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On the Smoothness of Value Functions

Bruno Strulovici and Martin Szydlowski

January 16, 2012

Abstract

We prove that under standard Lipschitz and growth conditions, the value function of all

optimal control problems for one-dimensional diffusions is twice differentiable, as long as the

control space is compact and the volatility is uniformly bounded below, away from zero. Under

similar conditions, the value function of any optimal stopping problem is differentiable.

1 Control Problem

We are given a filtered probability space (Ω,F ,P) with a filtration {Ft}t∈R+ that satisfies the usual

conditions.1

A process {Xt}t∈R+ that is controlled by some other process {At}t∈R+ , such that Xt takes values

in some nonempty closed interval X of R with (possibly infinite) endpoints x
¯
< x̄, and follows the

dynamic equation

dXt = µ (Xt, At) dt+ σ (Xt, At) dBt (1)

x0 = x

where Bt is the standard Brownian Motion.

Assumption 1 There exists2 a compact subset K of R such that At ∈ K for all t.

A control process satisfying Assumption 1 and such that (1) has a unique strong solution is said to

be admissible. The set of admissible control processes is denoted by A.

1We refer the reader to Karatzas and Shreve (1998) for the standard concepts used in this paper.
2The analysis can be extended to the case where the control set depends on x. For simplicity we focus on a

constant domain.
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Given an admissible control A, the agent’s expected payoff is given by

v (x,A) = Ex,A
(∫ κ

0
e−rtf (Xt, At) dt+ e−rκg(Xκ)

)
(2)

where f (xt, at) is the flow payoff at time t and Ex,A is the expectation operator given starting

value x and control process A, and κ is the first exit time of the process Xt from X .

The (optimal) value function3 of the problem starting at x, denoted v(x), is defined by

v(x) = sup
A∈A

v(x,A). (3)

An admissible control is said to be optimal if v(x,A) = v(x).

We make the following Lipschitz and linear growth assumptions on µ, σ, and f .

Assumption 2 There exists K > 0 such that for all a and x∣∣µ (x, a)− µ
(
x′, a

)∣∣ ≤ K|x− x′|∣∣σ (x, a)− σ
(
x′, a

)∣∣ ≤ K|x− x′|∣∣f (x, a)− f
(
x′, a

)∣∣ ≤ K|x− x′|.

Moreover, the functions µ(x, ·), σ(x, ·), f(x, ·) are continuous in a, for all x.4

Assumption 3 For all a, there exist strictly positive constants Kµ
1 , Kµ

2 , Kσ, Kf and ε such that

|µ(x, a)| ≤ Kµ
1 +Kµ

2 |x|

|σ(x, a)| ≤ Kσ (1 + |x|)

|f(x, a)| ≤ Kf (1 + |x|)

|σ(x, a)| ≥ ε

Kµ
2 < r.

2 Twice Differentiability of the Value Function

Our objective is to prove that the value function is twice differentiable in the interior of X and

solves the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
a∈K(x)

−rv(x) + f (x, a) + µ (x, a) v′ +
1

2
σ2(x, a)v′′(x) (4)

3To avoid confusion, we reserved the expression “value function” to the optimal expected payoff, and use “(ex-

pected) payoff” when the control is arbitrary.
4When A is finite, the continuity assumption is vacuous.

2



with given boundary conditions

v(x
¯
) = v

¯
= g(x

¯
) if x

¯
is finite, and v(x̄) = v̄ = g(x̄) if x̄ is finite. (5)

Theorem 1 Under Assumptions 1–3, the value function is twice continuously differentiable and

and is the unique solution to the HJB equation (4) at all x ∈ X .

Our proof consists of the following steps: 1) Prove the existence of a solution, w, to the HJB

equation; 2) Construct a control process based on this solution; 3) Prove that the solution is the

value function of the problem, and that either the control constructed in 2) is optimal, or that it

can be approximated by a sequence of admissible controls.

These steps imply that any solution to the HJB equation must coincide with the value function of

the problem and, therefore, they will show the uniqueness claimed in Theorem 1.

1. Existence of a Solution

Existence is shown by applying Proposition 1 in the appendix.

Equation (4) can be rewritten as

v′′ +H(x, v, v′) = 0, (6)

where5

H(x, u, p) = max
a∈K

2

σ2(x, a)
(−ru+ f(x, a) + µ(x, a)p). (7)

Lemma 1 Under Assumptions 1–3, H(x, ·, ·) satisfies Conditions 1, 2, and 3 in the appendix.

First, it is easy to check that for all arguments,6

|H(x, u, p)−H(x, ũ, p̃)| ≤ max
a∈K

2

σ2(x, a)
|(−ru+ f(x, a) + µ(x, a)p)− (−rũ+ f(x, a) + µ(x, a)p̃)| .

(8)

Therefore,

|H(x, u, p)−H(x, ũ, p̃)| ≤ 2

ε2
(r|u− ũ|+ (Kµ

1 +Kµ
2 |x|)|p− p̃|) . (9)

The growth condition obtains from the fact that µ is bounded on any compact in support and

σ2 ≥ ε2. Condition 2 comes from the fact r > 0 and σ2 > 0. There remains to check Condition 3.

5Because all functions are continuous in a and σ is bounded below away from zero, the supremum is achieved as

a maximum.
6More generally, if H(y) = maxa∈K g(a, y), we have |H(y) − H(ỹ)| ≤ maxa∈K |g(a, y) − g(a, ỹ)|. For example,

suppose that a, ã maximize g at y and ỹ, respectively. Then, H(y) −H(ỹ) = g(a, y) − g(ã, ỹ) ≤ g(a, y) − g(a, ỹ) ≤
maxa∈K |g(a, y) − g(a, ỹ)|. The other inequality is proved similarly. In our problem, g always has a maximizer, but

the result holds even if the supremum of g is not achieved.
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To show that H(x,K1 +K2|x|, εK2) is negative for large enough K1, K2, it suffice to show that

−r(K1 +K2|x|) +Kf (1 + |x|) + (Kµ
1 +Kµ

2 |x|)K2, (10)

is negative. Since Kµ
2 < r, the result holds for all x’s, provided that K1 and K2 are large enough.

Lemma 1 implies that all conditions of Proposition 1 in the appendix are satisfied, which shows

existence of a solution to the HJB equation for arbitrary boundary conditions at x
¯

and x̄, whenever

these extreme points are finite.

2. Construction of an Admissible Control

We construct an admissible control based on our solution w. Define M(x) ⊂ K as the set of

maximizers in the equation

rw(x) = max
a∈K

f(x, a) + µ(x, a)w′(x) +
1

2
σ(x, a)2w′′(x) (11)

Because f , µ, σ are continuous in a, the function

g(x, a) = f (x, a) + µ (x, a)w′ (x) +
1

2
σ (x, a)2w′′ (x) (12)

is continuous in a and, therefore, M(x) is nonempty, closed, and compact in K.

We can therefore apply the measurable maximum theorem,7, which guarantees that there exists a

measurable function â (x) such that â (x) ∈M(x) for all x.

3. The solution coincides with the value function, and the constructed control is

optimal, whenever admissible

A standard verification argument then implies that w(x) ≥ v(x,A) for any x and any admissible

control A and, therefore, that w(x) ≥ v(x). For completeness, and because a similar argument

in the remaining parts of the proof, we reproduce this argument here. For any fixed, admissible

control A and time T , Itô’s formula, applied to the diffusion XA controlled by A and starting at

x, implies that

e−rTw(XA
T ) = w(x) +

∫ T

0
e−rt

(
−rw(XA

t ) + µ(XA
t , At)w

′(XA
t ) +

1

2
σ2(XA

t , At)w
′′(XA

t )

)
dt

+

∫ T

0
e−rtσ(XA

t , At)dBt. (13)

The stochastic integral has zero mean as long as as |XA
t | grows at a slower rate than r, which is

guaranteed by our assumption that Kµ
2 < r. This also guarantees that limT→∞ e

−rTw(XA
T ) = 0.

Taking expectations and using (11), we get the inequality∫ T

0
e−rtf(XA

t , At) ≤ w(x)− e−rTw(XA
T ). (14)

7See Aliprantis and Border (1999), p. 570.
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Taking the limit as T goes to infinity yields

v(x,A) ≤ w(x). (15)

There remains to establish the reverse inequality w(x) ≤ v(x). Suppose, first, that the SDE

dXt = µ(Xt, â(Xt)dt+ σ(Xt, â(Xt))dBt (16)

has a unique strong solution, {X̂t}t∈R+ , and let

A∗t = â(X̂t) (17)

denote the corresponding control. The control A∗ is admissible and, applying the verification

argument, this time with an equality, shows that w(x) = v(x,A∗), and therefore, that w(x) ≤ v(x).

In general, however, (16) is not guaranteed to have a unique strong solution, because the volatility

function σ̂(x) = σ(x, â(x)) may jump, violating the standard Lipschitz (or Hölder) continuity con-

ditions that are usually assumed for existence results. A result by Krylov (1980, p. 86) guarantees

that, because σ̂ is bounded away from zero and, hence, elliptic, (16) has a weak solution, unique

in the sense of probability law.8 This would conclude the proof if, instead of defining admissibility

in terms of a strong solution, we had only required weak admissibility9 It is well-known that the

verification argument also applies to weak solutions.10 Weak admissibility is often taken to be

“right” concept for control of partially observable systems.

To conclude the proof for the case of strong admissibility, we use a result by Nakao (1972), who

proved the existence of a strong solution to (16) as long as as the function x 7→ σ(x, â(x)) has

bounded variation (see also Revuz and Yor, 2001, p.392), in addition to be uniformly bounded away

from zero. This condition is satisfied, for example, if the control â(·) is continuous or monotonic

or, more generally, of bounded variation, or if σ(x, a) is in fact independent of a. More generally,

it is also satisfied in any “reasonable” problem, where the control â does not jump infinitely often

on any compact subset of X . Moreover, it is guaranteed to be satisfied if our initial problem has

an optimal control. In that case, standard results guarantee that it also has a Markovian optimal

control which, which maximizes pointwise the HJB equation, and can be taken without loss of

generality to be â.

We do not need to make any of these assumptions, however, to prove the theorem. We will show

that w(x) ≤ v(x) + ε for any constant ε > 0, which will conclude the proof that v(x) = w(x) and,

8Our linear growth condition are well-known to rule out explosions of the solution in finite time. See, e.g., Karatzas

and Shreve, (1998, p. 342).
9A Markovian control â is weakly admissible if the SDE (16) has a weak solution, unique in the sense of probability

law. See, for example, Yong and Zhou (1999).
10See Karatzas and Shreve (1998, Section 5.7)
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hence, v is C2 and solves the HJB equation. Fix any ε > 0 and let η = ε/K, where K is the

Lipschitz constant included in Assumption 1. Consider a grid of X with equally spaced intervals of

length η, anddefine the Markovian control ã by ã(x) = â(y(x)) where y(x) is the element of the grid

closest to x (adopting any arbitrary convention when there are two such points). By construction,

ã is piecewise constant, which guarantees that x 7→ σ(x, ã(x)) has bounded variation and, hence,

that the SDE (16) has a unique strong solution, which we denote {X̃t}t∈R+ . The control {Ãt}t∈R+

defined by Ãt = ã(X̃t) is therefore admissible. Moreover, the Lipschitz property of µ, σ, and f

guarantees that ã(x), for all x,

f(x, ã(x))+µ(x, ã(x))w′(x)+
1

2
σ(x, ã(x))2w′′(x) ≥ max

a∈K
f(x, a)+µ(x, a)w′(x)+

1

2
σ(x, a)2w′′(x)−Dε

(18)

for some positive constant D This guarantees that, in the verification argument, the inequality (14)

is almost tight, the upper bound being proportional to Dε/r, yielding

v(x) ≥ v(x, Ã) ≥ w(x)−Dε/r. (19)

Taking the limit as ε goes to zero yields the desired inequality v(x) ≥ w(x).

The proof has also established the following results, about the existence of an optimal control and

its relation to the HJB equation.

Theorem 2 Let â be a measurable selection of (11), and suppose that the map x 7→ σ(x, â(x)) has

locally bounded variation. Then, the control {A∗t } is optimal.

Theorem 3 If admissibility is replaced by weak admissibility, the control {A∗t } is optimal.

Theorem 4 If the stochastic control problem (3) has an optimal control, then there exists a mea-

surable selection of (11) that has a strong solution.

3 Optimal Stopping and Smooth-Pasting

We now establish the smooth-pasting property for optimal stopping problems: the value function

is differentiable at any threshold where stopping becomes optimal. For presentation clarity, we

separate optimal control and optimal stopping problems, which imply different smoothness levels.

The problems can be combined, however, with an appropriate extension of Theorems 1 and 5.

Consider the optimal stopping problem

v(x) = max
τ∈T

E

(∫ τ

0
e−rtf(Xt)dt+ e−rτg(Xτ )

)
, (20)
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where T is the set of all stopping times adapted to the initial filtration F , and {Xt}t∈R+ solves

dXt = µ(Xt)dt+ σ(Xt)dBt (21)

subject to the initial condition X0 = x. We maintain the same assumption as before on µ, σ and

f , which guarantee that the SDE has a unique strong solution.

We make the additional assumption that the termination function g is continuously differentiable.

Assumption 4 g(·) is C1.

Theorem 5 Under Assumptions 2– 411 v is differentiable on the interior of X .

Let Y denote the subset of X for which v(x) = g(x). Y consists of all the states at which it is

optimal to stop immediately. By continuity of v and g, X \ Y consists of disjoint open intervals

{Zi}i∈I . Pick any two points x1 < x2 in such an interval. The BVP result stated in Appendix B

guarantees the existence of C2 solution w to the dynamic equation

w′′(x) +
1

1
2σ(x)2

(−rw(x) + f(x) + µ(x)w′(x)) = 0. (22)

with boundary conditions w(x1) = v(x1) and w(x2) = v(x2). A standard verification argument

then shows that v coincides with w on any such interval and, therefore, that v is C2 on such interval,

and, therefore, on any Zi.

Consider now the boundary of such an interval Zi, for example the upper boundary, and call it x∗.

By construction, v(x) > g(x) for x in a left-neighborhood of x∗, and v(x∗) = g(x∗). In particular,

the left derivative of v at x∗ must be less than or equal to g′(x∗). We show by contradiction that

this inequality must be tight. Consider the solution of IVP to the domain [x1, x2 = x∗ + ε] for

some x1 in Zi and some small ε > 0, with boundary conditions w(x1) = v(x1) and initial slope s∗,

such that w(x∗) = v(x∗). By construction, w(x) < g(x) for x in a right neighborhood of x∗, and

without loss, on (x∗, x2). Now, take a slightly higher slope s′ > s∗ and consider the solution to the

IVP with domain [x1, x2], with starting slope s′, which we label ŵ. For s′ close to s, this solution

hits g at some x̂ ∈ (x1, x2), because solutions to the IVP are continuous in s. Set ŵ(x) = g(x)

for all x > x̂. Lemma 2 below implies that ŵ(x) > w(x) for all x ∈ (x1, x̂) and in particular at

ŵ(x∗) > g(x∗) = v(x∗). Moreover, ŵ corresponds to the expected payoff if the following stopping

strategy is used: starting from x∗, continue until either x1 or x̂ is reached. If x̂ is reached first,

stop. If x1 is reached first, follow the initial strategy leading to value v(x1). This strategy thus

strictly improves on the value v(x∗), starting from x∗, a contradiction.

11Here, the control set A is reduced to a singleton.
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We have proved so far that v is differentiable at x, if either x lies in the interior of some interval

Zi, or if it connects to intervals Zi and Zj (i.e., it is the upper bound of one interval, and the lower

bound of the other), or if it is a bound of some interval Zi and v(y) = g(y) on the other side of x,

and in the last two cases, v′(x) = g′(x).

To conclude the proof, we need to show the result when x is such that v(x) = g(x), but x is an

accumulation point of stopping and non stopping regions, on either its right side or its left side, or

both. Without loss of generality, we set x = 0 and establish that vr(0) = g′(0), where vr is the right

derivative of v at 0. We wish to show that limh↓0(v(h)− v(0))/h converges to g′(0). Consider any

h > 0. The difference v(h)− v(0) is either equal to g(h)− g(0), if h belongs to Y, or else h belongs

to some interval Zi close to 0. Let y denote the lower bound of Zi. By right differentiability of v at

y, and because the right derivative is equal to g′(y), we have v(h) = v(y) + g′(y)(h− y) + o(h− y).

Since v(y) = g(y), we can rewrite the right-hand side as g(h)+o(h−y). Thus, either way, we have

v(h)− v(0)

h
=
g(h)− g(0)

h
+ o(h). (23)

Taking the limit as h goes to zero yields the result.

Lemma 2 Consider vs′ and vs, two solutions to the IVP with starting slopes s′ > s on an interval

[x1, x2] which both satisfy vs′ (x1) = vs (x1) = v1. Then, vs′ (x) > vs (x) for all x ∈ (x1, x2].

Proof. Let x̂ = inf {x : vs′ . (x) ≤ v′s (x)}. Note that x̂ > x because v′s′ (x) > v′s (x) and both vs′

and vs are C2. We have vs′ (x̂) > vs (x̂).Since both solutions satisfy the equation

v′′ (x) +
1

1
2σ (x)2

(
−rv (x) + f (x) + µ (x) v′ (x)

)
= 0 (24)

we have

v′′s′ (x̂) =
1

1
2σ (x̂)2

(
rvs′ (x̂) + f (x̂) + µ (x̂) v′s′ (x̂)

)
>

1
1
2σ (x̂)2

(
rvs (x̂) + f (x̂) + µ (x̂) v′s (x̂)

)
= v′′s (x̂)

Since v′s′(x) must hit v′s(x) from above as x reaches x̂, we obtain a contradiction.

A Results for Initial Value Problems of ODEs

Condition 1 The function H : (x, y) 7→ H(x, y) defined on X × Rn satisfies, on any compact

subset [x
¯
, x̄] of X ,
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• |H(x, y)| ≤M(1 + |y|)

• |H(x, y)−H(x, y′)| ≤ K|y − y′|.

Lemma 3 For any x0 ∈ X ⊂ R and y0 ∈ Rn, The ODE

y′(x) = H(x, y(x)) (25)

with initial condition y(x0) = y0 has a unique continuously differentiable solution on X .

Lemma 4 Under the assumptions of Lemma 3, let f (x, y0) denote the solution to (25) on X with

initial condition f (x0) = y0. Then f is continuous in y0.

The proofs are standard and hence omitted. See e.g. Hartman (2002), Chapters 2 and 5.

B Boundary Value Problem on Finite Domain

Suppose that y = (v, v′) and H(x, v, v′) satisfies growth and Lipschitz assumptions of the previous

section.

We further assume that:

Condition 2 H is nonincreasing in v.

Condition 3 For all positive constants K1,K2 large enough and ε ∈ {−1, 1},

H(x,K1 +K2|x|, εK2) < 0 and H(x,−K1 −K2|x|, εK2) > 0. (26)

Proposition 1 Under Conditions 1– 3, the ODE

v′′ +H
(
x, v, v′

)
= 0 (27)

with boundary conditions

v (x) = υ

v (x̄) = ῡ

has a solution.

The proof is based on the “shooting method.” Intuitively, we start from the initial conditions
(
x, y
)

and consider the solution to the initial value problem (IVP)

v′′ +H
(
x, v, v′

)
= 0 (28)

9



subject to the initial conditions v (x) = y and v′ (x) = s. Given our assumption on H, Lemma 3

guarantees that this IVP will have a unique, twice continuously differentiable solution. Lemma 4

guarantees that the solution continuously depends on the starting slope s. We can establish exis-

tence to a solution of the boundary value problem (BVP) if we can show that it is always possible

to pick the slope s in such a way that at x̄, the solution to the IVP will hit ῡ.

The proof relies on constructing a rectangle of the (x, υ) plane, in which the solution must be

contained and which has the property that any solution to the IVP will eventually hit the set. We

can then define a mapping between the initial slope s and points in the rectangle, and show that

the mapping is onto, which establishes our result. Uniqueness follows from a separate argument.

Lemma 5 For any positive constant Kv large enough, the functions b1(x) = −Kv(1 + |x|) and

b2(x) = Kv(1 + |x|) satisfy the inequalities

b′′1 +H
(
x, b1, b

′
1

)
> 0

b′′2 +H
(
x, b2, b

′
2

)
< 0

for all x 6= 0, and the boundary constraints υ ∈ (b1 (x) , b2 (x)) and ῡ ∈ (b1 (x̄) , b2 (x̄)).

Proof. We have for x 6= 0

b′′2(x) +H(x, b2(x), b′2(x)) = H(x,Kv +Kv|x|,Kvsgn(x)),

which is strictly negative, by Condition 3. The argument for v1 is analogous.

Lemma 6 There exist s1 and s2 such that the solution to IVP (28) hits b2 for all initial slopes

s ≥ s2 and b1 for all initial slopes s ≤ s1.

Proof. By suitably translating the problem, we can without loss assume that x
¯

= y
¯

= 0.12 We

wish to show that for high enough initial slopes s, the solution v(s) hits b2. Consider the auxiliary

IVP

u′′ +Ku′ +H(x, u(x), 0) + ε = 0 (29)

subject to u(0) = 0 and u′(0) = s, where K is the Lipschitz constant of H and ε is a positive

constant. We will show that, for s high enough, u is strictly increasing on [0, x̄]. For fixed s, let

x̃ > 0 denote the first time that u′(x) = 0. On [0, x̃], we have u(x) ≥ 0. By Condition 2, we have

H(x, u(x), 0) ≤ H(x, 0, 0) on that domain, and

u′′(x) +Ku′(x) +M ≥ 0, (30)

12The translation is obtained by letting v̄(x) = v(x − x
¯
) − y

¯
and H̄(x, v, v′) = H(x − x

¯
, v + y

¯
, v′). H̄ inherits the

Lipschitz and monotonicity properties of H, as is easily checked.
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whereM = maxx∈[0,x̄]H(x, 0, 0)+ε. Applying Grönwall’s inequality to the function g(x) = −u′(x)−
M/K, which satisfies the inequality

g′(x) ≤ −Kg(x) (31)

on [0, x̃], we conclude that

u′(x) ≥ [s+M/K] exp(−Kx)−M/K (32)

on that domain, which implies that x̃ is bounded below by13

1

K
log

(
s+ |M |/K
|M |/K|

)
, (33)

which exceeds x̄, for s high enough. Moreover, the lower bound on u′ also implies that u hits b2 for

s large enough.

To conclude the proof, we will show that the IVP solution v is above u for any fixed s. The Lipschitz

property of H in its last argument implies that, for all x, u, u′,

−Ku′ ≤ H (x, u, 0)−H
(
x, u, u′

)
(34)

From the definition of u, this implies that

u′′(x) +H
(
x, u(x), u′(x)

)
≤ −ε < 0 (35)

for all x. This implies that v, the solution to the IVP, lies above u, for the following reason. At

x = 0, u and v have the same starting values and slopes, but u has a lower second derivative, by

at least ε, which implies that u′ < v′ in a right neighborhood of 0. We will show that u′ < v′

for all x in (0, x̄] and, therefore, that u < v on that domain. Suppose by contradiction that there

exists an x > 0 such that u′(x) = v′(x), and let x̃ be the first such point. Necessarily, u(x̃) < v(x̃).

Moreover, we have

u′′(x̃) < −H(x̃, u(x̃), u′(x̃)) ≤ −H(x̃, v(x̃), v′(x̃)) = v′′(x̃), (36)

where the second inequality is guaranteed by 2, which yields a contradiction. �

We can finally prove Proposition 1. Let

B = {(x, y)|b1(x) = y or b2(x) = y} ∪ [(x̄, b1(x̄)), (x̄, b2(x̄))] ⊂ R2. (37)

B consists of the graph of the functions b1 and b2 on X , along with the vertical segment joining

the endpoints of these graphs at x̄. We also define the function H : [s1, s2]→ R2 as the last hitting

13If M = 0, the inequality implies that u′ is strictly positive.
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point of B for the solution of the IVP with slope s. This function is clearly well defined: if a

solution does not crosses b1 or b2 before x̄, it has to hit the vertical segment joining b1(x̄) and b2(x̄).

From Lemma 6, H(s) is on the graph of b2 for s large and on the graph of b1 for s small (for s large,

for example, remember that u had a slope greater than s and hence does not cross b2 again after

hitting it once). Moreover, H cannot jump from the graph of b2 to the graph of b1 as s changes,

because Lemma 5 implies, for example, that after v crosses b2, it stays above v2 for all x beyond the

crossing point,14 and hence cannot hit b1. Therefore, H must connect the upper and lower bounds

of B as s goes down. Finally, Lemma 4 implies that H is continuous at any point s for which H(s)

lies on the vertical segment, this implies that that H(s) must take all values on that segment as it

connects the graphs of b2 and b1. Since (x̄, ȳ) belongs to that segment, this proves existence of a

solution that solves the BVP.

C Boundary Value Problems on Infinite Domains

We now establish existence of a function v which satisfies

v′′ = H
(
x, v, v′

)
(38)

and

|v(x)| ≤ Kv(1 + |x|) (39)

on X , where Kv is the constant used to construct the bounds b1, b2 in Lemma 5. The arguments

are based on Bailey (1968).

From the previous section, we know that the BVP will have a unique C2 solution for any finite

interval [x, x̄] and boundary conditions v (x) = y and v (x̄) = ȳ. Further, we know that the solution

satisfies −Kv(1+|x|) ≤ v (x) ≤ Kv(1+|x|) on [x, x̄]. The constant Kv depends only on the primitive

functions of the problem, and not on the particular interval chosen.

We define a sequence of boundary value problems which satisfy equation (38) on [xn, x̄n] with

boundary conditions v (xn) = y
n

and v (x̄n) = ȳn for some values y
n
, ȳn in (b1(x

¯n
), b2(x

¯n
)) and

(b1(x̄n), b2(x̄n)), respectively, and let xn and/or x̄n tend to infinity. In the following, we use the

Arzelà-Ascoli theorem and show that this procedure indeed yields a solution.

Let vn be the solution to the n’th BVP. We use the following comparison theorem.15

14The proof of this result is similar to the proof that v stays above u in Lemma 6, showing that v′ ≥ b′2 after the

crossing point, and exploits the inequality b′′2 +H(x, b2, b
′
2) < 0.

15See Hartman (2002), p. 428.
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Lemma 7 Let φ denote a nonnegative, continuous function on R+, such that∫ ∞
0

s

φ (s)
=∞, (40)

and R > 0,x̃ > 0 denote two constants. Then, there exists a number M such that if v (x) is C2

on [0, x̄] with x̄ > x̃ and satisfies |v (x)| ≤ R and |v′′ (x)| ≤ φ (|v′ (x)|), then |v′ (x)| ≤ M on [0, x̄].

The constant M depends only on R, φ and x̃.

We have

|v′′(x)| = |H(x, v(x), v′(x)| ≤ |H(x, v(x), 0)|+K|v′(X)| ≤ K1 +K|v′(x)| (41)

for any bounded domain X = [x, x̄], by the Lipschitz property of H (with constant K), where the

constant K1 is obtained by boundedness of v on X (since it is contained between b1 and b2, and

continuity of H(·, ·, 0) on the corresponding compact domain.

Since φ (x) = K1 +Kx satisfies (40), each v′n is bounded on the compact domain X, and since the

bound is uniform for all n. Moreover (41) implies that the second derivative of v is also uniformly

bounded.

We now employ the following diagonalization procedure. Consider a finite domain [x1, x̄1]. By

the previous argument, for each n, vn, v′n and v′′n are bounded on [x1, x̄1], and the bounds are

uniform in n. By Arzelà-Ascoli, there exists a subsequence such that vn converges uniformly to a

C1 function ṽ1 on [x1, x̄1]. 16 Moreover, the second derivatives {v′′n}n∈N are also equicontinuous,

because they satisfy v′′n(x) = H(x, vn(x), v′n(x)) with H continuous and vn and v′n equicontinuous.

This implies that there is a subsequence of vn that converges uniformly to a C2 function ṽ1 on

[x
¯
, x̄]. This also implies that the limit satisfies ṽ′′1 (x) = −H (x, ṽ1 (x) , ṽ′1 (x)). By construction,

b1(x) ≤ vn(x) ≤ b2(x) on [x1, x̄1] and, therefore, ṽ1 is also contained between b1 and b2.

To conclude, take the finite domain [x2, x̄2] ⊃ [x1, x̄1]. Applying Arzelà-Ascoli again, 17 there exists

a subsequence of the first subsequence such that vn converges uniformly to a limit function ṽ2 on

[x2, x̄2]. The functions ṽ1 and ṽ2 coincide on [x1, x̄1]. Proceeding iteratively, we can cover the entire

domain X . The function v defined by v (x) = ṽk (x) for x ∈ [xk, x̄k] \
[
xk−1, x̄k−1

]
, solves the BVP

and is bounded by b1 and b2.

16More precisely, we use the following version: if a sequence of C1 functions have equicontinuous and uniformly

bounded derivatives, and is bounded at one point, then it has a subsequence that converges uniformly to a C1

function. Here equicontinuity of the derivatives is guaranteed by the uniform bound on the second derivative.
17Note that the bounds for the domains [x2, x̄2] and [x1, x̄1] are different. However, since we are fixing the domain,

we are still able to obtain a convergent subsequence.
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