s</th>
<th>$R(s)$</th>
<th>$\rho(s)$</th>
<th>$\kappa(s)$</th>
<th>$P(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${A, I_1, B_1}$</td>
<td>${A, I_1, B_1}$</td>
<td>A</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>2</td>
<td>${A, I_1, B_1}$</td>
<td>${A, B_1, I_1}$</td>
<td>A</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>3</td>
<td>${A, I_1, B_1}$</td>
<td>${I_1, A, B_1}$</td>
<td>I_1</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>4</td>
<td>${A, I_1, B_1}$</td>
<td>${I_1, B_1, A}$</td>
<td>I_1</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>5</td>
<td>${A, I_1, B_1}$</td>
<td>${B_1, I_1, A}$</td>
<td>B_1</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>6</td>
<td>${A, I_1, B_1}$</td>
<td>${B_1, A, I_1}$</td>
<td>B_1</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>7</td>
<td>${A, I_1, B_1}$</td>
<td>${A, I_2, B_1}$</td>
<td>A</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>8</td>
<td>${A, I_2, B_1}$</td>
<td>${A, B_1, I_2}$</td>
<td>A</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>9</td>
<td>${A, I_2, B_1}$</td>
<td>${I_2, A, B_1}$</td>
<td>I_2</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>10</td>
<td>${A, I_2, B_1}$</td>
<td>${I_2, B_1, A}$</td>
<td>I_2</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>11</td>
<td>${A, I_2, B_1}$</td>
<td>${B_1, I_2, A}$</td>
<td>B_1</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>12</td>
<td>${A, I_2, B_1}$</td>
<td>${B_1, A, I_2}$</td>
<td>B_1</td>
<td>$\frac{1}{12}$</td>
</tr>
</tbody>
</table>

• For the seller A:

\[
\begin{align*}
 f_A(A) & = \frac{2 - \beta}{2} \quad (11) \\
 f_A(I_1) & = \frac{(2 - \beta)\beta}{2(3 - 2\beta)} \quad (12) \\
 f_A(I_2) & = f_A(I_1) \quad (13)
\end{align*}
\]

• For the buyer B_1 analogous to the seller.

• For the intermediary I_1 (and analogous for I_2):

\[
\begin{align*}
 f_{I_1}(I_1) & = \frac{(3 - \beta)(1 - \beta)}{3 - 2\beta} \quad (14) \\
 f_{I_1}(A) & = \frac{(1 - \beta)\beta}{2(3 - 2\beta)} \quad (15) \\
 f_{I_1}(B_1) & = f_{I_1}(A) \quad (16)
\end{align*}
\]

From these expressions ex ante expected payoffs are computed by multiplying each term with the probability of the relevant state occurring. Expected payoffs are presented in...
Figure 2: Expected payoffs for traders with two competing intermediaries

Figure 2 for different values of \(\beta \), with the top line representing payoffs for buyer and seller and the bottom line representing those for the intermediaries. Note that expected payoffs for buyer and seller are identical, reflecting their symmetry within the network structure and the stochastic process. Similarly, payoffs for the two intermediaries are identical.

The example provides an illustration how competition between intermediaries results in lower intermediary payoffs. In particular, as trade frictions vanish with \(\beta \to 1 \), payoffs for intermediaries tend towards zero, replicating the outcome of a Bertrand-type setting with simultaneous offers being made by intermediaries. I return to this feature of the model in Section 4.4.

4.3 Efficiency

This section discusses the efficiency properties of the equilibrium of the bargaining game. Given utility is linear in surplus received, efficiency is achieved by trading in states in all states in which surplus on the table is larger than expected next period surplus. This is
stated formally in Proposition 2. The proof is straightforward and has been omitted here. It uses the independence of the stochastic process σ.6

Proposition 2. A stationary outcome (S^μ, μ) is efficient if and only if trade is conducted in all states s such that $b(s) \geq \beta E[b(s')]$.

The definition suggests two possible sources of inefficiencies: Trade may be conducted too early or too late. Trade is conducted too early if the parties involved in bargaining on a route agree to an allocation in a state in which it would be more efficient to wait. Trade is conducted too late if the parties do not agree on an allocation in a state where available surplus exceeds what can be gained from waiting. As shown below, the equilibrium does not exhibit the latter type of inefficiency but may be subject to the first.

Proposition 3. In the MPE outcome of the game, there is agreement whenever $b(s) \geq \beta E[b(s')]$ and it is efficient to do so.

Proof. We proof the first part by contradiction. Assume $\exists s$ s.t. $b(s) \geq \beta E[b(s')]$ and no agreement is struck. Then by Proposition 1:

$$b(s) - \beta \sum_{j \in R(s)} f_j(s') < \beta E[f_j(s')]$$ \hspace{1cm} (17)

Rearranging and combining expected payoffs from delay:

$$b(s) < \beta \sum_{j \in R(s)} E[f_j(s')]$$ \hspace{1cm} (18)

$$\leq \beta \sum_{j \in N} E[f_j(s')]$$ \hspace{1cm} (19)

$$\leq \beta E[b(s')]$$ \hspace{1cm} (20)

$$\leq b(s)$$ \hspace{1cm} (21)

6For more general Markovian processes, additional issues arise in defining efficiency. See Merlo and Wilson (1998) for the discussion there.
where the last step establishes the contradiction.

Proposition 3 has an interesting corollary for the baseline case where all feasible routes have the same surplus. In this case, efficiency demands that trade be concluded immediately without delay. Thus:

Corollary 1. If $b(s) = b \forall s \in S$, the MPE outcome of the game implies that trade is conducted immediately and the outcome is thus efficient.

Proposition 3 implies that trade is concluded even along intermediation routes which may involve relatively large numbers of intermediaries when shorter, more direct routes are available. Thus, an intuitive prediction that it might be better for buyer and seller to delay trade in such situations to avoid splitting the surplus with additional parties does not hold. This is due to the fact that rents for intermediaries on the longer route are adjusted downwards and reflect the constraint exerted by the presence of the shorter route.

![Diagram](image)

Figure 3: Example 2 - Two intermediaries yielding different trade surpluses

Having shown that trade will never be unduly delayed, we consider whether trade may occur too early in equilibrium. This is indeed possible in certain configurations which we can construct with different surplus values across different routes. For some discount values whilst delay would be efficient, the equilibrium outcome would involve trade taking
place, yielding an inefficient outcome. The source of this inefficiency is a hold-up problem: For the buyer or seller to pass in the low surplus state may lead to a state in which she is responding and in that case the proposer would extract the available surplus from the high valuation state over and above outside options. These outside options include the unattractive prospect of reaching a low valuation state with positive probability, in which case further delay would involve an additional period of waiting with additional discounting, thus weakening responders. The fact that traders cannot commit to exercise their power in states where they are proposing then distorts incentives for traders to “invest” in surplus by passing in the low valuation state.

4.4 Structural Features and Equilibrium Payoffs

This section considers the relationship between structural features of the trade network and equilibrium payoffs. One implication of Proposition 1 is that players excluded in a state where agreement is struck receive a zero payoff, which is unsurprising given that such players are not involved in decision making in those settings. As a consequence, on a forward looking basis, players that may find themselves in such situations may be expected to have their bargaining power reduced. I investigate this question first by considering the way in which payoffs change as the number of competing intermediaries increases before deriving a more general result by considering the impact of being “essential” to a trade on payoffs. For simplicity, I restrict attention in the following to a setting in which all routes generate the same surplus b in all states.

4.4.1 The effect of additional intermediation routes

To investigate the impact the number of intermediaries has on payoffs, consider a simple setting with a single buyer and a set of k intermediaries that directly link to both the seller and the single buyer for the asset (see Figure 4), each generating a surplus of 1. Expected equilibrium payoffs for the end-nodes A and B and any intermediary I are then given by
As expected, payoffs for end-nodes increase with the entry of additional intermediaries. Also, as previously observed in Section 4.2 for the case \(k = 2 \), as \(\beta \to 1 \), payoffs for intermediaries go to zero. The ratio of the payoffs is given by \(\frac{f_B}{f_I} = 1 + \frac{k-1}{1-\beta} \). At \(k = 1 \), the relative shares are equal and as \(k \) increases the ratio increases linearly at rate \(\frac{1}{1-\beta} \).

\[f_B = \frac{k - \beta}{k(3 - \beta) - 2\beta} \quad (22) \]
\[f_I = \frac{1 - \beta}{k(3 - \beta) - 2\beta} \quad (23) \]

4.4.2 The effect of structural features on payoffs in the limit

The analysis in the previous section illustrates the impact of competition in a simple setting with simple, competing intermediaries. One result of this analysis is that as trade frictions vanish in the limit intermediaries receive an expected payoff of zero. This section shows how the intuition derived from this simple example carries through to general structures.

Definition 1. A player \(i \) is essential to a trade opportunity if \(i \in R(s) \forall s \in S \).
This definition formally captures the approach adopted in Goyal and Vega-Redondo (2007). Structurally speaking, a player is essential if he is located on all possible trade routes between the buyer and the seller of the good. As such, non-essential traders are competing for the business of intermediating the trade opportunity.

Proposition 4. In an MPE of the game implementing outcome \((\eta, \tau)\) the payoff of trader \(i\) is strictly greater than zero as \(\beta \to 1\) if and only if the trader is essential.

Proof. We establish the result by considering first the payoffs of essential players as \(\beta \to 1\). Let \(i\) be essential, then by Proposition 1, for states \(s\) in which \(i\) is responding, \(f_i(s) \to E[f_i(s')]\). Adding across states and noting that by being essential \(i\) is either proposing or responding, this implies equalization of payoffs across states, i.e. \(f_i(\tilde{s}) \to E[f_i(s')]\) for states \(\tilde{s}\) in which \(i\) is proposing.

Now consider a non-essential player \(k\) involved in two states \(s\) and \(\tilde{s}\) which share the same route such that \(R(s) = R(\tilde{s}) = R\) and \(k \in R\). Furthermore, let \(k = \kappa(s)\) and \(i = \kappa(\tilde{s})\) with \(i\) essential. Then as \(\beta \to 1\), payoffs for \(i\) tend to the same amount across \(s\) and \(\tilde{s}\). Furthermore, all other responding players will receive equal payouts on the route by Proposition 1. This implies that also for \(k\) payoffs will equalize, i.e. \(f_k(s) \to f_k(\tilde{s}) \to E[f_k(s')]\).

Finally, given that by Proposition 1 \(f_k(s) = 0\) for \(s\) in which \(k\) is excluded and such states arrive with positive probability, equalization is only feasible if \(E[f_k(s')] = 0\) as required.

\(\Box\)

Intuitively, the key distinction between essential and non-essential players is that the latter have a positive probability of being excluded. This means that in the limit their implicit discount factor remains strictly below one whilst for essential players it converges to one. The result then reflects the basic intuition of standard alternating bargaining models.

Proposition 4 provides microfoundations for an analysis of competing intermediaries on networks and maps the intuitive Bertrand outcome into the bargaining setting investigated.
here. As such it provides a justification for the payoff structure used in Goyal and Vega-Redondo (2007), who investigate incentives for network formation in a setting with intermediation rents. Whilst they assume that non-essential players receive zero payoff, justifying it as the kernel and core in a cooperative bargaining setup, the present analysis may provide some grounding for this assumption in a non-cooperative bargaining setting.

5 Conclusion

In this paper, I study a model of bargaining and exchange with intermediation on networks, extending the Merlo and Wilson (1995) framework as a tool to analyze stochastic bargaining games into a network setting. I characterize payoffs with a simple set of value function equations allowing the analysis of efficiency and the impact of structure on payoffs in equilibrium outcomes. I find that trade in settings with homogeneous valuations across all routes, trade is efficient. However, with heterogeneity of surplus across routes, there is scope for inefficiently early agreement in equilibrium, arising from a potential hold-up problem. Competition between intermediaries is shown to reduce payoffs for this type of agent. In the limit as bargaining frictions disappear, all agents that are not essential to a trade opportunity receive equilibrium payoffs of zero.

Interesting issues fall outside of the scope of the present analysis and are left for further research. These include further analysis of the impact of heterogeneity in valuations on bargaining outcomes as well as the implications for network formation of the bargaining model developed here, to compare and contrast these predictions with other work in Babus (2010) and Goyal and Vega-Redondo (2007).
A Appendix

A.1 Proof of Equilibrium Characterization Result

This section presents the proof of Proposition 1. The approach taken employs a fixed point argument adapted from Merlo and Wilson (1998).

Consider the family of bounded measurable functions F^n from S into R^n. An element f of this family in our context represents a value function, with $f_i(s)$ giving the value of agent i of being in state s.

We first establish that for any stationary outcome (S^μ, μ) the payoff vector $\nu^\mu(s)$ is characterized by a natural recursive formulation. The proof is in Merlo and Wilson (1998).

Lemma 1. (Merlo and Wilson, 1998) If (S^μ, μ) is a stationary outcome, then $\nu^\mu(s)$ is the unique element of F^n for which $\nu^\mu(s) = \mu(s)$ for $s \in S^\mu$ and $\nu^\mu(s) = \beta E[\nu^\mu(s')]$ for $s \in S - S^\mu$.

Using Lemma 1 we proceed to the proof of Proposition 1 itself. Consider an operator A on the payoff function f defined as follows.

$$
A_i(f)(s) = \begin{cases}
\max \left\{ b(s) - \beta E \left[\sum_{j \in R(s) \setminus i} f_j(s') \right], \beta E[f_i(s')] \right\} & \text{for } i = \kappa(s) \\
\beta E[f_i(s')] & \text{for } i \in R(s) \setminus \kappa(s) \\
0 & \text{for } i \notin R(s)
\end{cases}
$$ (24)

The proof of the proposition then requires demonstrating f is an MPE payoff if and only if $A(f) = f$.

• ⇒ “f is an MPE payoff” implies “$A(f) = f$”

Consider an MPE payoff f and fix a state s with $i = \kappa(s)$. The best reply for responder j to a given proposal x is to reject if $x_j < \beta E[f_j(s')]$ and to accept if $x_j > \beta E[f_j(s')]$.

20
This implies that \(i \) can earn \(b(s) - \beta E \left[\sum_{j \in R(s), j \neq i} f_j(s') \right] \) from making a proposal that is accepted and \(E \left[f_i(s') \right] \) from passing. Thus, if \(b(s) < \beta E \left[\sum_{j \in R(s)} f_j(s') \right] \), the proposer will pass and \(f(s) = E \left[f(s') \right] \). If \(b(s) > \beta E \left[\sum_{j \in R(s)} f_j(s') \right] \), \(i \) will make a proposal that is accepted, earning \(b(s) - \beta E \left[\sum_{j \in R(s), j \neq i} f_j(s') \right] \) for \(i \), \(\beta E \left[f_j(s') \right] \) for \(j \in R(s) \setminus i \) and 0 for \(k \not\in R(s) \). If \(b(s) = \beta E \left[\sum_{j \in R(s)} f_j(s') \right] \), the proposer is indifferent with \(f(s) = \beta E \left[f(s') \right] \) again. Thus \(A(f) = f \).

\[\iff \quad \text{“} A(f) = f \text{” implies “} f \text{ is an MPE payoff”} \]

Assume \(A(f) = f \). We need to show that \(f \) is an MPE outcome described by \((S^n, \mu) \) with \(f = v^\mu \). Define a candidate outcome by \(S^\mu = \left\{ s \in S : \beta \sum_{j \in R(s)} f_j(s) \leq b(s) \right\} \) and \(\mu(s) = f_i(s) \) for \(s \in S \).

First, we show that \(f = v^\mu \). For this we use Lemma 1 and show that \(f \) meets the properties stated there. Consider state \(s \) with proposer \(i = \kappa(s) \). Then \(f = A(f) \) implies \(f_j(s) = \beta E \left[\sum_{j \neq i} f_j(s') \right] \). This yields \(f_i(s) = \max \left\{ b(s) - \beta E \left[\sum_{j \in R(s), j \neq i} f_j(s') \right], E \left[f_i(s') \right] \right\} \).

In the first case, \(b(s) = \beta \sum_{j \in R(s)} f_j(s) \) and thus \(s \in S^\mu \). Otherwise, \(b(s) < \beta \sum_{j \in R(s)} f_j(s) \) and thus \(s \in S - S^\mu \) and \(f(s) = \beta E \left[f(s') \right] \). This shows that \(f(s) \) meets the criteria of Lemma 1 and thus \(f(s) = v^\mu \).

Second, we show that \((S^n, \mu) \) is indeed an MPE outcome, by defining a suitable strategy profile and demonstrating that no player can be better off by unilaterally deviating. The strategy profile instructs proposers to pass unless \(s \in S^\mu \) in which case the proposer offers \(\mu \). Responders will then accept, which yields \(v^\mu_j(s) = \beta E \left[f_i(s') \right] \).

Now, given future payoffs are given by \(v^\mu \), there is no incentive for any \(j \) to deviate and reject. For player \(i \), there is no incentive to deviate as \(\mu_i \geq \beta E \left[f_i(s') \right] \) for \(s \in S^\mu \).

Finally, for \(k \not\in R(s) \), the rules of the do not permit an action and thus no possibility for deviation.
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1
http://ideas.repec.org/s/fem/femwpa.html
http://www.econis.eu/LNG=EN/FAM?PPN=505954494
http://ageconsearch.umn.edu/handle/35978
http://www.bepress.com/feem/

NOTE DI LAVORO PUBLISHED IN 2012

CCSD 1.2012 Valentina Bosetti, Michela Catenacci, Giulia Fiorese and Elena Verdolini: The Future Prospect of PV and CSP Solar Technologies: An Expert Elicitation Survey

CCSD 2.2012 Francesco Bosello, Fabio Eboli and Roberta Pierfederici: Assessing the Economic Impacts of Climate Change. An Updated CGE Point of View

ERM 7.2012 Claudio Morana: Oil Price Dynamics, Macro-Finance Interactions and the Role of Financial Speculation

CCSD 11.2012 Valentina Bosetti and Thomas Longden: Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles

ERM 15.2012 Lion Hirth: The Market Value of Variable Value of Variable Renewables

CCSD 17.2012 Erik Ansink, Michael Gegenbach and Hans-Peter Weikard: River Sharing and Water Trade

CCSD 22.2012 Raphael Calel and Antoine Dechezleprêtre: Environmental Policy and Directed Technological Change: Evidence from the European carbon market

ERM 25.2012 Alessandro Cologni and Matteo Manera: Oil Revenues, Ethnic Fragmentation and Political Transition of Authoritarian Regimes

ES 27.2012 Andreas Groth, Michael Ghil, Stéphane Hallegatte and Patrice Dumais: The Role of Oscillatory Modes in U.S. Business Cycles

CCSD 28.2012 Enrica De Cian and Ramiro Parrado: Technology Spillovers Embodied in International Trade: Intertemporal, regional and sectoral effects in a global CGE

ERM 29.2012 Claudio Morana: The Oil price-Macroeconomy Relationship since the Mid- 1980s: A global perspective

CCSD 30.2012 Katie Johnson and Margaretha Breil: Conceptualizing Urban Adaptation to Climate Change Findings from an Applied Adaptation Assessment Framework

CCSD 31.2012 Tim Swanson and Ben Groom: Regulating Global Biodiversity: What is the Problem?

CCSD 32.2012 J. Andrew Kelly and Herman R.J. Vollebergh: Adaptive Policy Mechanisms for Transboundary Air Pollution Regulation: Reasons and Recommendations

CCSD 33.2012 Antoine Dechezleprêtre, Richard Perkins and Eric Neumayer: Regulatory Distance and the Transfer of New Environmentally Sound Technologies: Evidence from the Automobile Sector

CCSD 35.2012 Ludovico Alcorta, Morgan Bazilian, Giuseppe De Simone and Ascha Pedersen: Return on Investment from Industrial Energy Efficiency: Evidence from Developing Countries

CCSD 37.2012 Sergio Currarini and Friederike Menge: Identity, Homophily and In-Group Bias

CCSD 38.2012 Dominik Karos: Coalition Formation in Generalized Apex Games

CCSD 39.2012 Xiaodong Liu, Eleonora Patacchini, Yves Zenou and Lung-Fei Lee: Criminal Networks: Who is the Key Player?

CCSD 41.2012 Efthymios Athanasiou, Santanu Dey and Giacomo Valletta: On Sharing the Benefits of Communication

CCSD 42.2012 Jan-Peter Siedlarek: Intermediation in Networks