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Multi-parameter Mechanism Design
and Sequential Posted Pricing

Shuchi Chawla∗ Jason D. Hartline† David Malec‡ Balasubramanian Sivan§

Abstract

We consider the classical mathematical economics problem of Bayesian optimal mechanism designwhere a prin-
cipal aims to optimize expected revenue when allocating resources to self-interested agents with preferences drawn
from a known distribution. In single-parameter settings (i.e., where each agent’s preference is given by a single pri-
vate value for being served and zero for not being served) this problem is solved [19]. Unfortunately, these single
parameter optimal mechanisms are impractical and rarely employed [1], and furthermore the underlying economic
theory fails to generalize to the important, relevant, and unsolved multi-dimensional setting (i.e., where each agent’s
preference is given by multiple values for each of the multiple services available) [24].

In contrast to the theory of optimal mechanisms we develop a theory of sequential posted price mechanisms, where
agents in sequence are offered take-it-or-leave-it prices. We prove that these mechanisms are approximately optimal
in single-dimensional settings. These posted-price mechanisms avoid many of the properties of optimal mechanisms
that make the latter impractical. Furthermore, these mechanisms generalize naturally to multi-dimensional settings
where they give the first known approximations to the elusiveoptimal multi-dimensional mechanism design problem.
In particular, we solve multi-dimensional multi-unit auction problems and generalizations to matroid feasibility con-
straints. The constant approximations we obtain range from1.5 to 8. For all but one case, our posted price sequences
can be computed in polynomial time.

This work can be viewed as an extension and improvement of thesingle-agent algorithmic pricing work of [10]
to the setting of multiple agents where the designer has combinatorial feasibility constraints on which agents can
simultaneously obtain each service.
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1 Introduction

Suppose the local organizers for a prominent symposium on computer science need to arrange for suitable hotel ac-
commodations in the Boston area for the attendees of the conference. There are a number of hotel rooms available
with different features and attendees have preferences over the rooms. The organizers need a mechanism for soliciting
preferences, assigning rooms, and calculating payments. Fortunately, they have distributional knowledge over the par-
ticipants’ preferences (e.g., from similar conferences).This is a stereotypical multi-dimensional setting for mechanism
design that, for instance, also arises in most resource allocation problems in the Internet. What mechanism should the
organizers employ to maximize their objective (e.g., revenue)?

The economic theory of optimal mechanism design is elegant and predictive in single-dimensional settings. Here
Myerson’s theory of virtual valuations and characterizations of incentive constraints via monotonicity guide the design
of optimal truthful mechanisms [19] with practical (often non-truthful) implementations [1]. The challenge of multi-
dimensional settings (e.g., in the likely case that conference attendees, i.e., agents, have different values for different
hotel rooms) is two-fold. First, multi-dimensional settings are unlikely to permit succinct descriptions of optimal
mechanisms [18, 21, 24]. Second, optimal mechanisms in multi-dimensional settings are unlikely to have practical
implementations – even asking agents to report their true types across the many possible outcomes of the mechanism
may be impractical. In summary, theory and practical considerations from optimal mechanism design in single-
dimensional settings fail to generalize to multi-dimensional settings.

This paper approaches these issues through the lens of approximation. Our main results are simple, practical,
approximately optimal mechanisms for a large class of multi-dimensional settings. We consider the multi-dimensional
setting through a single dimensional analogy wherein each multi-dimensional agent is represented by many inde-
pendent single-dimensional agents (e.g., one for each hotel room). The optimal revenue for this single-dimensional
setting is well understood and, due to increased competition among agents, upper-bounds that of the original multi-
dimensional setting. We describe a “sequential posted price” mechanism for the single-dimensional setting that is
practical and approximately optimal and, in contrast to theoptimal single-dimensional mechanism, achieves its ap-
proximation without inter-agent competition. This gives arobustness to deviations in modeling assumptions and, for
instance, the same mechanism continues to be approximatelyoptimal in the original multi-dimensional setting. There-
fore, our theory for approximately optimal single-dimensional mechanisms generalizes to multi-dimensional settings.

In the context of computer science literature this work is anextension ofalgorithmic pricing(e.g., [12]) to settings
with multiple agents; it is unrelated to the standard computational questions ofalgorithmic mechanism design(e.g.,
[17, 20]). The central problem in algorithmic pricing can beviewed (for the most part) as Bayesian revenue maximiza-
tion in a single agent setting (e.g., [12]). Algorithmic pricing is hard to approximate when the agent’s values for differ-
ent outcomes are generally correlated [8]; however, when the values are independent there is a 3-approximation [10].
In this context, our results improve and extend the independent case to settings with multiple agents and combinatorial
feasibility constraints. Notice that the challenge in these problems is one imposed by the multi-dimensional incen-
tive constraints and not one from an inherent complexity of an underlying non-game-theoretic optimization problem.
(E.g., in the hotel example the underlying optimization problem is simply maximum weighted matching.) In contrast,
most work in algorithmic mechanism design addresses settings where economic incentives are well understood but the
underlying optimization problem is computationally intractable (e.g., combinatorial auctions [17]).

While our exposition focuses on revenue maximization, all of our techniques and results apply equally well to
social welfare. Social welfare is unique among objectives in that designing optimal mechanisms in multi-dimensional
settings is solved (by the VCG mechanism). Therefore, the interesting implication of our work on social welfare
maximization is that sequential posted pricing approximates the welfare of the VCG mechanism and may be more
practical.

Sequential Posted Pricing. Consider a single-parameter setting where each agent has a private value for service and
there is a combinatorial feasibility constraint on the set of agents that can be simultaneously served. For this setting
a sequential posted pricing(SPM) is a mechanism defined by a price for each agent, a sequence on agents, and the
semantics that each agent is offered their corresponding price in sequence as a take-it-or-leave-it while-supplies-last
offer. Meaning: if it is possible to serve the agent given theset of agents already being served then the agent is offered
the price. A rational agent will accept if and only if the price is no more than their private value for service. That prices
are associated with the agents and not the sequence reflects the possibility that agents may play asymmetric roles for
a given feasibility constraint or value distribution.
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Consider the following hotel rooms example with one room, two attendees, and attendee values independently
and identically distributed uniformly between $100 and $200. The optimal mechanism is the Vickrey auction and its
expected revenue is $133. The optimal sequential posted pricing is for the organizers to offer the room to attendee 1
at a price of $150. If the attendee accepts, then the room is sold, otherwise it is offered to attendee 2 for $100. The
expected revenue of this SPM is $125.

We are interested in comparing the optimal mechanism to the optimal posted pricing in general settings. A special
class of SPMs is one where mechanisms have provable performance guarantees for any sequence of the agents. These
order-oblivious posted pricings(OPM) are mechanisms defined by a price for each agent and the semantics that each
agent is offered their corresponding price in some arbitrary sequence as a take-it-or-leave-it while-supplies-last offer.

In single-dimensional settings, the advantages of sequential posted pricings speak to the many reasons optimal
auctions are rarely seen in practice [1], and explain why posted pricings are ubiquitous [14]. First, take-it-or-leave-
it offers result in trivial game dynamics: truthful responding is a dominant strategy. Second, SPMs satisfy strong
notions of collusion resistance, e.g.,group strategyproofness(see [11]): the only way in which an agent can “help”
another agent is to decline an offer that he could have accepted, thereby hurting his own utility. Third, agents do
not need to precisely know or report their value, they must only be able to evaluate their offer; therefore, they risk
minimal exposure of their private information. Fourth, agents learn immediately whether they will be served or not. In
conclusion, the robustness of SPMs in single-dimensional settings makes their approximation of optimal mechanisms
independently worthy of study.

The final robustness property of SPMs, which is of paramount importance to our study of the multi-dimensional
setting, is that they minimize the role of agent competitionwhich implies that single-dimensional SPMs can be used
“as-is” in multi-dimensional settings with only a constantfactor loss in performance. In our translation from the multi-
dimensional setting to the single-dimensional setting, each multi-dimensional agent has many single-dimensional
representatives. A good OPM for the single-dimensional setting can be viewed as an OPM for the multi-dimensional
setting by grouping all representatives of an agent together and making their offers simultaneously to the agent. The
agent will of course accept the offer that maximizes their utility. The resulting mechanism is truthful and achieves
the same performance guarantee as the single-parameter OPM. For SPMs where we are not free to group each multi-
dimensional agent’s single-dimensional representative together, an agent possibly faces a strategic dilemma of whether
to accept an offer (e.g., for one hotel room) early on or wait for a later offer (e.g., another hotel room) which may or
may not still be available. Our guarantee is that regardlessof the actions of any agent with such a strategic option
(i.e., implementation in undominated strategies, see, e.g., [4]) our performance is a constant fraction of the original
SPM’s performance. Given the advantages of SPMs over truthful mechanisms, such a non-truthful SPM may be more
practically relevant than a truthful implementation.

Finally, we note that most of our results for posted pricingsare constructive and give efficient algorithms for them.
A posted price mechanism has two components where computation is necessary: an offline computation of the prices
to post (and for SPMs, the sequence of agents) and an online while-supplies-last offering of said prices.1 The agents
are only present for the online part where the mechanism is trivial. All of the computational burden for an SPM is
in the offline part. The offline computation of our posted price mechanisms is based on a subroutine that repeatedly
samples the distribution of agent values and simulates Myerson’s mechanism on the sample. This clearly requires
more computation than just running Myerson’s mechanism on the real agents in the first place; however, we benefit
from the robustness that comes from the trivial online implementation of posted pricings.

Related work. See [24] and references therein for work in economics on optimal multi-dimensional mechanism
design. See [10] and references therein for work in computerscience on multi-dimensional pricing for a single agent.
We extend the setting from [10] to multiple agents and improve their approximation for a single agent from3 to 2.

Sequential posted price mechanisms have been considered previously in single-dimensional settings. Sandholm
and Gilpin [23] show experimentally that these mechanisms compare favorably to Myerson’s optimal mechanisms.
Blumrosen and Holenstein [7] show how to compute the optimalposted prices in the special case where agents’ values
are distributed identically, and also show that in this casethe revenue of these mechanisms approaches the optimal
revenue asymptotically. Several papers study revenue maximization through online posted pricings in the context of
adversarial values, albeit in the simpler context of multi-unit auctions [6, 15, 5].

1This is similar, for example, to nearest neighbor algorithms, where one distinguishes the time taken to construct a database, and the time taken
to compute nearest neighbors over that database given a query.
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Feasibility constraint Type of mechanism
Gap from optimal

Reference
upper bound lower bound

General matroid
SPM 2

√

π/2 ≈ 1.25 (§ 4.1,§ C.1, [7])
OPM O(log k) 2 (§ 5.1,§ D.2)
VCG 2 - (§ I)

k-uniform matroid, partition matroid
SPM e/(e− 1) ≈ 1.58 1.25 (§ 4.2,§ C.2)
OPM 2 2 (§ 5.2,§ D.2)

Graphical matroid OPM 3 2 (§ 5.2,§ D.3)
Intersection of two matroids SPM 3 1.25 (§ 4.2,§ C.3)
Intersection of two partition matroids OPM 6.75 2 (§ 5.3,§ D.4)
Non-matroid downward closed SPM, OPM - Ω(log n/ log log n) (§ C.5)

Table 1: A summary of our results for single-dimensional preferences. Heren is the number of agents, andk is the
size of the largest feasible set.

Feasibility constraint Solution concept Mechanism Gap from optimal

multi-unit multi-item with unit-demand dominant strategy truthful OPM 6.75
Graphical matroid with unit-demand dominant strategy truthful OPM 32/3
General matroid intersection alg. imp. in undominated strategiesSPM 8
Combinatorial auction with small bundlesalg. imp. in undominated strategiesSPM 8

Table 2: A summary of our results for multi-dimensional preferences (§ 6).

The question of whether simple mechanisms can achieve near-optimal revenue was considered recently by Hartline
and Roughgarden [13]. Except for their result on single-item auctions with anonymous reserve prices, their VCG based
mechanisms are likely to suffer the same impracticality criticisms as the optimal mechanism. The essay “The Lovely
but Lonely Vickrey Auction” by Ausubel and Milgrom [1] discusses why this is the case. As a consequence of the
near-optimality of sequential posted prices, we answer oneof their open questions in the positive, namely, that the gap
between the revenue optimal mechanism and a VCG mechanism with appropriate reserve prices is a constant (i.e.,2)
in matroid settings but with arbitrary valuation distributions. This bound matches their result for regular distributions.

Our setting of sequential posted pricing with a matroid constraint is very closely related to the so-called matroid
secretary problem [2, 3, 16], but there are two important differences: (a) they assume that agents’ values are adversarial,
whereas in our setting they are drawn from known distributions, and (b) in their setting agents arrive in random order,
whereas we consider optimized and adversarial orderings. Some of our results are reminiscent of that work, but our
techniques are necessarily different.

Finally, our results for OPMs in the multi-unit auction setting are based on work on prophet inequalities from
optimal stopping theory. While that work applies directly to the analysis of OPMs in the single-item auction setting,
we show that it extends tok-unit auctions with no loss in approximation factor.

Our results. Our results are summarized in Tables 1 and 2. Our approximation factors in both the single-dimensional
and multi-dimensional settings depend on the kind of feasibility constraint that the seller faces. In the single-dimensional
setting, the feasibility constraint is a set system over agents specifying the sets of agents that can be simultaneously
served. In the multi-dimensional setting, each agent is interested in buying one of multiple kinds of items or services
and we assume that agents’ values for the different servicesare independent. The feasibility constraint is a set system
over (agent, service) pairs. In both cases we assume that theset system is downward closed, i. e., any subset of a
feasible set is also feasible. All of the mechanisms we develop can be computed efficiently, except for theO(log k)
approximate OPM in general matroid settings.
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2 Problem set-up and preliminaries

2.1 Bayesian optimal mechanism design

In the single-parameter setting, the mechanism design problem we study (hereafter abbreviated BSMD for Bayesian
single-parameter mechanism design) is stated as follows. There aren single-parameter agents and a single seller
providing a certain service. Agenti’s valuevi for getting served is distributed independently accordingto distribution
functionFi with densityfi. The seller faces a feasibility constraint specified by a setsystemJ ⊆ 2[n], and is allowed
to serve any set of agents inJ . We assume that the set systemJ is downward closed. That is, for anyA ⊂ B ⊆ 2[n],
B ∈ J impliesA ∈ J . A mechanismM for this problem is a function that maps a vector of valuesv to anallocation
M(v) ∈ J and apricing π(v) with a priceπi to be paid by agenti.

In the Bayesian multi-parameter unit-demand setting (BMUMD for short), we again haven buyers and one seller.
The seller offers a number of different services indexed by set J . The setJ is partitioned into groupsJi, with the
services inJi being targeted at agenti.2 Each agenti is interested in getting any one of the services inJi (that is,
consumers are unit-demand agents). In the hotel rooms example, the setJi would contain all the rooms that agenti
may be interested in and the feasibility constraint ensuresthat each room is allocated to at most one agent. Another
setting with a more general feasibility constraint arises in the context of airline ticket sales: we have a directed graph
with capacities on edges owned by a seller, and a number of agents. Each agent is interested in a path of at most two
hops from some source to some destination in the graph (agents want to buy airline tickets for an itinerary with at most
two legs), andJi contains all such paths. The feasibility constraint ensures that each leg is allocated upto its capacity
and no more.

Agent i has valuevj for servicej ∈ Ji. vj is independent of all other values and is drawn from distribution Fj .
Once again the seller faces a feasibility constraint specified by a set systemJ ⊆ 2J . Note that for everyS ∈ J and
i ∈ [n], |S ∩ Ji| ≤ 1, that is each agent gets at most one service. As in the single-parameter case, a mechanism for
this problem maps any set of bidsv to an allocationM(v) ∈ J and a pricingπ(v).

2.2 Posted-price mechanisms

A sequential posted-price mechanism (SPM),S , is defined by an orderingσ over agents and a collection of pricespi
for i ∈ [n]. The mechanism is run as follows:

1. InitializeA← ∅.

2. Fori = 1 throughn, do:

(a) If A ∪ {σ(i)} ∈ J , offer to serve agentσ(i) at pricepi.

(b) If the agent accepts,A← A ∪ {σ(i)}.

3. Serve the agents inA.

Let ci denote the probability taken over values of agentsσ(1), · · · , σ(i − 1) that the mechanism offers to serve
agenti, and letqi = 1− Fi(pi). Then the expected revenue of the sequential mechanism,Rσ

p, is given by
∑

i ciqipi.

Order-oblivious posted prices. As mentioned earlier, we also study posted-price mechanisms where the order of
offers is picked adversarially. We estimate (pessimistically) the expected revenue of this mechanism as follows:

Robl
p = Ev∼F min

S∈Sv

∑

i∈S

pi

Here the minimization is over the classSv of setsS that aremaximal feasible subsetsof agents that “desire” service
given valuesv and pricesp: (1)Sv ⊆ J , (2)vi ≥ pi for all i ∈ S, S ∈ Sv, and, (3) for every feasible supersetS′ of a
setS ∈ Sv, S′ contains some agenti with vi < pi.

For some instances, we allow a strengthening of OPMs to posted-price mechanisms where the seller is allowed to
deny service to an agent even when the agent can be feasibly served alongside previously served agents. Formally,

2Since we allow for an arbitrary feasibility constraint overthe setJ , the assumption that the setsJi are disjoint is without loss of generality.
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the mechanism selects a pricingp, and a set systemJ ′ ⊆ J , and runs the OPM using the pricesp but determining
feasibility according toJ ′ instead ofJ . Crucially, the systemJ ′ is determined based only on the distributions of
agents’ values and not the values themselves. Therefore, this more general mechanism (that we call an OPM with a
restricted feasibility constraint) retains all of the goodproperties of OPMs.

OPMs in multi-dimensional settings are similar: agents areapproached in turn (in an arbitrary order); each agent
i gets a price-menu over the subset of services inJi that can be feasibly allocated to the agent. However, we define
SPMs differently: agents are approached in turn (accordingto an optimal ordering) and offered individual items at
a time. Offers to a single agent are not necessarily contiguous. These mechanisms are not truthful, but we show in
Section 6.2 that they can nonetheless be useful in approximating the BMUMD.

2.3 Myerson’s optimal mechanism

Myerson’s seminal work describes the revenue maximizing mechanism for the Bayesian single-parameter mechanism
design problem. When the value distributionsFi are regular, in Myerson’s mechanism the seller first computes so-
called virtual values for each agent, and then allocates to afeasible subset of agents that maximizes the “virtual
surplus”—the sum of the virtual values of agents in the set minus the cost of serving that set of agents. We define these
quantities formally in Appendix A. For our analyses, we mainly require the following two characterizations of the
expected revenue of any truthful mechanism when the value distributions are regular. Similar characterizations hold
in the non-regular case. These and their extensions to the non-regular case are proved in Appendix A.

Proposition 1 When all input distributionsFi are regular, the expected revenue of any truthful single-parameter
mechanismM is equal to its expected virtual surplus.

Lemma 2 If Fi is regular for eachi, for any truthful mechanismM over then agents, the revenue ofM is bounded
from above by

∑
i p

M
i qMi whereqMi is the probability (overv1, · · · , vn) with whichM allocates to agenti and

pMi = Fi
−1(1 − qMi ).

Furthermore for everyi (with a regular or non-regular value distribution), there exist two pricespi andpi with
corresponding probabilitiesqi and qi, and a numberxi ≤ 1, such thatxiqi + (1 − xi)qi = qMi , and the expected
revenue ofM is no more than

∑
i xipiqi + (1− xi)piqi.

3 A reduction from multi-parameter MD to single-parameter M D

We now present a general reduction from the multi-parameteroptimal mechanism design problem to the single-
parameter setting. Understanding the properties of optimal mechanisms in multi-parameter settings is tricky. Our
approach begins with an upper bound on the optimal revenue interms of the optimal revenue for a related single-
parameter problem following an approach of [10]. We describe this first.

An upper bound via copies. Consider an instanceI of the BMUMD with n agents, a setJ of available services
(with groupJi of services targeted at agenti), and a feasibility constraintJ . We will define a new instance of the
BSMD in the following manner. We split each agent inI into |Ji| distinct agents (called “copies”). Each copy is
interested in a single itemj ∈ Ji and behaves independently of (and potentially to the detriment of) other copies. We
call this instanceIcopies. Formally, the instance has|J | distinct agents interested in a single service; agentj’s value for
getting served,vj , is distributed independently according toFj . The mechanism again faces a feasibility constraint
given by the set systemJ .
Icopiesis similar toI except that it involves more competition (among different copies of the same multi-parameter

agent). Therefore it is natural to expect that a seller can obtain more revenue in the instanceIcopies than inI. The
following lemma formalizes this (see Appendix B for a proof).

Lemma 3 LetA be any individually rational and truthful deterministic mechanism for instanceI of the BMUMD.
Then the expected revenue ofA, RA, is no more than the expected revenue of Myerson’s mechanismfor the single-
parameter instance with copies,Icopies.
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A reduction to single-dimensional OPMs. Next we show that if we can construct a good OPM for the settingwith
copies, we can construct a good OPM for the multi-dimensional setting as well. (Again, see Appendix B for a proof).

Theorem 4 Given an instanceI of the BMUMD specified by the set system(J,J ), there exists a truthful posted
price mechanism forI which achieves anα-approximation to the revenue achievable by an optimal deterministic
truthful mechanism, whenever there exists an OPM for the corresponding BSMD instanceIcopies that achieves an
α-approximation to the optimal revenue forIcopies.

4 Sequential posted-price mechanisms

In this section we focus on the BSMD and present approximations to optimal revenue via sequential posted price
mechanisms for several kinds of feasibility constraints, most notably matroids and matroid intersections. Our expo-
sition focuses on describing and analysing the approximately-optimal SPMs, and we defer a discussion of efficiently
computing the SPMs to Appendix F. While our focus is on revenue, our techniques extend to a large class of ob-
jective functions, namely those that are linear in the valuations of the served agents and the payment received by the
mechanism (see Appendix H).

While our analysis of the approximation factor depends closely on the feasibility constraint, we use the same
approach for constructing the SPM in each case. We describe this next.

Suppose first that all the distributionsFi are regular and do not contain any point masses. Letqi = qMi denote
the probability that Myerson’s mechanism serves agenti, and letpi = Fi

−1(1 − qi) for all i. The SPM sets a price
of pi for agenti and offers to serve the agents in decreasing order of their prices. If offered service, agenti accepts
with probability exactlyqi. If the distributionFi contains point masses, we modify the mechanism so that agenti is
offered the pricepi with probabilityqi/(1− Fi(pi)), and again has a probability exactlyqi of accepting the offer. We
denote this mechanism byS . We note that by Lemma 2, the revenue of Myerson’s mechanism is at most

∑
i piqi,

and we will compare the revenue ofS to this upper bound. Finally, let the rank of a subsetS of agents,rank(S),
denote the size of the largest feasible subset inS, that is, rank(S) = maxS′⊂S,S′∈J |S′|. Then, by definition,∑

i∈S qi ≤
∑

i∈S qMi ≤ rank(S).
When the distributions are not regular, we pick pricesp randomly as suggested by Lemma 2. In Appendix E we

sketch the modifications required to the analysis to obtain the same approximation factors for this case as in the regular
case. We now present analyses for the expected revenue ofS when all the distributions are regular.

4.1 A 2 approximation for matroids

We first consider the setting where the set system([n],J ) is a matroid. Precisely, it satisfies the following conditions:

1. (heredity) For everyA ∈ J , B ⊂ A impliesB ∈ J .

2. (augmentation) For everyA,B ∈ J with |A| > |B|, there existse ∈ A \B such thatB ∪ {e} ∈ J .

Sets inJ are called independent, and maximal independent sets are called bases. A simple consequence of the above
properties is that all bases are equal in size. Therefore, the rank of a setS ⊆ [n], is equal to the size of any maximal
independent subset ofS. Thespanof a setS ⊆ [n], span(S), is the maximal setT ⊇ S with rank(T ) = rank(S).

We now show that for matroid set systems the SPM described above approximates the expected revenue of the
optimal mechanism within a factor of 2.

Theorem 5 LetI be an instance of the BSMD with a matroid feasibility constraint. Then, the mechanismS described
above2-approximates the revenue of Myerson’s mechanism forI.

Proof: We show that the mechanismS obtains an expected revenue of at least1
2

∑
i piqi. Note that if the mechanism

ignored the feasibility constraint, and offered the pricesp to all agents, serving any agent that accepted its offered
price, then its expected revenue would be exactly

∑
i piqi. So our proof accounts for the total revenue lost due to

agents “blocked” from getting an offer by previously servedagents.
Formally, letS = {i1 < i2 < · · · < iℓ} be the set of agents served, and letSj denote the firstj elements ofS.

Define the setsBj = span(Sj) \ span(Sj−1). Note that the setsBj partition the set of blocked agents. Moreover,
Bj ⊆ {i : i ≥ ij}, since we condition on servingS, and so,pi ≤ pij for all i ∈ Bj .
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Denote the price offered to agentij by pj . Then, the expected revenue lost given thatS is served is

∑

1≤j≤ℓ

∑

i∈Bj

piqi ≤ p1


 ∑

i∈span(S1)

qi


+

∑

1<j≤ℓ

pj


 ∑

i∈span(Sj)

qi −
∑

i∈span(Sj−1)

qi




=
∑

1≤j<ℓ


(pj − pj+1)

∑

i∈span(Sj)

qi


+ pℓ


 ∑

i∈span(Sℓ)

qi




≤
∑

1≤j<ℓ

(pj − pj+1) · j + pℓ · ℓ =
∑

1≤j<ℓ

pj ,

which is the revenue obtained by servingS. Here we used
∑

i∈span(Sj)
qi ≤ rank(Sj) ≤ |Sj | = j. Therefore,

E[revenue lost] ≤
∑

S

∑

j∈S

pj · Pr[S is served] = Rσ
p,

and so it follows that
∑

i piqi ≤ 2Rσ
p.

Blumrosen et al. [7] show that the gap between the optimal SPMand Myerson’s mechanism can be as large as√
π/2 ≈ 1.253 even in the single item auction case with i. i. d. agents. We describe this gap example in Appendix C.1.

4.2 Constant factor approximations for other feasibility constraints

We now present improved approximations for special matroids, as well as constant factor approximations for special
non-matroid feasibility constraints. The theorems below are proved in Appendix C.

Uniform matroids and partition matroids. A matroid isk-uniform if all subsets of size at mostk are feasible. An
example of ak-uniform matroid constraint is a multi-unit auction where the seller hask units of an item on sale. We
show that we can obtain an improvede/(e − 1) ≈ 1.58 approximation in this case. We show in Appendix C.2 that
this analysis is tight. This result extends also to partition matroids, i.e. disjoint unions of uniform matroids.

Theorem 6 LetI be an instance of the BSMD with a partition-matroid feasibility constraint. Then, the mechanismS
described abovee/(e− 1)-approximates the revenue of Myerson’s mechanism forI.

Matroid intersections. An intersection ofm matroids,M1, · · · ,Mm, is a set system where a set is feasible if and
only if it is feasible in each of them matroids. An example of an intersection of two matroids is a matching. We show
that the mechanism described above is anm+ 1 approximation for intersections ofm matroids.

Theorem 7 Let I be an instance of the BSMD with a feasibility constraints that is an intersection ofm matroids.
Then, the mechanismS described above(m+ 1)-approximates the revenue of Myerson’s mechanism forI.

Combinatorial auctions with small bundles. Consider a situation where the seller has multiple copies ofa number
of items on sale, and each agent is interested in some (commonly known) bundles over items (and has a common
value for all of these bundles). When each desired bundle is of size at mostm, we call this setting a single-parameter
combinatorial auction with known bundles of sizem. In this case the SPM described above achieves anm + 1
approximation.

Theorem 8 Let I be an instance of a single-parameter combinatorial auctionwith known bundles of sizem. Then,
the mechanismS described above(m+ 1)-approximates the revenue of Myerson’s mechanism forI.
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The general non-matroid case. We show in Appendix C.5 that the approximations described above cannot extend
to general non-matroid set systems. In particular, the example we construct describes a family of instances with
i. i. d. agents and a symmetric non-matroid constraint for which the ratio between the expected revenue of Myerson’s
mechanism and that of the optimal SPM isΩ(logn/ log logn) wheren is the number of agents. The same example
also shows that while in many single-parameter pricing problems when the values are distributed in the range[1, h] it
is possible to obtain anO(log h) approximation to social welfare, the same does not hold in our general setting, and
the gap can beΩ(h). On the other hand, the gap is always bounded byO(h) and is achieved by an SPM that charges
each agent a uniform price of1.

5 Order-oblivious posted-prices

The approximations designed in Section 4 rely heavily on a specific ordering of the agents. A natural question is
whether the seller can obtain good revenue when he has no control over the ordering. In such a case the seller picks
a set of prices in advance, and then offers them to the agents on a first-come first-served basis. We show that in many
setting it is possible to determine a set of prices for which such “order-oblivious” mechanisms (OPMs) perform well.

As described in Section 2, an OPM specifies the prices to charge every agent, as well as a feasibility constraint
(potentially different fromJ ) to determine whether or not to make an offer to an agent. To pick the prices, we
follow the approach taken in Section 4. The prices in the OPM are either set to be the same as for the corresponding
approximately-optimal SPM, or set to infinity (effectivelydropping the respective agent from consideration). We now
present the details for different kinds of feasibility constraints.

5.1 AnO(log k) approximation for general matroids

For general matroids we give anO(log k) bound on the gap below, wherek is the rank of the matroid. We remark that
a similar result was obtained by Babaioff et al. [2] for the related matroid secretary problem. However, we show in
Appendix D.1 that their approach cannot give a non-trivial approximation in our setting.

Theorem 9 LetI be an instance of the BSMD with a matroid feasibility constraint. Then, there exists a set of prices
p such thatRobl

p O(log k)-approximatesRM for I.

Proof: We present the proof for regular distributions. Appendix E presents the extension to the non-regular case. Note
that since the feasibility constraint is a matroid, for any instantiation of values, the worst (least revenue) allocation is
achieved when agents arrive in the order of increasing prices. Hereafter we assume that agents always arrive in that
order. Letci be as defined in Section 2.2; recall that the expected revenuemay be expressed as

∑
i cipiqi.

Now consider a hypothetical situation where the prices are all equal to1 but the probabilities with which the agents
accept the offered prices are stillqi. Then, the expected revenue of this hypothetical mechanismwould be given by∑

i ciqi which is at least1/2
∑

i qi by the argument in Theorem 5. In other words, the weighted average of thecis is
at least1/2, weighted by theqis. We get the following sequence of implications.

(1/2)
∑

i

qi ≤
∑

i

ciqi ≤
∑

i:ci<1/4

qi/4 +
∑

i:ci≥1/4

qi = (1/4)
∑

i

qi + (3/4)
∑

i:ci≥1/4

qi ⇒
∑

i:ci≥1/4

qi ≥ (1/3)
∑

i

qi

This means that the probability mass of elements havingci ≥ 1/4 is at least a third of the total. LetG = {i|ci ≥ 1/4};
the revenue obtained from serving only the agents inG is

∑

i∈G

cipiqi ≥ 1/4
∑

i∈G

pMi qMi . (1)

Consider recursively applying the above argument to the elements outsideG. At stepj, letGj be the newly found
G, and letEj be the set of agents still under consideration, defined asE1 = [n] andEj = Ej−1 − Gj−1 for j > 1.
Now, at each stage,Gj contains at least one third of the total probability mass of the remaining elements; thus, at stage
ℓ = ⌈1+ log3/2 k⌉, we would have reduced the total probability mass to less than3/4; by noting that any singleton set
is independent in a matroid and applying Markov’s inequality we may see thatGℓ = Eℓ. Since the collection ofGj ’s
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form a sizeO(log k) partition of [n], and summing (1) over the collection gives a total expected revenue ofRM/4,
we may conclude that there is someGj which gives aΩ(1/ log k)-fraction ofRM regardless of ordering.

We remark that while the2-approximate SPM in Section 4 can be computed efficiently, wedo not know of an
efficient algorithm for computing anO(log k)-approximate order-oblivious pricing.

5.2 Improved approximations for special matroids

We first note that for the case of uniform matroids (where every set of size at mostk is independent), an approximation
of 3 can be obtained by employing techniques developed by Chawla, Hartline and Kleinberg [10] for pricing problems
in multi-parameter settings. We can further improve this approximation factor to2 via techniques developed by
Samuel-Cahn [22] in the context of prophet inequalities in optimal stopping theory. We describe this approach in
Appendix D.2 and show that this approximation factor is tight.

Theorem 10 LetI be an instance of the BSMD with a uniform matroid feasibilityconstraint. Then, there exists a set
of pricesp such thatRobl

p 2-approximatesRM for I.

Corollary 11 Let I be an instance of the BSMD with a partition matroid feasibility constraint. Then, there exists a
set of pricesp such thatRobl

p 2-approximatesRM for I.

For graphical matroids, Babaioff et al. [3] and Korula and P´al [16] develop approaches for reducing this case to a
partition matroid that in our setting yield a4-approximation to the optimal revenue; in Appendix D.3 we use a similar
approach but exploit the connection between prophet inequalities and partition matroids to obtain a3-approximation.

Theorem 12 LetI be an instance of the BSMD with a graphical matroid feasibility constraint. Then, there exists an
OPM with a restricted feasibility constraint that is a partition matroid, that3-approximatesRM for I.

5.3 OPMs for matroid intersections

As for SPMs, our techniques for approximately-optimal OPMsin matroid settings extend to intersections of few
matroids. For intersections of two partition matroids we get an6.75-approximation (see theorem below, and proof in
Appendix D.4). For intersections ofm arbitrary matroids, our techniques imply anO(m log k) approximation where
k is the maximum size of a feasible set (and so is bounded by the least matroid rank); we omit the proof for brevity.

Theorem 13 LetI be an instance of the BSMD with a feasibility constraint given by the intersection of two partition
matroids. Then, there exists a set of pricesp such thatRobl

p 6.75-approximatesRM for I.

The non-matroid case. Example 1 in Appendix C.5 already implies that order-oblivious pricings cannot obtain
more than anO(log n/ log logn) fraction of the revenue of Myerson’s mechanism in general innon-matroid settings.
How do they compare to the optimal SPM? We show in Appendix D.5that the gap between the optimal order-oblivious
pricing and the optimal SPM can be large —Ω(log n/ log logn) — in the non-matroid setting.

6 Approximations for the multi-parameter setting

We now present approximations for various versions of the BMUMD.

6.1 Approximation through truthful mechanisms

We first note that for the hotel rooms example discussed in theintroduction, and indeed for any setting with unit-
demand agents and multiple units of multiple items on sale, a6.75-approximation follows from Theorems 4 and 13.

Theorem 14 Consider an instance of the BMUMD where the seller has multiple copies ofn items on sale, and agents
are unit-demand and have independently distributed valuesfor each item. Then there exists an6.75-approximate OPM
for this instance. The prices for this mechanism can be computed in polynomial time.
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A similar result for graphical matroids follows from Theorems 4 , 12 and 13 (see Appendix G for a proof).

Theorem 15 Consider an instance of the BMUMD based on a graphG = (V,E) where the agents have independent
values for different edges and are interested in buying one edge each. The seller can allocate any forest in the graph.
Then there exists a 10.67 approximate OPM for this instance.The prices for this mechanism can be computed in
polynomial time.

6.2 Approximation through implementation in undominated strategies

Both of the results above involve feasibility constraints that admit good OPMs in single-dimensional settings. Can we
design good multi-dimensional mechanisms for set systems that admit good SPMs in the single-dimensional setting,
but for which we do not know constant approximate OPMs? Two examples are general matroid intersections and
combinatorial auctions with small bundles (e.g. the airline tickets setting described in Section 2).

We now show that this can be done if we relax truthfulness toimplementation in undominated strategies. (See
formal definition in Appendix G.) Our mechanism for both of the cases above is an SPM specified by a set of prices,
one for each service inJ , and an ordering over services. It begins by announcing the prices to the agents. Then,
as for single-dimensional instances, it considers offering the services to the agents in turn: at every step, depending
on the services allocated so far, it determines whether or not it is feasible to allocate the next servicej ∈ Ji to the
corresponding agenti, and if so, offers a pricepj to i. This mechanism is not truthful. For example, an agent may
reject an offer for a servicej even if his value forj exceeds its price, if he anticipates obtaining a more profitable offer
in the future. Nevertheless we can infer some properties about rational agent behavior in such a mechanism.

Lemma 16 Consider an instanceI of the BMUMD and an SPM as defined above with pricesp and orderingσ. Then,
the following holds for any undominated strategy of any agent: if an agenti desires only one service at pricesp, that
is, vj ≥ pj for only onej ∈ Ji, then the agent must acceptj if offered the service.

This lemma and the following theorem are proved in Appendix G.

Theorem 17 Given an instance of the BMUMD with a general matroid intersection constraint, there exists an SPM
that implements a8-approximation in undominated strategies. Given an instance of a combinatorial auction with
known bundles of size2, there exists an SPM that implements a8-approximation for the instance in undominated
strategies.

7 Discussion

We presented constant factor approximations to revenue forseveral classes of multi-dimensional mechanism design
problems by designing approximately-optimal posted pricemechanisms for single-dimensional settings. This ap-
proach does not extend beyond matroid and matroid-like settings. However, it is possible that there is some other
class of simple near-optimal mechanisms for non-matroid single-dimensional settings that do not exploit competition
among agents. Such mechanisms may lead to approximately-optimal multi-dimensional mechanisms for a broader
class of feasibility constraints.

More generally, two important assumptions underlie our work: (1) agents are unit-demand, and (2) their values
for different services are distributed independently. In the absence of either of these assumptions the upper bound on
the optimal revenue based on the setting with copies does notremain valid. An important open question is to design a
reasonably tight upper bound in those cases, and use it to approximate the optimal mechanism.
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A Myerson’s mechanism and revenue bounds for truthful mechanisms

Myerson’s seminal work describes the revenue maximizing mechanism for the Bayesian single-parameter mechanism
design problem, BSMD, described in Section 2.1. In Myerson’s mechanism the seller first computes so-called virtual
values for each agent, and then allocates to a feasible subset of agents that maximizes the “virtual surplus”—the sum
of the virtual values of agents in the set minus the cost of serving that set of agents. These quantities are formally
defined as follows.

Definition 1 For a valuationvi drawn fromFi, the virtual valuation of agenti is given by

φi(vi) = vi −
1− Fi(vi)

fi(vi)

The virtual surplus of a setS of agents is defined asΦ(S,v) =
∑

i∈S φi(vi).

Myerson’s optimal mechanism is based on the following observation.

Proposition 1 The expected revenue of any truthful single-parameter mechanismM is equal to its expected virtual
surplus.

A direct consequence of Proposition 1 is that the expected revenue maximizing mechanism would be one that max-
imizes expected virtual surplus. Given a vectorv of values, Myerson’s mechanism serves the setargmaxS Φ(S,v).
This mechanism is truthful when the virtual valuation function is monotone non-decreasing for everyi, or in other
words, the distributionFi is regular. Note that we do not explicitly specify the prices charged bythe mechanism.
These are uniquely determined by the allocation rule assuming that agents that are not served pay nothing.

Definition 2 A one dimensional distribution distributionF is regular, ifφ(v) is monotone non-decreasing inv.

Irregular distributions and ironed virtual values. When the distributionsFi are irregular, that is, Definition 2 does
not hold, Myerson’s mechanism as described above will no longer be truthful. Myerson fixed this case by “ironing”
the virtual valuation function and converting it into a monotone non-decreasing function. We skip the description of
this procedure; the reader is referred to [9, 10] for details. Let us denote the ironed virtual value of an agent with value
vi by φ̄i(vi). We then note the following.

Proposition 18 The expected revenue of any truthful single-parameter mechanismM is no more than its expected
ironed virtual surplus. If the probability with which the mechanism serves agenti, as a function ofvi, is constant over
any valuation range in which the ironed virtual value ofi is constant, the expected revenue is equal to expected ironed
virtual surplus.

Myerson’s mechanism serves a subset of agents that maximizes the ironed virtual surplus, breaking ties in an
arbitrary but consistent manner. Denoting the revenue of a mechanismA by RA and the revenue of Myerson’s
mechanismM byRM we get the following:

Theorem 19 RM ≥ RA for every truthful mechanismA.
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Bounding the revenue of the Bayesian optimal mechanism.Propositions 1 and 18 give one approach of bounding
the expected revenue of Myerson’s mechanism. We now developa different bound that is useful in proving perfor-
mance guarantees for posted-price mechanisms.

Lemma 2 If Fi is regular for eachi, for any truthful mechanismM over then agents, the revenue ofM is bounded
from above by

∑
i p

M
i qMi whereqMi is the probability (overv1, · · · , vn) with whichM allocates to agenti and

pMi = Fi
−1(1 − qMi ).

Furthermore for everyi (with a regular or non-regular value distribution), there exist two pricespi andpi with
corresponding probabilitiesqi and qi, and a numberxi ≤ 1, such thatxiqi + (1 − xi)qi = qMi , and the expected
revenue ofM is no more than

∑
i xipiqi + (1− xi)piqi.

Proof: We prove the regular case first. Consider the revenue thatM draws from serving agenti. This is clearly
bounded above by the optimal mechanism that sells to onlyi, but with probability at mostqMi . By Proposition 1, such
a mechanism should sell to agenti with probability1 whenever the value of the agent is aboveFi

−1(1− qMi ) and with
probability0 otherwise. The revenue of the optimal such mechanism is thereforepMi qMi .

In the non-regular case, note that the valuepMi may fall in a valuation range that has constant ironed virtual value.
Let pi denote the infimuminf{v : φ̄i(v) = φ̄i(p

M
i )} of this range andpi denote the supremumsup{v : φ̄i(v) =

φ̄i(p
M
i )}. Let qi = 1 − Fi(pi) and qi = 1 − Fi(pi). Then,qi ≤ qMi ≤ qi, and there exists anxi such that

xiqi + (1 − xi)qi = qMi . Now an easy consequence of Proposition 18 is that the optimal mechanism with selling
probabilityqMi sells to the agent with probabilityxi if the agent’s value is betweenpi andpi, and with probability1 if
the value is abovepi. The revenue of this mechanism is exactlyxiqipi + (1− xi)qipi.

B Reducing BMUMD to BSMD

In this section we prove Lemma 3 and Theorem 4.

Proof of Lemma 3.We first note that a mechanism is individually rational if we haveπi ≤ vj for j ∈ S ∩ Ji, and
πi = 0 if S ∩ Ji = ∅. Truthful mechanisms in multi-parameter settings satisfythe weak monotonicity condition
defined below.

Definition 3 A mechanism(M,π) satisfies weak monotonicity if for any agenti and any two types (value vectors)v
1

andv2 with v1j = v2j for all j ∈ J \ Ji, the following holds:

v1Mi(v1) + v2Mi(v2) ≥ v1Mi(v2) + v2Mi(v1)

HereMi(v) denotes the unique index inM(v) ∩ Ji.

We show that we can construct a truthful mechanismAcopiesfor theIcopieswith revenue no less than that ofA. The
lemma then follows from the optimality of Myerson’s mechanism. Given a vector of valuesv, the mechanismAcopies

allocates to the set thatA allocates to inI given the same value vector. We first claim that the allocation rule ofAcopies

is monotone non-decreasing in anyvj , implying that there exists a payment rule that makes the mechanism truthful.
To prove the claim, fix any agenti andj ∈ Ji, and consider two value vectorsv1 andv2 with v1j = x, v2j = y, and
v1j′ = v2j′ for j′ 6= j. Let αx andαy denote the probabilities of serving agenti with servicej under the two value
vectors respectively, and letβx andβy denote the total value that agenti obtains from other servicesj′ ∈ Ji, j′ 6= j,
in the two cases respectively. Then the weak-monotonicity (Definition 3) ofA implies that

(xαx + βx) + (yαy + βy) ≥ (xαy + βy) + (yαx + βx)

or,
(x − y)(αx − αy) ≥ 0

Therefore the claim holds.
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It remains to prove that the expected revenue ofAcopiesgivenIcopiesis no less than the expected revenue ofA given
I. Note that any deterministic multi-parameter mechanism can be interpreted as offering a price menu with one price
for each item or service to each agent as a function of other agents’ bids [25]. The agent then chooses the item or
service that brings her the most utility. Given this characterization, suppose that for a fixed setv of values, mechanism
A offers a price menu with pricesp to agenti. Then, it draws a revenue ofpj from i whenever servicej is offered.
On the other hand, mechanismAcopiescharges the agentj the minimum amount it needs to bid to be served, which is
no less thanpj , asA is individually rational.

Proof of Theorem 4.Consider anα-approximate OPM forIcopies with pricesp. Theα-approximate mechanism for
I is described as follows. It serves the agents in the order in which they arrive. When agenti arrives, depending on
the set of services already allocated, the mechanism determines the subsetJ ′

i of services inJi that can be feasibly
allocated toi, and offers a price menu of{pj}j∈J′

i
to i. Agenti then chooses a service from the menu and this service

is allocated to it. Truthfulness follows from the definition. In order to argue that the mechanism isα-approximate, we
will show that its revenue is no less than the revenue of the OPM for I—Robl

p . Then the result follows from Lemma 3.
To see that the expected revenue of the mechanism is at leastRobl

p , we claim that the mechanism allocates a maximal
feasible set of services. If not, then there exists an agenti and a servicej such that it is feasible to allocatej to i (that
is, j ∈ J ′

i , andi has not be allocated any service), and the value ofi for j exceeds its price. Then, at the time that
i is offered a price menu, it must have been the case thati chosej or some other service inJ ′

i and got allocated that
service, and we get a contradiction. This concludes the proof.

C Approximations via SPMs

In this section we present missing proofs from Section 4. In particular, we prove that the SPMs described in Section 4
aree/(e− 1) approximate for partition matroids,m approximate for intersections ofm matroids, andm approximate
for combinatorial auctions with known bundles of sizem.

C.1 A lower bound example for1-uniform matroids

Blumrosen and Holenstein [7] give an example where the gap between the revenue of the optimal SPM and that of
Myerson’s mechanism is a factor of

√
π/2 ≈ 1.253. We reproduce the example here for completeness. There aren

agents, each with a value distributed independently according to functionF (v) = 1 − 1/v2. The seller has one item
to sell. Then, the expected revenue of Myerson’s mechanism isΓ(1/2)

√
n/2, whereΓ() is the Gamma function. On

the other hand, the expected revenue of the optimal SPM can becomputed to be
√
n/2. Therefore, we get a gap of

Γ(1/2)/
√
2 =

√
π/2 ≈ 1.253.

C.2 Proof of Theorem 6: an e

e−1
approximation for uniform and partition matroids

We first prove Theorem 6 for 1-uniform matroids. The RevenueRS of the SPM described in Section 4 can be written
as

RS =
n∑

i=1

cip
M
i qMi =

n∑

i=1

i−1∏

j=1

(1− qj)p
M
i qMi ,

whereci =
∏i−1

j=1(1 − qj) is the probability that agenti is offered service. Note thatci ≥ cj for i ≤ j. Let p be the
price satisfying the equation ∑

i

piqi = p
∑

i

qi. (2)

We now prove that among the set of all product distributionsG = (G1 ×G2 × · · · ×Gn) which satisfy

• Pr[Myerson’s mechanism serves agenti] = qi; and

• ∑i G
−1
i (1− qi)qi =

∑
i piqi,
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the revenue obtained is lowest whenG is the distribution for which all the prices are equal, i.e.G−1
i (1 − qi) = p for

all agentsi. LetRS
eq denote the revenue of the SPM whose prices are equal top for all agents.

Lemma 20 It is always the case thatRS ≥ RS
eq .

Proof: Let δi = qi(pi − p). So we have

RS =

n∑

i=1

cipiqi =

n∑

i=1

ci(pqi + δi) = RS
eq +

n∑

i=1

ciδi ≥ RS
eq ,

where the inequality follows from observing that:

• ci’s are in descending order;

• ∃j such thatδi is non-negative for alli ≤ j and negative otherwise; and

• ∑i δi = 0 (By (2)) .

Theorem 21 The revenueRS of the SPMS is a e
e−1 approximation to the expected revenue of Myerson’s mechanism

in the case of a1-uniform matroid.

Proof: Let
∑

i qi = s (≤ 1). Lemma 20 implies the theorem whenRS
eq ≥ (1− 1

e )ps. We can see this holds, since

RS
eq = p(Pr[Some agent is served]) = p(1− Pr[No agent is served])

= p

(
1−

n∏

i=1

(1− qi)

)

≥ p

(
1−

n∏

i=1

(1− s/n)

)
(3)

≥ (1− 1/e)ps,

where (3) follows since the product is maximized when theqi’s are all equal.

Next we consider thek-uniform case.

Theorem 22 The revenueRS of the SPMS is a e
e−1 approximation to the expected revenue of Myerson’s mechanism

in the case of ak-uniform matroid.

Proof: Our proof technique is closely related to the proof for 1-uniform matroids. If we defineRS
eq as defined above

for the1-uniform case, then the proof of Lemma 20 extends tok-uniform matroids also. Thus it would be enough to
argue thatRS

eq achieves ae/(e− 1) approximation. Letp be the common price for all agents which satisfies (2).
For any set of probabilities{qi} in the k-item case, let us defineqi′ = qi/k. Note that the probabilities{qi′} form

a valid set of probabilities for a 1-item case because
∑

i

qi
′ =

∑

i

qi/k ≤ 1

Let c′i denote the probability that agenti is considered for service in the 1-item case. We can come up with distributions
Fi

′ for the 1-item case such that the priceFi
′−1(1−qi′) is the same for all agents and is equal top. By Theorem 21, we

know that the revenue in this 1-item case is at least(1 − 1/e)
∑

i pqi
′. We prove that we get the same approximation

factor ofe/(e − 1) for thek-item case by the following induction. We assume that forj − 1 ≤ n, the revenueRj−1

from the firstj − 1 items is at leastk times the revenueR′
j−1 from the firstj − 1 items in the corresponding 1-item

case i.e.
∑j−1

i=1 cipqi ≥ k ·∑j−1
i=1 c′ipqi

′. We prove the same forj through two cases.
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1. If cj ≥ c′j , then we are done, because we know that revenueRj from the firstj items can be written as

Rj = Rj−1 + cjpqj ≥ k(R′
j−1) + kc′jpqj

′ = kR′
j .

The inequality uses the induction hypothesis.

2. If cj < c′j , we show that the revenue obtained is better than whencj = c′j and then we will be done. To see this
observe that the revenueRj can be written as being conditioned on whether or notk items were sold in the first
j − 1 items. So we have

Rj = (1− cj)kp+ cj
(
pqj + E[ Revenue from firstj − 1 | at mostk − 1 of first j − 1 are served ]

)
;

since

kp ≥
(
pqj + E[Revenue from firstj − 1 | at mostk − 1 of first j − 1 are served]

)
,

the revenue only decreases by increasingcj to c′j .

Thus in either case, thek-item case has a better revenue, guaranteeing an approximation factor of e
e−1 .

Corollary 23 The revenueRS of the SPMS is a e
e−1 approximation to the expected revenue of Myerson’s mechanism

in the case of a partition-matroid.

We note that this analysis is tight. In particular, consideran example withn i. i. d. agents and a seller with one
item. Suppose that the value of each agent is independently1 with probability1 − ǫ and0 otherwise for some small
ǫ > 0. Then, the expected revenue of Myerson’s mechanism is equalto the probability that at least one agent has value
1, which is1 − o(1). The probability with which Myerson’s mechanism serves a particular agent is(1 − o(1))/n.
Therefore, our mechanism sets a price of1 for each agent, and offers the price to each agent with probability roughly
1/n until some agent accepts. So the revenue of our mechanism is roughly1− (1− 1/n)n = 1− 1/e. A similar gap
can be obtained even if the SPM decides to offer a price to the last agent with certainty when no other agent accepts
the item. Note that there is a simple SPM that in this case obtains the optimal revenue—offer a price of1 to each agent
in turn with certainty until the item is sold.

C.3 Proof of Theorem 7: anm+ 1 approximation for intersections ofm matroids

Let them matroids be denoted byM1, M2, . . . , Mm. Let ranka(S) andspana(S) denote respectively the rank and
span of setS in the matroidMa. Note that for any subsetS and anya ∈ [m], we have

∑
i∈S qMi ≤ ranka(S).

Once again, letS = {i1 < i2 < · · · < iℓ} denote the set of agents served. We prove the theorem by showing that
the expected revenue ofS is at least1/(m+ 1)

∑
i piqi, by arguing that the total price paid by agents inS is at least

1/m times the expected revenue from agents that are “blocked” byS.
Let Sj denote the firstj elements ofS. For each1≤a≤m, define setsBa

j with respect to matroidMa as in the
proof of Theorem 5. That is,Ba

j = spana(Sj) \ spana(Sj−1). Denote the price of itemij by pj. Then, if we let
Bj = ∪ma=1B

a
j , we can upper bound the expected revenue lost whenS is served by

∑

1≤j≤ℓ

∑

i∈Bj

piqi ≤
m∑

a=1

∑

1≤j≤ℓ

∑

i∈Ba
j

piqi ≤ m
∑

1≤j<ℓ

pj.

Here we used the same algebraic transformation as in the proof of Theorem 5 along with the fact that
∑

i∈Ba
j
qi ≤∑

i∈spana(Sj)
qi ≤ j.

Therefore as before we get
∑

i piqi ≤ (m+ 1)Rσ
p.
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C.4 Proof of Theorem 8: anm + 1 approximation for combinatorial auctions with known
bundles of sizem

Let A denote the set of items available to the seller, each with some multiplicity. First suppose that each agent is
single-minded, that is, each agent is interested in only onebundle of items, the bundle being of size at mostm. Then,
the feasibility constraint is an intersection over|A| uniform matroids, one corresponding to each item, with each
agent participating in onlym of the matroids. Now it is easy to adapt the proof of Theorem 7 to obtain anm + 1
approximation.

More generally suppose that every agent is interested in a collection of bundles, each of size at mostm, and
modify the mechanismS so that in addition to deciding whether or not to serve an agent, it also arbitrarily allocates
any available desired bundle to every agent it serves. Then we can argue that for any setS, and setB blocked by the
agents inS, the sum of the probabilitiesqi over the setB is no more thanm times the size ofS. Therefore, once again
following along the proof of Theorem 7, we get anm+ 1 approximation.

C.5 Bad gap example for general non-matroids

We now show that the approximations described above cannot extend to general non-matroid set systems. In particular,
the example below describes a family of instances with i. i. d. agents and a symmetric non-matroid constraint for which
the ratio between the expected revenue of Myerson’s mechanism and that of the optimal SPM isΩ(log n/ log logn)
wheren is the number of agents.

Example 1 For a givenm setn = mm+1. Partition [n] intomm groupsG1, · · · , Gmm of sizem each, withGi∩Gj =
∅ for all i 6= j. The set systemJ contains all subsets of groupsGi, that is,J = {A : ∃i with A ⊆ Gi}. Each agent
has a value of1 with probability1− 1/m andm with probability1/m.

For any given valuation profile, let us call the agents with a value ofm to be good agents and the rest to be bad
agents. The probability that a group containsm good agents ism−m. Therefore in expectation one group hasm good
agents and Myerson’s mechanism can obtain revenuem2 from such a group:RM = Ω(m2).

Next consider any SPM. The mechanism can serve at mostm agents. If all the served agents are bad, the mecha-
nism obtains a revenue of at mostm. On the other hand, once the mechanism commits to serving a good agent, it can
only serve agents within the same group in the future. These have a total expected value less than2m. Therefore, the
revenue of any SPM is at most3m, and we get a gap ofΩ(m) = Ω(logn/ log logn).

The above example also shows that while in many single-parameter pricing problems when the values are dis-
tributed in the range[1, h] it is possible to obtain alog h approximation to social welfare, the same does not hold in
our general setting. In the example we haveh = m and the gap between the expected revenue of the optimal SPM
and that of Myerson’s mechanism isΩ(h). On the other hand, the gap is always bounded byO(h) and is achieved by
an SPM that charges each agent a uniform price of1.

D Approximations via OPMs

D.1 General matroids.

In Section 5.1 we design anO(log k) approximate OPM for general matroids. We remark that a similar result was
obtained by Babaioff et al. [2] for the related matroid secretary problem. In Babaioff et al.’s setting agents arrive in a
random order but their values are adversarial. They presentanO(log k) approximation by picking a price uniformly
at random in the set{h/k, 2h/k, · · · , h} and charging it to every agent; hereh is the largest among all values. In our
setting such an approach does not work: the example below shows that no uniform pricing can achieve ano(log h)
approximation even fork = 1.

Example 2 Letk = 1 and consider a group ofh agents where agenti has a value ofi with probability1/2i2 and zero
otherwise. Then an SPM that sets a price ofi for agenti obtains an expected revenue ofΩ(log h). On the other hand,
an SPM that uses a uniform price ofc only obtains expected revenue

∑
i∈[c,h] c/2i

2 < c/2c = 1/2.
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D.2 Uniform and partition matroids

Consider the following setting from [22]: a gambler is presented samples fromn distributions in order,X1, . . . , Xn.
For each sample, the gambler must decide whether to pick thissample (and end the game) or skip it (to never return
to it). The gambler can choose at most one of the samples, and obtains a reward equal to the value of the sample. Can
the gambler do nearly as well in expectation as a prophet thatknows the maximum value in the sample? Samuel-Cahn
[22] shows that there is a simple threshold rule for picking samples that uses a common threshold for each random
variable, such that the expected value of the gambler is within a factor of2 of the expected value obtained by the
prophet. We first extend this result of [22] to the case where both gambler and prophet can pickk values, and then
describe how it applies to our setting of maximizing revenue.

We begin with some definitions. Given a collection ofn independent, nonnegative random variablesX1, . . . , Xn,
we consider extending the prophet inequalities to the case where the gambler and the prophet are each allowedk
choices. LetX(1) ≥ · · · ≥ X(n) be the order statistics forX1, . . . , Xn. For a valuex, let (x)+ denote the positive
portion ofx, i.e. (x)+ = max(0, x).

For a constantc, let t1(c), . . . , tk(c) denote thek indices selected by a threshold stopping rule usingc, i.e. ti(c) is
the lesser(n− k+ i) and theith smallest indexj such thatXj≥c (or simply the former when the latter does not exist).

Let a∗ andb∗ be the unique solutions to the equations

a =

k∑

i=1

E
(
X(i) − a/k

)+
, and b =

n∑

i=1

E (Xi − b/k)
+
,

respectively. Then it must be the case thata∗ ≤ b∗, and we get the following theorem.

Theorem 24 For a∗ ≤ k · c ≤ b∗, we have that
∑k

i=1 E
[
X(i)

]
≤ 2

∑k
i=1 E

[
Xti(c)

]
.

Proof: First, we note that for any thresholdt

k∑

i=1

E
[
X(i)

]
≤

k∑

i=1

E
[
t+
(
X(i) − t

)+]
= k · t+

k∑

i=1

E
(
X(i) − t

)+
,

which implies
∑k

i=1 E
[
X(i)

]
≤ 2a∗ with the substitutiont = a∗/k. Now, any timetk(c) < n, we know there are at

leastk Xi at or above our thresholdc, and so

k∑

i=1

E
[
Xti(c)

]
≥ kc · Pr[tk < n] +

k∑

i=1

E
(
Xti(c) − c

)+
.

Let I (E) denote the indicator random variable for eventE . Considering the second term above, we see that

k∑

i=1

E
(
Xti(c) − c

)+
=

k∑

i=1

n∑

j=1

E
[
(Xj − c)

+
I (ti(c) = j)

]

=

n∑

j=1

E
[
(Xj − c)

+
I (tk(c) > j − 1)

]

≥
n∑

j=1

E (Xj − b∗/k)
+ · Pr[tk(c) > n− 1].

Since the sum in the last line is preciselyb∗, we see our choice ofc gives
∑k

i=1 E
[
Xti(c)

]
≥ kc ≥ a∗ as claimed.

We now have the necessary results in place to proceed with theproof of Theorem 10.
Proof of Theorem 10.We prove our revenue bound via virtual values. We assume thatall theFi are regular. In fact,
we see that we choose prices which do not distinguish (for a given agent) between differing valuations that yield the
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same virtual value, and so by Proposition 18 may use ironed virtual values in the irregular case to achieve the same
result.

We cannot immediately apply Theorem 24, since virtual values can, in general, be negative; so we consider(φi)
+

in place ofφi. (Note that Myerson’s mechanism never selects an agent witha negative virtual value, and neither will
our mechanism.)

Let c be the threshold from applying Theorem 24 to the random variables(φi)
+, andpi = inf{v : φi(v) ≥ c}.

Then, we can see that the expected revenue of an OPM using these prices is

Robl
p = E

[
k∑

i=1

(
φti(c)

)+
]
≥ 1

2
E

[
k∑

i=1

(
φ(i)

)+
]
= RM/2.

An example with a gap of2. We now show that OPMs cannot approximate the optimal revenueto within a factor
better than2 even in the single-item setting. Consider a seller with one item and two agents. The first agent has a fixed
value of1. The second has a value of1/ǫ with probabilityǫ and0 otherwise, for some small constantǫ > 0. Then,
the optimal mechanism can obtain a revenue of2 − ǫ by first offering a price of1/ǫ to the second agent, and then a
price of1 to the first if the second declines the item. On the other hand,if the mechanism is forced to offer the item to
the first agent first, then it has two choices: (1) offer the item at price1 to agent 1; the agent always accepts, and (2)
skip agent1 and offer the item at price1/ǫ to agent 2; the agent accepts with probabilityǫ. In either case, the expected
revenue of the mechanism is1.

D.3 Graphical matroids

Proof of Theorem 12.Our technique here is to partition the elements of the matroid such that we may treat each part
as a1-uniform matroid yet still respect the original feasibility constraint, and achieve good revenue while doing so.

LetG = (V, [n]) be the graph defining our matroid constraint. Letδ(v) denote the set of edges incident on a vertex
v, and for eachv ∈ V defineqv =

∑
i∈δ(v) qi. Now, we can see that

∑

v∈V

qv =
∑

i∈E

2qi ≤ 2(|V | − 1),

which can only hold if there existsv such thatqv ≤ 2; let δ(v) be one of our partitions. Furthermore, the edge setδ(v)
forms a cut inG, and so given an independent set of edges fromE−δ(v) we may add any single edge fromδ(v) while
retaining independence. We apply this argument recursively to (V − v, E − δ(v)) to form the rest of our partition. At
the end, we have a partition ofE such that each part has total mass no more than2, and any collection of edges using
no more than one edge from each part is independent.

We now show that within each partP , we can achieve expected revenue at least a third of what Myerson’s mecha-
nism received from that part, via an application of Theorem 24. Note that the revenue achieved by offering an agenti
a price ofpi is a random variable, and these random variables are nonnegative and independent. Furthermore, we can
successfully apply a threshold rule to them – we only offer toan agent ifpi is above our threshold, and they accept if
and only if our stopping rule would have chosen this agent.

Let p =
∑

i∈P qi(pi − p)
+. Thenp is precisely the upper bound on acceptable thresholds for Theorem 24 applied

to our specified random variables, allowing one choice. Fromthe proof of that theorem, we can see that applying the
thresholdp results in an expected revenue of at leastp; on the other hand,

∑

i∈P

piqi ≤
∑

i∈P

qi(p+ (pi − p)+) = p(1 +
∑

i∈P

qi) ≤ 3p.

D.4 Matroid intersections

Proof of Theorem 13.We describe the mechanism which achieves a6.75-approximation when the distributions are
regular. Appendix E sketches the extension to the non-regular case.
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Let qi = qMi /3 andpi = Fi
−1(1 − qi). Note thatpi ≥ pMi . The mechanism serves agents in any arbitrary order,

but offers a price ofpi for agenti.
Let ci denote the probability that agenti is considered for service. We prove thatci ≥ 4/9 for all i. This would

prove the theorem, as the expected revenue is

Robl
p =

∑

i

cipiqi ≥
∑

i

(4/9)pMi (qMi /3) ≥
∑

i

(1/6.75)pMi qMi .

LetM1, M2 be the two partition matroids. Let agenti be in partitionP1 ofM1 and in partitionP2 ofM2. Letk1 be
the maximum number of elements inP1 that can be present in an independent set ofM1 and letk2 be the maximum
number of elements inP2 that can be present in an independent set ofM2. We then have that forj = 1, 2 that the
expected number of agents inPj desiring service is

∑

i∈Pj

qi ≤ kj/3.

DefineEj to be the event that at mostkj − 1 agents fromPj desire service forj = 1, 2; then agenti is always
considered for service when eventsE1 andE2 both happen. By Markov’s inequality, it is clear thatPr[Ē1] ≤ 1/3 and
Pr[Ē2] ≤ 1/3. So we may conclude that

ci ≥ Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1] ≥ (2/3) · (2/3),

and the claim follows.

D.5 Order-oblivious pricings in the non-matroid setting

In this section we present an example with a non-matroid constraint for which the revenue obtained by ordering the
agents in the optimal way is a factor ofΩ(logn/ log logn) larger than that obtained by ordering the agents in the least
optimal way.

Lemma 25 There exists an instance of the single-parameter mechanismdesign problem with a non-matroid feasibility
constraint, along with two orderingsσ1 andσ2 such that the revenue of the optimal SPM using orderingσ1 is a factor
ofΩ(log n/ log logn) larger than that of the optimal SPM using orderingσ2.

Proof: Consider the following example. Construct a completem-ary tree of heightm+ 1, and place a single agent at
each node other than the root. The agents’ valuations are i. i. d. , where any agent has a valuation ofm with probability
1/m, and a valuation of0 otherwise. Our constraint on serving the agents is that we may serve any set of agents that
lie along a single path from the root of the tree to some leaf – it is easy to verify that this is downward-closed.

Consider what happens when we may serve the agents in order bylevel from the root of the tree to the leaves. At
each level of the tree, we may offer to serve at leastm different agents, regardless of the outcome on previous levels.
Since we may never sell to more than one agent per level, our revenue is either0 orm on each level. We get a revenue
of 0 if and only if every agent has a valuation of0; this occurs with probability at most

(1− 1/m)m ≤ 1/e,

and thus our expected revenue overall is at least

m2 · (1− 1/e) = Ω(m2).

On the other hand, if we must serve the agents in order by levelfrom the leaves of the tree to the root, then the first
agent we serve commits us to a specific path. So we cannot hope to achieve revenue better thanm for this specific
node, plus the revenue expected revenue for an arbitrarily chosen path. Since each agent has an expected valuation of
1, this is bounded by

m+ (m− 1) · 1 = O(m).

Thus, the difference in revenue between the described orderings isΩ(m); since the total number of agents is
n = O(mm), in terms ofn this gap isΩ(log n/ log logn).
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E Approximation in the non-regular case

We now sketch changes required to the theorems proved in Sections 4 and 5 to obtain the same approximations in the
non-regular case.

From Lemma 2 we know that for everyi, there exist pricespi and pi with corresponding probabilitiesqi =

1 − Fi(pi) andqi = 1 − Fi(pi), as well as a numberxi such thatxiqi + (1 − xi)qi = qMi , and Myerson’s expected
revenue is bounded by

∑
i(xipiqi + (1 − xi)piqi). In fact this holds more generally. Letqi be any probability less

than1. Then there exist probabilitiesqi andqi, and a numberxi ∈ [0, 1] with qi = xiqi + (1 − xi)qi, such that for
pi = Fi

−1(1 − qi), pi = Fi
−1(1 − qi), andpi defined as

xipiqi + (1 − xi)piqi

qi
,

the optimal revenue achievable by selling an item with probability qi to agenti is no more thanpiqi.
Now consider a hypothetical situation in which the probability that agenti accepts a price ofpi is exactlyqi, and

consider running an SPM/OPM with pricespi that isα-approximate with respect to
∑

i piqi. We claim that we obtain
anα-approximation by using the same SPM/OPM but instead picking a price ofpi with probabilityxi andpi with
probability1− xi.

To prove the claim we first note that we can defer the process ofpicking a price for agenti until the mechanism
decides to offer the agent some price. In this case, the probability that the agent accepts the offered price is exactly
qi, and the revenue obtained from the agent conditioned on serving him is exactlypi. Therefore, the probability
that the mechanism makes an offer to an agent is also identical to the corresponding probability in the hypothetical
deterministic mechanism, and the expected revenue of the mechanism is exactly the same as that of the hypothetical
mechanism.

F Computing the near-optimal posted-price mechanisms

We now describe how to compute the approximately optimal OPMs and SPMs designed in Sections 4 and 5. We
assume that we are given access to the following oracles and algorithms:

• An algorithm to compute the optimal price to charge to a single-parameter agent given the agent’s value distri-
bution. Note that given such an algorithm and some valuex, we can modify it to return the optimal price in the
range[x,∞) to charge the agent.

• An oracle that given a valuev and indexi returnsFi(v) andfi(v), as well as, given a probabilityα returns
Fi

−1(α). Note that the oracle can be used to compute the virtual valueφi(v).

• An oracle for computing ironed virtual values in order to compute the approximately optimal SPM for non-
regular distributions.

• An algorithm to maximize social welfare over the given feasibility constraint in order to be able to compute the
outcome of Myerson’s mechanism.

All of the mechanisms designed by us require computing the probabilitiesqMi . We first show how to estimate these
probabilities within small constant factors:

1. Let ǫ = 1/3n. SampleN = 4n4 logn/ǫ2 value profiles fromF1 × F2 × · · · × Fn. For each sample, compute
the (ironed) virtual value for each agent, and use these to compute the outcome of Myerson’s mechanism for
that value profile.

2. Estimate the probabilitiesqMi using the samples. Call the estimateŝqMi .

3. If q̂Mi < 1/n2, setq̂i = 1/n2, else set̂qi = q̂Mi /(1− ǫ). Compute for eachi the valuep̂i = Fi
−1(1− q̂i).

4. Find the optimal price in the range[p̂i,∞) to charge to agenti. Call it pi. Let qi = 1− Fi(pi).
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5. Output the prices computed in the last step and order the agents in order of decreasing prices.

In order to analyse the performance of this approach, we compare it to a mechanism that charges agenti the price
pMi = Fi

−1(1 − qMi ) but uses the same ordering as the mechanism above. We first show that the probabilitiesqi
closely estimate the probabilitiesqMi .

Lemma 26 With probability at least1− 2/n, we havêqi ∈ [qMi , (1 + 3ǫ)qMi + 2/n2].

Proof: First, for anyi with qMi ≥ 1/n4, using Chernoff bounds we get that

Pr
[∣∣q̂Mi − qMi

∣∣ ≥ ǫqMi
]
≤ 2e−ǫ2qMi N/2 ≤ 2/n2

q̂Mi ∈ (1 ± ǫ)qMi in turn implies by definition thatqMi ≤ q̂i ≤ (1 + ǫ)/(1 − ǫ)qMi ≤ (1 + 3ǫ)qMi . Therefore we
haveq̂i ∈ [qMi , (1 + 3ǫ)qMi ]. On the other hand, forqMi < 1/n4, by Markov’s inequality, with probability1 − 1/n2,

q̂Mi < 1/n2, and soq̂i ∈ [qMi , 1/n2]. The lemma now follows by employing the union bound.

Furthermore, conditioned on the event defined in the statement of the above lemma (call itE), sincepMi lies in
the range[p̂i,∞), we have thatqMi pMi ≤ qipi. This implies that the pricespi give a good estimate on the revenue of
Myerson’s mechanism.

Next, we compare the real mechanismS with pricespi to the theoretically good mechanismS ′ that charges prices

pMi . Let S be the set of agents for whicĥqMi < 1/n2. The probability that any of these agents is offered service
in S is at most1/n. Conditioned on this event not happening, the probability that an agent is made an offer inS is
no smaller than its counterpart inS ′. Moreover, conditioned on being made an offer, the revenue from an agenti is
qipi ≥ qMi pMi .

Therefore, conditioned on the eventE , the expected revenue ofS is at least a(1 − 1/n) fraction of the expected
revenue ofS ′. But the eventE happens with probability1− 2/n, therefore, we get a(1− o(1)) approximation to the
expected revenue ofS ′.

G Approximations for the BMUMD

We first prove that there exists a good OPM for instances of theBMUMD involving a feasibility constraint that is the
intersection of a graphical matroid and the agents’ unit-demand constraints.

Proof of Theorem 15.Note that though the feasibility constraint we are facing isthe intersection of a graphical matroid
and partition matroid (from the unit demand constraint), wecan view the situation as if we were in the intersection
of two partition matroids. This follows from the proof of Theorem 12, where we see that a graphical matroid can be
seen as a union of 1-uniform matroids, which is a partition matroid. The total probability mass of the elements of
each 1-uniform matroid is at most 2. Thus, if we sell at pricesfor which the probability of an agenti desiring the
item isqMi /4, then with a probability of at least 1/2 no more than 1 agent will desire service in the 1-uniform matroid
which containsi and with a probability of at least 3/4 no more than 1 item is desired by the agenti. Thus the revenue
obtained gives an approximation factor of4 · 4/3 · 2 = 32/3 ≈ 10.67.

Next we prove that for the two settings discussed in Section 6.2, we can design an SPM that achieves a good approxi-
mation via implementation in undominated strategies.

Formally, for an agenti, a strategysi is said to be dominated by a strategys′i if for all strategiess−i of other
agents, the utility thati obtains from usingsi is no better than that from usings′i, and for some strategys−i, it is
strictly worse. A mechanism is an algorithmic implementation of anα-approximation in undominated strategies [4] if
for every outcome of the mechanism where every agent plays anundominated strategy, the objective function value of
the mechanism is within a factor ofα of the optimal, and every agent can easily compute for any dominated strategy
a strategy that dominates it.
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Proof of Lemma 16.Note that if agenti desires only one servicej ∈ Ji, and refuses the service when offered, the agent
obtains a utility of0 regardless of others’ strategies. On the other hand, the strategy of accepting the service when
offered has strictly positive utility for some strategy profiles of others, therefore it dominates the previous strategy.

Proof of Theorem 17.We consider the matroid intersection setting first and assume that the valuation distributions
are regular. The non-regular case is similar. Our SPM in thissetting considers the hypothetical single-dimensional
instanceIcopies defined in Section 3 and computes the probabilitiesqMj with which Myerson’s mechanism allocates
the servicej. We then setqj = qMj /2 andpi = Fj

−1(1 − qj). Note that for anyi,
∑

j∈Ji
qj ≤ 1/2. Therefore, with

probability at least1/2, i desires no service other thanj (we say thatj is uniquely desired byi). Lemma 16 shows
that in this case, in any undominated strategy implementation, if i is offeredj and desires it, theni acceptsj.

For any particular run of the mechanism, divide the set of allservices into three groups—S, the set ofsoldservices,
B the set of services that are desired by their corresponding agents but “blocked” by services inS, andU the set of
services that are desired by their corresponding agents andnot in setsS or B. Then Lemma 16 implies that services
in U are not uniquely desired. Now, the expected total price in the union of the setsS, B andU is exactly

∑
j pjqj .

Moreover, the expected total price inU is at most1/2
∑

j pjqj . Finally, following the proof of Theorem 5, the
expected total price inB conditioned onS is at most the total price contained inS. Therefore, putting everything
together we get that the expected total price obtained fromS is at least1/4

∑
j pjqj . By our choice ofp andq, this is

an8-approximation.
The argument for the combinatorial auction setting is identical and based on Theorem 8. We omit it for brevity.

H Approximating social welfare and other objectives via posted-price mech-
anisms

We now show that our approach from Sections 4 and 5 in fact extends to the problem of maximizing any objective that
is linear in social value and revenue via SPMs.

We start with some definitions. For alli ∈ [n] let gi(v, p) = αiv + βip denote an arbitrary linear function of
v andp. For a mechanismA with payment rulep, let G(A,p) be the expected value ofg over the outcome of the
mechanism, that is,G(A,p) = Ev[

∑
i∈A(v) g

i(vi, pi)]. Define the virtual value ofi with respect togi to be

φG
i (v) = (αi + βi)v − βi

1− Fi(v)

fi(v)

and the virtual surplus with respect toG of a setS of agents to beΦG(S) =
∑

i∈S φG
i (vi). Then, the lemma below

follows from standard techniques, and allows us to ignore the payment function in trying to maximizeG.

Lemma 27 For any truthful mechanismA with payment rulep, the expected virtual surplus with respect toG ofA is
equal to the expected value ofG for A’s outcome. That is,

G(A,p) = E
v
[ΦG(A(v))]

The lemma suggests that a mechanismMG with allocation ruleMG(v) = argmaxS ΦG(S) maximizesG over the
class of all truthful mechanisms. However, as for revenue-maximizing mechanisms, in order for this mechanism to be
truthful, the distributionsFi must satisfy a certain regularity condition.

Definition 4 A one dimensional distribution distributionF is regular with respect to functionG, if φG(v) is monotone
non-decreasing inv.

The following theorem is straightforward:

Theorem 28 If for all i, Fi is regular with respect toG, the mechanismMG defined above is truthful and obtains the
maximum value ofG over the class of all truthful mechanisms.
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In order to optimizeG over the class of SPMs in the matroid setting, we follow an approach similar to the one in
Section 4. Other approximations are similar. We focus on theregular setting. Our approximately optimal mechanism
is defined as follows. LetMG denote the optimal mechanism in Theorem 28 above. LetqGi denote the probability
thatMG serves agenti. Define for alli

qi = qGi ,

pi = Fi
−1(1− qi), and,

γi =

(∫ ∞

pi

φG
i (vi)fi(vi)dvi

)
/qi

The SPM sets a price ofpi for agenti and offers to serve the agents in decreasing order of their correspondingγi’s.
Theγi reflects the expected virtual value we get from agenti upon serving the agent. We denote this mechanism by
SG.

We first note that the performance ofSG can be bounded in terms of theγi’s. In particular, Lemma 27 and the
definition ofγi imply that

G(SG) = E
v

[∑

i∈S

γi

]

whereS is the set of agents that are allocated service. Following the argument for Theorem 5 we infer that since agents
are ordered in decreasing order ofγi, Ev

[∑
i∈S γi

]
≥ 1

2

∑
i qiγi. In order to complete our argument, we bound the

performance ofMG in terms of theγi’s.

Lemma 29 If for all i, Fi is regular with respect toG, thenG(MG) ≤∑i γiqi.

Proof: Let us consider the contribution of agenti to the objective function value forMG. This is no more than the
objective function value achieved by an optimal mechanism that sells only toi and with probability at mostqi. By
the definition ofΦG and using regularity, this is exactly

∫∞

pi
φG
i (vi)fi(vi)dvi wherepi = Fi

−1(1 − qi). Finally, the
integral is exactly equal toγiqi by the definition ofγi.

We therefore have the following theorem:

Theorem 30 The mechanismSG defined above obtains a2-approximation to the objectiveG in the matroid case
when all the input distributions are regular with respect toG.

Similar techniques prove analogues of other theorems in Sections 4 and 5 for arbitrary functionsG. Finally, we
note that if the distributions are not regular as defined in Definition 4, we can apply an ironing procedure to the virtual
values in much the same way as in Myerson’s approach. We leavethe details to the reader.

I Revenue maximization through VCG mechanisms

A consequence of our constant-factor approximation to revenue through SPMs is that in matroid settings VCG mech-
anisms with appropriate reserve prices are near-optimal interms of revenue. This follows from noting, as we show
below, that VCG mechanisms perform no worse in terms of expected revenue than SPMs with the same reserve prices.
Although VCG mechanisms aim to maximize the social welfare of the outcome, setting high enough reserve prices
allows them to also obtain good revenue.

Formally, a Vickrey-Clarke-Groves (VCG) mechanismVp with reserve pricesp serves the setS of agents, with
vi ≥ pi for all i ∈ S, that maximizes

∑
i∈S vi.

Hartline and Roughgarden [13] show that in several single-parameter settings the VCG mechanism with monopoly
reserve prices gives a constant factor approximation to revenue. This result holds when all the value distributions
satisfy the so-called monotone hazard rate condition, or with a matroid feasibility constraint when all the value distri-
butions are regular. Their result does not extend to the caseof matroids with general (non-regular) value distributions.
One of the main questions left open by their work is whether there is some set of reserve prices (not necessarily equal
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to the monopoly reserve prices) for which the VCG mechanism gives a constant factor approximation to revenue in
the matroid setting with general value distributions. We answer this question in the positive. We use the following fact
about matroids.

Proposition 31 LetB1 andB2 be any two independent sets of equal size in a matroid set systemJ . Then there is a
bijective functiong : B1 \B2 → B2 \B1 such that for alle ∈ B1 \B2, B1 \ {e} ∪ {g(e)} is independent inJ .

Theorem 32 For any instance of the single-parameter Bayesian mechanism design problem with a matroid feasibility
constraint, there exists a set of reserve prices such that the expected revenue of the VCG mechanism with those reserve
prices is at least half of the expected revenue of Myerson’s mechanism.

Proof: We prove that when the set systemJ is a matroid, for any collection of pricesp, the revenue of the SPMSp is
no more than the revenue of the VCG mechanismVp. The result then follows from Theorem 5.

Fix a value vectorv and letA denote the set served bySp andB denote the set served byVp. Then, since both
mechanisms serve a maximal independent set among the set of agents withvi ≥ pi, we have|A| = |B|. Proposition 31
then implies the existence of a bijectiong such that for alle ∈ B \ A, B \ {e} ∪ {g(e)} is independent. This implies
thatVp chargese a price of at least the value ofg(e), which is at least the reserve pricepg(e). On the other hand,
by definition, the price charged to anye ∈ B ∩ A is at leastpe. Therefore, the revenue ofVp in this case is at least∑

e∈B∩A pe +
∑

e∈B\A pg(e) =
∑

e∈A pe which is equal to the revenue ofSp.
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