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Abstract

We study second-degree price discrimination in markets where the product traded by the
monopolist is access to other agents. We derive necessary and sufficient conditions for the welfare-
and the profit-maximizing mechanisms to employ a single network or a menu of non-exclusive
networks. We characterize the optimal matching schedules under a wide range of preferences,
derive implications for prices, and deliver testable predictions relating the structure of the optimal
pricing strategies to conditions on the distribution of match qualities. Our analysis sheds light
on the distortions associated with the private provision of broadcasting, health insurance and job
matching services.
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1 Introduction

This paper studies second-degree price discrimination in markets where the product sold by a platform
is access to other agents. In such markets, platforms offer menus of matching plans at different prices.
For concreteness, consider the problem of a Cable TV provider contracting with TV channels on one
side of the market and with viewers on the other side. The cable company’s problem can be seen
from two perspectives. The more familiar one is that of designing a menu of packages of channels
to offer to viewers. The mirror image of this problem consists in designing a matching schedule for
channels where prices are contingent on the viewers that each channel is able to reach (more viewers
yield higher advertising revenue). The menu of packages of channels offered to viewers determines
the matching schedule faced by channels, while the matching schedule offered to channels determines
the packages that the platform can offer to viewers. As a consequence, when designing its menus on
each side, the cable company has to internalize the cross-side effects on profits that each side induces
on the other side.

Similar problems emerge in many other two-sided matching markets. Consider, for example, the
provision of health care services. Health care providers offer menus of health plans that differ in the
access that patients (on one side of the market) have to doctors (on the other side). Here too, the
plans that the platform offers to patients determine the services that the platform has to procure
on the doctor side. As such, market conditions on the doctor side determine the profitability of
price-discriminatory strategies on the patient side.

The presence of such cross-side effects is what distinguishes price discrimination in many-to-many
matching markets from price discrimination in markets for standard products. Other examples of price
discrimination in many-to-many matching markets can be found in online advertising, credit cards
markets, as well as in the practices followed by online employment agencies and business directories.

This paper builds a model that examines the implications of such cross-side effects for questions
such as: What matching allocations and network structures are likely to emerge under profit maxi-
mization (private provision of matching services) and which ones under welfare maximization (public
provision)? How are these allocations affected by shocks that alter the distribution of valuations
and/or the attractiveness of the two sides? What price schemes sustain such allocations?

Model preview. We consider the problem of a monopolistic platform that operates in a market
with two sides. What prevents the platform from appropriating the entire surplus is the fact that each
agent from each side has private information both about his willingness to pay for the quality of his
matching set (his valuation) and about various idiosyncratic characteristics that determine the agent’s
attractiveness for the other side. Consider the Cable TV example. In addition to his willingness to
pay for the various packages, each viewer is likely to possess private information about idiosyncratic
characteristics (e.g., educational background, consumption habits, income, etc.) that determine the
advertising revenue that the channels expect from reaching the viewer. Likewise, channels have
private information both about the revenue that they expect from reaching the viewers, as well as
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about the attractiveness of the shows and of the advertisement that they broadcast. Similarly, in the
context of health care provision, patients possess private information both about their willingness to
pay to join different networks as well as about idiosyncratic characteristics (e.g., health status, life
style, various risks) that determine the surplus that the physicians obtain from being matched to
these patients (as these characteristics affect the difficulty of the treatment, for instance).

All agents from the same side agree on the quality of the agents from the other side, but differ
in their willingness to pay for such quality (vertical differentiation). Importantly, we allow such
valuations to be negative for some agents: For example, in the case of health care provision, a
physician’s (negative) willingness to pay for accepting additional patients may originate from the
physician’s opportunity cost of time.

In such an environment, the platform’s problem consists in choosing a menu of matching plans for
each side of the market. Each item in the menu specifies a set of agents of given characteristics from
the other side, along with a price. The objective is to characterize the profit-maximizing menus and
compare the network allocations that they induce with the ones induced under welfare-maximization.
In order to address these issues in full generality (i.e., without imposing a priori restrictions on the
possible matching and pricing strategies), we follow a mechanism design approach. We recast the
platform’s problem as designing a matching rule together with a pricing rule so as to maximize profits
or welfare. A matching rule assigns each agent from each side to a set of agents from the other side.
We only impose that these rules satisfy a minimal feasibility constraint, which we call reciprocity.
This condition requires that if agent i from side A is matched to agent j from side B, then agent j

is matched to agent i. In the Cable TV example, if viewer John is matched to BBC News, then BBC
News is matched to John.

Main Results. As is standard, the problem of designing profit-maximizing menus can be recasted
entirely in terms of designing the matching rules that they induce. This makes the profit-maximization
problem analogous to welfare-maximization, except that the agents’ valuations are replaced by their
virtual counterparts, i.e., they are discounted by informational rents.1 Hereafter, we will thus refer
to both the profit-maximizing and the welfare-maximizing rules as the optimal rules, and will often
refrain from distinguishing between the two, when not needed.

Our first result shows that, under two reasonable conditions, optimal rules discriminate only along
the willingness-to-pay dimension. In other words, two agents with the same valuation are matched
to the same group of agents, irrespective of differences in other unobservable characteristics. These
conditions are (i) (weakly) decreasing marginal utility for match quality, and (ii) (weakly) positive
affiliation between willingness to pay and attractiveness. The first condition is self-explanatory. The
second condition implies that willingness to pay and attractiveness are either independent or positively
correlated. In the context of Cable TV, this assumption means that the channels that are willing to
pay the most for viewers (e.g., because their advertisers are willing to pay the most) offer, in general,

1The virtual valuation of an agent coincides with the marginal revenue that the agent brings to the monopolist (see,
e.g., Bulow and Roberts (1989)).
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better shows and more pleasant advertisement. Likewise, the viewers who are willing to pay the most
for better packages are the ones that the channels view as the most profitable ones (e.g., because these
are the viewers preferred by advertisers). In the context of health care provision, where valuations
are typically negative on the physicians’ side reflecting the latter’s opportunity cost of time, this
assumption means that those patients with the highest willingness to pay to join larger networks are,
on average, those that demand the most intensive care from physicians.2 Likewise, those physicians
with the lowest opportunity cost for serving more patients (equivalently, with the highest valuation
to join the network) are those that the patients value the most at the ex-ante stage, i.e., before
learning their specific illnesses (these physicians are, typically, the generalists). Clearly, because the
assumption only requires affiliation to be weak, the analysis also applies to all markets where, a priori,
there are no good reasons to expect willingness to pay and attractiveness to be correlated.

Our second result shows that the optimal matching rules have a threshold structure, according to
which each agent is matched to all agents from the other side whose marginal willingness to pay for
match quality is above some threshold. To understand both results, note that, under positive affilia-
tion, the expected attractiveness of each agent from each side increases with the agent’s willingness
to pay. Moreover, under diminishing marginal utility, using the same agent as an input to provide
match quality to many agents is less costly than using different agents. These two properties, along
with the fact that asymmetric information poses restrictions on the way the match quality can vary
with both attractiveness and willingness to pay, imply that the cost-minimizing way to provide a
given match quality to an agent with a given willingness to pay is to match him to all agents from the
other side whose willingness to pay is high enough, irrespective of all other dimensions that determine
attractiveness.

Building on these results, we then show that the optimal rules belong to one of the following two
classes, and identify necessary and sufficient conditions for each of the two classes to be optimal. The
first class consists of matching rules that employ a single network. Here, any two agents from the same
side whose matching set is non-empty have the same matching set. A single network is thus the analog
in matching environments to a single price (that is, the absence of quantity/quality discrimination) in
the context of a single-product monopolist. The second class is that of nested multi-homing matching
rules. These rules are implemented by offering a menu of non-exclusive networks (this is known as
multi-homing in the literature on two-sided markets) and setting prices so that agents with a higher
willingness to pay join all networks that lower willingness-to-pay agents join and possibly a few more
(therefore the qualification nested). Nested multi-homing is the equivalent in matching environments
to active quantity/quality price discrimination by a single-product monopolist.

We prove that a single network is optimal if and only if, starting from a complete network (i.e., a
2In general, having more patients in the network with a high willingness to pay may also mean a higher revenue

for the physicians (the precise characterization depending on the sharing rule between the physicians and the health
care provider). The statement in the main text is for given expected revenue. Holding constant this revenue, having
more patients in the network with a higher wilingness to pay then implies a higher opportunity cost of time under the
assumption that willingness to pay is positively affiliated with the required intensity of care.
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network that includes all agents from both sides) removing the link between the two agents from each
side with the lowest (virtual) valuations, while leaving all other links untouched, decreases (profits)
welfare. When this is not the case, then the optimal matching rule exhibits nested multi-homing.
To understand the intuition for this result, consider the platform’s profit-maximization problem (the
welfare problem is analogous). Let us analyze first the situation where virtual valuations are positive
for all agents from both sides. In such a case, the platform’s marginal revenue of expanding the
matching set of any agent is positive. Accordingly, profit-maximization clearly requires that each
agent be matched to all other agents from the opposite side, i.e., a single complete network.

Things are different (and more interesting) when virtual valuations are negative for certain types.
In this case, by the same reasoning as above, all agents with positive virtual valuations should be
matched to all agents with positive virtual valuations from the other side. However, the platform can
increase profits by adding to the matching sets of those agents with high positive virtual valuations
some agents from the other side with negative virtual valuations. This cross-subsidization strategy is
a general feature of matching markets, in which the platform is willing to accept revenue losses on one
side to boost rent extraction on the other side. Whether, at the optimum, this cross-subsidization
leads to a single network or to multi-homing is then determined by the marginal effect on profits of
linking the two agents with the lowest virtual valuations. If the effect is positive, then the optimal
matching rule consists in creating a single complete network (that is, a network that includes all
agents from both sides). If the effect is negative, then instead of creating a single, but incomplete
network, the platform can do strictly better by separating agents based on their virtual valuations.
Those agents with high virtual valuations are assigned matching sets which are supersets of those
assigned to agents with lower virtual valuations; that is, the optimal matching rule induces nested
multi-homing.

We then proceed by offering a complete characterization of the optimal matching rules. When
nested multi-homing is optimal (this is the most interesting case), we show that the thresholds that
define the matching sets of each agent are given by an Euler equation that equalizes the marginal
(revenue) efficiency gains from expanding the matching set on one side to the marginal (revenue)
efficiency losses that, by reciprocity, arise on the other side of the market. Intuitively, this optimality
condition endogenously separate agents from each side into two groups. The first group is that of
agents who play the role of consumers. These agents generate positive marginal revenues to the
platform by “purchasing” sets of agents from the other side of the market. The second group is
that of agents who play the role of inputs. These agents generate negative marginal revenues to
the platform, but serve to “feed” the matching demand of agents-consumers on the other side of the
market.

Building on the work of Wilson (1997), we derive a pricing formula that relates (observable)
marginal prices to the elasticities of the demand for matching services on both sides of the market.
Intuitively, this formula derives the optimal price schedule by setting marginal prices for each ad-
ditional match quality so that the marginal revenue gains from expanding the matching sets sold
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to agents-consumers on one side of the market equals the marginal costs of procuring agents-inputs
from the opposite side. Interestingly, these marginal costs are endogenous and depend on the entire
network structure of the matching allocations.

Similarly to the standard price discrimination problem analyzed in Mussa and Rosen (1978) and
Maskin and Riley (1984), we identify conditions that ensure that the platform is willing to separate
types as finely as possible. It turns out that the familiar regularity condition (Myerson, 1981),
according to which virtual valuations are monotonically increasing, is not the right condition in our
matching environment. As pointed out by Bulow and Roberts (1989), this condition implies that
the marginal effect on revenue of increasing trade is greater for agents with higher valuations. In
a standard setting, because the marginal cost is independent of the agent’s type, the monotonicity
of the virtual valuations then implies the monotonicity of the trades. In contrast, in a matching
environment, by virtue of reciprocity, the marginal cost of increasing the trade of some agent is the
revenue loss of adding the agent to the matching sets of other agents from the opposite side. Since
attractiveness and valuation are potentially correlated, the marginal cost of increasing trade is also
a function of the agent’s valuation. For the optimal matching rule to separate types as finely as
possible, one must then require that the virtual valuations increase faster with the true valuations
than their corresponding marginal cross-side effects. In analogy to Myerson (1981), we refer to this
condition as Strong Regularity. Under this condition, bunching can occur only at “the top” (i.e., for
the highest valuation agents) due to capacity constraints, that is, because the stock of agents from
the other side of the market has been exhausted.

Public and Private Provision of Matching Services. The above results have implications for
the public and private provision of matching services. Because true valuations are always larger than
their virtual analogs, our results imply that single networks are more often associated with welfare-
maximizing platforms, while multi-homing is more often associated with profit-maximizing platforms.
This prediction appears consistent with casual empiricism: The public provision of broadcasting,
health insurance, and job-matching services tends to employ a single network structure, while their
private counterparts often offer discriminatory menus (that is, multi-homing matching rules).

Overall, profit-maximization leads to two distortions relative to efficiency. First, there is an
exclusion effect, whereby too many agents are completely excluded from the market. For example, in
the context of health care provision, too many patients are left without any insurance. The second
distortion is in the form of an isolation effect, whereby each agent who is not excluded is matched
only to a subset of his efficient matching set. Unlike in standard mechanism design problems, this
distortion applies also to those agents with the highest valuations. The reason is that, although the
virtual valuations of these agents coincide with the true ones, the cost of cross-subsidizing these agents
is always higher under profit maximization than under welfare maximization. This is because such
cost is proportional to the true valuation of the marginal agent from the opposite side under welfare
maximization and to the virtual valuation of the marginal agent under profit maximization. Because
virtual valuations are always lower than true valuations for the marginal agents, the matching sets are
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strictly smaller under profit maximization than under welfare maximization for all agents, including
those at the top of the distribution.

Testable Predictions. The analysis also delivers various testable predictions about the effects
of shocks that alter the distributions of individual characteristics affecting the attractiveness of the
two sides and/or their willingness to pay to reach the other side.

In the context of the Cable TV application, consider, for example, a positive shock to the viewers’
income (not necessarily uniform across viewers) that leaves unchanged the viewers’ willingness to pay
but raises the profits that the channels expect from reaching the viewers (e.g., via an increase in
advertising revenue). Now consider a viewer with a positive virtual valuation. If nested multi-homing
was optimal before the shock, then the package offered to this viewer includes channels with a negative
virtual valuation. Because the losses that the platform incurs with these channels increase with the
viewer’s attractiveness, the platform’s optimal response to such a shock is to reduce the viewer’s
matching set by taking off some of the negative virtual-valuation channels. Next, consider a viewer
with a negative virtual valuation. Because the original matching set of such viewer includes only
positive virtual-valuation channels, the optimal response to such a shock is to expand the viewer’s
matching set. In other words, the model predicts that the platform’s optimal response to such
shocks is to improve the quality of the “basic” packages (those targeted to low-valuation viewers) and
worsen the quality of the “premium” packages (those targeted to high-valuation viewers). In terms of
consumer surplus, these shocks make low-end viewers better off at the expenses of high-end ones.

Group-design Problem. A related problem is that of a principal operating in a single-sided
market populated by multiple agents who experience differentiated peer effects from the agents they
interact with. In this setting, the principal’s problem consists in assigning the agents to non-exclusive
groups (rather than networks). This one-sided group formation problem is equivalent to a two-sided
matching problem where both sides have symmetric primitives and where the platform is constrained
to selecting a symmetric matching rule. As it turns out, in two-sided markets with symmetric
primitives, the optimal matching rules are naturally symmetric. Therefore, all our results naturally
extend to single-sided matching problems. It suffices to replace “single network” by “single group” and
“nested multi-homing matching rule” by “mutually non-exclusive groups”. In particular, our results
can be applied to problems in organization economics (e.g., the design of teams).

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the
introduction by briefly reviewing the pertinent literature. Section 2 presents the model. Section
3 derives the main results: First, it identifies necessary and sufficient conditions for the optimal
matching rule to employ a single network or to exhibit nested multi-homing. Next, it characterizes the
optimal matching rules, and discusses the distortions caused by profit maximization relative to welfare
maximization. It also derives testable predictions for the effects of shocks that alter the distribution
of valuations and/or the distribution of attributes that determine the agents’ attractiveness. Section
4 discusses various extensions and concludes. All proofs omitted in the main text are either in the
Appendix at the end of the document or in the Online Supplementary Material.
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Related Literature

The paper is related to the following literatures.
Price discrimination. The paper contributes to the literature on second-degree price discrim-

ination (e.g., Mussa and Rosen (1978), Maskin and Riley (1983), Wilson (1997)) by considering a
setting where the product sold by the monopolist is access to other agents.3 The study of price
discrimination in many-to-many matching markets brings two novelties relative to the standard mo-
nopolistic screening problem. First, the platform’s feasibility constraint (namely, the reciprocity of
the matching rule) has no equivalent in markets for commodities. Second, each agent is both a
consumer and an input in the matching production function. The “consumer” role of an agent is
summarized in his willingness to pay, while the “input” role is captured by the idiosyncratic charac-
teristics that determine the agent’s attractiveness to the other side. This feature of matching markets
implies that the cost of procuring an input is endogenous and it depends in a nontrivial way on the
entire matching rule.

Two-Sided Markets. Markets where agents purchase access to other agents are the focus of the
literature that studies monopolistic pricing in two-sided markets. This literature, however, restricts
attention to a single network or to mutually exclusive networks (e.g., Rochet and Tirole (2003, 2006),
Armstrong (2006), Hagiu (2008), Ambrus and Argenziano (2009), and Weyl (2010)).4 In contrast, we
assume that platforms can design arbitrary matching rules and provide conditions for the optimality
of a single network relative to more sophisticated network structures (such as those associated with
multi-homing matching rules).

Matching Design with Transfers. In the context of one-to-one matching, Damiano and Li
(2007) and Johnson (2010) derive conditions on primitives for a profit-maximizing platform to induce
positive assortative matching. In turn, Hoppe, Moldovanu and Sela (2009) derive one-to-one positive
assortative matching as the equilibrium outcome of a costly signaling game. In contrast, we study
second-degree price discrimination in many-to-many matching environments.

Group Design. As anticipated above, our two-sided matching model can be applied to solve (one-
sided) group design problems with peer effects. Arnott and Rowse (1987) and Lazear (2001) study the
problem of a school that, under complete information, wants to allocate students to disjoint classes.
Besides restricting attention to mutually exclusive groups, these papers disregard the incomplete
information issues that lie at the core of the present work.5 Under incomplete information, Board
(2009) and Rayo (2010) study profit-maximization by a monopolistic platform that can induce agents
to self-select into mutually exclusive groups. Relative to these papers, we extend the analysis of
matching design to two-sided environments and allow for matching rules that assign agents to non-
exclusive groups.6

3For models of second-degree price discrimination on quality, see Deneckere and McAfee (1996), Ellison and Fuden-
berg (2000) and Anderson and Dana (2009).

4See Rysman (2009) for a recent survey of the two-sided markets literature.
5See also Epple and Romano (1998) and Helsley and Strange (2000).
6Board shows that the partition induced under profit-maximization is never coarser than under welfare maximization
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Decentralized Matching. In a decentralized economy, Shimer and Smith (2000), Shimer (2005),
Smith (2006), Atakan (2006), and Eeckhout and Kircher (2010) consider extensions of the assignment
model of Becker (1973) to a setting with search/matching frictions. These papers show that the
resulting one-to-one matching allocation is positive assortative provided that the match value function
satisfies strong forms of supermodularity. Relative to this literature, we abstract from search frictions
and consider many-to-many matching rules.

Double Auctions. A large literature starting with the seminal works of Myerson and Sat-
terhwaite (1983) and Crampton, Gibbons and Klemperer (1987) (see for example McAfee (1991),
McAfee (1992a), Fieseler, Kittsteiner and Moldovanu (2003), and Jehiel and Pauzner (2006)) study
the (non-)existence of efficient trading mechanisms between a finite number of buyers and sellers.
Alternatively, Gresik and Satterthwaite (1983), Satterthwaite and Williams (1989), McAfee (1992b),
Rustichini, Satterthwaite and Williams (1994) and Cripps and Swinkels (2006) study the efficiency
properties of double auctions in the limit as the number of buyers and sellers increase. In these mod-
els, quantities are rival goods across buyers and sellers: As buyers consume more, sellers consume less
(or face higher production costs). In contrast, by virtue of reciprocity, in our model matching quality
is nonrival across sides. This property is the key difference between matching and trading markets.

2 Model

A monopolistic platform is in the business of bringing together agents from two sides of a market.
Each side k, l ∈ {A,B} is populated by a unit-mass continuum of agents indexed by i, j ∈ [0, 1].
Each agent i from each side k has a type θik = (ui

k, v
i
k) ∈ Θk ≡ Uk × Vk that has two components.

The first component ui
k is a vector of individual characteristics that determines the attractiveness

of agent i as seen by each agent j from side l �= k. The second component vik is a scalar parameter
that describes agent i’s willingness to pay for the quality of the set of agents from side l to which i

is matched. The support of ui
k is some arbitrary set Uk, which can assume discrete or continuous

values on each of its dimensions. In contrast, the support of vik is the real interval Vk ≡ [vk, vk] ⊆ R.
To avoid the uninteresting case where no agent from neither side is willing to interact with agents
from the opposite side, we assume that v̄k > 0 for some side k ∈ {A,B}.

Let σk(uj
l ) denote the interaction quality that each agent i from side k obtains from being matched

to an agent j from side l with characteristics uj
l (we call σk(uj

l ) the attractiveness of agent j). The
function σk : Ul → R+ thus maps the characteristics of each agent j from side l to the interaction
quality enjoyed by each agent i from side k.

In the Cable TV example, let viewers belong to side A and channels to side B. In this case, ui
A

(note that this result, however, does not imply that it is finer). By considering more general matching rules we show
that the profit-maximizing rule indeed matches each agent to a subset of his efficient set. On the other hand, Board
allows for more general preferences than the ones considered in this paper. Rayo (2010) considers a one-sided matching
problem where the peer effect of a group is the average valuation of its members. In contrast to Board and the present
paper, he characterizes the profit-maximizing group design problem when the hazard rate of the type distribution fails
to be monotone.
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contains information about demographics, income, educational background, consumption habits, of
viewer i from side A, whereas uj

B contains information about the shows and the advertisement offered
by channel j from side B.7 Accordingly, σA(uj

B) is the quality (or attractiveness) of channel j as
perceived by viewers, whereas σB(ui

A) is the contribution of viewer i to the quality of the audience
enjoyed by channels. In turn, viA captures viewer i’s willingness to pay for a higher quality package
of channels, while vjB stands for channel j’s willingness to pay for an audience of higher quality (e.g.,
having audiences of higher quality allows channels to increase advertising revenues).

To accommodate the case where agent i dislikes interacting with agents from side l (negative
externalities), we allow the support of vik to take negative values. For example, in the context of
health care provision, let patients belong to side A and doctors to B. In this case, ui

A describes
patient i’s medical condition, and viA captures patient i’s willingness to pay for a better physicians’
network. In turn, uj

B describes doctor j’s skills, while vjB captures doctor j’s disutility from meeting
more patients (reflecting the doctors’ opportunity cost of time). In this example, σA(u

j
B) is the

contribution of doctor j to the quality of a given physicians’ network, while σB(ui
A) captures the

intensity of care demanded by patient i.8

The quality of any set of agents from side l (as perceived by each agent from side k) is the sum of
the interaction qualities (or attractiveness) of each of its side-l members. Accordingly, for any given
(Lebesgue measurable) set of agents s from side l with type profile (θjl )j∈s, we denote by

|s|k =

ˆ
j∈s

σk(u
j
l )dλ(j),

the quality associated with the set s (λ(·) is the Lebesgue measure). Importantly, all agents from
side k agree on the attractiveness of each agent j from side l, and hence on the quality of each set s,
which is what makes the model one of vertical differentiation.

Given any complete type profile θ ≡(θik)
i∈[0,1]
k=A,B, the payoff enjoyed by each agent i from each side

k when matched, at a price p, to a set s of agents from side l is given by

πi
k(s, p; θ) ≡ vik · gk (|s|k)− p, (1)

where gk(·) is a positive, strictly increasing, continuously differentiable, function such that gk(0) = 0.
Note that the parameter vik summarizes all the information contained in agent i’s type that is relevant
for agent i’s preferences for quality, whereas σl(ui

k) summarizes his attractiveness.
The following examples describe two special cases of the preference structure outlined above.

7Assuming channels possess superior information than the Cable TV company about the impact of their shows and
advertisement seems reasonable.

8Clearly, from a theoretical viewpoint, expressing attractiveness as a function of a vector ui
k of individual attributes

is redundant. This decomposition only serves the purpose of permitting us (and possibly the econometrician) to relate
the abstract notion of attractiveness to more familiar (and in principle measurable) variables such as health status and
idiosyncratic risks in the case of health care provision, or income, education and demographics, in the case of Cable
TV provision.
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Example 1 (linear network externalities for quantity) Suppose that the utility of each agent
i from side k depends only on the total mass of agents from side l and is linear in this mass. In this
case, σk(·) ≡ 1 and gk(x) = x so that πi

k(s, p; θ) ≡ vik · λ (s)− p. \\

These preferences are the ones typically considered in the two-sided market literature (e.g., Rochet
and Tirole (2003, 2006), Armstrong (2006), Hagiu (2008), Ambrus and Argenziano (2009), and Weyl
(2010)).

Example 2 (supermodular match values) Let uk be a one-dimensional random variable almost
surely equal to vk, and suppose that gk(x) = x and σk(uk) ≡ σk(vk) = vk for k ∈ {A,B}. The match
between agent i from side k and agent j from side l produces a surplus of vik · v

j
l to each of the two

agents. Then, πi
k(s, p; θ) = vik ·

´
j∈s v

j
l dλ (j)− p. \\

This production function appears, for example, in Damiano and Li (2007), Hoppe, Moldovanu
and Sela (2009), as well as in the assignment/search literature (e.g., Becker (1973), Lu and McAfee
(1996) and Shimer and Smith (2000)).

We assume that the type θik = (ui
k, v

i
k) of each agent i from each side k is an independent draw

from the distribution Fk with support Θk. Letting F v,σ
k denote the joint distribution of (vk, σl(uk)),

we then assume that F v,σ
k is absolutely continuous with respect to the Lebesgue measure and denote

by F v
k the marginal distribution of F v,σ

k with respect to vk (with density fv
k ), and by F σ

k (·|vk) the
distribution of the interaction quality σl(uk) conditional on vk. We will assume that the family of
functions �F σ

k (·|vk)�vk is uniformly continuous in vk in the L1-norm.
As is standard in the mechanism design literature, we also assume that the marginal distribution

F v
k of the willingness to pay is regular in the sense of Myerson (1981), meaning that the virtual

valuations vk − [1− F v
k (vk)]/f

v
k (vk) are continuous and nondecreasing.

Matching Mechanisms

Appealing to the Revelation Principle, we focus on (deterministic) direct-revelation mechanisms,
which consist of a matching rule

�
ŝik(·)

�i∈[0,1]
k=A,B

along with a payment rule
�
p̂ik(·)

�i∈[0,1]
k=A,B

such that,
for any given type profile θ ≡(θik)

i∈[0,1]
k=A,B, ŝik(θ) represents the set of agents from side l �= k that are

matched to agent i from side k, whereas p̂ik(θ) denotes the payment made by agent i to the platform
(i.e., to the match maker).9

A matching rule is feasible if and only if the following reciprocity condition holds: Whenever agent
j from side B belongs to the matching set of agent i from side A, then agent i belongs to agent j’s
matching set. Formally:

j ∈ ŝiA(θ) ⇔ i ∈ ŝjB(θ). (2)
9Restricting attention to deterministic mechanisms is without loss of optimality under the assumptions in the paper.

The proof is based on arguments similar to those in Strausz (2006) and is available upon request.
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Because there is no aggregate uncertainty and because individual identities are irrelevant for
payoffs, without any loss of optimality, we will restrict attention to anonymous mechanisms. In these
mechanisms, the composition (i.e., the cross-sectional type distribution) of the matching set that each
agent i from each side k receives, as well as the payment by agent i, depend only on agent i’s reported
type as opposed to the entire collection of reports θ by all agents (whose distribution coincides with
F by the analog of the law of large numbers for a continuum of random variables). Furthermore, any
two agents i and i� (from the same side) reporting the same type are matched to the same set and
are required to make the same payments.

Suppressing superscripts, an anonymous mechanism M = {sk(·), pk(·)}k=A,B is described by a
pair of matching rules and a pair of payment rules such that, for any θk ∈ Θk, pk(θk) is the payment,
and sk(θk) ⊆ Θl is the set of types from side l associated with all agents from side k reporting type
θk. Note that pk(·) maps Θk into R, and sk(·) maps Θk into the Borel sigma algebra over Θl. With
some abuse of notation, hereafter we will then denote by |sk(θk)|k the total quality of the matching
set of each agent i from side k reporting type θk.

Denote by Π̂k(θk, θ̂k;M) ≡ vik · gk(|sk(θ̂k)|k) − pk(θ̂k) the payoff that type θk = (uk, vk) obtains
when reporting type θ̂k = (ûi

k, v̂
i
k), and by Πk(θk;M) ≡ Π̂k(θk, θk;M) the payoff that type θk obtains

by reporting truthfully. A mechanism M is individually rational (IR) if Πk(θk;M) ≥ 0 for all
θk ∈ Θk, and it is incentive compatible (IC) if Πk(θk;M) ≥ Π̂k(θk, θ̂k;M) for all θk, θ̂k ∈ Θk. A
matching rule {sk(·)}k=A,B is implementable if there is a payment rule {pk(·)}k=A,B such that the
mechanism M = {sk(·), pk(·)}k=A,B satisfies the IR and IC constraints.10

3 Properties of Optimal Mechanisms

3.1 Efficiency and Profit Maximization

We start by defining what we mean by “efficient” and “profit-maximizing” mechanisms. Because there
is no aggregate uncertainty, for any given type profile θ, the welfare generated by the mechanism M

is given by

ΩW (M) =
�

k=A,B

ˆ 1

0
vik · gk(

��̂sik(θ)
��
k
)dλ(i) =

�

k=A,B

ˆ
Θk

vk · gk (|sk(uk, vk)|k) dFk(uk, vk),

whereas the expected profits generated by the mechanism M are given by

ΩP (M) =
�

k=A,B

ˆ 1

0
p̂ik(θ)dλ(i) =

�

k=A,B

ˆ
Θk

pk(uk, vk)dFk(uk, vk).

10Implicit in the aforementioned specification is the assumption that the platform must charge the agents before they
observe their payoff. This seems a reasonable assumption in most applications of interest. Without such an assumption,
the platform could extract all surplus by using payments similar to those in Crémer and McLean (1988) – see also
Mezzetti (2007).
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A mechanism MW (respectively, MP ) is then said to be efficient (respectively, profit-maximizing)
if it maximizes ΩW (M) (respectively, ΩP (M)) among all mechanisms that are individually rational,
incentive compatible, and satisfy the reciprocity condition

θl ∈ sk(θk) ⇒ θk ∈ sl(θl). (3)

Note that the reciprocity condition implies that the matching rule {sk(·)}k=A,B can be fully described
by its side-k correspondence sk(·).

It is standard to show that a mechanism M is individually rational and incentive compatible if
and only if the following conditions jointly hold for each side k = A,B:

(i) the quality of the matching set is nondecreasing in the willingness to pay, i.e., |sk(uk, vk)|k ≥
|sk(u�

k, v
�
k)|k for any (uk, vk) and (u�

k, v
�
k) such that vk ≥ v�k;

(ii) the expected payoff of any two agents with the same willingness to pay vk is the same,
irrespective of their individual characteristics uk;

(iii) the equilibrium payoffs Πk((uk, vk);M) of the lowest willingness-to-pay agents is non-negative;
(iv) the pricing rule satisfies the envelope formula

pk(uk, vk) = vk · gk (|sk(uk, vk)|k)−
ˆ vk

vk

gk (|sk(uk, x)|k) dx−Πk((uk, vk);M). (4)

It is immediate to see that in any mechanism that maximizes the platform’s profits, the individual
rationality constraint of each agent from each side with the lowest willingness to pay must bind, i.e.,
Πk((uk, vk);M) = 0, all uk ∈ Uk, k = A,B. Using the expression for payments (4), we can rewrite
the platform’s profit maximization problem in a manner analogous to the welfare maximization prob-
lem. We simply replace the true valuations with their virtual analogs (i.e., with the true valuations
discounted for informational rents). Formally, for any vk ∈ Vk, any k = A,B, let ϕW

k (vk) = vk and
ϕP
k (vk) = vk − [1 − F v

k (vk)]/f
v
k (vk). Using the superscript h = W (resp. h = P ) to denote welfare

(resp. profits), the platform’s problem is to find a matching rule {sk(·)}k=A,B that maximizes

Ωh(M) =
�

k=A,B

ˆ
Θk

ϕh
k(vk) · gk (|sk(uk, vk)|k) dFk(uk, vk) (5)

among all rules that, together with the price rule given by (4) with Πk((uk, vk);M) = 0, satisfy
constraints (i) and (ii) above and the reciprocity condition (3).

Hereafter, we will say that a matching rule {shk(·)}k=A,B is h-optimal if it solves the above h-
problem. For future reference, for both h = W,P, we also define the reservation value rhk ≡ inf{vk ∈
Vk : ϕh

k(vk) ≥ 0} when {vk ∈ Vk : ϕh
k(vk) ≥ 0} �= ∅.
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3.2 Single Network vs Nested Multi-Homing

Before solving the platform’s welfare and profit-maximization problems, we describe two important
classes of matching rules.

Definition 1 (single-homing) A matching rule sk(·) exhibits single-homing if for all θk, θ�k ∈ Θk,
sk(θk) ∩ sk(θ�k) �= � implies that sk(θk) = sk(θ�k).

Single-homing matching rules can be implemented by offering the agents access to mutually ex-
clusive networks and by charging appropriate fees for the different networks. As mentioned above,
these rules are central to the two-sided markets literature. Part of the contribution of the present
analysis is to derive conditions under which such rules are optimal.

A particularly simple type of single-homing matching rule is one that employs a single network.

Definition 2 (single network) A matching rule sk(·) employs a single network if for all θk, θ�k ∈ Θk,
sk(θk), sk(θ�k) �= � implies that sk(θk) = sk(θ�k).

In contrast, under a multi-homing matching rule, the platform establishes a certain number of
non-exclusive networks and allows agents from each side to join multiple networks. Of particular
interest are nested multi-homing rules. Under these rules, if agents i1 and i2 from side k commonly
meet agent j from side l, then the matching sets of agents i1 and i2 are nested.

Definition 3 (nested multi-homing) A matching rule sk(·) exhibits nested multi-homing if for all
θk, θ�k ∈ Θk, sk(θk) ∩ sk(θ�k) �= � implies that sk(θk) ⊆ sk(θ�k) or sk(θk) ⊇ sk(θ�k), where the inclusion
is strict for some θk, θ�k ∈ Θk.

An example of a nested multi-homing matching rule is the Cable TV application discussed above.
In this case, the provider offers (mutually non-exclusive) packages that can be added to a “standard
plan”, and which grant access to extra channels. Multi-homing matching rules are also pervasive in
online advertising (where advertisers can “buy” access to an increasing set of browsers) and health-care
provision (where patients enroll in health plans that include different sets of doctors and hospitals).

As anticipated in the Introduction, our first result shows that under the following two fairly
natural conditions, the optimal matching rules have a simple structure.

Condition 1 [DMU] Diminishing Marginal Utility: The function gk(·) is (weakly) concave for all
k ∈ {A,B}.

Condition 2 [PA] Positive Affiliation: The distribution Fk is such that (σl(ũk), ṽk) are (weakly)
positively affiliated for all k ∈ {A,B}.11

We then have the following result.
11See Milgrom and Weber (1982) for a formal treatment of the concept of affiliation.
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Proposition 1 (optimal rules) Assume conditions DMU and PA hold. Then both the profit-
maximizing (h = P ) and the welfare-maximizing (h = W ) rules discriminate only along the willingness-
to-pay dimension (that is, shk(vk,uk) = shk(vk,u

�
k) for any vk,uk,u�

k, h = W,P ). Suppressing the
dependence on uk, k = A,B, the h-optimal matching rule shk(·) has the following threshold structure:

shk(vk) =

�
[thk(vk), vl] if vk ∈ [ωh

k , vk]

� otherwise,
(6)

where ωh
k ∈ [vk, vk] is the threshold below which types are excluded, and where the nonincreasing

function thk(·) determines the matching sets.

Proof. See Appendix.
To understand the result, consider an agent with type θk = (uk, vk) with ϕh

k(vk) ≥ 0. Ignoring
for a moment the monotonicity constraints, it is easy to see that it is always optimal to assign to this
type a matching set sk(uk, vk) ⊃ {(ul, vl) : ϕh

l (vl) ≥ 0} that includes all types θl = (ul, vl) whose
ϕh
l -valuation is non-negative. This is because, (i) irrespective of their ul characteristics, these types

contribute positively to type θk’s payoff (recall that σk(ul) ≥ 0 for all ul) and (ii) these types have a
non-negative ϕh

l -valuation, and therefore adding type θk to these types’ matching sets never reduces
the platform’s payoff Ωh(M), as implied by (5). Now imagine that the platform wants to assign to
this type θk a matching set sl whose intrinsic quality qk is higher than the quality of the set of types
on side l whose ϕh

l -valuation is non-negative, i.e., such that

|sl|k = qk >

ˆ
{(ul,vl):ϕh

l (vl)≥0}
σk(ul)dFl(ul, vl).

Because of reciprocity, adding an agent whose ϕh
l -valuation is negative to type θk’s matching set

now comes at a cost. In the case of welfare-maximization, agents with negative valuations require a
payment to accept larger matching sets. In the case of profit-maximization, this cost stems from the
infra-marginal losses on revenue captured by negative virtual valuations.

The positive affiliation between (σk(ul), vl) along with the weak concavity of gk(·) (which implies
that using the same agent as an input is less costly than using different agents) and the limitations
imposed by the asymmetry of information, imply that the least costly way to provide type θk with
a matching set of quality qk is by matching him to all types θl whose ϕh

l -valuation is the least
negative, irrespective of their ul characteristics. This means that type θk’s matching set takes the
form Ul ∪ [thk(vk), vl] where the threshold tk(vk) is computed so that

ˆ
{(ul,vl):vl∈[tk(vk),vl]}

σk(ul)dFl(ul, vl) = qk.

Because the quality of the matching set in monotone in vk, as required by incentive compatibility,
the threshold function thk(·) is nonincreasing. The proof in the Appendix uses results from the theory
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of monotone concave order of random variables to verify the heuristics above.
The following corollary is then a direct implication of Proposition 1.

Corollary 1 (optimal network structures) Assume conditions DMU and PA hold. Then any
h-optimal matching rule either employs a single network or induces nested multi-homing, h = W,P .
All other single-homing structures are dominated.

Given the result in Proposition 1, we can restrict attention to mechanisms whose matching rule
takes the form given in (6). Letting ĝk : Vl → R+ denote the function defined by

ĝk(vl) ≡ gk

�ˆ vl

vl

ˆ
Ul

σk(ul) · dFl(ul, v)

�
,

the platform’s objective then consists in choosing a pair of exclusion thresholds (ωh
k )k∈{A,B} and a

pair of nonincreasing threshold functions (thk(·))k∈{A,B} so as to maximize the objective

Ωh(M) =
�

k=A,B

ˆ vk

ωh
k

ĝk(t
h
k(vk)) · ϕh

k(vk) · dF v
k (vk) (7)

subject to the reciprocity constraint that

thk(vk) = inf{vl : thl (vl) ≤ vk} (8)

for all vk ∈ [ωh
k , vk], k = A,B.

The next two results provide necessary and sufficient condition for the h-optimal mechanism
to employ either a single network or to exhibit nested multi-homing and characterize properties
of optimal multi-homing rules. These results are obtained by assuming that the following condition
holds, which strengthens the standard monotonicity of virtual valuations, as required in our two-sided
matching environment.

Condition 3 [SR] Strong Regularity: The functions ψh
k : Vk → R given by

ψh
k (vk) ≡

fv
k (vk) · ϕh

k(vk)

−ĝ�l(vk)
=

ϕh
k(vk)

g�l (|Uk × [vk, v̄k]|l) · E [σl(ũk)|ṽk = vk]

are strictly increasing, k = A,B, h = W,P.

Take the case of profit-maximization, h = P . The numerator in ψh
k (vk) accounts for the effect on

the platform’s profits of an agent from side k with valuation vk as a consumer (as his virtual valuation
ϕh
k(vk) is proportional to the marginal revenue produced by this agent). In turn, the denominator

accounts for the effect on the platform’s profits of this agent as an input (as −ĝ�l(vk) is proportional
to the marginal utility brought by this agent to every agent from side l who is already matched
to any other agent with valuation above vk). The affiliation and concavity assumptions imply that
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the denominator of ψh
k (vk) is nondecreasing in vk. Therefore, the strong regularity condition above

requires that the value of an agent as a consumer (as captured by his virtual valuation) increases faster
than his contribution as an input. In the linear model, ψh

k (vk) = ϕh
k(vk)/E [σl(ũk)|ṽk = vk], which is

increasing provided that the positive affiliation between σl(uk) and vk is not “too strong”. As we will
see in Proposition 3 below, the key role played by strong regularity is to rule out nonmonotonicities
in the schedule of matching qualities. In this sense, it is the analog of Myerson standard regularity
condition in two-sided matching problems. It also plays a role in Proposition 2 below, but only in
the special case where ϕh

l -valuations are always positive on one-side and both positive and negative
on the other side.

Now let �h
k : Vk × Vl → R denote the function defined by

�h
k(vk, vl) ≡ −ĝ�k(vl) · ϕh

k(vk) · fv
k (vk)− ĝ�l(vk) · ϕh

l (vl) · fv
l (vl) (9)

k, l ∈ {A,B}, l �= k. Note that �h
A(vA, vB) = �h

B(vB, vA) represents the marginal effect on the
platform’s payoff of decreasing the threshold thA(vA) below vB, while, by reciprocity, also reducing
the threshold thB(vB) below vA. Equivalently, −�h(vA, vB) represents the marginal effect of deleting
the link between vA and vB starting from a network structure where each agent from side A with
valuation vA is matched to all agents from side B with valuation above vB and each agent from side B
with valuation vB is matched to all agents from side A with valuation above vA. For future reference,
also note that sign(�h

k(vk, vl)) = sign(ψh
k (vk) + ψh

l (vl)). We then have the following result.

Proposition 2 (single- vs multi-homing) Assume Conditions DMU, PA and SR hold. The h-
optimal matching rule employs a single (complete) network if �h

k(vk, vl) ≥ 0 (that is, if starting from
a complete network deleting the link between vA and vB reduces the platform’s payoff) and exhibits
nested multi-homing otherwise, h = W,P .

Proof. Consider first the case where ϕh
k(vk) ≥ 0 for k = A,B, implying that �h

k(vk, vl) ≥ 0.
Because valuations (virtual valuations) are all nonnegative, welfare (profits) is (are) maximized by
matching each agent from each side to all agents from the other side, meaning that the optimal
matching rule employs a single network which includes all agents (i.e., a complete network).

Next, consider the case where ϕh
k(vk) < 0 for k = A,B, so that �h

k(vk, vl) < 0. Starting from
any single network the platform can then increase its payoff by switching to multi-homing. To see
this, let ω̂h

k denote the threshold type corresponding to the single network so that agents from side k

are excluded if and only if vk < ω̂h
k . First, suppose that, for some k ∈ {A,B}, ω̂h

k > rhk , where recall
that rhk ≡ inf{vk ∈ Vk : ϕh

k(vk) ≥ 0}. The platform could then increase its payoff by switching to a
nested multi-homing rule that assigns to each agent from side k with valuation vk ≥ ω̂h

k the same
matching set as the original matching rule while it assigns to each agent with valuation vk ∈ [rhk , ω̂

h
k ]

the matching set [v̂#l , vl], where v̂#l ≡ max{rhl , ω̂h
l }.

Next, suppose that ω̂h
k < rhk for both k = A,B. Starting from this single network, the platform

could then increase her payoff by switching to a nested multi-homing rule s♦k (·) such that, for some
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k ∈ {A,B}12

s♦k (vk) =






[ω̂h
l , vl] ⇔ vk ∈ [rhk , vk]

[rhl , vl] ⇔ vk ∈ [ω̂h
k , r

h
k ]

� ⇔ vk ∈ [vk, ω̂
h
k ]

.

The new matching rule improves upon the original one because it eliminates all matches between
agents whose valuations (virtual valuations) are both negative.

Finally, suppose that ω̂h
k = rhk for some k ∈ {A,B} whereas ω̂h

l ≤ rhl for l �= k. The platform could
then do better by lowering the threshold type on side k and switching to the following multi-homing
matching rule:

s#k (vk) =






[ω̂h
l , vl] ⇔ vk ∈ [rhk , vk]

[rhl , vl] ⇔ vk ∈ [ω̂#
k , rhk ]

� ⇔ vk ∈ [vk, ω̂
#
k ]

.

By setting the new exclusion threshold ω̂#
k sufficiently close to rhk the platform increases its payoff.

In fact, the marginal benefit of increasing the quality of the matching sets of those agents from side
l whose ϕh

l -valuation is positive more than offsets the marginal cost of getting on board a few more
agents from side k whose ϕh

k-valuation is negative, but sufficiently small.13 Note that for this network
expansion to be profitable, it is essential that the new agents from side k that are brought “on board”
be matched only to those agents from side l whose ϕh

l -valuation is positive, which requires employing
a multi-homing matching rule.

In the Appendix, we complete the proof by analyzing the remaining case where ϕh
l (vl) < 0 while

ϕh
k(vk) ≥ 0. This is the only case in which strong regularity plays a role. Q.E.D.

The following corollary then follows directly from Proposition 2 by noting that �W
k (vk, vl) >

�P
k (vk, vl).

Corollary 2 Multi-homing matching rules are more often employed by profit-maximizing platforms
than by welfare-maximizing platforms.

The finding above are illustrated by the next two examples.

Example 3 Consider the case of linear network externalities, as described in Example 1 above, and
assume that valuations vk are uniformly distributed over [vk, vk]. Then, the welfare-maximizing rule
employs a single network if �W

A (vA, vB) = vA + vB ≥ 0, and exhibits nested multi-homing other-
wise. In turn, the profit-maximizing rule employs a single network if �P

A(vA, vB) = 2 (vA + vB) −
(vA + vB) = �W

A (vA, vB) − [(vA − vA) + (vB − vB)] ≥ 0, and exhibits nested multi-homing other-
wise. \\

12The behavior of the rule on side l is then pinned down by reciprocity.
13To see this, note that, starting from ω̂#

k = rhk , the marginal benefit of decreasing the threshold ω̂#
k is

−ĝ�l(r
h
k )
´ vl

rhl
ϕh

l (vl)dF
v
l (vl) > 0, whereas the marginal cost is given by −ĝk(r

h
l ) · ϕh

k(r
h
k )f

v
k (r

h
k ) = 0 since ϕh

k(r
h
k ) = 0.
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Example 4 Consider the case of supermodular matching values, as described in Example 2 above,
and assume that valuations vk are uniformly distributed over [vk, vk] with vk > 0. Then, the welfare-
maximizing rule employs a single network, since �W

A (vA, vB) = 2 · vA · vB > 0. In turn, the profit-
maximizing rule employs a single network if �P

A(vA, vB) =
�

k=A,B,l �=k vl · (2vk−vk) = �W
A (vA, vB) ·�

2− 1
2 · (vA/vA + vB/vB)

�
≥ 0, and exhibits nested multi-homing otherwise. \\

3.3 Optimal Multi-Homing Rules

We now further investigate the properties of optimal matching rules when nested multi-homing is
optimal, that is, when �h

k(vk, vl) < 0. The next definition extends to our two-sided matching setting
the notion of separating schedules, as it appears in Maskin and Riley (1984).

Definition 4 (maximally separating rules) The h-optimal matching rule is maximally separating
if thk(·) is strictly decreasing over [ωh

k , t
h
l (ω

h
l )] (which we call the separating range). It exhibits exclusion

at the bottom on side k if ωh
k > vk and bunching at the top on side k if thl (ω

h
l ) < v̄k.

The next proposition characterizes the h-optimal matching rule under the assumption that the
strong regularity condition holds.

Proposition 3 (optimal multi-homing rules) Assume Conditions DMU, PA and SR hold and
suppose that multi-homing is optimal (i.e., �h

k(vk, vl) < 0). The following properties are true both
for h = W and for h = P :

(i) The h-optimal matching rule is maximally separating.
(ii) If �h

k(v̄k, vl) > 0, there is bunching at the top on side k and no exclusion at the bottom on
side l.

(iii) If �h
k(v̄k, vl) < 0, there is exclusion at the bottom on side l and no bunching at the top on

of side k (In the knife-edge case where �h
k(v̄k, vl) = 0, there is neither bunching at the top on side k

nor exclusion at the bottom on side l).
(iv) For all valuations vk in the separating range [ωh

k , t
h
l (ω

h
l )], the h-optimal threshold function

thk(·) satisfies the Euler equation
�h

k(vk, t
h
k(vk)) = 0, (10)

which yields thk(vk) =
�
ψh
l

�−1 �−ψh
k (vk)

�
.

Proof. See Appendix.
Assume vk < 0, k = A,B. An important feature of the maximally separating h-optimal rule

described above is that thk(vk) ≤ rhl if and only if vk ≥ rhk . Consider the case of profit-maximization
(The arguments for the case of welfare maximization are analogous). Agents with positive virtual
valuations from side k are matched to all agents with positive virtual valuations on side l, plus a
measure of agents with negative virtual valuations from side l (cross-subsidization). The optimal level
of cross-subsidization for an agent with virtual valuation ϕP

k (vk) > 0 is then determined by the Euler
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equation (10). As explained above, this equation equalizes the marginal benefit −ĝ�k(t
P
k (vk)) ·ϕP

k (vk) ·
fv
k (vk) of enlarging the matching set of an agent from side k who is already matched to all agents

from side l with valuation above tPk (vk), with the marginal cost −ĝ�l(vk) · ϕP
l (t

P
k (vk)) · fv

l (t
P
k (vk)) of

enlarging the matching set of any agent from side l with valuation vl = tPk (vk) who is already matched
to all agents from side k with valuation above vk = tPl (vl), as required by reciprocity (recall that
ϕP
l (t

P
k (vk)) < 0).

Intuitively, agents from each side of the market are endogenously partitioned in two groups. Those
with positive virtual valuations (equivalently, with valuations vk ≥ rPk ) play the role of consumers,
“purchasing” sets of agents from the other side of the market (these agents contribute positively to
the platform’s profits). In turn, those agents with a negative virtual valuation (equivalently, with
valuation vk < rPk ) play the role of inputs, generating utility to the agents from the other side of the
market they are matched to (these agents contribute negatively to the platform’s profits).

It is also worth noticing that optimality implies that there is bunching at the top on side k if and
only if there is no exclusion at the bottom on side l. In other words, bunching can only occur at
the top due to binding capacity constraints, that is, when the “stock” of agents from side l has been
exhausted. This is illustrated in the next example.

Example 5 Consider the environment with linear network externalities as in Examples 1 and 3.
Assume that each agent from side A has a valuation drawn from a uniform distribution on [1, 3/2],
while each agent from side B has a valuation drawn from a uniform distribution on [−1, 0]. Since
�W

A (3/2, 0) = 0 and �P
A(3/2, 0) = −3/2, the welfare-maximizing provision of matching services

employs a single (complete) network, while the profit-maximizing provision exhibits nested multi-
homing with the threshold function tPA(vA) = 3/4−vA defined over [1, 3/2]. Under profit-maximization,
there is bunching at the top on side B and exclusion at the bottom on side B, as illustrated in Figure
1. \\

The example above offers a stylized description of the market for health care services. The platform
here is a health insurance company providing patients from side A access to physicians from side B.
The physicians’ negative valuations reflect their opportunity cost of treating additional patients. The
welfare-maximizing (say, public) provision of health insurance adopts a single (complete) network
where all patients have access to all doctors. In contrast, the profit-maximizing (say, private) provision
of health insurance exhibits a nested multi-homing matching rule according to which patients and
doctors are sorted into different nested network plans. Those physicians with a low opportunity cost
are included in all plans, while the more expensive ones are included only in the plans offered to
those patients with the highest willingness to pay for larger physician networks. The most expensive
doctors are excluded from all plans.
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Relative to what is efficient, the profit-maximizing matching rule thus (i) completely excludes
more agents from the market, and (ii) provides to each agent who is not excluded a matching set that
is a strict subset of his efficient set. As we show below, these two distortions are general properties
of profit-maximizing matching mechanisms.

3.4 Distortions Relative to Efficiency: Exclusion and Isolation Effects

Relative to welfare maximization, profit-maximization leads to two distortions, as explained in the
following proposition.

Proposition 4 (distortions) Assume Conditions DMU, PA, and SR hold. Relative to the welfare-
maximizing matching rule, the profit-maximizing matching rule:

1. completely excludes a larger group of agents (exclusion effect) — i.e., ωP
k ≥ ωW

k for k = A,B;

2. matches each agent from each side of the market to a subset of his efficient matching set (iso-
lation effect) — i.e., sPk (vk) ⊆ sWk (vk) for all vk ≥ ωP

k , k = A,B.

Proof. See Online Supplementary Material.
The intuition for both effects can be seen from the Euler condition (10): Under profit-maximization,

the platform only internalizes the cross-effects on marginal revenues (which are proportional to vir-
tual valuations ϕP

k (vk)), rather than the cross-effects on welfare (which are proportional to the true
valuations vk). Since virtual valuations are always smaller than the true valuations, the platform fails
to internalize part of the marginal welfare gains from new matches. As explained in the Introduction,
this leads to smaller matching sets potentially for all types (including the highest types on each side
of the market) and to exclusion of a larger group of agents.

The next example illustrates the exclusion and isolation effects in the context of the supermodular
matching value case of Example 2.
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Example 6 Consider the environment with supermodular matching values, as in Examples 2 and 4.
Each agent from each side has a valuation drawn from a uniform distribution on [v, v], where v > 0

and 2v < v̄. Since �W
k (v, v) = 2v2 and �P

k (v, v) = 2v(2v − v̄) < 0, the welfare-maximizing provision
of matching services entails the creation of a single complete network, while the profit-maximizing
provision entails the adoption of a nested multi-homing structure with threshold function given by
tPk (vk) = vk·v̄

4·vk−v̄ defined over (ωk, v̄) = ( v̄3 , v̄). Under profit-maximization, there is exclusion at the
bottom on both sides and each agent who is not excluded is matched to a strict subset of his efficiency
set. Figure 2 describes the profit-maximizing solution when [v, v] = [1, 6]. \\

This example offers a stylized description of a market where the platform is an employment
agency that matches free-lancers on side A to firms on side B. The output of the match between each
free-lancer and each firm is increasing in the quality/productivity of the two parties and is evenly
split between the firm and the free-lancer. In this environment, a welfare-maximizing (say, public)
employment agency creates a single (complete) network that gives each free-lancer access to all firms.
In contrast, a profit-maximizing (say, private) agency offers a menu of access plans to each side which
results in fewer matches and more exclusion on both sides.

3.5 Implications for Prices

The analysis so far restricted attention to direct-revelation mechanisms, where the matching set and
the payment of each agent depend on the reported type. While these mechanisms help us describe
the allocations that are induced both under welfare and under profit maximization, in reality these
allocations are typically obtained by letting agents choose from a menu. For example, in the case of
health care provision, patients are typically offered menus of health plans where the price for each
plan depends on the number of doctors included in the plan. Accordingly, we will now show how
the characterization from Proposition 3 translates into properties of price schedules that indirectly
implement the optimal mechanism Mh.
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In order to express the optimal pricing formulas in terms of observable variables, in this subsection
we will restrict attention to the case where agents care only about the total number of agents from
the other side that they are matched to (that is, σk(·) ≡ 1 for k ∈ {A,B}). For any qk ∈ [0, 1], then
let ρhk(qk) denote the total price that agents from side k have to pay for a matching set of size qk

under the h-optimal mechanism Mh. Accordingly, the tariff ρhk(·) has to satisfy ρhk(qk) = phk(uk, vk)

for all (uk, vk) such that |shk(vk)|k = qk.
At any point of differentiability of the tariff ρhk(·), we will then denote by dρhk

dqk
(qk) the marginal

price for the qk unit. Now, given the tariff ρhk(·), let

xhk(vk) ∈ arg max
qk∈[0,1]

vk · gk(qk)− ρhk(qk)

denote the individual demand of each agent from side k with marginal willingness to pay vk. At any
point xhk(vk) of differentiability of the tariff ρhk(·), the following first-order condition must hold:

vk · g�k(xhk(vk))−
dρhk(x

h
k(vk))

dqk
= 0. (11)

Given the monotonicity of the individual demand in vk, the side-k aggregate demand for the qk unit
at the marginal price dρhk

dqk
(qk) is given by:14

Dk

�
qk,

dρhk
dqk

(qk)

�
≡ 1− F v

k




dρhk
dqk

(qk)

g�k(qk)



 .

Given the expression for aggregate demand above, we can compute the elasticity of the aggregate
demand for the qk unit with respect to its marginal price:

εk

�
qk,

dρhk
dqk

(qk)

�
≡ − ∂Dk

∂
�
dρhk
dqk

(qk)
� ·

dρhk
dqk

(qk)

Dk
=

fv
k

�
dρhk
dqk

(qk)

g�k(qk)

�

1− F v
k

�
dρh

k
dqk

(qk)

g�k(qk)

� ·
dρhk
dqk

(qk)

g�k(qk)
. (12)

As usual, this elasticity measures the responsiveness of the aggregate demand for the qk unit to
variations of the marginal price of the qk unit. The elasticity is positive (in the sense that an increase
in the marginal price reduces demand) for all agents with positive valuations vk > 0 (observe that
dρhk(qk)
dqk

1
g�k(qk)

=
�
xhk

�−1
(qk)) and negative for all agents with negative valuations vk < 0. For example,

in the health care application where valuations are negative on the doctors’ side, a negative elasticity
reflects the idea that if marginal payments to doctors increase, then the doctors respond by accepting
more patients.

The next proposition recasts the first-order Euler condition (10) in terms of demand elasticities
14This is the measure of agents whose matching set is of size greater or equal than qk.
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and marginal prices. The expression below extends to matching markets the familiar Lerner-Wilson
formula for second-degree price discrimination in commodity markets (see Wilson (1997)).

Proposition 5 (Lerner-Wilson formula for matching markets) In addition to Conditions
DMU and SR, suppose that network effects depend only on quantities (σk(·) ≡ 1 for k ∈ {A,B}), and
that multi-homing is optimal (i.e., �h

k(vk, vl) < 0). Then the optimal price schedules ρhk(·), ρhl (·) are
differentiable and the marginal prices satisfy the Lerner-Wilson formula

dρhk
dqk

(qk)− 1h ·
dρhk
dqk

(qk)

εk
�
qk,

dρhk
dqk

(qk)
� = (13)

−



dρhl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)

��
− 1h ·

dρhl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)
��

εl
�
Dk

�
qk,

dρhk
dqk

(qk)
�
,
dρhl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)
���



 ,

where the indicator function 1h equals one in case of profit-maximization (h = P ) and zero in case of
welfare maximization (h = W ), and where Dk

�
qk,

dρhk
dqk

(qk)
�

is the aggregate demand for the qk unit
on side k at marginal price dρhk(qk)/dqk.

Proof. See Appendix.
First, consider welfare maximization. The result then says that the marginal price for the qk

agent on side k must equal the opposite of the marginal price for the ql = Dk

�
qk,

dρWk
dqk

(qk)
�

agent on

side l, where Dk

�
qk,

dρWk
dqk

(qk)
�

is the aggregate demand for the qk agent on side k. In the health care
application, this means that the marginal price that the platform charges to any patient who wants
to add an additional doctor to a plan of size qk is equal to the marginal payment that the platform
makes to any physician whose plan includes Dk

�
qk,

dρWk
dqk

(qk)
�

patients.
Next consider profit-maximization. Take a matching set of size qk sold to an agent from side k

that plays the role of a consumer (i.e., for whom marginal revenue is positive, that is, vk > rPk ). The
formula in (13) is the analog of the familiar Lerner formula

p−MC

p
=

1

εd

for optimal monopoly pricing. It equalizes the marginal revenue of expanding the matching set on
side k (the left hand side) to the marginal cost of “procuring” extra agents from side l (the right
hand side). As in standard monopoly pricing, at the optimum, the marginal price dρPk (qk)/dqk for
any quantity qk sold to agents who play the role of consumers is set so that the aggregate demand
is locally elastic at

�
qk,

dρhk(qk)
dqk

�
, i.e., εk

�
qk,

dρhk(qk)
dqk

�
> 1, as can be seen from (11) and (12) after

plugging vk > rPk .
The interesting part of the formula is the expression for the endogenous marginal cost of expanding

a matching set of size qk. This is the cost of procuring an additional agent from the opposite side.
As shown in Proposition 3, this cost is minimized by picking an agent from side l whose matching
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set contains exactly ql = Dk

�
qk,

dρPk (qk)
dqk

�
agents. To see this, let vk =

�
xPk

�−1
(qk) denote the

valuation of the marginal agent from side k who is induced to purchase a matching set of size qk.

Recall that, at the optimum, this agent is matched to all agents from side l with valuation above
vl = tPk

��
xPk

�−1
(qk)

�
. The marginal cost of expanding the matching set of this agent under the

optimal matching rule is thus equal to the cost of adding this agent to the matching set of an agent
from side l with valuation vl = tPk

��
xPk

�−1
(qk)

�
whose matching set contains all agents from side

k with valuation above vk =
�
xPk

�−1
(qk). The measure of this set is 1 − F v

k

��
xPk

�−1
(qk)

�
, which

is exactly equal to the aggregate demand Dk

�
qk,

dρPk (qk)
dqk

�
on side k for the qk unit, at the marginal

price dρPk (qk)
dqk

. This means that the marginal cost of expanding a matching set of size qk on side k is

equal to the marginal price dρhl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)
��

that the platform pays on side l to those agents

who select a matching set of size Dk

�
qk,

dρhk
dqk

(qk)
�
, augmented by the (positive) term

dρPl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)
��

εl
�
Dk

�
qk,

dρhk
dqk

(qk)
�
,
dρPl
dql

�
Dk

�
qk,

dρhk
dqk

(qk)
���

that reflects the monopsonistic role that the platform plays on side l under the impossibility of perfect
(first degree) price discrimination.

Turning to the shape of the price schedules (and the existence of quantity discounts/premiums),
note that, in the case of linear network externalities for quantities (gk(x) ≡ x), the first-order condition
(11) implies that marginal prices increase with quantities, meaning that the price schedule ρhk(·) is
a convex function of qk. In other words, the platform charges a quantity premium to those agents
who play the role of consumers for expanding the size of their matching sets. In the case of strictly
diminishing marginal utility for match quality (gk(·) strictly concave), the emergence of quantity
discounts depends nontrivially on the interplay between the elasticities of demands on both sides.
In general there does not appear to be a good reason to expect price schedules to exhibit quantity
discounts for the full range of quantities sold.

Lastly, note that the Lerner-Wilson formula (13) only depends on the shape of the aggregate
demand for matching services on the two sides of the market. It can be used for a structural estimate
of the demand for matching services. It also provides testable implications about the effects of changes
in elasticity on total and marginal prices. As an illustration, suppose that network effects are linear
(i.e., gA(x) = gB(x) = x) and that the demand from side k becomes less elastic, meaning that the
new distribution F̃ v

k dominates the old distribution F v
k in the hazard-rate order, while, for any vk,

F̃ σ
k (·|vk) = F σ

k (·|vk).15 The platform’s profit-maximizing response to such a shock is to reduce the
matching sets of each agent from side k (with an unambiguous negative effect on payoffs). In turn,
this is accomplished by increasing the total price for each size qk of the matching set. One can then use

15The distribution F̃ v
k dominates F v

k in the hazard-rate order if and only if fv
k (vk)

1−Fv
k (vk)

≥ f̃v
k (vk)

1−F̃v
k (vk)

for all vk ∈ Vk.
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the result in the preceding proposition to verify that marginal prices also go up (see Proposition A1
and Corollary A1 in the Supplementary Material for details). As for the effects of such shocks on the
opposite side, these effects are in general ambiguous. On the one hand, by virtue of reciprocity, the
matching sets of agents from side l also shrink. On the other hand, because of the positive affiliation
assumption, agents from side k are on average more attractive. The reason is that, although the
conditional distributions are held constant, more agents on side k exhibit higher valuations (recall
that if F̃ v

k dominates F v
k in the hazard-rate order then it also does it in the usual first-order sense).

Clearly, agents from side l are worse off in the special case where network effects depend only on
quantities (i.e., σl(·) ≡ 1).

The next subsection provides further empirically testable predictions by studying the (less ex-
plored) cross-side effects of changes in attractiveness.

3.6 The Detrimental Effects of Becoming More Attractive

Shocks that alter the cross-side effects of matches are common in two-sided markets. Changes in the
income distribution of households, for example, affect the pricing strategies of Cable TV providers,
since channels’ profits change for the same population of viewers (e.g., because advertisers are willing
to pay more for viewers with higher purchasing power).

The next definition formalizes the notion of a change in attractiveness.

Definition 5 (higher attractiveness) Side k is more attractive under the distribution Fk than un-
der the distribution F̂k if, for all vk, F σ

k (·|vk) dominates F̂ σ
k (·|vk) in the sense of first-order stochastic

dominance, and F v
k = F̂ v

k .

The next proposition describes how the profit-maximizing matching rule changes as side k becomes
more attractive (a similar analysis holds for the case of welfare-maximization). Perhaps surprisingly,
agents from side k can be hurt by a positive shock to their attractiveness.

Proposition 6 (increase in attractiveness) In addition to Conditions PA and SR, suppose that
network effects are linear (i.e., gA(x) = gB(x) = x), and that multi-homing is optimal (i.e., �P

k (vk, vl) <

0). If the attractiveness of side k increases, then the platform switches from a matching rule sPk (·) to
a matching rule ŝPk (·) such that:

1. the matching sets on side k increase for low-valuation agents and decrease for high-valuation
ones — ŝPk (vk) ⊇ sPk (vk) if and only if vk ≤ rPk ;

2. low-valuations agents from side k are better off, whereas the opposite is true for high-valuation
ones — there exists ν̂k ∈ (rPk , v̄k] such that Πk(θk; M̂P ) ≥ Πk(θk;MP ) if and only if vk ≤ ν̂k.

Proof. See Online Supplementary Material.
Intuitively, an increase in the attractiveness of side k alters the costs of cross-subsidization between

sides. Agents with valuation vk ≥ rPk are valued by the platform mainly by their role as consumers.
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As these agents become more attractive, the costs of cross-subsidizing their “consumption” using
agents from side l with negative virtual valuations increases, whereas the revenue gain on side k is
unaltered. As a consequence, the matching sets of these agents shrink. The opposite is true for those
agents with valuation vk ≤ rPk — these agents are valued by the platform mainly by their role as
inputs. As they become better inputs, their matching sets expand.

In terms of payoffs, for all vk ≤ rPk

Πk(θk;M
P ) =

ˆ vk

vk

|sk(ṽk)|k dṽk ≤
ˆ vk

vk

|̂sk(ṽk)|k dṽk = Πk(θk; M̂
P ),

meaning that all agents from side k with vk ≤ rPk are necessarily better off. On the other hand, since
|̂sk(vk)|k ≤ |sk(vk)|k for all vk ≥ rPk , then either payoffs increase for all agents on side k, or there
exists a threshold type ν̂k > rPk such that the payoff of each agent from side k is higher under the
new rule than under the original one if and only if vk ≤ v̂k.

Next, consider the effect of the increase in attractiveness on side k on the payoffs of agents from
side l. On the one hand, the fact that side k becomes more attractive implies that the payoff that
each agent from side l derives from interacting with side k increases. On the other hand, by virtue
of reciprocity, the matching sets for all agents with valuation vl < rPl shrink, which contributes
negatively to profits. The net effect on the payoffs of agents from side l can thus be ambiguous and
nonmonotone in vl. Still, using equation (4), one can show that if there exists a type ν̂l ≥ rPl who is
better off, then necessarily the same is true for all types vl > ν̂l.

The results from Proposition 6 offer testable predictions about the pricing strategies of many
two-sided platforms. In the case of Cable TV providers, it implies that shocks to households’ income
or wealth (which do not affect their valuation for channels) shall be accompanied by improvements
on the standard packages and worsening of the premium packages offered by the platform.

Consider the profit-maximizing price schedule ρPk (·) defined in Subsection 3.4. The next corollary
translates Proposition 6 in terms of the tariff ρPk (·).

Corollary 3 (effect of attractiveness on prices) In addition to Conditions PA and SR, suppose
that network effects are linear (i.e., gA(x) = gB(x) = x), and that multi-homing is optimal (i.e.,
�P

k (vk, vl) < 0). If the attractiveness of side k increases, then the platform moves from a price
schedule ρPk (·) to a price schedule ρ̂Pk (·) such that ρ̂Pk (qk) ≤ ρPk (qk) if and only if qk ≤ q̂k, where
q̂k >

��sPk (rPk )
��
k
=

��̂sPk (rPk )
��
k
.

Proof. See Online Supplementary Material.
In terms of price schedules, an increase in the attractiveness of side k increases the prices that

agents on side k have to pay for high quality matching sets, and decreases the price for low quality
matching sets.
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4 Extensions and Conclusions

The analysis developed above is worth extending in a number of interesting directions. Below we first
discuss how the results can accommodate a few simple enrichments and then conclude by discussing
various lines for future research.

Insulating Tariffs and Robust Implementation. In the direct revelation version of the
matching game described above, each agent from each side is asked to submit a report θk which leads
to a payment phk(θk), as defined in (4), and which grants access to all agents from the opposite side
who reported valuations above thk(vk). This game admits one Bayes-Nash equilibrium implementing
the matching rule shk(·), together with other equilibria implementing different rules.16

As pointed out by Weyl (2010) (see also White and Weyl (2010)) in the context of a monopolistic
platform designing a single network, equilibrium uniqueness can however be guaranteed when network
effects depend only on quantities (i.e., when σk(·) ≡ 1 for k ∈ {A,B}). In the context of our model,
it suffices to replace the payment rule (phk(·))k=A,B given by (4) with the payment rule

�hk(vk, (v
j
l )

j∈[0,1]) = vk · gk
����{j ∈ [0, 1] : vjl ≥ tk(vk)}

���
k

�
−
ˆ vk

vk

gk
����{j ∈ [0, 1] : vjl ≥ tk(ṽk)}

���
k

�
dṽk,

(14)
where

���{j ∈ [0, 1] : vjl ≥ tk(vk)}
���
k
≡
´
{j:vjl ≥tk(vk)}

dλ(j) denotes the measure of agents reporting a
valuation above tk(vk). Given the above payment rule, it is weakly dominant for each agent to report
truthfully (This follows from the fact that, given any profile of reports (vjl )

i∈[0,1] by all agents from
the other side, the quality of the matching set for each agent from side k = A,B is increasing in
his report, along with the fact that the payment rule �hk(·; (v

j
l )

j∈[0,1]) satisfies the familiar envelope
formula with respect to vk). In the spirit of the Wilson doctrine, this also means that the the optimal
allocation rule can be robustly (fully) implemented in weakly undominated strategies.17

Coarse Matching. In reality, platforms typically offer menus with finitely many alternatives.
As pointed out by McAfee (2002) and Hoppe, Moldovanu and Ozdenoren (2010), the reason for such
coarse matching is that platforms may face costs for adding more alternatives to their menus.18

It is easy to see that the analysis developed in this paper extends to a setting where the platform
can include no more than N alternatives in the menus offered to each side. Furthermore, as the number
of alternatives increases (e.g., because menu costs decrease), the solution to the platform’s problem
uniformly converges to the h-optimal nested multi-homing rule identified in the paper (This follows
from the fact that any weakly decreasing threshold function tk(·) can be approximated arbitrarily

16In the implementation literature, this problem is referred to as “partial implementation”, whereas in the two-sided
market literature as the “chicken and egg” problem (e.g., Caillaud and Jullien (2001, 2003)) or the “failure to launch”
problem (e.g., Evans and Schmalensee (2009)). See also Ellison and Fudenberg (2003) and Ambrus and Argenziano
(2009).

17With more general preferences, it is still possible to robustly (fully) implement any monotone matching
rule in weakly undominated strategies by replacing the definition of

��{j ∈ [0, 1] : vjl ≥ tk(vk)}
��
k

in (14) with��{j ∈ [0, 1] : vjl ≥ tk(vk)}
��
k
≡
´
{j:vj

l ≥tk(vk)}
σk, λ(j), where σk ≡ min{σk(ul) : ul ∈ Ul}. However, these payments

generate less revenue than the ones given in (4).
18See also Wilson (1989).
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well by a step function in the sup-norm, i.e., in the norm of uniform convergence). In other words,
the maximally-separating nested multi-homing rules of Proposition 3 are the limit as N grows large
of those offered when the number of non-exclusive networks is finite.

Quasi-Fixed Costs. Integrating an agent into a network structure typically involves a quasi-
fixed cost. In the Cable TV example, a household must be connected to the underground cable
system to get access to the Cable Company channels. Similarly, in the case of job matching services,
firms and workers must incur the cost of setting up online profiles and building professional portfolios.
From the perspective of the platform, these costs are quasi-fixed, in the sense that they depend on
whether a given agent is included in some network, but not on the agent’s matching set.

The analysis developed above can easily incorporate such costs. Let ck denote the quasi-fixed
cost that the platform must incur for each agent from side k whose matching set is non empty. The
h-optimal mechanism can then be obtained by the following two-step procedure:

Step 1 Ignore quasi-fixed costs and maximize (7) among all weakly decreasing threshold functions thk(·).

Step 2 Given the optimal threshold function thk(·) from Step 1, choose the h-optimal exclusion types
ωh
A, ω

h
B by solving the following problem:

max
ωA,ωB

�

k=A,B

ˆ vk

ωk

�
ĝk(max{thk(vk), ωl}) · ϕh

k(vk)− ck
�
· dF v

k (vk).

As the quasi-fixed costs increase, so do the exclusion types ωh
k (cA, cB), k = A,B. For ck sufficiently

high, the exclusion types reach the reservation values rhk , in which case the platform switches from
multi-homing to a single network. Therefore, another testable prediction that the model delivers
is that, ceteris paribus, single networks should be more prevalent in matching markets with high
quasi-fixed costs, while nested multi-homing in markets with low quasi-fixed costs.

The Group Design Problem. Consider the problem of how to assign agents to different
groups in the presence of peer effects, which is central to the theory of organizations and personnel
economics. As anticipated in the Introduction, such one-sided matching problem is a special case of
the two-sided matching problems studied in this paper. To see this, note that the problem of designing
non-exclusive groups in a one-sided matching setting is mathematically equivalent to the problem of
designing an optimal matching rule in a two-sided matching setting where (i) preferences and type
distributions of sides A and B coincide, and (ii) the matching rule is required to be symmetric
across sides, i.e., tA(v) = tB(v) all v ∈ VA = VB. Under this new constraint, maximizing (7) is
equivalent to maximizing twice the objective associated with the one-sided matching problem. As
it turns out, the symmetry constraint is never binding in a two-sided matching market where the
two sides are perfectly symmetric. This is immediate when �h

k(vk, vl) ≥ 0, that is, when a single
complete network is h-optimal. Under nested-multi-homing, �h

k(vk, vl) < 0, the characterization
from Proposition 3 reveals that, at any point where tk(·) is strictly decreasing, because ψh

l (·) = ψh
k (·),
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thk(v) =
�
ψh
l

�−1 �−ψh
k (v)

�
=

�
ψh
k

�−1 �−ψh
l (v)

�
= thl (v). Similarly, it is easy to see that the symmetry

condition is satisfied also when the optimal rule exhibits bunching at the top. As a consequence, one
can reinterpret all our results in terms of the group design problem.

We now discuss lines of future research.
Same-side Externalities. The analysis developed above assumed that the utility/profit that

each agent derives from any given matching set is independent of who else from the same side has
access to the same set. In other words, we abstracted from “same-side” externalities. In advertising
markets, for example, reaching a certain set of households is more profitable if competitors are
precluded from reaching the same set. Similar congestion effects are present in other matching
markets. Extending the analysis in this direction is promising and likely to introduce novel effects
that complement those documented in the present paper.

Different-sign Externalities. Our analysis also assumed that each agent either benefits or
suffers from being matched to the other side of the market (the intensity varying with the particular
agents he/she is matched to). Allowing the same agent to derive positive utility from interacting with
certain agents and negative utility from interacting with others is also likely to deliver new insights.

Horizontal Differentiation. The model considered in the present paper is one of pure vertical
differentiation. While this was useful to isolate important effects, many applications of interest
feature both vertical and horizontal differentiation. Extending the analysis to incorporate elements
of horizontal differentiation is challenging but highly promising.

Platform Competition. Matching markets are often populated by competing platforms. Un-
derstanding to what extent the distortions identified in the present paper are affected by the degree
of market competition and studying policy interventions (subsidies/taxes and in some cases the im-
position of universal service obligations) aimed at boosting welfare by inducing platforms to get more
agents “on board” is another important direction of future research.19

While we do expect the above extensions to open the door to novel effects, we also expect the key
insights identified in the present paper to remain valid also in these richer settings.20

5 Appendix

Proof of Proposition 1. If ϕh
k(vk) ≥ 0 for k = A,B, then it is immediate from (5) that h-optimality

requires that each agent from each side be matched to all agents from the other side, in which case
shk(θk) = Θl for all θk ∈ Θk. This rule trivially satisfies the threshold structure described in (6).

19Damiano and Li (2008) consider a model in which two matchmakers compete through entry fees on two sides.
However, they restrict the analysis to one-to-one matching thus abstracting from many of the effects identified in the
present paper.

20For example, we expect competition to reduce the amount of surplus captured by the platforms but not necessarily
the distortions in the provision of the matching services identified in the present paper. Indeed, as indicated in the
literature on competition in nonlinear prices, distortions may be even larger under (imperfect) competition than in the
monopolist case. Furthermore, when contract offers are allowed to depend on the offers made by the competitors (aka
“meet the competition clause”), it is often possible to sustain the monopolist outcome as a non-cooperative equilibrium,
which suggests that the results in the present paper are likely to remain relevant also for the case of competing platforms.
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Thus consider the situation where ϕh
k(vk) < 0 for some k ∈ {A,B}. Define Θ+

k ≡ {θk = (uk, vk) :

ϕh
k(vk) ≥ 0} the set of types θk = (uk, vk) whose ϕh

k-valuation is non-negative, and Θ−
k ≡ {θk =

(uk, vk) : ϕh
k(vk) < 0} the set of types with strictly negative ϕh

k-valuation.
Let s�k(·) be any implementable matching rule. We will show that, starting from s�k(·), one can

construct another implementable matching rule ŝk(·) that satisfies the threshold structure described
in (6) and that weakly increases the platform’s objective Ωh(M).

In order to do so, for each θk ∈ Θ+
k , let t̂k(vk) be defined as follows:

1. If |s�k(θk)|k ≥
��Θ+

l

��
k
, then let t̂k(vk) be such that

|Ul × [t̂k(vk), v̄l]|k =
��s�k(θk)

��
k
;

2. If |s�k(θk)|k ≤
��Θ+

l

��
k
= |Θl|k, then t̂k(vk) = vl.

3. If 0 < |s�k(θk)|k ≤
��Θ+

l

��
k
< |Θl|k (in which case rhl ∈ (vl, v̄l)), where rhl is implicitly defined by

ϕh
l (r

h
l ) = 0, then let t̂k(vk) = rhl .

Now apply the construction above to k = A,B and consider the matching rule ŝk(·) such that

ŝk(θk) =

�
Ul × [t̂k(vk), v̄l] ⇔ θk ∈ Θ+

k

{(ul, vl) ∈ Θ+
l : t̂l(vl) ≤ vk} ⇔ θk ∈ Θ−

k .

By construction, ŝk(·)k is monotone and hence implementable. Moreover, gk (|̂sk(θk)|k) ≥ gk (|s�k(θk)|k)
for all θk ∈ Θ+

k , implying that for any k ∈ {A,B}

ˆ
Θ+

k

ϕh
k(vk) · gk (|̂sk(uk, vk)|k) dFk(uk, vk) ≥

ˆ
Θ+

k

ϕh
k(vk) · gk

���s�k(uk, vk)
��
k

�
dFk(uk, vk). (15)

The rest of the proof shows that the matching rule ŝk(·) reduces the costs of cross-subsidization,
that is, the costs of serving agents with negative ϕh

k-valuations, relative to the original matching rule
s�k(·). That is,

ˆ
Θ−

k

ϕh
k(vk) · gk

���s�k(uk, vk)
��
k

�
dFk(uk, vk) ≤

ˆ
Θ−

k

ϕh
k(vk) · gk (|̂sk(uk, vk)|k) dFk(uk, vk). (16)

To establish (16), we start with the following result.

Lemma 1 A mechanism M is incentive compatible only if, with the exception of a countable subset
of Vk, |sk(uk, vk)|k = |sk(u�

k, vk)|k for all uk,u�
k ∈ Uk, k = A,B.

Proof of Lemma 1. To see this, note that incentive compatibility requires that |sk(uk, vk)|k ≥
|sk(u�

k, v
�
k)|k for any (uk, vk) and (u�

k, v
�
k) such that vk ≥ v�k. This in turn implies that E[|sk(ũk, vk)|k]

must be nondecreasing in vk, where the expectation is with respect to ũk given vk. Now at any
point vk ∈ Vk at which |sk(uk, vk)|k depends on uk, the expectation E[|sk(ũk, vk)|k] is necessarily
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discontinuous in vk. Because monotone functions can be discontinuous at most over a countable set
of points, this means that the quality of the matching set may vary with the characteristics uk only
over a countable subset of Vk. Q.E.D.

The next lemma introduces a property for arbitrary random variables that we will use below to
establish the result.

Definition 6 [monotone concave order] Let F be a probability measure on the interval [a, b] and
z1, z2 : [a, b] → R be two random variables defined over [a, b]. We say that z2 is smaller than z1 in the
monotone concave order if E [g (z2(ω̃))] ≤ E [g (z1(ω̃))] for all weakly concave and weakly increasing
functions g : R → R.

Lemma 2 Suppose z1, z2 : [a, b] → R+ are nondecreasing. If z2 is smaller than z1 in the monotone
concave order, then for any weakly concave and weakly increasing function g : R → R and any weakly
negative and weakly increasing function h : [a, b] → R−, E [h(ω̃)g (z1(ω̃))] ≤ E [h(ω̃)g (z2(ω̃))] .

Proof of Lemma 2. The proof argues that the inequality above is true for any weakly increasing
step function hn : [a, b] → R−, where n is the number of steps. Because the set of weakly increasing
step functions is dense (in the topology of uniform convergence) in the set of weakly increasing
functions, the result follows. Because z2 is smaller than z1 in the monotone concave order, the
inequality above is obviously true for the one-step function h1. Induction shows that this is true for
all n ∈ N. Q.E.D.

We then have the following result.

Lemma 3 Consider the two random variables z1, z2 : [vk, rhk ] → R+ given by z1(vk) ≡ Eũk
[|s�k(ũk, vk)|k |vk]

and z2(vk) ≡ Eũk
[|̂sk(ũk, vk)|k |vk], where the distribution over [vk, r

h
k ] is given by F v

k (vk)/F
v
k (r

h
k ).

Then z2 is smaller than z1 in the monotone concave order.

Proof of Lemma 3. From (i) the construction of ŝk(·), (ii) the assumption of positive affiliation
between attractiveness and willingness to pay, (iii) the fact that the measure F v

k (vk) is absolute
continuous with respect to the Lebesgue measure and (iv) Lemma 1, we have that for all x ∈ [vk, r

h
k ],

ˆ x

vk

ˆ
Uk

��s�k(uk, vk)
��
k
dFk(uk, vk) ≥

ˆ x

vk

ˆ
Uk

|̂sk(uk, vk)|k dFk(uk, vk),

or, equivalently, ˆ x

vk

z1(vk)dF
v
k (vk) ≥

ˆ x

vk

z2(vk)dF
v
k (vk). (17)

Denote by [v̇1k, v̇
2
k], [v̇

3
k, v̇

4
k],[v̇

5
k, v̇

6
k], ... the collection of T (where T ∈ N ∪ {∞}) intervals in which

z1(vk) < z2(vk). Because
´ rhk
vk

z1(vk)dF v
k (vk) ≥

´ rhk
vk

z2(vk)dF v
k (vk), it is clear that T ≡ ∪T−1

t=0 [v̇
2t+1
k , v̇2t+2

k ]

is a proper subset of [vk, rhk ] whenever the inequality is strict. Now construct ż2(·) on the domain
[vk, r

h
k ] so that:

1. ż2(vk) = z1(vk) < z2(vk) for all vk ∈ T ;
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2. z2(vk) ≤ ż2(vk) = αz1(vk) + (1− α)z2(vk) ≤ z1(vk), where α ∈ [0, 1], for all vk ∈ [vk, r
h
k ]\T ;

3.
´
[vk,r

h
k ]\T

{ż2(vk)− z2(vk)} dF v
k (vk) =

´
T {z2(vk)− z1(vk)} dF v

k (vk).

Because
´ rhk
vk

z1(vk)dF v
k (vk) ≥

´ rhk
vk

z2(vk)dF v
k (vk), there always exists some α ∈ [0, 1] such that 2 and

3 hold. From the construction above, ż2(·) is weakly increasing and

ˆ rhk

vk

ż2(vk)dF
v
k (vk)/F

v
k (r

h
k ) =

ˆ rhk

vk

z2(vk)dF
v
k (vk)/F

v
k (r

h
k ). (18)

This implies that for all weakly concave and weakly increasing functions g : R → R,

ˆ rhk

vk

g (z2(vk)) dF
v
k (vk)/F

v
k (r

h
k ) ≤

ˆ rhk

vk

g (ż2(vk)) dF
v
k (vk)/F

v
k (r

h
k ) ≤

ˆ rhk

vk

g (z1(vk)) dF
v
k (vk)/F

v
k (r

h
k ),

where the first inequality follows from the weak concavity of g(·) along with (18), while the second
inequality follows from the fact that ż2(vk) ≤ z1(vk) for all vk ∈ [vk, r

h
k ] and g(·) is weakly increasing.

Q.E.D.
We are now ready to prove inequality (16). The results above imply that

ˆ
Θ−

k

ϕh
k(vk) · gk

���s�k(uk, vk)
��
k

�
dFk(uk, vk) =

ˆ rhk

vk

ϕh
k(vk) · Eũk

�
gk

���s�k(ũk, vk)
��
k

�
|vk

�
dF v

k (vk)

=

ˆ rhk

vk

ϕh
k(vk)gk (z1(vk)) dF

v
k (vk)

= F v
k (r

h
k ) · E

�
ϕh
k(vk)gk (z1(vk)) |vk ≤ rhk

�

≤ F v
k (r

h
k ) · E

�
ϕh
k(vk)gk (z2(vk)) |vk ≤ rhk

�

=

ˆ rhk

vk

ϕh
k(vk) · gk (Eũk

[|̂sk(ũk, vk)|k |vk]) dF
v
k (vk)

=

ˆ
Θ−

k

ϕh
k(vk) · gk (|̂sk(ũk, vk)|k) dFk(uk, vk).

The first equality follows from changing the order of integration. The second equality follows from the
fact that, since s�k(·) is implementable, gk (|s�k(uk, vk)|k) is invariant in uk except over a countable
subset of [vk, rhk ], as shown in Lemma 1. The first inequality follows from Lemma 2. The equality
in the fifth line follows again from the fact that, by construction, ŝk(·) is implementable, and hence
invariant in uk except in a countable subset of [vk, rhk ]. The series of equalities and inequalities above
establishes (16), as we wanted to show.

Summing up (15) and (16) shows that the platform’s objective is weakly greater under ŝk(·) than
under s�k(·), thus proving the result. Q.E.D.

Proof of Proposition 2 (case ϕh
l (vl) < 0 ≤ ϕh

k(vk)). We show that a single network is optimal
if and only if �h

k(vk, vl) ≥ 0, whereas nested multi-homing is optimal if and only if �h
k(vk, vl) < 0.
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First, suppose that �h
k(vk, vl) ≥ 0 and that the matching rule is multi-homing. Take an arbitrary

point vk ∈ [vk, v̄k] at which the function thk(·) is strictly decreasing in a right neighborhood of vk.
Consider the effect of a marginal reduction in the threshold thk(vk) around the point vl = thk(vk). This is
given by �h

k(vk, vl). Next note that, given any interval [v�k, v
��
k ] over which the function thk(·) is constant

and equal to vl, the marginal effect of decreasing the threshold below vl for any type vk ∈ [v�k, v
��
k ] is

given by
´ v��k
v�k

[∆h
k(vk, vl)]dvk. Lastly note that sign{∆h

k(vk, vl)} = sign{ψh
k (vk) + ψh

l (vl)}. Under the
SR condition, this means that �h

k(vk, vl) > 0 for all (vk, vl). The results above then imply that the
platform can increase its objective by decreasing the threshold for any type for which thk(vk) > vl,
proving that a single complete network is optimal.

Next, suppose that �h
k(vk, vl) < 0 and that the platform uses a single network. First suppose

that such a network is complete (that is, ω̂h
l = vl or, equivalently, thk(vk) = vl). The fact that

�h
k(vk, vl) < 0 implies that the marginal effect of raising the threshold thk(vk) for the lowest type

on side k, while leaving the threshold untouched for all other types is positive. By continuity of the
marginal effects, the platform can then improve its objective by switching to a multi-homing rule
that is obtained from the complete network by increasing thk(·) in a right neighborhood of vk while
leaving thk(·) untouched elsewhere, contradicting the optimality of a single network.

Next consider the case where the single network is incomplete. From the same arguments as in
the main text, for such a network to be optimal, it must be that ω̂h

l < rhl and ω̂h
k = vk, with ω̂h

l

satisfying the following first-order condition

ĝl(vk)ϕ
h
l (ω̂

h
l )− ĝ�k(ω̂

h
l )

ˆ vk

vk

ϕh
k(vk)dF

v
k (vk) = 0.

This condition requires that the total effect of a marginal increase of the size of the network on side
l (obtained by reducing the threshold thk(vk) below ω̂h

l for all types vk) be zero. This rewrites as´ vk
vk

[∆h
k(vk, ω̂

h
l )]dvk = 0. Because sign{∆h

k(vk, ω̂
h
l )} = sign{ψh

k (vk) + ψh
l (ω̂

h
l )}, under Condition SR

this means that there exists a v#k ∈ (vk, v̄k) such that
´ vk
v#k

∆h
k(vk, ω̂

h
l )dvk > 0. This means that there

exists a ω#
l < ω̂h

l such that the platform could increase its payoff by switching to the following nested
multi-homing rule:

shk(vk) =

�
[ω#

l , vl] ⇔ vk ∈ [v#k , vk]

[ω̂h
l , vl] ⇔ vk ∈ [vk, v

#
k ],

We conclude that multi-homing is optimal when �h
k(vk, vl) < 0. Q.E.D.

Proof of Proposition 3. Using the result in Proposition 1, the h-optimal matching rule solves
the following program, which we call the Full Program (PF ) :

PF : max
{ωk,tk(·)}k=A,B

�

k=A,B

ˆ vk

ωk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) (19)
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subject to the following constraints for k, l ∈ {A,B}, l �= k

tk(vk) = inf{vl : tl(vl) ≤ vk}, (20)

tk(·) weakly decreasing, (21)

and tk(·) : [ωk, vk] → [ωl, vl] (22)

with ωk ∈ [vk, v̄k] and ωl ∈ [vl, v̄l]. Constraint (20) is the reciprocity condition, rewritten using
the result in Proposition 1. Constraint (21) is the monotonicity constraint required by incentive
compatibility. Finally, constraint (22) is a domain-codomain restriction which requires the function
tk(·) to map each type on side k that is included in the network into the set of types on side l that
is also included in the network.

Because �h
k(vk, vl) < 0 (i.e., because multi-homing is optimal), it must be that rhk > vk for

some k ∈ {A,B}. Furthermore, from the arguments in the proof of Proposition 2, at the optimum,
ωh
k ∈ [vk, r

h
k ]. In addition, whenever rhl > vl, ωh

l ∈ [vl, r
h
l ] and thk(r

h
k ) = rhl . Hereafter, we will assume

that rhl > vl. When this is not the case, then ωh
l = vl and thk(vk) = vl for all vk ≥ rhk , while the

optimal ωh
k and thk(vk) for vk < rhk are obtained from the solution to program PF

k below by replacing
rhl with vl).

Thus assume ϕh
k(vk) < 0 for k = A,B. Program PF can then be decomposed into the following

two independent programs PF
k , k = A,B:

PF
k : max

ωk,tk(·),tl(·)

ˆ rhk

ωk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) +

ˆ vl

rhl

ĝl(tl(vl)) · ϕh
l (vl) · dF v

l (vl) (23)

subject to tk(·) and tl(·) satisfying the reciprocity and monotonicity constraints (20) and (21), along
with the following constraints:

tk(·) : [ωk, r
h
k ] → [rhl , vl], tl(·) : [rhl , vl] → [ωk, r

h
k ]. (24)

Program PF
k is not a standard calculus of variations problem. As an intermediate step, we will

thus consider the following Auxiliary Program (PAu
k ), which strengthens constraint (21) and fixes

ωk = vk and ωl = vl:

PAu
k : max

tk(·),tl(·)

ˆ rhk

vk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) +

ˆ vl

rhl

ĝl(tl(vl)) · ϕh
l (vl) · dF v

l (vl) (25)

subject to (20),
tk(·), tl(·) strictly decreasing, (26)

and tk(·) : [vk, rhk ] → [rhl , vl], tl(·) : [rhl , vl] → [vk, r
h
k ] are bijections. (27)
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By virtue of (26), (20) can be rewritten as tk(vk) = t−1
l (vk). Plugging this into the objective

function (25) yields

ˆ rhk

vk

ĝk(tk(vk)) · ϕh
k(vk) · fv

k (vk)dvk +

ˆ vl

rhl

ĝl(t
−1
k (vl)) · ϕh

l (vl) · fv
l (vl)dvl. (28)

Changing the variable of integration in the second integral in (28) to ṽl ≡ t−1
k (vl), using the fact

that tk(·) is strictly decreasing and hence differentiable almost everywhere, and using the fact that
t−1
k (rhl ) = rhk and t−1

k (vl) = vk, the auxiliary program can be rewritten as follows:

PAu
k : max

tk(·)

ˆ rhk

vk

�
ĝk(tk(vk)) · ϕh

k(vk) · fv
k (vk)− ĝl(vk) · ϕh

l (tk(vk)) · fv
l (tk(vk)) · t

�
k(vk)

�
dvk

(29)
subject to tk(·) being continuous, strictly decreasing, and satisfying the boundary conditions

tk(vk) = vl and tk(r
h
k ) = rhl . (30)

Consider now the Relaxed Auxiliary Program (PR
k ) that is obtained from PAu

k by dispensing with
the condition that tk(·) be continuous and strictly decreasing and instead allowing for any measurable
control tk(·) : [vk, r

h
k ] → [rhl , vl] with bounded subdifferential that satisfies the boundary condition

(30).

Lemma 4 PR
k admits a piece-wise absolutely continuous maximizer t̃k(·).

Proof of Lemma 4. Program PR
k is equivalent to the following optimal control problem PR

k :

PR
k : max

y(·)

ˆ rhk

vk

�
ĝk(x(vk)) · ϕh

k(vk) · fv
k (vk)− ĝl(vk) · ϕh

l (x(vk)) · fv
l (x(vk)) · y(vk)

�
dvk

subject to

x�(vk) = y(vk) a.e., x(vk) = vl, x(rhk ) = rhl y(vk) ∈ [−K,+K] and x(vk) ∈ [rhl , vl],

where K is a large number. Program PR
k satisfies all the conditions of the Filipov-Cesari Theorem

(see Cesari (1983)). By that theorem, we know that there exists a measurable function y(·) that
solves PR

k . By the equivalence of PR
k and PR

k , it then follows that PR
k admits a piece-wise absolutely

continuous maximizer t̃k(·). Q.E.D.

Lemma 5 Consider the function η(·) implicitly defined by

∆h
k(vk, η(vk)) = 0. (31)
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Let ṽk ≡ inf{vk ∈ [vk, r
h
k ] :(31) admits a solution}. The solution to PR

k is given by

t̃k(vk) =

�
v̄l if vk ∈ [vk, ṽk]

η(vk) if vk ∈ (ṽk, rhk ].
(32)

Proof of Lemma 5. From Lemma 4, we know that PR
k admits a piece-wise absolutely continuous

solution. Standard results from calculus of variations then imply that such solution t̃k(·) must satisfy
the Euler equation at any interval I ⊂ [vk, r

h
k ] where its image t̃k(vk) ∈ (rhl , vl). The Euler equation

associated with program PR
k is given by (31). Condition SR ensures that (i) there exists a ṽk ∈ [vk, r

h
k )

such that (31) admits a solution if and only if vk ∈ [ṽk, rhk ], (ii) that at any point vk ∈ [ṽk, rhk ] such
solution is unique and given by η(vk) =

�
ψh
l

�−1 �−ψh
k (vk)

�
, and (iii) that η(·) is continuous and

strictly decreasing over [ṽk, rhk ].

When ṽk > vk, (31) admits no solution at any point vk ∈ [vk, ṽk], in which case t̃k(vk) ∈ {rhl , vl}.
Because ϕh

k(vk) < 0 for all vk ∈ [vk, ṽk] and because ĝk(·) is decreasing, it is then immediate from
inspecting the objective (29) that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk].

It remains to show that t̃k(vk) = η(vk) for all vk ∈ [ṽk, rhk ]. Because the objective function in
PR
k is not concave in (tk, t�k) for all vk, we cannot appeal to standard sufficiency arguments. Instead,

using the fact that the Euler equation is a necessary optimality condition for interior points, we will
prove that t̃k(vk) = η(vk) by arguing that there is no function t̂k(·) that improves upon t̃k(·) and such
that t̂k(·) coincides with t̃k(·) except on an interval (v1k, v

2
k) ⊆ [ṽk, rhk ] over which t̂hk(vk) ∈ {rhl , vl}.

To see that this is true, fix an arbitrary (v1k, v
2
k) ⊆ [ṽk, rhk ] and consider the problem that consists

in choosing optimally a step function t̂k(·) : (v1k, v2k) → {rhl , vl}. Because step functions are such that
t̂�k(vk) = 0 at all points of continuity and because ϕh

k(vk) < 0 for all vk ∈ (v1k, v
2
k), it follows that

the optimal step function is given by t̂k(vk) = vl for all vk ∈ (v1k, v
2
k). Notice that the value attained

by the objective (29) over the interval (v1k, v
2
k) under such step function is zero. Instead, an interior

control tk(·) : (v1k, v2k) → (rhl , vl) over the same interval with derivative

t�k(vk) <
ĝk(tk(vk)) · ϕh

k(vk) · fv
k (vk)

ĝl(vk) · ϕh
l (tk(vk)) · fv

l (tk(vk))

for all vk ∈ (v1k, v
2
k) yields a strictly positive valuation. This proves that the solution to PR

k must
indeed satisfy the Euler equation (31) for all vk ∈ [ṽk, rhk ]. Together with the property established
above that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk], this establishes that the unique piece-wise absolutely
continuous function that solves PR

k is the control t̃k(·) that satisfies (32). Q.E.D.

Denote by max{PR
k } the value of program PR

k (i.e., the value of the objective (29) evaluated under
the control t̃hk(·) defined in Lemma 5). Then denote by sup{PAu

k } and sup{PF
k } the supremum of

programs PAu
k and PF

k , respectively. Note that we write sup rather than max as, a priori, a solution
to these problems might not exist.

Lemma 6 sup{PF
k } = sup{PAu

k } = max{PR
k }.
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Proof of Lemma 6. Clearly, sup{PF
k } ≥ sup{PAu

k }, for PAu
k is more constrained than PF

k .
Next note that sup{PF

k } = sup{P̂F
k } where P̂F

k coincides with PF
k except that ωk is constrained to

be equal to vk and tk(vk) is constrained to be equal to v̄l. This follows from the fact that excluding
types below a threshold ω�

k gives the same value as setting tk(vk) = v̄l for all vk ∈ [vk, ω
�
k). That

sup{P̂F
k } = sup{PAu

k } then follows from the fact any pair of measurable functions tk(·), tl(·) satisfying
conditions (20), (21) and (24), with ωk = vk and tk(vk) = v̄l can be approximated arbitrarily well
in the L2-norm by a pair of functions satisfying conditions (20), (26) and (27). That max{PR

k } ≥
sup{PAu

k } follows from the fact that PR
k is a relaxed version of PAu

k . That max{PR
k } = sup{PAu

k } in
turn follows from the fact that the solution t̃hk(·) to PR

k can be approximated arbitrarily well in the
L2-norm by a function tk(·) that is continuous and strictly decreasing. Q.E.D.

From the results above, we are now in a position to exhibit the solution to P k
F . Let ωh

k = ṽk, where
ṽk is the threshold defined in Lemma 5. Next for any vk ∈ [ṽk, rhk ], let thk(vk) = t̃k(vk) where t̃k(·) is
the function defined in Lemma 5. Finally, given thk(·) : [ωh

k , r
h
k ] → [rhl , vl], let tkl (·) : [rhl , vl] → [ωh

k , r
h
k ]

be the unique function that satisfies (20). It is clear that the tripe ωh
k , t

h
k(·), thl (·) constructed this

way satisfies conditions (20), (21) and (24), and is therefore a feasible candidate for program PF
k . It

is also immediate that the value of the objective (23) in PF
k evaluated at ωh

k , t
h
k(·), thl (·) is the same

as max{PR
k }. From Lemma 6, we then conclude that ωh

k , t
h
k(·), thl (·) is a solution to PF

k .
Applying the construction above to k = A,B and combining the solution to program PF

A with
the solution to program PF

B then gives the solution
�
ωh
k , t

h
k(·)

�
k∈{A,B} to program PF .

By inspection, it is easy to see that the corresponding rule is maximally separating. Furthermore,
from the arguments in Lemma 5, one can easily verify that there is exclusion at the bottom on side k

(and no bunching at the top on side l) if ṽk > vk and bunching at the top on side l (and no exclusion
at the bottom on side k) if ṽk = vk. By the definition of ṽk, in the first case, there exists a v�k > vk

such that ∆h
k(v

�
k, v̄l) = 0, or equivalently ψh

k (v
�
k) + ψh

l (v̄l) = 0. Condition SR along with the fact
that sign{∆h

k(vk, vl)} = sign{ψh
k (vk)+ψh

l (vl)} then implies that �h
k(vk, v̄l) = �h

l (v̄l, vk) < 0. Hence,
whenever �h

k(vk, v̄l) = �h
l (v̄l, vk) < 0, there is exclusion at the bottom on side k and no bunching at

the top on side l. Symmetrically, �h
l (vl, v̄k) = �h

k(v̄k, vl) < 0 implies that there is exclusion at the
bottom on side l and no bunching at the top on of side k, as stated in the proposition.

Next, consider the case where ṽk = vk. In this case there exists a η(vk) ∈ [rhl , vl] such that
�h

k(vk, η(vk)) = 0, or equivalently ψh
k (vk)+ψh

l (η(vk)) = 0. Assume first that η(vk) < vl. By Condition
SR, it then follows that ψh

k (vk)+ψh
l (v̄l) > 0 or, equivalently, that �h

k(vk, v̄l) = �h
l (v̄l, vk) > 0. Hence,

whenever �h
k(vk, v̄l) = �h

l (v̄l, vk) > 0, there is no exclusion at the bottom on side k and bunching at
the top on side l. Symmetrically, �h

l (vl, v̄k) = �h
k(v̄k, vl) > 0 implies that there is bunching at the

top on side k and no exclusion at the bottom on side l, as stated in the proposition.
Next, consider the case where η(vk) = vl. In this case ωh

k = vk and thk(vk) = v̄l. This is the
knife-edge case where �h

k(vk, v̄l) = �h
l (v̄l, vk) = 0 in which there is neither bunching at the top on

side l nor exclusion at the bottom on side k. Q.E.D.
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Proof of Proposition 5. Let xhk(vk) ≡
��shk(vk)

��
k

denote the size of the matching set that each
agent with valuation vk obtains under the mechanism Mh. Using (4), for any qk ∈ xhk(Vk), i.e., for
any qk induced by Mh,

ρhk(qk) =
�
xhk

�−1
(qk) · gk(qk)−

ˆ (xh
k)

−1
(qk)

vk

gk(x
h
k(v))dv,

where
�
xhk

�−1
(qk) ≡ inf{vk : xhk(vk) = qk} is the generalized inverse of xhk(·). It follows from

Proposition 3 that
�
xhk

�−1
(qk) is strictly increasing and differentiable at any qk in the image of the

separating range, i.e., for any qk ∈ [
��shk(ωh

k )
��
k
,
��shk(thl (ωh

l ))
��
k
]. Therefore, from the integral formula

above, we get that the optimal price schedules ρhk(·) are differentiable at any quantity qk in the image
of the separating range, and

dρhk
dqk

(qk) =
�
xhk

�−1
(qk) · g�k(qk) = vk · g�k

����shk(vk)
���
k

�
, (33)

where |shk(vk)|k = qk. Substituting the elasticity formula (12) and the marginal price formula (33)
into the Lerner-Wilson formula (13) and using the same formulas for side l and recognizing that

�
xhl

�−1
�
Dk

�
qk,

dρhk
dqk

(qk)

��
=

�
xhl

�−1
�
1− F v

k

��
xhk

�−1
(qk)

��
= thk(

�
xhk

�−1
(qk)) = thk(vk)

for vk such that |shk(vk)|k = qk, then leads to the Euler equation (10). Q.E.D.
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Online Supplementary Material

1. Proofs omitted in the main text

Proof of Proposition 4. The result trivially holds when �W
k (vk, vl) ≥ 0, for in this case the

welfare-maximizing matching rule always employs a single complete network. Thus suppose that
�W

k (vk, vl) < 0. Because ϕP
k (vk) ≤ ϕW

k (vk) for all vk ∈ [vk, vk], with strict inequality for all vk < v̄k,

then �P
k (vk, vl) is also strictly negative. Furthermore, the same property implies that ψP

k (vk) ≤
ψW
k (vk) for all vk ∈ [vk, vk]. Now recall, from the arguments in the proof of Proposition 3, that the

h-optimal rule exhibits exclusion at the bottom on side k if and only if �h
k(vk, v̄l) = �h

l (v̄l, vk) < 0 or,
equivalently, if and only if ψh

k (vk) + ψh
l (v̄l) < 0. In this case, the threshold ωh

k is the unique solution
to ψh

k (ω
h
k )+ψh

l (v̄l) = 0. The fact that ωP
k ≥ ωW

k then follows directly from the ranking between ψP
k (·)

and ψW
k (·) along with the strict monotonicity of these functions. This establishes the exclusion effect.

Next, take any vk > ωP
k (≥ ωW

k ) and suppose that tWk (vk) > vl. The threshold tWk (vk) then solves
ψW
k (vk) + ψW

l (tWk (vk)) = 0. The same monotonicities discussed above then imply that tPk (vk) >

tWk (vk). This establishes the isolation effect. Q.E.D.

Proof of Proposition 6. Hereafter, we use the annotation "ˆ" for all variables in the mecha-
nism M̂P corresponding to the new distribution F̂ σ

k (·|·) and continue to denote the variables in the
mechanism MP corresponding to the original distribution F σ

k (·|·) without annotation. By definition,
we have that ψ̂P

k (vk) ≥ ψP
k (vk) for all vk ≤ rPk while ψ̂P

k (vk) ≤ ψP
k (vk) for all vk ≥ rPk . Recall, from

the arguments in the proof of Proposition 3, that for any vk < ωP
k , ∆

P
k (vk, v̄l) < 0 or, equivalently,

ψP
k (vk) + ψP

l (v̄l) < 0, whereas for any vk ∈ (ωk, rPk ], t
P
k (vk) satisfies ψP

k (vk) + ψP
l (t

P
k (vk)) = 0. The

ranking between ψ̂P
k (·) and ψP

k ·), along with the strict monotonicity of these functions then implies
that ω̂P

k ≤ ωP
k and, for any vk ∈ [ωP

k , r
P
k ], t̂

P
k (vk) ≤ tPk (vk). Symmetrically, because ψ̂P

k (vk)+ψP
l (vl) <

ψP
k (vk) + ψP

l (vl) for all vk > rPk , all vl, we have that t̂Pk (vk) ≥ tPk (vk) for all vk > rPk . This completes
the proof of part (1) in the Proposition.

Next consider part (2). Note that, because Fl is unchanged, the result in part 1 implies that
��̂sPk (vk)

��
k
≥

��sPk (vk)
��
k

if and only if vk ≤ rPk . Using (4), note that for all types θk with valuation
vk ≤ rPk

Πk(θk; M̂
P ) =

ˆ vk

vk

��̂sPk (ṽk)
��
k
dṽk ≥ Πk(θk;M

P ) =

ˆ vk

vk

��sPk (ṽk)
��
k
dṽk.

Furthermore, since
��̂sPk (vk)

��
k
≤

��sPk (vk)
��
k

for all vk ≥ rPk , there exists a threshold type ν̂k > rPk
(possibly equal to v̄k) such that Πk(θk; M̂P ) ≥ Πk(θk;MP ) if and only if vk ≤ ν̂k, which establishes
part 2 in the proposition. Q.E.D.

Proof of Corollary 3. Let xPk (vk) ≡
��sPk (vk)

��
k

denote the quality of the matching set that
each agent with valuation vk obtains under the original mechanism, and x̂Pk (vk) ≡

��̂sPk (vk)
��
k

the
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corresponding quantity under the new mechanism. Using (4), for any q ∈ xPk (Vk) ∩ x̂Pk (Vk), i.e., for
any q offered both under MP and M̂P ,

ρPk (q) =
�
xPl

�−1
(q)q −

ˆ x−1
k (q)

vk

xk(v)dv and

ρ̂Pk (q) =
�
x̂Pl

�−1
(q)q −

ˆ x̂−1
k (q)

vk

x̂k(v)dv,

where
�
xPl

�−1
(q) ≡ inf{vk : xPk (vk) = q} is the generalized inverse of xPk (·) and

�
x̂Pl

�−1
(q) = inf{vk :

x̂Pk (vk) = q} the corresponding inverse for x̂Pk (·). We thus have that

ρPk (q)− ρ̂Pk (q) =

ˆ (xP
k )

−1
(q)

vk

[x̂Pk (v)− xPk (v)]dv +

ˆ (x̂P
l )

−1
(q)

(xP
l )

−1
(q)

[x̂Pk (v)− q]dv.

From the results in Proposition 6, we know that [xPk (vk) − x̂Pk (vk)][vk − rPk ] ≥ 0 with xPk (r
P
k ) =

x̂Pk (r
P
k ). Therefore, for all q ∈ xPk (Vk) ∩ x̂Pk (Vk), with q ≤ xPk (r

P
k ) = x̂Pk (r

P
k ),

ρPk (q)− ρ̂Pk (q) =

ˆ (xP
l )

−1
(q)

vk

[x̂Pk (v)− xPk (v)]dv −
ˆ (xP

k )
−1

(q)

(x̂P
k )

−1
(q)

[x̂Pk (v)− q]dv

=

ˆ (xP
l )

−1
(q)

vk

[x̂Pk (v)− xPk (v)]dv +

ˆ (xP
k )

−1
(q)

(x̂P
k )

−1
(q)

[q − xPk (v)]dv

≥ 0,

whereas for q ≥ xPk (r
P
k ) = x̂Pk (r

P
k ),

ρPk (q)− ρ̂Pk (q) =

ˆ rPk

vk

[x̂Pk (v)− xPk (v)]dv +

ˆ (xP
k )

−1
(q)

rPk

[x̂Pk (v)− xPk (v)]dv +

ˆ (x̂P
k )

−1
(q)

(xP
k )

−1
(q)

[x̂Pk (v)− q]dv

= ρPk (x
P
k (r

P
k ))− ρ̂Pk (x

P
k (r

P
k )) +

ˆ (xP
k )

−1
(q)

rPk

[x̂Pk (v)− xPk (v)]dv +

ˆ (x̂P
k )

−1
(q)

(xP
k )

−1
(q)

[x̂Pk (v)− q]dv

= ρPk (x
P
k (r

P
k ))− ρ̂Pk (x

P
k (r

P
k )) +

�ˆ (xP
k )

−1
(q)

rPk

x̂Pk (v)dv −
�
x̂Pk

�−1
(q)q

�

−
�ˆ (xP

l )
−1

(q)

rPk

xPk (v)dv −
�
xPk

�−1
(q)q

�
.

2



Integrating by parts, using the fact that xPk (r
P
k ) = x̂Pk (r

P
k ), and changing variables we have that

�ˆ (x̂P
l )

−1
(q)

rPk

x̂Pk (v)dv −
�
x̂Pl

�−1
(q)q

�
−
�ˆ (xP

k )
−1

(q)

rPk

xPk (v)dv −
�
xPl

�−1
(q)q

�

=

�
rPk x̂

P
k (r

P
k )−

ˆ (x̂P
l )

−1
(q)

rPk

v
dx̂Pk (v)

dv
dv

�
−
�
rPk x

P
k (r

P
k )−

ˆ (xP
k )

−1
(q)

rPk

v
dxPk (v)

dv
dv

�

= −
ˆ q

xP
k (rPk )

(
�
x̂Pl

�−1
(z)−

�
xPl

�−1
(z))dz.

Because
�
x̂Pl

�−1
(z) ≥

�
xPl

�−1
(z) for z > xPk (r

P
k ), we then conclude that the price differential ρPk (q)−

ρ̂Pk (q), which is positive at q = xPk (r
P
k ) = x̂Pk (r

P
k ), declines as q grows above xPk (r

P
k ). Going back to the

original notation, it follows that there exists q̂k >
��sPk (rPk )

��
k
=

��̂sPk (rPk )
��
k

(possibly equal to
��̂sPk (v̄k)

��
k
)

such that ρ̂Pk (q) ≤ ρPk (q) if and only if q ≤ q̂k. This establishes the result. Q.E.D.

2. Effects of Changes in Demand Elasticity

In this part, we formally prove the claims in Section 3.5 in the main text about the effects of
changes in demand elasticity on matching sets and prices, under profit maximization.

Definition 7 [higher elasticity] Side k is less elastic under distribution F̃k than under distribution
Fk if F̃ v

k dominates F v
k in the hazard-rate order, and, for any vk, F̃ σ

k (·|vk) = F σ
k (·|vk).21

The next proposition extends the results in Rochet and Tirole (2006) and Armstrong (2006) for
single-networks to the case of a two-sided platform that price-discriminates by offering menus of
networks.

Proposition A1 (effects of changes in elasticity on matching sets and payoffs) In
addition to Conditions PA and SR, suppose that network effects are linear (i.e., gA(x) = gB(x) = x),
and that �h

k(vk, vl) < 0. If the elasticity of side k decreases, then the platform moves from a matching
rule sPk (·) to a matching rule s̃Pk (·) such that:

1. s̃Pk (vk) ⊆ sPk (vk) for all vk ∈ Vk,
2. Πk(θk; M̃P ) < Πk(θk;MP ) for all vk ≥ ωP

k .
Proof of Proposition A1. Denote by ψ̃P

k (vk) the ψ-function associated with the new distribu-
tion F̃ v

k (·), and by ϕ̃P
k (vk) the virtual valuations associated with F̃ v

k (·). Since F̃ v
k (·) dominates F v

k (·)
in the hazard rate order, it follows that ϕ̃P

k (vk) ≤ ϕP
k (vk) and, because gk(·) and gl(·) are linear,

ψ̃P
k (vk) ≤ ψP

k (vk) for all vk ∈ Vk. Therefore for all vk ∈ Vk,

ψ̃P
k (vk) + ψP

l (t
P
k (vk)) < ψP

k (vk) + ψP
l (t

P
k (vk)).

From the arguments in the proof of Proposition 3, we then have that ω̃P
k ≥ ωP

k and t̃Pk (vk) ≥ tPk (vk)

for vk, which establishes part 1. For Part 2 note that, because Fl is unchanged, it then follows that
21The distribution F̃ v

k dominates F v
k in the hazard-rate order if and only if fv

k (vk)

1−Fv
k (vk)

≥ f̃v
k (vk)

1−F̃v
k (vk)

for all vk ∈ Vk.
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��̃sPk (vk)
��
k
≤

��sPk (vk)
��
k

for all vk ≥ ωP
k . Furthermore, because necessarily

��̃sPk (vk)
��
k
<

��sPk (vk)
��
k

for all
vk < rPk , we have that Πk(θk; M̃P ) < Πk(θk;MP ) for all vk ≥ ωP

k . Q.E.D.

The next corollary builds on the preceding Proposition A1 to determine the effects of a decrease
in the elasticity on side k on the price schedule ρPk (·).

Corollary A1 (effects of changes in elasticity on prices) In addition to Conditions PA
and SR, suppose that network effects are linear (i.e., gA(x) = gB(x) = x), and that �h

k(vk, vl) < 0.
If the elasticity of side k decreases, then the platform switches from a price schedule ρPk (·) to a price
schedule ρ̃Pk (·) such that ρ̃P (q) ≥ ρPk (q) for all q. Furthermore, in the case where network effects
depend only on quantities (i.e., σl(·) ≡ 1), the marginal price for each quantity q that is offered both
under the old and the new distribution increases, that is, dρ̃Pk (q)/dq > dρPk (q)/dq.

Proof of Corollary A1. Because
��̃sPk (vk)

��
k
≤

��sPk (vk)
��
k

for all vk ∈ Vk, the result that ρ̃P (q) ≥
ρPk (q) for all q follows from the same steps as in the proof of Corollary 3. The result for the marginal
prices follows from Proposition 5. To see this, first note that, for each quantity q offered both under
the old and the new rule,

�
x̃Pl

�−1
�
D̃k

�
q,

dρ̃Pk (q)
dq

��
=

�
xPl

�−1
�
Dk

�
q,

dρPk (q)
dq

��
. To see this, recall

that, by construction
�
xPl

�−1
�
Dk

�
q,

dρPk (q)
dq

��
= tPk (

�
xPl

�−1
(q)) and

�
x̃Pl

�−1
�
D̃k

�
q,

dρ̃Pk (q)
dq

��
=

t̃Pk (
�
x̃Pl

�−1
(q)). Because the distribution on side l has not changed, it must be that tPk (

�
xPl

�−1
(q)) =

t̃Pk (
�
x̃Pl

�−1
(q)). Using the fact that, when network effects are linear,

�
xPl

�−1
�
Dk

�
q,

dρPk (q)

dq

��
=

dρPl

�
Dk

�
q,

dρPk (q)
dq

��

dql

we then have that the right-hand-side in the formula for the marginal prices in Proposition 5 is
unaffected by the shock. This result, together with the fact that, for any given marginal price
dρPk (qk)/dqk on side k, a decrease in elasticity on side k implies that the right-hand-side in the same
formula is smaller when evaluated at the same marginal price and the fact that the right-hand-side
is increasing in dρPk (qk)/dqk then gives the result. Q.E.D.
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