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Abstract

This paper studies defense policies in a global-game model of speculative currency attacks.

Although the signaling role of policy interventions sustains multiple equilibria, a number of novel

predictions emerge which are robust across all equilibria. (i) The central bank intervenes by

raising domestic interest rates, or otherwise raising the cost of speculation, only when the value

it assigns to defending the peg—its “type”—is intermediate. (ii) Devaluation occurs only for

low types. (iii) The set of types who intervene shrinks with the precision of market information.

(iv) A unique equilibrium policy survives in the limit as the noise in market information vanishes,

whereas the devaluation outcome remains indeterminate. (v) The payoff of the central bank is

monotonic in its type. (vi) The option to intervene can be harmful only for sufficiently strong

types; and when this happens, weak types are necessarily better off. While these predictions

seem reasonable, none of them would have been possible in the common-knowledge version of

the model. Combined, these results illustrate the broader methodological point of the paper:

global games can retain significant selection power and deliver useful predictions even when the

endogeneity of information sustains multiple equilibria.

∗A previous version was entitled “Policy in a Global Coordination Game: Multiplicity vs Robust Predictions.” For
useful comments and discussions, we thank Olivier Blanchard, Ricardo Caballero, Eddie Dekel, Kiminori Matsuyama,
Stephen Morris, Elie Tamer, Iván Werning and seminar participants at MIT, Northwestern, Salerno, the 2007 North
American Winter Meeting of the Econometric Society and the 2007 Stony Brook Workshop on Global Games. Email
addresses: angelet@mit.edu, chris@econ.ucla.edu, alepavan@northwestern.edu.



1 Introduction

This paper investigates the properties of defense policies against speculative currency attacks: think

of a central bank trying to prevent a run against the domestic currency by raising domestic interest

rates, imposing a tax on capital outflows, or otherwise increasing the cost of speculation. The

exercise is conducted within a global game that stylizes the role of coordination under incomplete

information. Previous work has shown that the signaling role of policy interventions can lead

to multiple equilibria (Angeletos, Hellwig and Pavan, 2006). Here we seek to understand what

predictions, if any, one can deliver regarding policy choices and devaluation outcomes that do not

rely on arbitrary equilibrium selections.

Understanding this point is important not only for the specific application under examina-

tion but also from a broader methodological perspective. The approach followed in most recent

applications of global games is to assume certain exogenous information structures as a selection

device—as a tool for achieving the convenience of unique-equilibrium comparative statics in models

that were previously ridden with multiple equilibria. For certain questions, however, understand-

ing the sources of information is the key to understanding the phenomenon under examination.

Endogenizing the sources of information often brings back multiple equilibria. What we show here

is that this multiplicity does not preclude concrete and testable predictions and is very different

from the one that emerges under complete information.

The model features a large number of speculators deciding whether or not to attack the peg.

Devaluation takes place if and only if the aggregate attack is sufficiently large. Speculators have

heterogenous information about the critical size of attack that triggers devaluation. Before spec-

ulators move, the central bank takes a costly action in an attempt to reduce the probability of

devaluation. Such interventions convey information about the critical size of attack that the bank

is willing, or able, to withstand. The “fundamentals” in this game thus coincide with the “type”

of the policy maker.

The first part of the paper provides a complete characterization of the set of equilibrium out-

comes. The multiplicity of equilibria follows from previous work. The challenge here is to provide

an exhaustive characterization of all possible equilibrium outcomes—this is essential if one wishes

to identify predictions that are not sensitive to equilibrium selection.

The result is achieved through a procedure of iterated deletion of strategies that cannot be part

of an equilibrium. This procedure is different from the one used in standard global games, because

of the introduction of signaling. First, beliefs about payoffs in the coordination game played among

the speculators (the receivers) are endogenous; they are a function of the strategy of the policy
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maker (the sender). Second, iterated deletion of strategies that cannot be part of an equilibrium

imposes restrictions not only on coordination among the receivers but also on the information sent

by the sender.

The second part of the paper then uses this characterization result to identify the following

predictions about policy and devaluation outcomes that are robust in the sense that they hold true

across all possible equilibria.

• The policy choice is non-monotonic in the type of the policy maker: only intermediate types

raise the policy above the cost-minimizing level in order to avoid an attack. Intervention thus

signals that the fundamentals are neither too weak nor too strong.

• The devaluation outcome, on the other hand, is monotonic in the policy maker’s type: the

peg is abandoned if and only if the fundamentals are sufficiently weak.

• Different equilibria can be indexed by the level of policy intervention necessary for preempting

an attack, which can be interpreted as an index of the “aggressiveness of market expectations:”

the higher this level, the larger the set of types that abandon the peg. For given aggressiveness,

an increase in the precision of the speculators’ information does not affect the set of types

that maintain the peg but reduces the set of types that do so by raising the policy. In this

sense, the quality of information does not affect the probability of devaluation, but reduces

the need for policy intervention.

• As the noise in information vanishes, the set of types who intervene also vanishes. By impli-

cation, the equilibrium policy is essentially unique in the limit. Nevertheless, the devaluation

outcome remains indeterminate for a non-vanishing set of types.

• The payoff of the policy maker is monotonic in his type.

• The option to intervene can be harmful only for sufficiently strong types. However, in any

equilibrium in which some strong type is worse off, some weak type is necessarily better off.

Hence, although the option to intervene leads to multiple equilibria, either the policy maker

is better off no matter his type, or low types are better off at the expense of high types.

These predictions can be useful both for a policy maker and for an econometrician. For the policy

maker, while the multiplicity result warns him that he may not have full control over the devaluation

outcome, the aforementioned predictions give him a better understanding of how changes in the

environment—e.g., reforms that improve the fundamentals or reduce the cost of intervention—affect
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the set of possible outcomes in the event of a crisis. For the econometrician, the aforementioned

predictions provide empirical restrictions that can help him estimate and test the model.1

Given the structure of the underlying environment, the aforementioned predictions seem rea-

sonable. However, none of these predictions is shared by the complete-information version of the

model. Under complete information, the devaluation outcome need not be monotonic in the type

of the policy maker; intervention can occur for any arbitrary subset of the critical region (i.e., the

region of fundamentals for which the peg is maintained if no speculator attacks but is abandoned

if all speculators attack); the payoff of the policy maker need not be monotonic in his type; and

the value of the option to intervene can be negative for all types in the critical region.

This observation highlights the key role that incomplete information plays in our model: even

though it does not pin down a unique equilibrium, incomplete information puts significant restric-

tions on the mapping from primitives to outcomes, leading to predictions that otherwise would not

have been possible. This is best illustrated in the limit as the noise in the speculators’ information

vanishes: even though multiplicity obtains for any level of noise, the limit of the set of incomplete-

information outcomes is a zero-measure subset of the set of common-knowledge outcomes.

Combined, these results contain the methodological message of the paper. The game we consider

here is an example of a global game with endogenous information and multiple equilibria. If the

equilibrium outcomes obtained in this game were similar to those under common knowledge, then

for practical purposes one could largely ignore both the endogeneity and the incompleteness of

information, and go back to the earlier models that assumed common knowledge. What our results

illustrate is that global games can retain a significant selection power even when the endogeneity

of information sustains multiple equilibria.

Related literature. The global-games approach to equilibrium selection was pioneered by

Carlsson and van Damme (1993) and was recently extended by Morris and Shin (2003) and Frankel,

Morris and Pauzner (2003). By now they have been used in a variety of applications, including

currency crises (Morris and Shin, 1998; Corsetti, Dasgupta, Morris and Shin, 2004; Guimaraes

and Morris, 2006), bank runs (Rochet and Vives, 2004; Goldstein and Pauzner, 2005), debt crises

(Corsetti, Guimaraes and Roubini, 2006, Zwart, 2007), investment spillovers (Chamley, 1999; Das-

gupta 2006), and liquidity crashes (Morris and Shin, 2004). Our approach differentiates from this

literature in two respects. First, we see information as an integral part of the phenomenon under

examination rather than a selection device; in this respect, we view the multiplicity that originates
1The aforementioned predictions have been stated as if the econometrician knows which equilibrium is played.

Nevertheless, because they are shared by all equilibria, these predictions remain true even when the econometrician
is uncertain about which equilibrium is played. We show this by allowing for an arbitrary random selection over all
equilibria and examining the implied distribution of equilibrium outcomes.
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in the signaling role of policy as an important prediction by itself. Second, we show that global

games can deliver useful predictions even when they fail to deliver uniqueness.2

The paper also departs from several strands of the literature that study the role of policy

in crises. In common-knowledge coordination models of crises, policy analysis is by and large

restricted to identifying policies that could make certain actions dominant for the market, thus

removing the “bad” equilibrium and ensuring that a coordination failure never materializes (e.g.

Cooper and John, 1988; Zettelmeyer, 2000; Jeanne and Wyplosz, 2001). More recently, Morris

and Shin (2006b) and Corsetti, Guimaraes and Roubini (2006) use a global game to study how

IMF interventions can, on the one hand, have a catalytic effect on crises and, on the other hand,

exacerbate the moral-hazard problem for the governments of the countries in risk of a crisis. These

papers, however, abstract completely from the signaling effects that are at the heart of our approach.

Zwart (2007) examines a model in which IMF interventions convey information but in which the

policy is uniquely determined because the IMF’s incentive to intervene depend only on the country’s

fundamentals and not on the size of the attack in case of no intervention. Finally, Drazen (2000)

and Drazen and Hubrich (2005) discuss signaling effects of policy interventions in currency crises

but model the market as a single large player, thus completely abstracting from the coordination

element of crises that is at the core of our analysis.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

characterizes the set of equilibrium outcomes. Section 4 identifies predictions about policy and

devaluation outcomes, while Section 5 identifies predictions about payoffs. Section 6 contrasts the

multiplicity of the incomplete-information game with that of its common-knowledge counterpart.

Section 7 concludes. All proofs omitted in the main text are in the Appendix.

2 Model

The economy is populated by a policy maker and a measure-one continuum of speculators, indexed

by i and uniformly distributed over [0, 1]. Each speculator can choose between two actions, either

“attack” the peg (i.e., short-sell the domestic currency) or abstain from attacking. The policy

maker has some privately-known value for maintaining the peg and controls a policy instrument

that affects the speculators’ opportunity cost of attacking.

Let θ denote the policy maker’s type (his willingness to defend the peg, or his “strength”), r ∈
[r, r̄] ⊂ (0, 1) the policy instrument (the speculators’ opportunity cost of attacking) and D ∈ {0, 1}

2Somewhat related to this point is Chassang (2007). He finds that global games may retain significant selection
power in a dynamic setting with exit even if they do not lead to uniqueness. Note, however, that in his model
multiplicity is due to repeated play, not due to the endogeneity of information.
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the devaluation outcome, with D = 0 when the peg is maintained and D = 1 otherwise.

The game evolves through three stages. In the first stage, the policy maker learns his type θ

and sets the policy r. In the second stage, speculators decide simultaneously whether or not to

attack, after observing the policy r, and after receiving private signals xi = θ + σξi about θ; the

scalar σ ∈ (0,∞) parameterizes the quality of the speculators’ information, while ξi is noise, i.i.d.

across speculators and independent of θ, with a continuous log-concave probability density function

ψ strictly positive over the entire real line. The common prior about θ is assumed to be uniform

over the interval [−M,+M ], for some M > 0; as it is standard in the literature, to simplify the

analysis we consider the limit case where M = +∞. In the third and final stage, the policy maker

decides whether or not to maintain the peg after observing the mass of speculators who decided to

attack.

The payoff for a speculator who does not attack is normalized to zero, whereas the payoff from

attacking is 1 − r if the peg is abandoned and −r otherwise. The policy instrument r can thus

be interpreted as the interest rate differential between domestic and foreign bonds or as a tax on

capital outflows.

The payoff for the policy maker, on the other hand, has two components: the gross value of

maintaining the peg, and the cost of policy intervention. The cost of setting the policy at r is

C (r) , where C is continuously increasing, with C (r) = 0. The gross value of maintaining the peg

is V (θ, A), where A ∈ [0, 1] is the mass of speculators attacking; V is twice differentiable, with

Vθ > 0 > VA, V (θ, 0) = V (θ̄, 1) = 0 for some θ < θ̄, VθA ≥ 0, and limθ→∞[V (θ, 0)− V (θ, 1)] = 0.3

The policy maker’s net payoff is thus V (θ, A)−C(r) if the peg is maintained and −C(r) otherwise.

Remark. The assumptions that the value of maintaining the peg, V , is increasing in θ and

decreasing in A, and that there exist θ and θ̄ such that V (θ, 0) = V (θ̄, 1) = 0 permit us to partition

the policy maker’s type space in three regions: for θ < θ the peg is abandoned even if no speculator

attacks; for θ ∈ [θ, θ̄] the peg is sound but vulnerable to a sufficiently large attack; and for θ > θ̄

the peg survives even if everybody attacks. The interval [θ, θ̄] thus identifies the “critical region”

where multiple equilibria exist under common knowledge—a “good” equilibrium in which nobody

attacks, along with a “bad” equilibrium in which everybody attacks.

The assumptions that VθA ≥ 0 and limθ→∞[V (θ, 0) − V (θ, 1)] = 0 mean that the benefit of

avoiding an attack (or of reducing its size) is higher for weaker types, and eventually vanishes as

θ →∞. This last property guarantees that intervention is unnecessary for extremely high types.

Finally, the assumption that the policy maker’s payoff in the event of devaluation is independent

of the size of the attack reflects the fact that the main costs of defending a peg, such as the cost of
3Vθ and VA denote the partial derivatives of V with respect to θ and A; VθA denotes the cross derivative.

5



borrowing reserves from abroad, are costs that are not incurred if the peg is abandoned—see also

Drazen (2000) for a discussion.

Equilibrium. We consider perfect Bayesian equilibria. Let r (θ) denote the policy chosen by

type θ, a (x, r) the action of a speculator who receives a private signal x and who observes a policy

r, A(θ, r) the aggregate size of attack, and D(θ, r, A) the decision of whether to abandon the peg.

Next, let µ(θ|x, r) denote the cumulative distribution function of an speculator’s posterior belief

about θ, conditional on x and r. Finally, let U(θ, r, A) ≡ maxD∈{0,1}{(1−D)V (θ, A)−C (r)}. The

equilibrium definition can then be stated as follows.

Definition. A (symmetric pure-strategy) equilibrium consists of a policy function r(θ), a strategy

for the speculators a(x, r), a rule for devaluation D(θ, r, A) and a cumulative distribution function

µ(θ|x, r), such that

r(θ) ∈ arg max
r∈[r,r̄]

U(θ, r, A (θ, r)) ∀θ (1)

a(x, r) ∈ arg max
a∈{0,1}

a[
∫

D(θ, r, A(θ, r))dµ (θ|x, r)− r] ∀(x, r) (2)

D(θ, r, A) ∈ arg max
D∈{0,1}

{(1−D)V (θ, A)− C (r)} ∀(θ, r, A) (3)

µ (θ|x, r) is obtained from Bayes’ rule using r(·) for any x ∈ R and any r ∈ r(R), (4)

where A(θ, r) ≡
∫ +∞
−∞ a(x, r)σ−1ψ ((x− θ) /σ) dx is the equilibrium size of attack and r(R) ≡ {r :

r = r(θ), θ ∈ R} is the set of policy interventions that are played in equilibrium. The equilibrium

devaluation outcome is D (θ) ≡ D(θ, r(θ), A(θ, r(θ)).

Conditions (1), (2) and (3) require that the policy maker’s and the speculators’ actions be

sequentially rational, while condition (4) requires that, on the equilibrium path, the speculators’

beliefs be pinned down by Bayes’ rule.4

3 Equilibrium characterization

In this section we provide a complete characterization of the set of equilibrium outcomes. Let E(σ)

denote the set of all possible equilibria in the game with noise σ. Next, let E(s;σ) denote the set of

equilibria in which the range of the policy is r(R) = {r, s} for some s ≥ r.

4The definition restricts attention to symmetric pure-strategy equilibria; as discussed after Proposition 1 this is
without loss of generality.
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Proposition 1 (complete characterization) There exist thresholds r̃ ≤ r̄ and θ̃ ∈
(
θ, θ̄

)
such

that the following are true for any σ > 0:

(i) E (σ) = ∪s∈[r,r̃]E (s;σ) , with E (s;σ) ,= ∅ for all s ∈ [r, r̃].

(ii) Any equilibrium in E (r;σ) is such that

r(θ) = r for all θ and D (θ) =





1 for θ < θ̃

0 for θ > θ̃

(iii) For any r∗ ∈ (r, r̃], there exist unique thresholds θ∗ ∈ (θ, θ̃] and θ∗∗ ≥ θ∗ such that any

equilibrium in E (r∗;σ) is such that

r (θ) =





r∗ for θ ∈ (θ∗, θ∗∗)

r for θ /∈ [θ∗, θ∗∗]
and D (θ) =





1 for θ < θ∗

0 for θ > θ∗

As mentioned in the Introduction, the challenge here is not to prove the existence of equilibria

that satisfy the conditions in parts (ii) and (iii), but rather to show that all equilibria must satisfy

these properties. In the rest of the section, we prove this result through a series of lemmas. Lemmas

1 to 6 iteratively eliminate strategy profiles that can not be part of an equilibrium, thus identifying

a set of necessary conditions for equilibrium strategies. Lemma 7 completes the characterization

by showing that these conditions are also sufficient. The reader interested only in how Proposition

1 translates into concrete testable predictions can jump to Section 4.

First, consider the set of equilibria in which all types pool on r.

Lemma 1 (i) There exist thresholds x̃ ∈ R and θ̃ ∈
(
θ, θ̄

)
such that any equilibrium in E (r;σ) is

such that a(x, r) = 1 if x < x̃, a(x, r) = 0 if x > x̃, D (θ) = 1 if θ < θ̃ and D(θ) = 0 if θ > θ̃.

(ii) The thresholds θ̃ and x̃ are the unique solutions to V (θ̃, 1− r) = 0 and 1−Ψ( x̃−θ̃
σ ) = r.

Proof. Consider the continuation game that follows r. Because the observation of r conveys no

information, this game is identical to a standard global game (e.g. Morris and Shin, 1998, 2003),

which proves the existence of a unique continuation equilibrium, as stated in Part (i). For part (ii),

note that a speculator who expects devaluation to occur if and only if θ < θ̃ must be indifferent

between attacking and not attacking when x = x̃, which gives

1−Ψ
(

x̃−θ̃
σ

)
= r. (5)
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Similarly, a policy maker who faces an attack of size A(θ, r) = Ψ((x̃ − θ)/σ) must be indifferent

between abandoning and maintaining the peg when θ = θ̃, which gives

V
(
θ̃,Ψ

(
x̃−θ̃
σ

))
= 0. (6)

Finally, substituting (5) into (6) gives V (θ̃, 1− r) = 0.

Next, consider equilibria in which some type raises the policy above r. For any θ, let ρ(θ) denote

the maximal policy that is not strictly dominated for θ : ρ (θ) = r for θ < θ, ρ (θ) = C−1(V (θ, 0))

for θ ∈ [θ, θ̄], and ρ (θ) = C−1(V (θ, 0)− V (θ, 1)) for θ > θ̄.5 Clearly in any equilibrium, the policy

must satisfy r(θ) ≤ ρ(θ) for all θ.

Lemma 2 In any equilibrium in which some type intervenes, there exists a single r∗ ∈ (r, ρ(θ̄)]

such that r (θ) = r∗ whenever r (θ) ,= r.

Proof. Because the policy maker faces no uncertainty about A(θ, r), any type who raises the policy

above r must be spared from devaluation, for otherwise he would be strictly better off setting r = r.

Furthermore, because the noise in the speculators’ information is unbounded, the observation of

any equilibrium r > r necessarily signals that the peg will be maintained and thus induces all

speculators not to attack no matter their signal x. But then the policy maker can always save on

the cost of intervention by setting the lowest r > r among those that are played in equilibrium.

Finally, that r∗ ≤ ρ(θ̄) follows from the fact that ρ(θ) ≤ ρ(θ̄) for all θ, which implies that any

r∗ > ρ(θ̄) is strictly dominated for all types.

The preceding lemma implies that any equilibrium that does not belong to E(r;σ) necessarily

belongs to E(r∗;σ) for some r∗ ∈ (r, ρ(θ̄)]. The next three lemmas identify further properties of the

set E(r∗;σ).

Lemma 3 For any r∗ ∈ (r, ρ(θ̄)] and any equilibrium in E(r∗;σ), D(θ) = 0 for all θ > θ∗, where

θ∗ ∈ (θ, θ] is the lowest solution to ρ (θ) = r∗, or equivalently the unique solution to

V (θ∗, 0) = C (r∗) . (7)

Proof. Any type θ ≥ θ∗ can guarantee himself a payoff V (θ, 0)−C(r∗) ≥ 0 (with strict inequality

for θ > θ∗) by setting r = r∗; this follows directly from the fact that A(θ, r∗) = 0 for any θ. But

then no type above θ∗ abandons the peg.
5To simplify notation, we assume that ρ

`
θ̄

´
< r̄. When this is not the case, all the results hold by replacing ρ (θ)

with ρ̂ (θ) ≡ min {ρ (θ) , r̄} .
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The threshold θ∗ is thus an upper bound for the set of types who devalue across all equilibria

in E(r∗;σ). Because r∗ is strictly dominated for all θ < θ∗, θ∗ is also a lower bound for the set

of types who raise the policy at r∗. The next lemma identifies an upper bound θ∗∗ for this set; it

further establishes that the level of the policy r∗ can not exceed r̃ ≡ ρ(θ̃). The proof is based on

iterated deletion of strategies that cannot be part of an equilibrium.

To state this lemma, and also for future use, we introduce the function X(θ′, θ′′) implicitly

defined, for θ′′ ≥ θ′, by
1−Ψ(x−θ′

σ )
1−Ψ(x−θ′

σ ) + Ψ(x−θ′′
σ )

= r. (8)

Note that the left-hand-side of (8) is the probability that a speculator with signal x assigns to

θ < θ′ conditional on θ /∈ [θ′, θ′′]. The function X(θ′, θ′′) thus identifies the value of x that makes

a speculator indifferent between attacking and not attacking when that speculator observes r and

believes that D (θ) = 1 if and only if θ < θ′ and r (θ) = r if and only if θ /∈ [θ′, θ′′]. We can now

state the lemma as follows.

Lemma 4 (i) For any r∗ ∈ (r, r̃] and any equilibrium in E(r∗;σ), r (θ) = r∗ only if θ ∈ [θ∗, θ∗∗],

where θ∗ is the unique solution to condition (7) and θ∗∗ is the unique solution to

V (θ∗∗, 0)− V (θ∗, 0)− V
(
θ∗∗,Ψ

(
X(θ∗,θ∗∗)−θ∗∗

σ

))
= 0. (9)

(ii) For any r∗ > r̃, E(r∗;σ) = ∅.

Proof. For any θ′′ ≥ θ∗ and any θ ≥ θ, let

g
(
θ∗, θ′′, θ

)
≡ V (θ, 0)− V (θ∗, 0)−max

{
0, V

(
θ,Ψ

(
X(θ∗,θ′′)−θ

σ

))}
.

The function g (θ∗, θ′′, θ) can be interpreted as the net payoff from raising the policy from r to r∗

for a type θ who expects no speculator to attack when r = r∗, no matter x, and all speculators to

attack if and only if x < X(θ∗, θ′′) when r = r. (Recall that V (θ∗, 0) = C(r∗)).

Now consider the sequence {θn}∞n=0 constructed as follows. First, let θ0 ∈ (θ̄,∞) be the highest

solution to ρ (θ) = r∗; that this threshold exists follows from the fact that ρ(·) is continuous with

ρ(θ̄) > r∗ and limθ→∞ ρ (θ) = r.6

6The last property follows from the assumption that limθ→∞ {V (θ, 1)− V (θ, 0)} = 0. Without this assumption,
there exist equilibria in which the policy maker intervenes even for arbitrarily high types. These equilibria are
sustained by the speculators threatening to attack no matter how favorable their information is. We find such a
property implausible. Furthermore, these equilibria are not robust to the following perturbation. Pick any K > θ̄
and any δ > 0 and suppose that with probability δ types θ > K are hit by a shock that forces them to set r and
assume that this shock is not observed by the speculators. The aforementioned equilibria are not robust to this
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Next, for any n ≥ 1, let

θn = sup{θ ≥ θ∗ : g
(
θ∗, θn−1, θ

)
≥ 0}

if the set is non-empty, and θn = θ∗ otherwise. This sequence has a simple meaning. Clearly, raising

the policy at r∗ is dominated for any θ /∈ [θ∗, θ0]. Given so, a speculator who expects D (θ) = 0 if

and only if θ ≥ θ∗ and r (θ) = r if and only if θ /∈ [θ∗, θ0] finds it optimal to attack when observing

r if and only if x < X(θ∗, θ0). By implication, a speculator who expects D (θ) = 0 for all θ ≥ θ∗

(but possibly also for some θ < θ∗) and r (θ) = r for all θ /∈ [θ∗, θ0] (but possibly also for some

θ ∈ [θ∗, θ0]) never finds it optimal to attack for x > X(θ∗, θ0). To see this, note that when the peg

is maintained also for some θ < θ∗, the probability that a speculator assigns to devaluation when

he observes r is smaller than when devaluation occurs for all θ < θ∗. Similarly, when the policy

maker sets the policy at r also for some θ ∈ [θ∗, θ0], the observation of r is less informative of

devaluation than when r(θ) = r∗ for all θ ∈ [θ∗, θ0]. Hence, the incentives to attack after observing

r are maximal when D(θ) = 1 for all θ < θ∗ and r(θ) = r∗ for all θ ∈ [θ∗, θ0], which explains why it

is never optimal to attack for x > X
(
θ∗, θ0

)
. But then a policy maker who expects no speculator

to attack for x > X(θ∗, θ0) never finds it optimal to raise the policy at r∗ for any θ > θ1. Knowing

this, no speculator finds it optimal to attack when x > X(θ∗, θ1) after observing r, and so on.

In the Appendix (Lemma A1) we establish that the sequence {θn}∞n=0 is non-increasing. Because

it is also bounded from below by θ∗, it has to converge. Clearly, the limit is the unique θ∗∗ that

solves condition (9) if such a solution exists; otherwise, the limit is θ∗. In the Appendix (Lemma

A1) we further show that condition (9) admits a solution if and only if θ∗ ≤ θ̃ and that this solution

is strictly above θ∗ if and only if θ∗ < θ̃.

The preceding lemma used an iteration “from above” to rule out strategies for which the policy

is raised for θ > θ∗∗. The next lemma uses a similar iteration “from below” to rule out strategies

for which the peg is maintained for θ < θ∗, which together with Lemma 3 completely characterizes

the devaluation outcome.

Lemma 5 For any r∗ ∈ (r, r̃] and any equilibrium in E(r∗;σ), D(θ) = 1 for any θ < θ∗.

Proof. The result is established by comparing the speculators’ incentives to attack after observing

r with the corresponding incentives when they expect r(θ) = r for all θ.

Let {θn}∞n=0 be the following sequence: θ0 ≡ θ and for any n ≥ 1, θn = min{θ∗, θ′n}, where θ′n

solves V (θ′n,Ψ(xn−1−θ′n
σ )) = 0 with xn−1 implicitly defined by 1−Ψ(xn−1−θn−1

σ ) = r. This sequence

perturbation, no matter how unlikely these shocks are (i.e. no matter δ, K). Instead of invoking such a refinement,
we prefer to impose the aforementioned limit condition.
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also has a simple interpretation. When devaluation occurs at r if and only if θ < θ, a speculator

who believes that r(θ) = r for all θ finds it optimal to attack if and only if x < x0. By implication,

a speculator who expects r(θ) = r for all θ < θ∗ (but possibly r(θ) > r for some θ > θ∗) necessarily

finds it optimal to attack for any x < x0. This simply follows from the fact that the observation of

r is most informative of devaluation when all types who devalue set r = r, while some of the types

who maintain the peg raise the policy at r∗. However, if all speculators attack whenever x < x0,

the peg is abandoned for all θ < θ1. This in turn implies that there exists an x1 > x0 such that a

speculator who expects the peg to be abandoned for all θ < θ1 and who believes that r(θ) = r for

all θ, finds it optimal to attack for all x < x1. By implication, a speculator who expects r(θ) = r

for all θ < θ∗ but possibly r(θ) > r for some θ > θ∗, necessarily finds it optimal to attack for any

x < x1, and so on.

Because {θn}∞n=0 is increasing and bounded from above it necessarily converges. Note that V

and Ψ are continuous and that the unique fixed point to V (θ,Ψ(x−θ
σ )) = 0 and 1 − Ψ(x−θ

σ ) = r

is attained at θ = θ̃ and x = x̃. Because θ∗ ≤ θ̃, the limit of {θn}∞n=0 is clearly θ∗. It follows that

D(θ) = 1 for all θ < θ∗.

The results in the preceding lemmas identify the core restrictions on equilibrium outcomes: in

any equilibrium in which the policy is raised, there exists at most one r∗ > r played in equilibrium,

the policy is raised to r∗ only if θ ∈ [θ∗, θ∗∗] , the peg is abandoned if θ < θ∗ and is maintained if

θ > θ∗.

What these results leave open is the possibility that the policy is raised only for a strict subset of

(θ∗, θ∗∗). Although such a possibility would not affect the predictions we discuss in the subsequent

sections in any serious way, it requires that the speculators’ strategy after observing r = r be

non-monotonic in x, which in turn requires that posterior beliefs about θ given r be non-monotone

in x. This possibility is ruled out by the following result (whose proof is rather technical and is

thus in the Appendix).

Lemma 6 For any r∗ ∈ (r, r̃] and any equilibrium in E(r∗;σ), the following are true:

(i) If a(x, r) is decreasing in x, then r(θ) = r∗ if θ ∈ (θ∗, θ∗∗), a (x, r) = 1 if x < x∗, and

a (x, r) = 0 if x > x∗, where x∗ = X (θ∗, θ∗∗) .

(ii) If ψ is log-concave, then a(x, r) is decreasing in x.

So far we have identified sharp, but only necessary, conditions for the set of equilibrium out-

comes. The next lemma completes the equilibrium characterization by showing that E (r;σ) ,= ∅
and E (r∗;σ) ,= ∅ for any r∗ ∈ (r, r̃]. This last result follows from adapting Proposition 2 in

Angeletos, Hellwig and Pavan (2006) to the different payoff structure assumed here.
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Lemma 7 (i) There exists an equilibrium in which r (θ) = r for all θ, a (x, r) = 1 if and only if

x < x̃, and D(θ) = 1 if and only if θ < θ̃.

(ii) For any r∗ ∈ (r, r̃], there exists an equilibrium in which r (θ) = r∗ if θ ∈ [θ∗, θ∗∗], r (θ) = r

otherwise, a (x, r) = 1 if and only if (x, r) < (x∗, r∗), and D(θ) = 1 if and only if θ < θ∗.

The strategies in Lemma 7 are particularly simple and permit us to identify r∗ as the level

of policy intervention at which the speculators switch from “aggressive” to “lenient” behavior.

Although other strategies can also sustain the same equilibrium outcomes, Lemmas 2-6 ensure that

these other strategies can differ only out of equilibrium (or for a zero-measure set of θ and x on

equilibrium).7

Combining all the aforementioned results completes the proof of Proposition 1.

Remark. The equilibrium definition we have used rules out mixed strategies for either the

policy maker or the speculators; it also imposes symmetry on the speculators’ strategies. However,

from the arguments in the proofs of Lemmas 1-6, it should be clear that none of the necessary

conditions identified in these lemmas depend on these restrictions. Indeed, the policy maker can

find it optimal to randomize over r, or over D, only for a zero-measure subset of θ; because

this does not have any effect on the speculators’ posterior beliefs about policy and devaluation

outcomes, it cannot affect their best-responses. Similarly, for any r, the speculators can find it

optimal to randomize over a, or to play asymmetrically, only for a zero-measure subset of their

signal space; because this does not have any effect on the aggregate size of attack, it does not

affect the policy maker’s incentives. Proposition 1 thus characterizes the entire set of equilibrium

outcomes, including those sustained by mixed-strategy or asymmetric equilibria.

4 Predictions about policies and devaluation outcomes

In this section, we show how the complete characterization of the set of equilibrium outcomes as

given by Proposition 1 permits us to identify predictions regarding the structure of policy choices

and devaluation outcomes that are not sensitive to equilibrium selection.

Following Proposition 1, we henceforth index equilibria by s ∈ [r, r̃]. To highlight the dependence

of the equilibrium outcomes on the quality of information σ, for any s ∈ [r, r̃], we denote by rs (θ;σ),

Ds (θ;σ) and Ds(σ) ≡ {θ : Ds(θ;σ) = 1} respectively the equilibrium policy, the devaluation

outcome, and set of types who abandon the peg, in any equilibrium in E (s;σ) . For any s ∈ (r, r̃], we
7Moreover, the strategies and the beliefs considered in the proof of Lemma 7 survive the intuitive criterion of

Cho and Kreps (1987) and can be obtained as the limit to perturbations that introduce full-support noise in policy
observations so that beliefs are always pinned down by Bayes’ rule. This follows from arguments similar to those in
Angeletos, Hellwig and Pavan (2006).
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then let θ∗s(σ) and θ∗∗s (σ) denote the corresponding thresholds as defined in part (iii) of Proposition

1 and ∆s(σ) ≡ θ∗∗s (σ)− θ∗s(σ) the (Lebesgue) measure of types who intervene. Finally, to save on

notation, we also let θ∗r(σ) ≡ θ∗∗r (σ) ≡ θ̃ for any σ > 0, where θ̃ is the devaluation threshold in any

of the pooling equilibria of part (ii) in Proposition 1.

Proposition 2 (policy choices and regime outcomes) Equilibrium policies and devaluation

outcomes satisfy the following properties.

(i) Non-monotonic policy. For any σ > 0 and any s > r, rs (θ;σ) is inverted U -shaped in

θ, and rs (θ;σ) ≤ r̃ for all θ.

(ii) Monotonic devaluation outcome. For any σ > 0 and any s, Ds (θ;σ) is decreasing in

θ, and Ds(σ) ⊆ (−∞, θ̃).

(iii) Impact of aggressiveness. For any σ > 0, s′ > s > r implies ∆s′(σ) < ∆s(σ), whereas

Ds′(σ) ⊃ Ds(σ).

(iv) Impact of noise. For any s ∈ (r, r̃), σ′ > σ > 0 implies ∆s(σ′) > ∆s(σ), whereas

Ds(σ′) = Ds(σ). Moreover, limσ→0 ∆s(σ) = 0.

The first two properties establish that, no matter which equilibrium is played, (i) the policy

maker intervenes only for intermediate θ and never raises r above r̃; (ii) the peg is abandoned

if and only if θ is low enough and never for θ > θ̃. These predictions follow directly from the

characterization result of Proposition 1.

Property (iii), on the other hand, can be interpreted as the impact of the “aggressiveness”of

market expectations: the higher the level of the policy at which the speculators switch to lenient

behavior (i.e., refrain from attacking), the higher the cost of intervention necessary for preventing

an attack, and hence the smaller the set of types who find it optimal to intervene and the larger

the set of types who abandon the peg.

Finally, property (iv) shows that, for given “aggressiveness,” the set of types who find it optimal

to intervene shrinks as the speculators’ information becomes more precise, whereas the set of types

who devalue is independent of σ. To understand this result, recall that the opportunity cost of

raising the policy at s ∈ (r, r̃) is devaluing for θ = θ∗s(σ), which explains why θ∗s(σ) is independent

of σ. On the other hand, the opportunity cost for θ = θ∗∗s (σ) is facing a positive attack which

however does not lead to devaluation; as σ → 0, the size of attack vanishes for any θ > θ∗s(σ) and

θ∗∗s (σ) converges to θ∗s(σ).

The predictions identified in Proposition 2 presume that the outside observer, say the econome-

trician, knows which equilibrium is played (although they are true for any equilibrium). We now

turn to the predictions that the model delivers for an econometrician who is uncertain about which
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equilibrium is played. This uncertainty can be captured by introducing a distribution over the set

of all possible equilibria and examining the implied distribution of equilibrium outcomes.

Because different equilibria within E (s, σ) lead to the same outcomes, any distribution over

outcomes generated by a random selection over the equilibrium set E (σ) can be replicated by a

random variable s with support [r, r̃] such that a pooling equilibrium is played when s = r, while

a semi-separating equilibrium in which r∗ = s is played when s ∈ (r, r̃]. We then denote by F the

family of all possible cumulative distribution functions over [r, r̃]. As far as outcomes are concerned,

any beliefs the econometrician may have about which equilibrium is played simply corresponds to

an element of F .8

Note that, because θ is the policy maker’s private information, the speculators’ strategies cannot

depend directly on θ; they can only be functions of the information the speculators have about θ.

It follows that the equilibrium being played cannot be a function of θ; equivalently, the realization

of the random variable s has to be independent of θ.

Now, let Ipremise denote the indicator function assuming value one if premise is true and zero

otherwise. Next, for any F ∈ F , let D(θ;F,σ) ≡
∫
s∈[r,r̃] Ds(θ;σ)dF (s) denote the probability that

type θ abandons the peg, P (r, θ;F,σ) ≡
∫
s∈[r,r̃] I{rs(θ)≥r}dF (s) the probability that type θ raises

the policy at or above r, and ∆(r;F,σ) ≡
∫
θ∈R I{P (r,θ;F,σ)>0}dθ the (Lebesgue) measure of types

who raise the policy at or above r with positive probability, when the selection is F . Finally, let

F ′ / F if and only if F ′(r) ≤ F (r) for all r, with strict inequality for r ∈ (r, r̃) and equality

for r ∈ {r, r̃}. The following result then translates the deterministic predictions of Proposition 2

into their probabilistic analogues for the case in which the econometrician is uncertain about which

equilibrium is played.

Proposition 3 (random equilibrium selections) (i) For any r > r, any F ∈ F and any

σ > 0, there exist θ◦ and θ◦◦, with θ < θ◦ ≤ θ◦◦, such that P (r, θ;F,σ) > 0 only if r ≤ r̃ and

θ ∈ [θ◦, θ◦◦].

(ii) For any σ > 0 and any F ∈ F , D(θ;F,σ) is non-increasing in θ, with D(θ;F,σ) = 1 for

θ ≤ θ and D(θ;F,σ) = 0 for θ ≥ θ̃.

(iii) For any σ > 0, F ′ / F implies ∆(r, F ′, σ) < ∆(r, F,σ) for all r ∈ (r, r̃), whereas

D(θ;F ′, σ) > D(θ;F,σ) for all θ ∈ (θ, θ̃) (unless D(θ;F,σ) = 1).

(iv) For any F ∈ F , σ′ > σ > 0 implies ∆(r, F,σ′) > ∆(r, F,σ) for all r ∈ (r, r̃) (unless

∆(r, F,σ) = 0), whereas D(θ;F,σ′) = D(θ;F,σ) for all θ. Moreover, limσ→0 ∆(r, F,σ) = 0.

Parts (i) and (ii) say that, no matter F , the probability of observing a policy above r is positive
8Note that s could also be interpreted as a sunspot that is used by the players to determine which equilibrium to

play; the set F can thus also be interpreted as the set of sunspot equilibria.
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only for intermediate θ, and the probability of devaluation is monotonic in θ. Part (iii) says that, if

the econometrician expects the players to coordinate on more aggressive equilibria, then he should

also expect a smaller set of types to raise the policy and a higher probability of devaluation for any

θ. Finally, part (iv) says that, holding F constant, more precise information does not affect the

probability of devaluation but induces fewer types to intervene with positive probability.

One frequent criticism of common-knowledge models of crises, such as Obstfeld (1986, 1996) and

Calvo (1986), is that they document the existence of a critical region of fundamentals over which

there are multiple equilibria, but say little about the relation between fundamentals and equilibrium

outcomes. For example, the probability of devaluation in Obstfeld need not be monotonic in the

strength of the currency. In contrast, the result in part (ii) of Proposition 3 delivers a monotonic

relation between the fundamentals (the policy maker’s type) and the devaluation outcome, while

at the same time allowing for “randomness” in this relation generated by the econometrician’s

uncertainty over the equilibrium selected.

The result in part (iv), on the other hand, is interesting because it suggests that the precision

of information is not important for whether the peg is maintained, but it is crucial for whether

this goal is achieved with or without intervention. Note, however, that this result presumes that F

does not change with σ. Because the model imposes no relation between F and σ, this is possible,

although not necessary.

Now suppose that one is completely agnostic on whether, or how, the equilibrium selection F

changes with σ. Is it still possible to say anything about the relation between the equilibrium

outcomes and the quality of information? The answer is yes. It suffices to consider the bounds on

the probability of devaluation and on the probability of intervention across all possible equilibria.

Let D(θ1, θ2;F,σ) ≡ 1
θ2−θ1

∫ θ2

θ1
D(θ;F,σ)dθ denote the probability of devaluation and P (r, θ1, θ2;F,σ) ≡

1
θ2−θ1

∫ θ2

θ1
P (r, θ;F,σ)dθ denote the probability that the policy is raised at or above r, both condi-

tional on the event that θ ∈ [θ1, θ2], for given selection F. Then let D̄(θ1, θ2;σ) ≡ supF∈F D(θ1, θ2;F,σ),

D(θ1, θ2;σ) ≡ infsupF∈F D(θ1, θ2;F,σ), P̄ (r, θ1, θ2;σ) ≡ supF∈F P (r, θ1, θ2;F,σ), and P (r, θ1, θ2;σ) ≡
infF∈F P (r, θ1, θ2;F,σ); these are bounds on the equilibrium probabilities of devaluation and pol-

icy interventions. Clearly, D̄(θ1, θ2;σ) ≥ D(θ1, θ2;σ) and P̄ (r, θ1, θ2;σ) ≥ P (r, θ1, θ2;σ), with strict

inequalities when θ ≤ θ1 < θ2 ≤ θ̃ and r ∈ (r, r̃). That these bounds do not coincide over a subset

of the critical region reflects the equilibrium indeterminacy. The next proposition examines how

these bounds depend on the quality of information.

Proposition 4 (bounds) The bounds D, D̄, and P are independent of σ. In contrast, P̄ is a

nondecreasing function of σ, with limσ→0 P̄ (r, θ1, θ2;σ) = 0 for any r > r and any θ1, θ2 ∈ R.
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Therefore, more precise information does not affect the range of equilibrium probabilities of

devaluation but it reduces the range of equilibrium probabilities of intervention. What is more,

in the limit as σ → 0, the probability of raising the policy vanishes for all measurable sets of θ,

whereas the probability of devaluation can take any value for any subset of (θ, θ̃). In essence, the

policy choices are uniquely determined in the limit, even though the devaluation outcomes remain

indeterminate.

5 Predictions about payoffs

We now turn to the predictions the model delivers for the payoff of the policy maker. In contrast

to predictions about policy choices and devaluation outcomes, predictions about payoffs need not

be directly testable (the econometrician cannot directly observe the policy maker’s payoffs). Nev-

ertheless, these predictions are important for their policy implications. For example, they permit

us to characterize the ex-ante value the policy maker may attach to the option to intervene once θ

is realized.

Let Us (θ;σ) denote the payoff that type θ obtains in any of the equilibria in E (s;σ) . Next,

consider the variant of our model in which r is exogenously fixed at r for all θ, interpret this as

the game in which the option to intervene is absent, and let Ũ (θ;σ) denote the payoff that type θ

obtains in the unique equilibrium of this game.

Proposition 5 (payoffs) (i) For any s and any σ > 0, Us (θ;σ) is increasing in θ.

(ii) For any s ∈ (r, r̃), either it is the case that Us (θ;σ) ≥ Ũ (θ;σ) for all θ, with strict inequality

for some θ, or there exists θ#
s (σ) > θ̃ such that Us(θ,σ) ≥ Ũ (θ;σ) if and only if θ ≤ θ#

s (σ), with

strict inequality for θ ∈ (θ∗s(σ), θ#
s (σ)). Moreover, σ small enough ensures that the first case holds.

Part (i) establishes that payoffs, like devaluation outcomes, are monotonic in θ, no matter the

equilibrium selected. This follows from the fact that, in any equilibrium, the speculators’ response

to r ∈ {r, s} is monotonic in x, which implies that higher types can always do as well as lower types

by taking the same actions that the latter take.

Part (ii), on the other hand, establishes that the policy maker can be worse off with the option to

intervene only when the equilibrium selected is such that s ∈ (r, r̃) and both θ and σ are sufficiently

high. Clearly, when s ∈ {r, r̃}, Us (θ;σ) = Ũ (θ;σ) for all θ.9 Thus consider an equilibrium in which

s ∈ (r, r̃) and let θ∗s(σ) and θ∗∗s (σ) be the unique solutions to (7)-(9) and x∗s(σ) ≡ X(θ∗s(σ), θ∗∗s (σ)).

That types θ ≤ θ̃ can not be worse off follows from the fact that these types necessarily abandon
9Recall that when s = r̃, θ∗s (σ) = θ̃ = θ∗∗s (σ) and x∗s(σ) = x̃.
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the peg in the game without the option to intervene. Types θ > θ̃, on the other hand, can be

worse off only if x∗s(σ) > x̃, that is, only if the size of the attack they face when they set r = r

is higher than the one they would have faced without the option to intervene. When this is the

case, all types θ ≥ θ∗∗s (σ) are clearly worse off. On the other hand, type θ̃ is strictly better off;

in fact, s < r̃ implies that θ∗s(σ) < θ̃ and hence type θ̃ can guarantee himself a strictly positive

payoff by raising the policy at r = s, whereas he would have obtained a zero payoff absent the

possibility to intervene. Together with the fact that V (θ, 0) − C (s) − V
(
θ,Φ

(
x̃−θ
σ

))
, the payoff

differential between the two games for types θ ∈ [θ̃, θ∗∗s (σ)] who find it optimal to intervene, is

continuous and decreasing in θ (by the assumption that VθA ≥ 0), this ensures that there exists a

θ#
s (σ) ∈ (θ̃, θ∗∗s (σ)) such that the policy maker is worse off if and only if θ > θ#

s (σ). However, as

we show in the Appendix, for any given s ∈ (r, r̃), a sufficiently low σ ensures that x∗s(σ) is smaller

than x̃, and hence that the policy maker is always better off, whatever his type. This follows from

the fact that θ∗∗s (σ) → θ∗s(σ) and x∗s(σ) → θ∗s(σ), whereas x̃ → θ̃ as σ → 0, which together with the

fact that θ∗s(σ) < θ̃ whenever s ∈ (r, r̃) ensures that x∗s(σ) < x̃ for σ small enough.

These results can easily be extended to arbitrary random equilibrium selections F ∈ F . Indeed,

part (i) directly implies that, for any F , the expected payoff U(θ;F,σ) ≡
∫
s∈[r,r̃] Us(θ, σ)dF is

increasing in θ. Part (ii), on the other hand, implies that, if we fix an arbitrary set of types

[θ1, θ2] ⊂ R and an arbitrary selection F and consider the implied probability that, conditional on

θ ∈ [θ1, θ2], the policy maker is strictly worse off, then this probability is zero either for all σ, or

at least for σ small enough. Notwithstanding the fact that, in general, the selection F may also

depend on σ, this property suggests that the risk of being worse off with the option to intervene

vanishes as market information becomes highly precise.

Furthermore, we can accommodate the case that F changes with σ by considering bounds on

equilibrium payoffs across all possible equilibria. Let U (θ;σ) ≡ sups∈[r,r̃] Us (θ;σ) and U (θ;σ) ≡
infs∈[r,r̃] Us (θ;σ). The following proposition characterizes the relation between these bounds and

the payoff obtained in the game without the option to intervene.

Proposition 6 (payoff bounds) U (θ;σ) = V (θ, 0) > Ũ (θ;σ) for all θ > θ. On the other

hand, there exists θ̂ (σ) ≥ θ̃ such that U (θ;σ) < Ũ (θ;σ) if and only if θ > θ̂ (σ) . Finally,

limσ→0 U (θ;σ) = limσ→0 Ũ (θ;σ) for all θ.

Consider first the supremum of the equilibrium payoffs. For any θ > θ, the highest feasible

payoff is V (θ, 0), the payoff enjoyed when no speculator attacks. This payoff can be approximated

arbitrarily well in the game in which intervention is possible (it suffices to take any equilibrium in

which s is sufficiently close to r) but not in the game in which the option to intervene is absent.
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Next consider the infimum of the equilibrium payoffs. Type θ can be worse off in some equilibria

of the game with the option to intervene only if θ is above some threshold θ̂ (σ) ∈ [θ̃,∞). This

is a direct implication of part (ii) of Proposition 5: no type θ ≤ θ̃ can be worse off, and if a type

θ > θ̃ is strictly worse off in some equilibrium, then any θ′ > θ is also strictly worse off in the

same equilibrium. That θ̂ (σ) < ∞ follows from the fact that, for any given σ, one can find an

equilibrium with s close enough to r such that x∗s(σ) > x̃. In such equilibrium, any θ > θ∗∗s (σ) is

strictly worse off.

Simulations suggest that θ̂ (σ) → θ̄ as σ → 0, meaning that the subset of the critical region

where the policy maker can be worse off with the option to intervene vanishes as information

becomes infinitely precise. We have not been able to prove that this is true in general. However

we have proved that θ̂ (σ) is strictly higher than θ̃ for σ small enough.10

Finally, to see why, for any θ, the difference between U (θ;σ) and Ũ (θ;σ) vanishes as σ → 0,

note that, for any θ ≤ θ̃, this difference is clearly zero because the lower bound is simply the payoff

obtained in any equilibrium in which type θ is forced to abandon the peg. For types θ > θ̃, on the

other hand, the lower bound on possible payoffs is obtained by considering equilibria in which the

size of attack the policy maker faces if he does not raise the policy is higher than the one he would

have faced if he did not have the option to intervene.11 When σ is small enough, this possibility

(that x∗s(σ) > x̃) requires that s be close enough to r, and the closer so the smaller σ. But then,

because any θ > θ̃ can always opt to raise the policy ensuring a payoff V (θ, 0) − C (s), the lower

bound on possible payoffs necessarily converges to V (θ, 0) for any θ > θ̃. Because this is also the

payoff that the policy makes obtains in the game without the option to intervene as σ → 0, we

conclude that limσ→0 U (θ;σ) = limσ→0 Ũ (θ;σ) for all θ.

Now imagine that, before knowing his type, the policy maker decides whether to maintain or

to give up the option to intervene after learning θ. The aforementioned results suggest that, in

general, the policy maker need not be able to ensure that he will be better off with the option to

intervene no matter the realized θ: he may get “trapped” in an equilibrium in which he is worse

off when θ turns out to be sufficiently high. Even then, however, the policy maker is better off for

low θ. Therefore, the option to intervene either is beneficial for all θ, or it implements a form of

insurance across types.
10This follows from the fact that, when σ is small, x∗s(σ) > x̃ is possible only for r∗ bounded away from r̃; but then

in any such equilibrium type θ̃ and, by continuity, all types θ in a right neighborhood of θ̃ are necessarily strictly
better off. See the Appendix for details.

11This follows from the fact that U (θ; σ) ≤ Ũ (θ; σ) for all θ. Indeed, the game with the option to intervene always
admits two equilibria in which all types obtain the same payoff as in the unique equilibrium of the game without this
option; these are the pooling equilibrium (s = r) and the semi-separating equilibrium in which s = r̃.
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6 Contrast to common knowledge

We now contrast the predictions of the incomplete-information game with those of its common-

knowledge counterpart. We further show that, while multiplicity obtains in our model for any level

of noise, the set of equilibrium outcomes becomes smaller (in an appropriate sense) the more precise

the speculators’ private information, but explodes at zero noise. The purpose of these exercises is to

highlight that the selection power of global games has significant bite also in our multiple-equilibria

setting and to establish that the predictions we have identified, albeit quite intuitive, would not

have been possible with complete information.

Proposition 7 (common knowledge) Consider the game with σ = 0.

(i) A policy r(·) can be part of a subgame-perfect equilibrium if and only if r(θ) ≤ ρ (θ) for

θ ∈ [θ, θ̄] and r(θ) = r for θ /∈ [θ, θ̄].

(ii) A devaluation outcome D(·) can be part of a subgame-perfect equilibrium if and only if

D (θ) = 1 for θ < θ, D (θ) ∈ {0, 1} for θ ∈ [θ, θ̄], and D (θ) = 0 for θ > θ̄.

This result contrasts sharply with the results in Propositions 1 and 2. None of the predictions

in the game with incomplete information are valid in the game with common knowledge. In

particular, the policy can now exceed r̃ for θ ∈ (θ̃, θ̄] and can take any shape in the critical region

[θ, θ̄]. Similarly, the probability of devaluation can take any value within the critical region, it need

not be monotonic in θ, and can be positive also for θ > θ̃.

Under complete-information, the only policy choices and devaluation outcomes that are ruled

out by equilibrium reasoning are those that are ruled out by strict dominance. In essence, “almost

anything goes” within the critical region under complete information.

The contrast between the complete- and incomplete-information versions of our model is most

evident in the limit as σ → 0. Let G(σ) denote the set of pairs (θ, r) such that, in the game with

noise σ ≥ 0, there is an equilibrium in which type θ sets the policy at r.

Proposition 8 (limit outcomes) Under complete information,

G(0) = {(θ, r) : either θ ∈ [θ, θ̄] and r ≤ r ≤ ρ(θ), or θ /∈ [θ, θ̄] and r = r}.

In contrast, under incomplete information,

lim
σ→0+

G(σ) = {(θ, r) : either θ ∈ [θ, θ̃] and r ∈ {r, ρ(θ)}, or θ /∈ [θ, θ̃] and r = r},

which is a zero-measure subset of G(0).
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Figure 1: Pairs (θ, r) that can be observed as equilibrium outcomes.

This result is illustrated in Figure 1. The common-knowledge set, G(0), is given by the large

triangular area. The incomplete-information set, G(σ) for σ > 0, is given by the dashed area. As

long as σ > 0, the lower σ is, the smaller the set of policies that can be played by any given θ, and

hence the smaller the dashed area in Figure 1 (i.e., σ′ > σ > 0 implies G(σ′) ⊃ G(σ)). In this sense,

the predictions of the model become sharper as the noise in the speculators’ information becomes

smaller. Indeed, the predictions are sharpest in the limit as σ → 0+. The set G(σ) then converges to

the boundary points of the set of policies that would have been possible under complete information

for any θ ≤ θ̃, and to the cost-minimizing policy for θ > θ̃.12

The restrictions that incomplete information poses on equilibrium outcomes are useful for iden-

tification when one estimates the model. For example, suppose the speculators’ opportunity cost

of attacking is r + c, for some c ∈ (−r, 1 − r̄). Further assume that the econometrician does not

know c and tries to estimate it assuming that the data are generated from our model. The set

of common-knowledge equilibrium outcomes is insensitive to c, implying that c cannot be iden-

tified (unless one makes “ad hoc” assumptions on equilibrium selection). In contrast, the set of

incomplete-information equilibrium outcomes shrinks with c, in the sense that both θ̃ and r̃ decrease

with c; it is this kind of sensitivity that can help identification.
12For econometric purposes, one would of course have to allow for measurement error, in which case these predictions

would be “noised up”. In particular, if the measurement error has full support, then the econometric version of the
incomplete-information game would generate distributions for the outcomes that have full support on G(0). However,
to the extent that the measurement error is small, these distributions would be highly concentrated around the
boundaries of this set. This would not be true for the common-knoweldge game, no matter how small the measurement
error is.
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7 Conclusion

The approach followed in most recent applications of global games is to use incomplete information

as a tool to select a unique equilibrium in coordination settings that admit multiple equilibria under

common knowledge: to assume certain exogenous information structures that ensure uniqueness,

without investigating what determines information in the first place. For certain questions, however,

understanding the endogeneity of information is essential for understanding the phenomenon under

examination. This often brings back multiple equilibria. However, this multiplicity is very different

from the one that emerges with complete information. More importantly, this multiplicity need

not preclude concrete and testable predictions that are robust across all equilibria.

In this paper, we demonstrated these points in the context of defense policies against speculative

currency attacks. However, these points are likely to be relevant also for other applications that

endogenize information in global games. These include learning in dynamic settings (Angeletos,

Hellwig and Pavan, 2007), aggregation of information through prices (Angeletos and Werning,

2006; Hellwig, Mukherji, and Tsyvinski, 2006; Morris and Shin, 2006a; Ozdenoren and Yuan,

2006; Tarashev, 2006), and manipulation of information through propaganda (Edmond, 2006). In

Angeletos, Hellwig and Pavan (2007), for example, learning sustains multiplicity but all equilibria

share the prediction that dynamics alternate between phases of tranquility, in which no attack is

possible, and phases of distress, in which an attack is possible but does not necessarily take place.

Finally, in this paper we did not confront the predictions we delivered with the data. This is

clearly an important next step for future research. The task is challenging, but recent advances in

structural estimation of models with multiple equilibria seem to help in this direction.
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Appendix: proofs omitted in the main text

Lemma A1. (i) The sequence {θn}∞n=0 defined in the proof of Lemma 4 is non-increasing.

(ii) Condition (9) admits a solution if and only if θ∗ ≤ θ̃. Furthermore, this solution is strictly

above θ∗ for any θ∗ < θ̃.

Proof of Lemma A1. Part (i). Let

g̃(θ∗, θn−1, θ) ≡ V (θ, 0)− V (θ∗, 0)− V
(
θ,Ψ

(
X(θ∗,θn−1)−θ

σ

))
(10)

and note that, by the assumptions that VA < 0 < Vθ and VθA ≥ 0, g̃(θ∗, θn−1, θ) is decreasing in θ,

with g̃(θ∗, θn−1, θ∗) = −V
(
θ∗,Ψ

(
X(θ∗,θn−1)−θ∗

σ

))
.

Take any n ≥ 1. If V
(
θ∗,Ψ

(
X(θ∗,θn−1)−θ∗

σ

))
≥ 0, then g(θ∗, θn−1, θ) = g̃(θ∗, θn−1, θ) <

g̃(θ∗, θn−1, θ∗) ≤ 0 for all θ > θ∗, and hence θn = θ∗ ≤ θn−1. But because X(θ∗, θ′) is increas-

ing in θ′,

V
(
θ∗,Ψ

(
X(θ∗,θn)−θ∗

σ

))
≥ V

(
θ∗,Ψ

(
X(θ∗,θn−1)−θ∗

σ

))
≥ 0

and hence θk = θ∗ for all k ≥ n. If, instead, V
(
θ∗,Ψ

(
X(θ∗,θn−1)−θ∗

σ

))
< 0, then θn > θ∗ is the

highest solution to g̃(θ∗, θn−1, θ) = 0, or equivalently θn = f
(
θn−1

)
where f (θ) is an increasing

function defined implicitly by g̃ (θ∗, θ, f (θ)) = 0. To prove that the sequence {θn}∞n=0 is non-

increasing, it thus suffices to show that θ1 < θ0. To see this, note that

g̃(θ∗, θ0, θ0) < V
(
θ0, 0

)
− C (r∗)− V

(
θ0, 1

)
= 0,

which together with the fact that g̃
(
θ∗, θ0, θ

)
is decreasing in θ proves that θ1 < θ0.

Part (ii). Note that the function

G(θ∗, θ) ≡ V (θ, 0)− V (θ∗, 0)− V

(
θ,Ψ

(
X(θ∗, θ)− θ

σ

))
(11)

is continuously decreasing in θ with G (θ∗, θ∗) = −V (θ∗, 1− r) and limθ→∞G (θ∗, θ) = −V (θ∗, 0) <

0. It follows that a solution to G (θ∗, θ) = 0 exists if and only if G (θ∗, θ∗) ≥ 0, or equivalently

V
(
θ∗,Ψ

(
X(θ∗,θ∗)−θ∗

σ

))
≤ 0. Because the function Ṽ (θ) ≡ V

(
θ,Ψ

(
X(θ,θ)−θ

σ

))
is increasing in θ

with Ṽ (θ) < 0 (resp. Ṽ (θ) > 0) if and only if θ < θ̃ (resp. θ > θ̃), a solution to (9) exists if and

only if θ∗ ≤ θ̃ and is strictly above θ∗ for any θ∗ < θ̃. Q.E.D.

Proof of Lemma 6. Part (i). When r∗ = r̃, θ∗ = θ∗∗ = θ̃, x∗ = X (θ∗, θ∗∗) = x̃, and, by Lemma

4, r (θ) = r for all θ ,= θ̃; the result then follows from the same argument as in the proof of Lemma
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1. Thus consider r∗ < r̃, in which case θ∗ < θ̃ and θ∗ < θ∗∗. From the proof of Lemma 4, a (x, r) = 0

for all x > x∗, while from the proof of Lemma 5, a (x, r) = 1 for all x < X (θ∗, θ∗) . It follows that

Ψ
(

θ−x∗

σ

)
≥ A (θ, r) ≥ Ψ

(
θ−X(θ∗,θ∗)

σ

)
for all θ. By the fact that V

(
θ,Ψ

(
θ−X(θ,θ)

σ

))
is increasing

in θ and equal to zero at θ = θ̃, V
(
θ∗,Ψ

(
θ∗−X(θ∗,θ∗)

σ

))
< 0, while by the fact that θ∗∗ solves (9),

V
(
θ∗∗,Ψ

(
θ∗∗−x∗

σ

))
> 0. Combining, we have that V (θ∗, A (θ∗, r)) < 0 < V (θ∗∗, A (θ∗∗, r)) , which

together with the monotonicity of A in θ ensures that there exists a unique θ̂ ∈ [θ∗, θ∗∗) such that

V (θ, A (θ, r)) < 0 if and only if θ < θ̂.

Now let θ′′ = sup{θ : r(θ) = r∗}. Clearly, θ′′ ≥ θ̂; if θ′′ < θ̂, types θ ∈ (θ′′, θ̂) would be

better off raising the policy. But then θ′′ must solve the indifference condition V (θ′′, 0)− C(r∗) =

V (θ′′, A (θ′′, r)) . This together with the monotonicity of A in θ and the assumption that VθA ≥ 0

ensures that all θ ∈ [θ∗, θ′′] necessarily set r∗. The posterior probability that a speculator assigns

to devaluation conditional on observing r is then given by

µ(θ∗|x, r) =
1−Ψ(x−θ∗

σ )
1−Ψ(x−θ∗

σ ) + Ψ(x−θ′′
σ )

.

Since µ(θ∗|x, r) is decreasing in x, a (x, r) = 1 if x < x′ and a (x, r) = 0 if x > x′, where

x′ ≡ X (θ∗, θ′′). This in turn implies that A(θ′′, r) = Ψ(X(θ∗,θ′′)−θ′′

σ ) and therefore θ′′ must solve

V (θ′′, 0)−C(r∗) = V
(
θ′′,Ψ

(
X(θ∗,θ′′)−θ′′

σ

))
, which is the same as condition (9). That is, θ′′ = θ∗∗

and hence x′ = x∗.

Part (ii) We now show that if ψ is log-concave, a(x, r) is decreasing in x. The probability of

devaluation given x and r is µ(θ∗|x, r) = (1 + 1/M (x))−1 , where

M(x) ≡
1−Ψ(x−θ∗

σ )
∫∞
θ∗ [1− I (θ)] 1

σψ(x−θ
σ )dθ

with I(θ) = 0 when r(θ) = r and I(θ) = 1 when r(θ) = r∗. It follows that µ(θ∗|x, r) is decreasing

in x if d lnM (x) /dx < 0, or equivalently

∫ θ∗

−∞
1
σ2 ψ′

(
x−θ
σ

)
dθ

∫ θ∗

−∞
1
σψ

(
x−θ
σ

)
dθ

−
∫∞
θ∗ [1− I (θ)] 1

σ2 ψ′
(

x−θ
σ

)
dθ

∫∞
θ∗ [1− I (θ)] 1

σψ
(

x−θ
σ

)
dθ

< 0. (12)

Using the fact that I (θ) = 0 for all θ ≤ θ∗, (12) is equivalent to

Eθ

[
ψ′

(
x−θ
σ

)

ψ
(

x−θ
σ

)

∣∣∣∣∣ θ ≤ θ∗, x, r

]
− Eθ

[
ψ′

(
x−θ
σ

)

ψ
(

x−θ
σ

)

∣∣∣∣∣ θ > θ∗, x, r

]
< 0,
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which holds true when ψ′/ψ is decreasing, i.e. when ψ is log-concave. The monotonicity of µ(θ∗|x, r)

in x then implies monotonicity of a(x, r). Q.E.D.

Proof of Lemma 7. For both parts we let the strategy of the policy maker in stage 3 be such

that D(θ, r, A) = 0 when V (θ, A) = 0, meaning that, when indifferent, the policy maker maintains

the peg.

Part (i). Because A(θ, r) is independent of r, r(θ) = r is clearly optimal for the policy maker;

the optimality of D(·) is obvious. Thus consider the speculators. Because D (θ, r, A (θ, r)) = 1 if

and only if θ < θ̃, a speculator finds it optimal to follow the equilibrium strategy if and only if, for

any r, his beliefs satisfy

µ(θ̃|x, r) ≥ r if x < x̃ and µ(θ̃|x, r) ≤ r if x ≥ x̃. (13)

When r = r, Bayes’ rule imposes that µ (θ|x, r) = 1−Ψ(x−θ
σ ); that these beliefs satisfy (13) follows

directly from the definition of x̃. When, instead, r > r, a deviation is detected whatever x. There

then exists an arbitrarily large set of out-of-equilibrium beliefs that satisfy (13).

Part (ii). Because A (θ, r) = A (θ, r) = Ψ(x∗−θ
σ ) for any r < r∗ and A (θ, r) = A (θ, r∗) = 0

for any r ≥ r∗, the policy maker clearly prefers r to any r ∈ (r, r∗) and r∗ to any r > r∗.

Furthermore, r is dominant for any θ ≤ θ. For θ > θ, on the other hand, the payoff from setting r∗

is V (θ, 0) − C (r∗) , while the payoff from setting r is max {0, V (θ, A(θ, r))} . Hence, r∗ is optimal

if and only if C(r∗) ≤ V (θ, 0) and C(r∗) ≤ V (θ, 0)− V (θ, A(θ, r)). From the definitions of θ∗, θ∗∗

and x∗ this is the case if and only if θ ∈ [θ∗, θ∗∗]. Now consider the speculators. When r < r∗,

D (θ, r, A (θ, r)) = 1 if and only if θ < θ̂, where θ̂ solves V (θ̂,Ψ(x∗−θ̂
σ )) = 0 (note that θ∗ ≤ θ̂ ≤ θ∗∗,

with strict inequalities for r∗ < r̃). When, instead, r ≥ r∗, D (θ, r, A (θ, r)) = 1 if and only if θ < θ.

A speculator thus finds it optimal to follow the equilibrium strategy if and only if his beliefs satisfy

the following two conditions:

when r < r∗, µ(θ̂|x, r) ≥ r if x < x∗ and µ(θ̂|x, r) ≤ r if x ≥ x∗; (14)

when r ≥ r∗, µ(θ|x, r) ≤ r for all x. (15)

Beliefs are pinned down by Bayes’ rule when either r = r or r = r∗. In the first case (r = r),

µ(θ̂|x, r) = µ(θ∗|x, r) =
1−Ψ(x−θ∗

σ )
1−Ψ(x−θ∗

σ ) + Ψ(x−θ∗∗
σ )

,

which is decreasing in x and equals r at x = x∗, thus satisfying (14). In the second case (r = r∗),
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µ(θ|x, r∗) = 0, which clearly satisfies (15). Finally, whenever r /∈ {r, r∗}, there exist an arbitrarily

large set of out-of-equilibrium beliefs that satisfy (14) and (15). Q.E.D.

Proof of Proposition 2. Parts (i)-(ii) follow directly from Proposition 1. Thus consider

parts (iii) and (iv). Let θ∗s (σ) and θ∗∗s (σ) denote the (unique) thresholds corresponding to the

equilibria in which the policy is raised at s ∈ (r, r̃]. The threshold θ∗s (σ) is the unique solution to

V (θ∗, 0) = C (s), whereas θ∗∗s (σ) is the unique solution to G (θ∗s (σ) , θ∗∗;σ) = 0, where, for any

θ ≥ θ∗ and any σ > 0, the function G(θ∗, θ;σ) is as defined in (11). Now let

B (θ∗, θ;σ) ≡ Ψ
(

X(θ∗,θ;σ)−θ
σ

)
(16)

where X (θ∗, θ;σ) is implicitly defined by (8). Using (8), B (θ∗, θ;σ) can also be implicitly defined

by

B = (
1− r

r
)
[
1−Ψ

(
Ψ−1 (B) +

θ − θ∗

σ

)]
.

For any θ > θ∗, B (θ∗, θ;σ) and hence also G (θ∗, θ;σ) is increasing in σ. Because G (θ∗, θ;σ) is

decreasing in θ, by the Implicit Function Theorem, θ∗∗s (σ) is increasing in σ. Moreover, for any

θ > θ∗, limσ→0+ B (θ∗, θ;σ) = 0 and hence limσ→0+ G (θ∗, θ;σ) = −V (θ∗, 0) < 0, which implies

that θ∗∗s (σ) converges to θ∗s (σ) as σ → 0. Finally, that Ds(σ) = (−∞, θ∗s(σ)) is independent of σ

follows directly from the fact that θ∗s(σ) is independent of σ. This completes the proof of part (iv).

For part (iii), let ∆s(σ) ≡ θ∗∗s (σ)− θ∗s(σ). We seek to prove that ∆s(σ) is decreasing in s, with

∆s(σ) → 0 as s → r̃. Note that ∆s(σ) solves Ĝ (θ∗s(σ),∆; σ) = 0, where

Ĝ (θ∗,∆; σ) ≡ G (θ∗, θ∗ + ∆; σ) = V (θ∗ + ∆, 0)− V (θ∗, 0)− V
(
θ∗ + ∆, B̂(∆; σ)

)

with B̂(∆; σ) implicitly defined by

B = (
1− r

r
)
[
1−Ψ(Ψ−1(B) +

∆
σ

)
]

.

Because G (θ∗, θ;σ) is decreasing in θ, Ĝ (θ∗,∆; σ) is decreasing in ∆. To see that Ĝ (θ∗,∆; σ) is

also decreasing in θ∗, note that

Ĝθ∗ (θ∗,∆; σ) = Vθ (θ∗ + ∆, 0)− Vθ (θ∗, 0)− Vθ

(
θ∗ + ∆, B̂(∆; σ)

)
.

The above is negative because Vθ > 0 and VθA ≥ 0. By the Implicit Function Theorem, ∆s(σ)

thus decreases with θ∗s (σ) and hence with s. The continuity of ∆s(σ) in s (which follows from the
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continuity of G in θ∗ and θ), then implies that ∆s(σ) → 0 as s → r̃. Together with the fact that

θ∗s(σ) is increasing in s and hence that Ds′(σ) ⊃ Ds(σ) for any s′ > s, this completes the proof of

part (iii). Q.E.D.

Proof of Proposition 3. Note that

D(θ;F,σ) =
∫

s∈[r,r̃]
I{θ<θ∗s (σ)}dF (s)

P (r, θ;F,σ) =






1 if r = r
∫
s∈[r,r̃] I{θ∗s (σ)≤θ≤θ∗∗s (σ)}dF (s) if r ∈ (r, r̃]

0 if r > r̃

∆(r;F,σ) =






∞ if r = r
∫
s∈[r,r̃] ∆s(σ)dF (s) if r ∈ (r, r̃]

0 if r > r̃

Consider first part (i). For r > r̃, P (r, θ;F,σ) = 0 follows directly from part (i) in Proposition

2. For r ∈ (r, r̃], it suffices to let θ◦ = θ∗r(σ) and θ◦◦ = max{θ∗∗s (σ) : s ∈ [r, r̃]}, Note that, for any

r ∈ (r, r̃], θ∗∗s (σ) is continuous over s ∈ [r, r̃], ensuring that the maximum exists.

Part (ii) follows directly from part (ii) in Proposition 2.

Part (iii) follows from these properties: ∆s(σ) is strictly decreasing in s, for any s ∈ (r, r̃);

Ds(θ;σ) is nondecreasing in s, for any s ∈ (r, r̃); for any θ ∈ (θ, θ̃), D(θ;F ′, σ) = 1−F ′(C−1(V (θ, 0)) >

1− F (C−1(V (θ, 0)) = D(θ;F,σ).

Finally, consider part (iv). That ∆(r, F,σ′) ≥ ∆(r, F,σ) for all r ∈ (r, r̃), with strict inequality

unless ∆(r, F,σ) = 0 (i.e., unless F assigns all measure to s ∈ {r, r̃}), follows from the fact that

∆s(σ) is positive and strictly decreasing in σ for all s ∈ (r, r̃). That limσ→0 ∆(r, F,σ) = 0 then

follows from Lebesgue monotone convergence theorem using the fact that limσ→0 ∆s(σ) = 0 for any

s ∈ (r, r̃]. Finally, that D(θ;F,σ′) = D(θ;F,σ) follows from the fact that Ds(θ;σ) is independent

of σ for any s ∈ [r, r̃]. Q.E.D.

Proof of Proposition 4 That D, D̄, and P are independent of σ is immediate. Thus consider

P̄ . Because for any s ∈ (r, r̃], θ∗s(σ) is independent of σ, whereas θ∗∗s (σ) = θ∗s(σ) + ∆s (σ) is strictly

increasing in σ, it follows that, for any F ∈ F , any θ1 < θ2, and any r ∈ [r, r̃],

P (r, θ1, θ2;F,σ) ≡ 1
θ2 − θ1

∫ θ2

θ1

P (r, θ;F,σ)dθ

=
1

θ2 − θ1

∫ θ2

θ1

∫

s∈[r,r̃]
I{θ∈(θ∗s (σ),θ∗∗s (σ))}dF (s) dθ
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is weakly increasing in σ. By the envelope theorem, P̄ (r, θ1, θ2;σ) is thus also weakly increasing in

σ. Finally, note that for any r > r, any F ∈ F , and any θ1 < θ2,

P (r, θ1, θ2;F,σ) =
1

θ2 − θ1

∫

s∈[r,r̃]

∫ θ2

θ1

I{θ∈(θ∗s (σ),θ∗∗s (σ))}dθdF (s)

=
1

θ2 − θ1

∫

s∈[r,r̃]
max{0, [min{θ2, θ

∗∗
s (σ))−max{θ1, θ

∗
s(σ)}]}dF (s)

≤ 1
θ2 − θ1

∫

s∈[r,r̃]
∆s (σ) dF (s)

≤ 1
θ2 − θ1

∆r (σ) ,

where the last inequality follows from the fact that ∆s (σ) is decreasing in s for all s ∈ (r, r̃]. By

implication, P̄ (r, θ1, θ2;σ) ≤ 1
θ2−θ1

∆r (σ) . That limσ→0 P̄ (r, θ1, θ2;σ) = 0 then follows from the fact

that limσ→0 ∆r (σ) = 0. Q.E.D.

Proof of Proposition 5. All results follow from the arguments in the main text, once the

following claim is proved.

Claim 1. For σ small enough, there exists rH(σ) < r̃, with rH(σ) → r as σ → 0, such that

x∗s(σ) > x̃ only if s < rH(σ).

Equivalently: there exists a θH(σ) < θ̃ with θH(σ) → θ as σ → 0, such that x∗s(σ) > x̃ only if

θ∗s(σ) < θH(σ).

Proof. For any θ∗s(σ) ≤ θ̃, let θ∗∗ (θ∗) be the unique solution to G (θ∗, θ∗∗) = 0, where G (θ∗, θ)

is the function defined in (11), and let x∗ (θ∗) ≡ X (θ∗, θ∗∗ (θ∗)) . From (8),

X (θ∗, θ) = θ∗ + σΨ−1

[
1− r

1− r
B (θ∗, θ)

]

with B (θ∗, θ) defined as in (16). Hence,

x∗ (θ∗) = θ∗ + σΨ−1

[
1− r

1− r
B∗ (θ∗)

]

where B∗ (θ∗) ≡ B (θ∗, θ∗∗ (θ∗)). Using again (8) and (16), B∗ (θ∗) = B̂(∆(θ∗)), where B̂(∆) is the

continuous function implicitly defined by

B = (
1− r

r
)
[
1−Ψ

(
Ψ−1 (B) +

∆
σ

)]
(17)

and ∆(θ∗) ≡ θ∗∗(θ∗) − θ∗ is the continuous function implicitly defined by Ĝ(θ∗,∆) = 0, with
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Ĝ(θ∗,∆) ≡ V (θ∗ + ∆, 0)− V (θ∗, 0)− V
(
θ∗ + ∆, B̂ (∆)

)
.

Because ∆(θ∗) is decreasing in θ∗ (from Proposition 2), B∗ is increasing in θ∗. Moreover, B∗ → 0

as θ∗ → θ and B∗ → 1− r as θ∗ → θ̃. It follows that

x∗ → +∞ as θ∗ → θ and x∗ = x̃ when θ∗ = θ̃,

where x̃ = θ̃ + σΨ−1 [1− r] .

Now note that
dx∗

dθ∗
= 1− σ 1

ψ
“
Ψ−1

“
1− r

1−r B∗(θ∗)
””

(
r

1−r

)
dB∗(θ∗)

dθ∗

Pick any δ1 ∈ (0, 1) and any θ1 ∈ (θ, θ̃). Because for any θ∗ ∈ [θ1, θ̃), dB∗(θ∗)/dθ∗ is bounded away

from infinity, there exists σ1 > 0 such that, whenever σ < σ1, dx∗/dθ∗ > δ1 for all θ∗ ∈ [θ1, θ̃).

Together with the fact that x∗ = x̃ at θ∗ = θ̃, this implies that x∗ < x̃ for all θ∗ ∈ [θ1, θ̃). Hence,

for any σ < σ1, there exists a θH(σ) ≤ θ1 < θ̃ such that x∗s(σ) > x̃ only if θ∗s(σ) < θH(σ).

Furthermore, because the argument above holds for any θ1 ∈ (θ, θ̃), this implies that θH(σ) can be

made arbitrarily close to θ by taking σ small enough. Q.E.D.

Proof of Proposition 7. For θ < θ, it is dominant for the policy maker to set r and abandon the

peg and for private speculators to attack. Similarly, for θ > θ, the peg is never abandoned, private

speculators do not attack, and there is no need to undertake any costly policy measure. Finally,

take any θ ∈ [θ, θ]. The continuation game following any level of the policy r is a coordination game

with two (extreme) continuation equilibria, no attack and full attack. Let r(θ) be the minimal r

for which private speculators coordinate on the no-attack continuation equilibrium, i.e. they attack

if and only if r < r(θ). Clearly, it is optimal for the policy maker to set r(θ) > r if and only if

V (θ, 0)− C(r(θ)) ≥ 0, or equivalently r ≤ ρ (θ) . Q.E.D.

Proof of Proposition 8. The characterization of G(0) follows directly from Proposition 7.

Thus consider G(σ) for σ > 0. Note that

G(σ) = {(θ, r) : either r = r and θ ∈ R, or r ∈ (r, r̃] and θ∗r (σ) ≤ θ ≤ θ∗∗r (σ)}.

For all r ∈ (r, r̃] and all σ > 0, θ∗∗r (σ) is continuous in r and also continuous and nondecreasing in

σ (strictly increasing when r < r̃), with limσ→0 θ∗∗r (σ) = θ∗r (σ) = ρ−1 (r) . It follows that, for any

ε > 0, there exists σ̄ > 0 such that, for all σ ∈ (0, σ̄) and all r ∈ [r + ε, r̃], θ∗∗r (σ) < ρ−1 (r)+ ε. But
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then, for all σ ∈ (0, σ̄),

G(σ) ⊂ {(θ, r) : either r ∈ [r, r + ε] and θ ∈ R, or r ∈ [r + ε, r̃] and θ ∈ [ρ−1(r), ρ−1 (r) + ε]}.

Together with the fact that, for all σ > 0,

G(σ) ⊃ {(θ, r) : either r = r and θ ∈ R, or r ∈ (r, r̃] and θ = ρ−1(r)},

this establishes the result.
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