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Abstract

We analyze social learning and innovation in an overlapping generations model

in which available technologies have correlated payoffs. Each generation experiments

within a set of policies whose payoffs are initially unknown and drawn from the path of

a Brownian motion with drift. Marginal innovation consists in choosing a technology

within the convex hull of policies already explored and entails no direct cost. Radical

innovation consists in experimenting beyond the frontier of that interval, and entails

a cost that increases with the distance from the frontier, and may decrease with the

best technology currently available. We study how successive generations alternate

between radical and marginal innovation, in a pattern reminiscent of Schumpeterian

cycles. Even when the underlying Brownian motion has a positive drift, radical inno-

vation stops in finite time. New generations then fine-tune policies in search of a local

optimum, converging to a single technology. Our analysis thus suggests that sustaining

radical innovation in the long-run requires external intervention.

∗Email addresses: u-garfagnini@kellogg.northwestern.edu b-strulovici@northwestern.edu.
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1 Introduction

The invention of the transistor in the 1950s, the first large-scale cellular-phone system in the

1970s, and the internet in the 1990s are all major historical breakthroughs that boosted the

development of new industries for at least the next decade. The importance of innovation

from a social perspective has ample empirical evidence (Griliches (1992), Hall (1996)), but

is such innovation sustainable in the long-run?

In the last few decades, institutions such as Bell Labs and DARPA (Defense Advanced Re-

search Projects Agency) have shifted funding from basic to more applied research. Those

institutions contributed to the economic boom of the US economy with their innovative re-

search in the second half of the twentieth century.1 In a recent paper Jones and Williams

(1998) also conclude that “the optimal share of resources to invest in research is conserva-

tively estimated to be two to four times larger than the actual amount invested by the U.S.

economy. The extent of underinvestment is substantial, and could well be much larger”.

While this behavior is optimal in the short-term because it leads to higher profitability, it

undermines long-run growth.

We analyze a model of social learning and innovation where available policies (or “technolo-

gies”) have correlated payoffs. At each period, a new, “young” generation can experiment

with a new technology chosen on the positive real half-line, whose payoff is initially unknown

and drawn from the path of a Brownian motion with drift.2 Each generation lives for two

periods and thus has an incentive to experiment in its first period. We distinguish between

radical and marginal innovation: marginal innovation consists in choosing a technology that

is in the convex hull (i.e., interval) of policies that have been tried earlier. Marginal in-

novation bears a fixed cost, which is normalized to zero. Radical innovation consists in

experimenting beyond the frontier of that interval, and incurs a convex cost that increases

with the distance from the frontier, and may decrease with the best technology currently

available. We study how successive generations alternate between radical and marginal in-

1We refer to the article “How Science Can Create Millions of New Jobs: Reigniting basic research can

repair the broken U.S. business model and put Americans back to work”, published in BusinessWeek on

August 27th, 2009, for a complete discussion.
2The usual time dimension of Brownian motion corresponds to the domain of alternatives which each

generation can choose from.

2



novation, in a pattern reminiscent of Schumpeterian cycles.

The main finding of the paper shows that radical innovation stops in finite time with prob-

ability one, even when the underlying Brownian motion has a positive drift, and may be

explained as follows. New discoveries increase the available opportunities to experiment

marginally. If innovation has been very successful in the past, an agent may be more in-

clined to pursue a marginal rather than a radical innovation. The comparative advantage of

a marginal innovation lies in a more predictable outcome at no cost. Similarly, the discovery

of a bad technology at the frontier might shift attention towards marginal innovation. The

result is robust even when the underlying Brownian motion has a positive drift. Thus, the

threat to long-run growth follows either from the failure of the innovation process or from

its own success.

Once the “stagnation” stage has been reached, new generations merely fine-tune policies in

search of a local optimum. We show that marginal innovation always dominates exploitation,

that is, the adoption of technologies already chosen by previous generations. Exploitation

is always suboptimal in the short-run, because the refinement of the best known technology

guarantees a higher expected payoff. However, the “value” of marginal innovation converges

to zero in the limit, as the opportunities for meaningful innovation become increasingly rare.

Limit behavior converges to a single technology, thus exploitation becomes optimal only in

the long-run.

The paper proposes a formal definition for the value of marginal innovation and the value of

radical innovation. Since an agent can always free ride on the experiences of his predecessors,

the value of each type of innovation is represented by the expected benefit in excess of the best

available technology, which evolves endogenously over time. The value of innovation drives

incentives in the short-run, and determines which type of innovation is chosen in each period.

Using the value of innovation, we are able to provide a precise description for the dynamics of

innovation, which fully takes into account the fact that future innovation depends on current

technologies. A comparative statics argument shows that the value of marginal innovation

always increases in the best available technology, while the value of radical innovation may

actually decrease following the discovery of a better technology. Indeed, discovering a better

technology sets a higher bar on the expected outcome of radical innovation.

We disentangle the various intergenerational linkages occurring with social learning. First,
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there is a direct learning effect that arises from the observability of the outcomes of innovation

by previous generations. Innovation increases the stock of knowledge of society through more

refined beliefs about the underlying outcome process. Thus, direct learning has a positive

effect on the well-being of future generations. Second, a feasibility effect arises when a new

radical innovation is undertaken, because it endows the society with new opportunities for

costless marginal innovation. A third intergenerational linkage arises when the cost of radical

innovation is reduced following new discoveries. This cost effect creates additional incentives

for radical innovation.

Our paper contributes to the literature on neo-Schumpeterian growth models. We build

on the seminal contribution by Jovanovic and Rob (1990), who studied a search-theoretic

model of growth through technological innovation. We depart from Jovanovic and Rob

(1990) by endogenizing the dependence between incentives for future innovation and current

technologies. In our model, the incentives to perform radical innovation are highly sensitive

to the history of previous discoveries in two ways. First, there is a payoff externality that

derives from the possibility of exploitation of previous technologies, as in Jovanovic and Rob

(1990). Second, the history affects directly the beliefs that each generation holds about the

outcome of radical innovation, which is completely absent in Jovanovic and Rob (1990).3 In

a different framework, Matsuyama (1999) investigates the connection between neoclassical

and neo-Schumpeterian growth models, while in a more recent paper Acemoglu, Gancia, and

Zilibotti (2010) study the interplay between innovation and standardization in a dynamic

general equilibrium model. By contrast, we analyze innovation and standardization (radical

vs marginal innovation) in a framework affected by uncertainty about the payoff associated

with a new technology.

The paper can also be interpreted as a theory of economic stagnation. Jovanovic and Nyarko

(1996) show that the development of human capital specific to a particular technology may

induce a (long-lived) agent to stick to that technology in the long-run, despite the availability

of (possibly) better technologies. Garicano and Rossi-Hansberg (2009) provide (among other

things) an alternative theory of stagnation, which is based on the necessity to develop orga-

3This aspect also relates our model with the literature on organizational behavior, which stresses the

tendency of firms to perform local searches around the technologies currently in use. This is a natural

response to uncertainty about the outcomes of innovation. For example, Kauffman, Lobo, and Macready

(2000) look at environments in which the firm’s current location in the space of technologies influences the

incentives for innovation.
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nizations to exploit newly discovered technologies. In the present paper, stagnation follows

endogenously from the outcomes of the innovation process.4

We contribute to the literature on optimal experimentation following Rothschild (1974),

McLennan (1984), Easley and Kiefer (1988) and Aghion, Bolton, Harris, and Jullien (1991),

among others. Some of our arguments build on Easley and Kiefer (1988) to derive the

properties of the experimentation policy in the long run. In our setting, not only does

there exist a well-defined long-run belief about the value of each policy: we show that

experimentation converges to a single policy.5 The literature has focused on the possibility

of incomplete learning in the long-run and has tried to identify the conditions under which

learning can be guaranteed to be complete. By contrast, learning can hardly be expected to

be complete in our set-up, as the underlying parameter is the realized path of a Brownian

motion. Our focus is on the effect of social learning on long-run behavior, once radical

innovation has come to an end. In this regard, our paper is closer to Bala and Goyal (1998),

but in an environment with a continuum of possible policies.6

2 Model

In each period t = 0, 1, 2, ..., a young decision maker is born, who lives for two periods. Each

decision maker is risk-neutral and can experiment with a technology x ∈ X = [0,∞) in

each period. Technologies are mapped into monetary outcomes according to the continuous

function f : X → R, which is initially unknown except for the default option f(0) = 0.7

A possible interpretation of the space X is as the set of technologies available to produce

a single good. A decision maker learns about the profitability of a new technology only

4Callander (2009) studies a model of dynamic policymaking in a similar framework to ours and shows

that society might settle with undesirable policies.
5Our setting allows us to prove the convergence result without the compactness assumptions made

in Easley and Kiefer (1988).
6The assumption that the outcome of past decisions is publicly known sets our model apart from the

standard social learning literature by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992).

While in those models full observability would render the problem trivial, in our framework the knowledge

of even arbitrarily many outcomes does not convey enough information to recover the underlying outcome

function.
7The analysis can easily be extended to the entire real line.
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through innovation, which could either improve on previous technologies or be less profitable.

In either case, choices are irreversible: the decision maker commits himself to the particular

technology he chooses for that period.8

The history ht = {(0, 0), (x0, f(x0)),
(
(xO1 , f(xO1 )), (xY1 , f(xY1 ))

)
, ...,

(
(xOt−1, f(xOt−1)), (x

Y
t−1, f(xYt−1))

)
}

contains all the information about the technologies chosen by previous generations, young

and old, until time t. Histories are publicly observable. We let Ht denotes the set of histories

up to time t.

Each history induces a partition of the technology space X. Following Strulovici (2010), we

use the following definition.

Definition 1 A unit u = [I,m,M ] is comprised of an interval I = [xl, xr], where m =

min{f(xl), f(xr)}, and M = max{f(xl), f(xr)}. Also, l = xr − xl and d = M −m.

If l = +∞, then a unit u∞ = [I,m] is simply defined as an interval I = [xl,+∞), and

m = f(xl).

A unit can be interpreted as a subproblem in its own right. We denote by P(ht) the col-

lection of finite units induced by an arbitrary history ht. The next definition contains basic

nomenclature used throughout the paper.

Given any history ht, we introduce the following notation.

• zt = max{f(xOt′ ), f(xYt′ ) : t′ ≤ t} is the value of the technology explored by time t;

• x̂t is the technology associated with zt;
9

• x
f
t = max{xOt′ , xYt′ : t′ ≤ t} is the right boundary of the set of explored technologies,

and will be referred to as the frontier;

• ρt = zt − f(xft ) is called the gap.

z is weakly increasing over time. A young decision maker can always obtain an expected

payoff of at least z in each period. The frontier xf is the upper bound on the feasible set

8This distinguishes our model from Jovanovic and Rob (1990), where the decision maker unveils the value

of a new technology, and then decides whether or not to use it.
9That technology is unique with probability one.
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of technological possibilities. While the gap measures how far behind the frontier stands

compared to the state-of-the-art technology.

Each generation shares the common belief that the underlying outcome function is the re-

alized path of a Brownian motion with drift µ = 0 and volatility parameter σ > 0.10 The

Brownian structure of the problem has specific implications for the outcome distribution of

unknown technologies. On the one hand, every action x > xf generates an outcome

f(x) ∼ N
(
f(xf ), σ2(x− xf )

)
(1)

Note that the current history ht influences the distribution only through the frontier. On the

other hand, an untried technology x lying in a unit u of finite lenght is normally distributed

as well, but with mean

f(xl) +
f(xr) − f(xl)

xr − xl
(x− xl) (2)

and variance
(x− xl)(xr − x)

xr − xl
σ2 (3)

where xl and xr are the endpoints of the unit. This distribution is called a Brownian bridge.11

Note how the choice of a technology affects only the distribution of technologies lying in the

same unit. Also, the initial drift does not play any role.

This paper focuses on two types of innovation. First, radical innovation refers to the choice

of technologies to the right of the frontier. Radical innovation can be interpreted as basic

research, which helps expanding the space of feasible technologies. Second, marginal in-

novation involves technologies inside a unit within the frontier, and it corresponds to the

improvement of old technologies. In addition, a decision maker could decide to exploit a

previously tried technology, which guarantees a sure payoff.

Both exploitation and marginal innovation are costless, as we are assuming a convex fea-

sibility condition on the space of technologies. That is, whenever the frontier expands, all

intermediate technologies become feasible. Radical innovation incurs a cost c(x−xf ), which

depends on how far a decision maker pushes research away from the frontier. Intuitively, the

cost might be interpreted as a necessary investment to back up basic research. We maintain

the following assumption throughout the paper:

10The assumption that µ = 0 makes the analysis neater but it could be dispensed with. See Section 7.
11See Billingsley (1968) for an extensive treatment.
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Assumption 1 c(·) is twice continuously differentiable, strictly increasing, weakly convex,

and such that c(0) = 0.

Section 6 analyzes the case where the cost of radical innovation decreases in the best tech-

nology currently available.

Each decision maker maximizes the expected present value of his payoffs in both periods.

The discount factor δ ∈ (0, 1) is the same across generations. An old decision maker has

no value for information and thus never undertakes radical innovation. The description of

a history may thus be more simply expressed as ht = {(0, 0), (x0, f(x0)), ..., (xt−1, f(xt−1))},
with the interpretation that (xt′ , f(xt′)) is the technology-outcome pair chosen by the young

generation at time 0 ≤ t′ < t.

Finally, we can write the maximization problem of a young decision maker as follows,

V (ht) = sup
x∈X

Eht

[

f(x) − c(x− x
f
t ) + δmax{f(x), zt}

]

, ∀ ht ∈ Ht (4)

with the convention that c(y) = 0 whenever y ≤ 0. Since an old decision maker plays no

active role in the benchmark model, we will refer to a young decision maker simply as a

decision maker.

3 The Value of Innovation

Each generation faces the choice of a technology out of a continuum of possible alternatives.

Each technology produces a deterministic outcome which is correlated to the outcomes of

technologies that are close by, because of the continuity of the underlying outcome function.

Lemma 1 provides a more useful way to think about the decision problem faced by each

decision maker. Technologies are bundled together according to the unit they belong to.

Since the choice of a technology only changes the distribution of technologies that reside in

the same unit, the decision maker faces the reduced problem of picking one out of finitely

many units. Lemma 1 shows that we can characterize each unit based on a single index. The

index of a unit u represents the largest expected payoff attainable from technologies lying
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within the unit.12

Lemma 1 (Index Characterization) Fix a history ht ∈ Ht. A young decision maker

assigns an index γ(u, z) to each unit induced by ht. In particular, there exist functions

η : R
2 → R, and ψ : R+ → R such that

γ(u, z) =







m+ d η
(√

l
d
, z−m

d

)

if u 6= u∞

f(xf ) + ψ(ρ) if u = u∞

The dependence of the index on the best technology is related to the possibility of free-riding,

which comes from exploitation. Since the decision maker knows that he will exploit in the

next period, his choice today determines his payoff today but also his second period payoff.

Also, tomorrow’s payoff changes if and only if the outcome of today’s innovation exceeds z.

For a finite unit, the ratio z−m
d

≥ 1 measures the relative attractiveness of the unit compared

to exploitation. When the ratio is 1, the unit has z as an endpoint outcome and therefore a

marginal innovation is very appealing. If the ratio is very high, than innovation becomes less

attractive because the chance of improving tomorrow’s payoff is low. The ratio
√
l
d

, instead,

is specific to the unit and it is correlated with the slope of the Brownian bridge, which affects

the expected payoff of every technology inside the unit.13

For an infinite unit, the gap is an important determinant of the incentives for radical in-

novation. Intuitively, a zero gap means that the distribution of outcomes to the right of

the frontier has the mean centered on the current best technology z. Thus, incentives for

radical innovation are at their highest. A positive gap, instead, implies that the current

best technology lies strictly within the frontier, and the distribution of outcomes is then

determined by the frontier outcome alone. Thus, radical innovation offers a lower expected

payoff today compared to exploitation. However, radical innovation is still valuable because

it offers a higher variance. The higher variance increases the likelihood that the realized

outcome exceeds the current best technology, which increases tomorrow’s expected payoff.

We can now use the index characterization to define the value of innovation of a unit u as

12The formulas for the indexes correspond to equations (18) and (16) in Appendix A.
13The square root has to do with the standard deviation inside a Brownian bridge, as can be seen from (3).
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the difference between the unit’s index and the current best technology. Formally,

K(u, z) = γ(u, z) − z (5)

The value of innovation of a unit is the largest gain the decision maker can obtain from a

unit in excess of the payoff guaranteed by exploitation. It is also convenient to formally

define the indexes for marginal and radical innovation as follows,

γM(ht) = max
u∈P(ht)

γ(u, z), and γR(ht) = γ(u∞, z) (6)

for any history ht ∈ Ht, where P(ht) is the collection of finite units induced by a history ht.

Definition 2 The value of marginal (resp., radical) innovation is defined by KM(ht) =

γM(ht) − zt (resp., KR(ht) = γR(ht) − zt).

The value of marginal innovation is the maximal net expected maximal benefit from the

improvement of old technologies. Likewise, the value of radical innovation is the net expected

maximal benefit that can be obtained by experimentation with technologies to the right of

the frontier.

Lemma 2 shows that the trade-off between marginal and radical innovation can be rep-

resented in a parsimonious way through the value of innovation. Thus, the dynamics of

innovation can be analyzed as if there are only two alternatives in each period: marginal

innovation and radical innovation.

Lemma 2 Fix a history ht. A decision maker prefers radical over marginal innovation if

and only if KR(ht) > KM(ht). Also, the value of marginal innovation is increasing in z,

while the value of radical innovation is constant in z if ρ = 0 and decreasing in z if ρ > 0.

Finally, if KR(ht) < 0, then radical innovation ends forever.

An increase in z increases the value of marginal innovation. The value of innovation of a

specific unit, however, may actually decrease, but there is always at least one finite unit that

benefits from a higher outside option. For example, consider a unit u with z−m
M−m > 1 and

suppose that the best technology improves from z to z′ > z. The increase in z has no effect on

the distribution of technologies inside the unit but it does affect the overall expected payoff.

This latter effect makes innovation in the first period less appealing because now it has to
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produce an outcome above z′ rather than z to be of any use in the second period. Thus,

K(u, z) < K(u, z′). If, instead, z−m
M−m = 1, an increase in z affects the underlying distribution

of all technologies in u by increasing the slope of the associated Brownian bridge, while

leaving the variance unchanged. As a result, the value of innovation of that unit increases.

The value of radical innovation is completely determined by the gap, KR(ht) = ψ(ρt) − ρt.

An increase in z leads to a wider gap which, in turn, depresses incentives to perform radical

innovation. The reason for the lower incentives is twofold. First, an increase in z makes

exploitation relatively more appealing. Second, radical innovation has become riskier because

it is now required to produce a higher outcome than before to be of any value in the second

period. Thus, if, at any time, the value of radical innovation becomes negative, radical

innovation will always be dominated by exploitation thereafter.

We are now ready to state the main result of the paper.

Theorem 1 Radical innovation ends in finite time with probability one. After radical inno-

vation has ended, the economy witnesses an infinite sequence of marginal innovations, which

converge to a single technology. Thus, exploitation only occurs in the limit.

The next section describes how incentives for either type of innovation vary in the short-run.

4 Short-Run Dynamics of Innovation

At time 0, the decision maker faces a trade-off between the initial default option z = 0 and

radical innovation. Radical innovation is costly but it may lead to a higher payoff. While

exploitation is costless but it constrains the agent’s payoff tomorrow to 0. Proposition 1

shows that it is indeed optimal to innovate.

Proposition 1 At t = 0, the decision maker pursues a radical innovation and the optimal

size of the innovation x∗0 uniquely solves

δσ

2
√

2πx∗0
=
dc(x∗0)

dy
(7)

The size of the innovation is increasing in both σ and δ.
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The intuition goes as follows. If the decision maker exploits in the first period, his discounted

expected payoff is 0. Suppose, instead, that he decides to pursue radical innovation. Because

of the zero drift condition, any action x > 0 has an expected payoff of 0, but it improves

the probability of a higher payoff tomorrow from zero to 1
2
. Thus, the marginal benefit

of innovation (the left-hand side of (7)) is very large close to the frontier, which makes

exploitation unattractive. As the size of the radical innovation increases, the volatility

increases at a decreasing rate (recall σ
√
x− xf ), and the marginal benefit of innovation

converges to zero. Since the marginal cost is increasing, the optimal radical innovation is

well-defined.

The size of the innovation turns out to be sensitive to the volatility of the underlying outcome

process, because the volatility is the decision maker’s only way to improve his expected payoff

tomorrow. Thus, a higher volatility has a positive effect on the incentives to innovate. The

same result holds true as the discount rate increases.

In the following period, a new generation is born. Since we assumed perfect observability of

actions and outcomes, the new decision maker faces three available options: i) exploitation

with z1 = max {f(x∗0), 0}; ii) marginal innovation over [0, x∗0); or iii) radical innovation

over (x∗0,+∞). For expositional simplicity, suppose f(x∗0) > 0 and x∗0 = 1. Thus, the new

outside option is z1 = f(x∗0). Also, (2) and (3) imply that every x ∈ (0, x∗0) has distribution

N(z1x, x(1 − x)σ2), and discounted expected utility

EU(x) = z1x+ δE[max{f(x), z1}]

= (1 + δ)z1x+ δz1(1 − x)Φ

(

z1

σ

√

1 − x

x

)

+ δσ
√

x(1 − x)φ

(

z1

σ

√

1 − x

x

)

(8)

from the properties of the truncated normal distribution, where Φ(·) and φ(·) denote the

CDF and pdf of the standard normal distribution. Differentiating with respect to x, we

obtain

dEU(x)

dx
= (1 + δ)z1 − δz1Φ

(

z1

σ

√

1 − x

x

)

+ δσ
1 − 2x

2
√

x(1 − x)
φ

(

z1

σ

√

1 − x

x

)

(9)

The last term of (9) converges to −∞ as x approaches 1, which shows that it is optimal to

set x < 1. Since x = 1 is feasible and guarantees (1 + δ)z1, innovating marginally leads to

a strictly higher payoff. Notice that the same conclusion holds even if f(x∗0) < 0, but with

x = 0 as a reference point.
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Proposition 2 shows that the optimality of marginal innovation over exploitation holds more

generally.

Proposition 2 For any history ht ∈ Ht, the value of marginal innovation is always strictly

positive.

Furthermore, for any finite unit u with f(xl) < f(xr), the optimal technology xM (u, z) lies

in
(
xr+xl

2
, xr
)
, for any z ≥ f(xr).

The decision maker displays a bias for technologies that are closer to the endpoint with the

highest outcome. The reason is quite intuitive and it has to do with the properties of the

Brownian bridge. Recalling (2) and (3), the expected value is increasing over the bridge in

the direction of the more profitable endpoint, while the variance is concave and symmetric

around the midpoint. Therefore, every technology below xr+xl

2
is strictly dominated by the

corresponding technology in the upper part of the unit.

Does the time-1 decision maker prefer marginal or radical innovation? Obviously, the answer

depends on the realized outcome f = f(x∗0). If f is very high, we can foresee that radical

innovation is the optimal choice, while low realizations push towards marginal innovation.

The indexes for the two options are, respectively,

γM(h1) =







fη

(√
x∗
0

f
, 1

)

if f > 0

δσ
√
x∗
0

2
√

2π(1+δ)
if f = 0

f − fη

(√
x∗
0

−f , 1

)

if f < 0

and

γR(h1) = f + ψ(f−),

where f− = max{−f, 0}. The index of radical innovation embeds the cost function in it, thus

it is not necessarily the case that a positive realization makes radical innovation optimal.

So, suppose first that f > 0, then ∂γR

∂f
= 1 while ∂γM

∂f
∈
(

δ
1+δ

, 1
)
.14 Therefore, the value

of the indexes at f = 0 determines if there is going to be an intersection or not above

f = 0. When ψ(0) >
δσ
√
x∗
0

2
√

2π(1+δ)
, then radical innovation dominates marginal innovation for

any f ≥ 0. Otherwise, there exists f̂ > 0 such that radical innovation is optimal if and only if

14The latter is shown in the proof of Lemma 3.
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f > f̂ .15 Next, we consider f < 0. It can be shown that ∂γR

∂f
∈
[

1
1+δ

, 1
)

while ∂γM

∂f
∈
(
0, 1

1+δ

)
.

Therefore, there is going to be an intersection if and only if ψ(0) ≤ δσ
√
x∗
0

2
√

2π(1+δ)
. We can collect

the previous observations in the following remark.

Remark There exists f̂ such that the time-1 decision maker pursues radical innovation if

and only if f(x∗0) > f̂ .

After an arbitrary history ht, the analysis is more involved. In particular, two possible

scenarios may arise following a history ht: i) ρt = 0; or ii) ρt > 0. In the first case, the

distribution of outcomes to the right of the frontier is directly affected by zt, while it is

independent of zt in the second case.16 Thus, incentives differ in the two scenarios.

Proposition 3 Suppose ρt = 0, then the value of radical innovation is strictly positive.

Also, the optimal size of the innovation, yRt = xRt − x
f
t , is constant, and it uniquely solves

δσ

2
√

2πyRt
=
dc(yRt )

dy
(10)

Next, suppose ρt > 0. If an interior solution, yR > 0, exists, it solves

δσ

2
√

yR
φ

(

ρt

σ
√

yR

)

=
dc(yR)

dy
(11)

When ρt = 0, the decision maker faces exactly the same incentives for radical innovation as

the first generation at time 0. The marginal benefit of innovation is very high close to the

frontier because the probability of improving on the best technology jumps to 1
2
.

The situation is very different with a positive gap. Even with a positive gap, the marginal

benefit of radical innovation approaches zero for very large radical innovations, but now also

for innovations close the frontier. Close to the frontier, a radical innovation is accompanied

by an inadequately low increase in the volatility, with almost no impact on the expected

payoff tomorrow. For any given ρ, the marginal benefit is bell-shaped. It is initially pushed

up by the increase in the probability of discovering an outcome above zt, which is given

by 1 − Φ

(

ρt

σ
√
x−xf

)

. As the size of the innovation keeps increasing, though, the marginal

benefit decreases.
15The indifference happening at f = 0 is a zero probability event, and it can be ignored without loss of

generality.
16Recall (1).
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Equation (11) also shows that an increase in ρ reduces the marginal benefit of radical innova-

tion for any size of the innovation. Thus, a decision maker would have to choose technologies

that are increasingly distant from the frontier, as ρ widens, but this becomes more and more

expensive. A simple monotone comparative statics argument shows that an increase in the

gap effectively reduces the optimal size of the innovation the decision maker is willing to

undertake.

Proposition 4 (Comparative Statics) Let yR(ht) = xR(ht) − x
f
t denote the optimal

size of the radical innovation following history ht. If yR(ht) > 0, then ∂yR

∂ρ
< 0.17

How do the indexes for marginal and radical innovation change following a round of radical

innovation? Radical innovation at time t changes the incentives for marginal innovation at

time t+ 1 in two ways: i) it creates an additional finite unit; ii) it potentially increases the

outside option. Lemma 3 characterizes the evolution of the index of marginal innovation

which follows a history-dependent cutoff rule. If the outcome of radical innovation at time

t exceeds the relevant cutoff, then the subsequent marginal innovation is chosen within the

new unit.

Lemma 3 Suppose KR(ht) > KM(ht), for some history ht. Then, there exists f̄ = f̄(ht)

such that

γM(ht+1) =







max
u∈P(ht)

γ(u,max{zt, f}) if f ≤ f̄

γ(u′(f),max{z, f}) if f > f̄

where u′(f) is the new finite unit generated from radical innovation at time t with resulting

outcome f .

Thus, high realizations shift attention towards the newly created unit. However, the new

unit need not have the current best technology at time t + 1 as an endpoint outcome. The

reason is that the length of a unit is important too in determining its value of innovation,

as can be seen from the index characterization in Lemma 1.

Radical innovation at time t also affects the new index for radical innovation. A sufficiently

high outcome, for example above the current zt, is good news for the time-t + 1 decision

17When the first-order condition admits multiple solutions, the proposition can be stated in the strong set

order sense.

15



maker and we might expect radical innovation to be optimal again. To the contrary, a very

low realization makes marginal innovation look much more appealing. Once again, the gap

plays a crucial role in our analysis.

Proposition 5 Suppose KR(ht) > KM(ht), for some history ht.

(i) If ρt = 0, then there exists a unique f̂ = f̂(ht) such that KR(ht+1) > KM(ht+1) if and

only if f > f̂ .

(ii) If ρt > 0, then we must distinguish between two cases:

(a) If f̄(ht) ≥ zt, where f̄(ht) is given by Lemma 3, then there exists a unique f̂ =

f̂(ht) such that KR(ht+1) > KM(ht+1) if and only if f > f̂ .

(b) If f̄(ht) < zt, then there exists f̂ = f̂(ht) such that f > f̂ implies KR(ht+1) >

KM (ht+1).

We can now use the results of the section to gain some intuition about the short-run dynam-

ics of innovation. Suppose radical innovation has become temporarily suboptimal, that is,

0 < KR < KM . Agents will then start experimenting with technologies within the frontier.

Proposition 2 shows that exploitation is never optimal, because the value of marginal innova-

tion is strictly positive at any history. The wave of marginal innovations that follows reduces

the length of the available units, as the frontier stays the same during marginal innovation.

The reduction in length might then reduce the value of marginal innovation to the point

of triggering a new round of radical innovation.18 From Lemma 2, KR(ht) > KM(ht) at

some history ht implies that the time-t decision maker prefers radical over marginal innova-

tion, and the optimal size of the radical innovation yR(ht) = xR(ht) − x
f
t is characterized in

Proposition 3. Then, the realized outcome f(xR(ht)) determines whether radical innovation

is chosen at time t+ 1 as well. For instance, suppose that the realized outcome is very high,

then we know from Proposition 5 that radical innovation is again optimal provided that

f(xR(ht)) exceeds the cutoff f̂(ht).

In line with previous literature on neo-Schumpeterian growth, our economy witnesses growth

enhancing cycles of marginal innovation followed by periods of radical innovation.19 On the

18It can be shown that dη
dl

> 0 from (18) in the appendix.
19See Jovanovic and Rob (1990) and Matsuyama (1999).

16



one hand, radical innovation generates a positive externality for all future generations by

expanding the feasible set. The creation of an additional unit endows the society with new

opportunities for costless marginal innovation, which were not available before. On the

other hand, marginal innovation refines the beliefs about feasible technologies leaving new

generations with a better understanding of the available opportunities. Thus, the choice of

a technology creates an informational spillover which, however, is not internalized by the

current generation.

5 Long-Run Dynamics of Innovation

A radical innovation has a relevant social value because it creates a positive intergenera-

tional externality. The stock of knowledge of society increases, and new technologies become

available at no cost. It is thus natural to ask whether agents will face sufficient incentives to

perform radical innovation in the long-run.

Lemma 4 shows that the size of the gap might deter a decision maker from engaging in

radical innovation.

Lemma 4 There exists ρ̃ > 0 such that ρt > ρ̃ implies KR(ht) < 0, for any history ht.

The intuition follows from Proposition 4. An increase in the gap reduces the incentives to

perform radical innovation through the increased appeal of simple exploitation. However, we

cannot conclude directly from Lemma 4 that radical innovation is doomed in the long-run.

The reason is that the choice of technologies is endogenous in our model, and thus the value

of radical innovation may stay positive for a set of histories of positive measure.

We are now ready to state our main result about radical innovation.

Proposition 6 The value of radical innovation becomes negative in finite time with prob-

ability one.

Proposition 6 provides an impossibility result on the long-run sustainability of radical inno-

vation. Here is some intuition underlying the result. Suppose the value of radical innovation

is always positive along the equilibrium path of play, contrary to Proposition 6. It must then
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be the case that, for any time t, there is going to be a time-t′ decision maker, with t′ ≥ t,

willing to perform radical innovation. This intermediate step follows from the observation

that whenever radical innovation is temporarily suboptimal agents are forced to experiment

inside the frontier. Since we are assuming that the value of radical innovation is positive, it

follows that the sequence of marginal innovations cannot lead to the discovery of technolo-

gies that push the gap above the critical level ρ̃, otherwise the value of radical innovation

would be negative by Lemma 4. Thus, the value of marginal innovation must necessarily

decrease below the value of radical innovation after a finite number of periods. As a result,

the frontier keeps expanding. As the frontier is moved further to the right, it will eventually

hit a region where the gap exceeds ρ̃, thus reaching a contradiction.

As the frontier stops expanding, the economy witnesses a perpetual wave of marginal inno-

vations. However, the opportunities for valuable innovation become scarce as time goes by,

which leads to the following result.

Proposition 7 The value of marginal innovation converges to zero with probability one.

Proposition 7 says that the economy moves toward stagnation in the long-run, which was

to be expected after radical innovation has stopped. Nevertheless, the value of marginal

innovation is zero only in the limit, as agents keep innovating (marginally) on the equilib-

rium path of play. Appendix B proves the following upper bound on the value of marginal

innovation, after any history ht,

KM(ht) ≤
δσ

2(1 + δ)
√

2π

√

∆t

where ∆t is the length of the largest finite unit with positive value of innovation at time t.

The proof is completed by noticing that, as agents keep innovating marginally, ∆t decreases

over time and eventually converges to zero.

Proposition 7 only characterizes the evolution of the value of marginal innovation in the

long-run, but it is silent about the limit behavior. The next result fills the gap by showing

that the economy witnesses an informational cascade, which is defined as the convergence of

the sequence of optimal technology choices.20

20The definition corresponds to the one provided in Lee (1993).
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Proposition 8 There exists a (essentially) unique technology x∗ in the feasible set such

that the sequence of optimal technologies converges almost surely to x∗.

Proposition 8 exploits the equivalent interpretation of our framework as a learning problem,

in which decision makers are trying to learn the underlying outcome function f(·). As

agents try new technologies, the belief about the outcome function is updated according to

Bayes’ rule. Since it is well-known that the sequence of posterior beliefs follows a martingale

under Bayesian updating, we can show that equilibrium beliefs converge to a limit belief µ̄.

The next step links limit beliefs with limit behavior and establishes that any limit point of

a sequence of equilibrium technologies must be optimal under the limit belief µ̄. Finally,

suppose by way of contradiction that there exists two limit technologies x∗ and x∗∗. Since

they must both be accumulation points, the Brownian structure of the problem implies that

they have to have different outcomes with probability one, which contradicts the fact that

both technologies are optimal given µ̄. The details of the proof are provided in Appendix B.

6 Cost Externalities

The analysis so far has assumed that new discoveries have no effect on the cost of innovation.

It seems natural to wonder whether introducing such a cost externality would help sustaining

innovation, and thus escape the long-run stagnation identified in Proposition 6. To this end,

we assume that radical innovation incurs a cost c(x − xf , αz), which is now dependent on

the best technology. The parameter α ≥ 0 measures the transfer of knowledge to radical

innovation. In particular, the case α = 0 embeds our previous analysis. We make the

following additional assumption.

Assumption 2 c(·, ·) is twice continuously differentiable, submodular,21 and decreasing in

its second component.

Assumption 2 requires that an increase in z leads to a reduction of the cost of radical

innovation. The requirement that the cost function be submodular implies that the marginal

21Given smoothness of c, the assumption is equivalent to c having everywhere a nonnegative cross partial

derivative.
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cost of radical innovation decreases as well, when the current best technology increases.

Thus, a young decision maker has greater incentives to perform radical innovation when the

outcome of past innovations has been successful. Since {zt} forms a nondecreasing sequence,

the externality is persistent across all future generations.

Proposition 9 (Comparative statics) Suppose that α > 0. The optimal size of the

radical innovation, yR(0, αz), is increasing in z and in α.

When the gap is zero, an increase in the best available technology stimulates radical inno-

vation by decreasing the marginal cost of innovation. When the gap is positive, it is not

clear anymore whether an increase in z necessarily induces more innovation because the

marginal benefit and the marginal cost move in opposite directions. However, an increase in

α (weakly) increases the optimal size of the radical innovation, even with a positive gap.

The following example illustrates how the short-run dynamics might change in the presence

of cost externalities compared to the benchmark setting.

Example 1

Suppose the cost function has the form c(y, αz) =
∫ y

0
δσ

2
√

2π
e−

αz2

2σ2sds, which satisfies Assump-

tions 1 and 2. To simplify the analysis, suppose also that α > 1. Then, the first-order

condition for radical innovation reduces to

1√
y

= e
1

2σ2y
[(z−f(xf ))2−αz2]

= e
1

2σ2y
[(1−α)z2−2f(xf )z+f(xf )2]

(12)

If f = f(xf ) = z, the right-hand side is increasing in y while the left-hand side is decreasing.

Therefore, there is a unique nondegenerate solution, which implies a strictly positive value

of radical innovation.

If instead f < z, the determinant of the second-order equation in square brackets is 4αf 2 ≥ 0,

and the second-order equation admits two solutions z1 = f
1+

√
α

1−α and z2 = f
1−√

α
1−α . Suppose

first that f > 0, then z1 < 0 < z2. The first-order condition (12) always admits a positive

solution for any z > f . When z ∈ (0, z2], both sides of equation (12) are decreasing in y

but the right-hand side converges to +∞ faster than the left-hand side, as y → 0. The

most interesting case occurs when z > z2. In this case, the right-hand side of (12) is

increasing in y. Thus, the optimal size of the radical innovation is always strictly positive
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when z > max{z2, f}. In both cases, it can be shown that an increase in z increases the size

of the optimal radical innovation.

When f ≤ 0, then z2 ≤ 0 ≤ z1 and a similar analysis applies. Consequently, the optimal

size of the radical innovation is again strictly positive. �

Example 1 shows that Proposition 6 may fail in the presence of a permanent cost externality.

The intuition is that the reduction in the marginal benefit of radical innovation following a

larger gap might be more than compensated by a decrease in the cost and marginal cost of

radical innovation. Without the cost externality, an increase in the gap reduces the marginal

benefit while leaving the marginal cost unaffected. In that case, we already know that there

is a threshold for the gap above which a young decision maker would always set the size of

radical innovation to zero.

The next result shows that stagnation can still occur, provided that the marginal cost of

radical innovation doesn’t approach zero as the best available technology improves.

Proposition 10 Suppose that α > 0 and that infz>0
∂2c(0,αz)
∂y2

> 0. Then, radical innovation

ends in finite time with probability one.

The additional requirement on the cost function rules out cost functions like those used

in Example 1. The condition seems a mild one, because technological advancement still

poses challenges at the frontier. Even if the long-run dynamics is the same with and without

intergenerational cost externalities, the short-run pattern of innovation might be significantly

different in the two scenarios.

7 Optimistic Beliefs

The benchmark model assumes that agents are completely ignorant about the expected

payoff of technologies to the right of the frontier. What if agents are optimistic about the

underlying generating process? Is a positive drift enough to sustain radical innovation?

A positive drift complicates the analysis because it creates incentives for an old decision

maker to innovate as well. As before, an old decision maker prefers to exploit rather than
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innovate marginally. As far as radical innovation is concerned, an old decision maker faces

the following problem

V O,R(ht) = max
x∈[xf

t ,+∞)

Eht

[

f(x) − c(x− x
f
t )
]

= f(xft ) + µ(x− x
f
t ) − c(x− x

f
t ) (13)

In order to make the problem interesting, we need to assume that limy→+∞
dc(y)
dy

> µ. Other-

wise, an old decision maker would push the size of radical innovation all the way to infinity.

The following simple first-order condition completely characterizes optimal behavior,

µ =
dc(x− x

f
t )

dy
(14)

Let yO,R denote the solution to (13). A few remarks. First, the size of the optimal radical

innovation of an old decision maker is independent of the history. Second, yO,R is positive

if and only if dc(0)
dy

< µ. When dc(0)
dy

≥ µ, an old decision maker prefers to exploit, and the

previous analysis repeats unaltered. Third, an old decision maker follows a simple cutoff

rule, as shown in the next result.

Lemma 5 Suppose dc(0)
dy

< µ. Given any history ht, an old decision maker chooses

xO,R(ht) =

{

yO,R + x
f
t if ρt ≤ ξ

x̂t otherwise

where ξ = µyO,R − c(yO,R) > 0.

The old decision maker uses the size of the gap to decide whether to innovate or not. For

the decision maker, the gap measures the relative attractiveness of exploitation over radical

innovation. Thus, a low gap gives high incentives to innovate.

The presence of another active agent clearly changes the short-run dynamics of the model.

For instance, a young decision maker will now take into consideration that the old generation

might be innovating radically before choosing his optimal technology choice. Nevertheless,

radical innovation is still going to end with probability one under a mild condition on the

cost function.

Proposition 11 Suppose that limy→+∞
dc(y)
dy

> µ(1 + δ). Then, the value of radical inno-

vation becomes negative in finite time with probability one, even with µ > 0 but finite.
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The condition expressed in Proposition 11 is essentially a requirement on the third derivative

of the cost function, which is implied for example by the convexity of the marginal cost. To

understand the driving force underlying Proposition 11, we consider the case µ > dc(0)
dy

. When

choosing the size of his innovation, a young decision maker has in mind the effect of his action

today on his incentives tomorrow. This effect can be quantified in a perceived reduction of

the gap from ρt to ρt − ξ, which results in higher incentives to perform radical innovation

today. As the gap increases, though, ξ becomes negligible and eventually the relative benefit

of radical innovation over exploitation falls short of the explicit cost of innovation. Thus,

the young decision maker will eventually opt for marginal innovation, which is still strictly

better than exploitation.

8 Conclusion

Our analysis suggests that radical innovation cannot be sustained in the long-run, when

innovation relies on the short-term profitability considerations of each generation. Thus,

external intervention is needed. For instance, a benevolent social planner, who internalizes

the intergenerational benefits of radical innovation might find optimal to subsidize radical

innovation, once the stagnation phase has been reached. Examples of public intervention

in funding research are plentiful. For instance, the National Science Foundation’s budget

request for FY 2010 was roughly $7 billion aimed at funding projects in areas as diverse as

mathematics, engineering, and social sciences.22 Similarly, the National Institutes of Health

supervises federal funding over medical and health-related research with an impressive budget

of over $30 billion for just the fiscal year 2010.23 These numbers seem to indicate that subsides

are a relevant component of the incentives to perform innovative research. While our model

corroborates this intuition, a complete analysis of the effect of subsidies on the long-run

dynamics of innovation is left for future research.

22Source: http://www.nsf.gov/about/budget/fy2010.
23Source: http://www.officeofbudget.od.nih.gov.
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Appendix

A Omitted Proofs

Proof of Lemma 1 We first consider a unit of finite length. Notice that

max
x∈[0,xf ]

Eht [f(x) + δmax{f(x), z}] = max
[xl,xr]∈P(ht)

{

max
x∈[xl,xr]

E[xl,xr] [f(x) + δmax{f(x), z}]
}

where P(ht) is the collection of finite units induced by ht on [0, xf ]. We fix a finite unit u

and suppose, without loss of generality, that f(xr) > f(xl). Then, for any x ∈ [xl, xr],

f(x) ∼ N

(

f(xl) +
f(xr) − f(xl)

xr − xl
(x− xl),

(x− xl)(xr − x)

xr − xl
σ2

)

Let g(x) = x−xl

xr−xl
, then we can rewrite

f(x) −m ∼ N
(
d g(x), g(x)(1 − g(x))lσ2

)

If we define k(x) = f(x) −m and z′ = z −m, we get

E[xl,xr] max{k(x), z′} = z′Φ

(

z′ − dg(x)

σ
√

g(x)(1 − g(x))l

)

+ dg(x)

[

1 − Φ

(

z′ − dg(x)

σ
√

g(x)(1 − g(x))l

)]

+ σ
√

g(x)(1 − g(x))lφ

(

z′ − dg(x)

σ
√

g(x)(1 − g(x))l

)

where Φ and φ are the CDF and pdf of the standard normal distribution. This leads to

E[xl,xr] [f(x) + δmax{f(x), z}] = (1 + δ)m+ dg(x) + δE[xl,xr] max{k(x), z′}
= (1 + δ)m+ d

{
g(x)(1 + δ − δΦ) + δ z

′

d
Φ

+δσ
√

g(x)(1 − g(x))
√
l
d
φ
}

(15)

= (1 + δ)
{

m+ d η̄
(

g(x),
√
l
d
, z

′

d

)}

where

η̄

(

g(x),

√
l

d
,
z′

d

)

=
1

1 + δ

{

g(x)(1 + δ − δΦ) + δ
z′

d
Φ + δσ

√

g(x)(1 − g(x))

√
l

d
φ

}
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Finally, taking the maximum over x ∈ [xl, xr], we obtain

max
x∈[xl,xr]

E [f(x) + δmax{f(x), z}] = (1 + δ)

[

m+ d max
g(x)∈[0,1]

η̄

(

g(x),

√
l

d
,
z′

d

)]

= (1 + δ)

[

m+ d η

(√
l

d
,
z′

d

)]

If we set

γ(u, z) = m+ d η

(√
l

d
,
z −m

d

)

the first part of the proposition follows immediately.

Next, suppose l = +∞. The expected utility of any action x > xf is

Eht [f(x) − c(x− xr) + δmax{f(x), z}] = (1 + δ)f(xf) − c(x− xf ) + δEht max{f(x) − f(xf ), z − f(xf )}
= (1 + δ)f(xf) − c(x− xf ) + δEht max{k(x), ρ}

where k(x) = f(x) − f(xf ). Recall that k(x) ∼ N(0, σ2(x− xf )). Therefore,

Eht max{k(x), ρ} = E[k(x)|k(x) > ρ]Prob(k(x) > ρ) + ρProb(k(x) < ρ)

= σ
√

x− xfφ

(
ρ

σ
√
x− xf

)

+ ρΦ

(
ρ

σ
√
x− xf

)

Taking the supremum over x ≥ xf , we obtain

sup
x≥xf

{

(1 + δ)f(xf) − c(x− xf ) + δσ
√

x− xfφ

(
ρ

σ
√
x− xf

)

+δρΦ

(
ρ

σ
√
x− xf

)}

= (1 + δ)

[

f(xf) + sup
y≥0

1

1 + δ

{

−c(y) + δσ
√
yφ

(
ρ

σ
√
y

)

+ δρΦ

(
ρ

σ
√
y

)}]

We can thus define

ψ(ρ) =
1

1 + δ
sup
y≥0

{

−c(y) + δσ
√
yφ

(
ρ

σ
√
y

)

+ δρΦ

(
ρ

σ
√
y

)}

(16)

To complete the proof, let γ(u, z) = f(xf ) + ψ(ρ).

Proof of Lemma 2 The first part of the result follows directly from the index representation

provided in Lemma 1. Next, fix a finite unit u with M 6= z, then

dη

dz
=

δ

(1 + δ)d
Φ

(

z −m− dx∗

σ
√

x∗(1 − x∗)l

)
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where x∗ is an optimal technology within u. Thus, ∂K(u,z)
∂z

= δ
1+δ

Φ

(

z−m−dx∗
σ
√
x∗(1−x∗)l

)

−1 < 0. If,

instead, u is such that M = z, then ∂K(u,z)
∂z

= η
(√

l
d
, 1
)

−1, which can be shown to be strictly

positive from the argument used in Proposition 2. Then, ∂KM (ht)
∂z

= maxu∈P(ht)
∂K(u,z)
∂z

> 0.

Next, we fix f and consider the effect of an increase in z > f on KR(ht). It is immediate to

check that
∂KR(ht)

∂z
=
dψ(z − f)

dρ
− 1 =

δ

1 + δ
Φ

(
z − f

σ
√
y∗

)

− 1 < 0

If, instead, ρ = 0, then KR(ht) = ψ(0), and thus ∂KR(ht)
∂z

= 0.

Finally, if KR(ht) < 0, the above observations together with the monotonicity of {zt} imply

that radical innovation will never be undertaken for any t′ > t.

Proof of Proposition 1 The expected utility from any action x > x
f
0 = 0 is

Eht

[
f(x) − c(x) + δf+(x)

]
= −c(x) + δE[f(x)|f(x) > 0]Prob(f(x) > 0)

= −c(x) + δ
[
σ
√
xφ (0)

]

where f+(x) = max{f(x), 0}. The first-order condition is

δσ

2
√
x
φ (0) =

dc(x)

dx
(17)

The right-hand side of (17) is increasing in x, while the left-hand side is strictly decreasing.

However, the left-hand side is also unbounded around 0 and it converges to 0, as x→ +∞.

Thus, the optimal technology satisfies 0 < x∗0 < +∞. The SOC is

−δσφ(0)

4x3/2
− d2c(x)

dx2
< 0

Thus, the first-order condition is necessary and sufficient.

Finally, the comparative statics follows immediately from the first-order condition.

Proof of Proposition 2 Recall that

η (k1, k2) = sup
x̃∈[0,1]

η̄ (x̃, k1, k2) =
1

1 + δ

{

x̃

(

1 + δ − δΦ

(

k2 − x̃

σk1

√

x̃(1 − x̃)

))

+δk2Φ

(

k2 − x̃

σk1

√

x̃(1 − x̃)

)

+ δσ
√

x̃(1 − x̃)k1φ

(

k2 − x̃

σk1

√

x̃(1 − x̃)

)}

(18)
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Suppose that k2 = 1. If we differentiate η̄(x, k1, 1) with respect to x, we obtain

(1 + δ)
∂η̄(x, k1, 1)

∂x
=

[

1 + δ − δΦ

(

1

σk1

√

1 − x

x

)]

+
δσk1

2

1 − 2x
√

x(1 − x)
φ

(

1

σk1

√

1 − x

x

)

which tends to −∞ as x goes to 1. Also, η̄(0, k1, 1) = δ
1+δ

< 1 = η̄(1, k1, 1). We have thus

shown that x̃∗(k1, 1) ∈ (0, 1), for any k1 > 0.

Next, fix any history ht. Consider the unit u which has zt as one of the endpoints. Then,

η

(√
l

d
,
zt −m

d

)

= η

(√
l

d
, 1

)

> η̄

(

1,

√
l

d
, 1

)

= 1

Thus, γ(u, zt) > zt proving that it is indeed strictly optimal to innovate marginally.

Next, notice that

∂η̄(x, k1, k2)

∂x
=

1

1 + δ

{

1 + δ − δΦ

(

k2 − x

σk1

√

x(1 − x)

)

+
δσk1

2

1 − 2x
√

x(1 − x)
φ

(

k2 − x

σk1

√

x(1 − x)

)}

≥ 1

1 + δ
> 0

for any x ≤ 1
2
. Therefore, xM(u, zt) ∈

(
xr+xl

2
, xr
]

whenever f(xl) < f(xr).

Proof of Proposition 3 When ρ = 0, the first-order condition is exactly as (17), and the

same result holds.

Next, suppose ρ > 0. The expected utility of any action x > xf is

f(xf) − c(y) + δ

{

f(xf )

(

1 − Φ

(
ρ

σ
√
y

))

+ σ
√
yφ

(
ρ

σ
√
y

)

+(ρ+ f(xf )) Φ

(
ρ

σ
√
y

)}

= (1 + δ)f(xf ) − c(y) + δ

{

ρΦ

(
ρ

σ
√
y

)

+ σ
√
yφ

(
ρ

σ
√
y

)}

where ρ = z − f(xf). The first-order condition is then given by (11).

Proof of Proposition 4 Differentiating (11) with respect to ρ, we obtain − δρ
2σy3/2φ

(
ρ

σ
√
y

)

,

which is strictly negative. Thus, the objective function in (16) is submodular in (y, ρ), and

the result follows from the Strict Monotonicity Theorem of Edlin and Shannon (1998).
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Proof of Lemma 3 Let f be the outcome from radical innovation following history ht. The

new index for marginal innovation is

γM(ht+1) = max







max
u∈P(ht)

γ(u,max{zt, f}
︸ ︷︷ ︸

mht
(max{zt,f})

, γ(u′(f),max{zt, f})







Case 1 : f < zt. Clearly, mht(z) is unaffected by changes in f , while the index for u′(f)

changes. In particular, let fa be the outcome associated with the left endpoint of unit u′. If

fa < f , then

∂γ(u′(f), z)

∂f
=

∂

∂f

[

fa + (f − fa)η

( √
l

f − fa
,
z − fa

f − fa

)]

=
∂

∂(f − fa)

[

fa + (f − fa)η

( √
l

f − fa
,
z − fa

f − fa

)]

= η

( √
l

f − fa
,
z − fa

f − fa

)

−
√
l

f − fa

∂η

∂k1

( √
l

f − fa
,
z − fa

f − fa

)

− z − fa

f − fa

∂η

∂k2

( √
l

f − fa
,
z − fa

f − fa

)

=
x∗

1 + δ

[

1 + δ − δΦ

(

k2 − x∗

σk1

√

x∗(1 − x∗)

)]

(19)

> 0

where x∗ ∈ arg maxx∈[0,1] η̄
(

x,
√
l

f−fa
, z−fa

f−fa

)

, for the unit u′(f). If fa > f , then

∂γ(u′(f), z)

∂f
=

∂

∂f

[

f + (fa − f)η

( √
l

fa − f
,
z − f

fa − f

)]

= 1 − η

( √
l

fa − f
,
z − f

fa − f

)

+

√
l

fa − f

∂η

∂k1
+
z − fa

fa − f

∂η

∂k2

= 1 − 1

1 + δ

{

x∗

[

1 + δ − δΦ

(

k2 − x∗

σk1

√

x∗(1 − x∗)

)]

+ δΦ

(

k2 − x∗

σk1

√

x∗(1 − x∗)

)}

= (1 − x∗)

[

1 − δ

1 + δ
Φ

(

k2 − x∗

σk1

√

x∗(1 − x∗)

)]

∈
(

0,
1

1 + δ

)

(20)
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The upper bound follows from the fact that x∗ ∈
(

1
2
, 1
)
, then

(1 − x̃)

[

1 − δ

1 + δ
Φ

(

k2 − x̃

σk1

√

x̃(1 − x̃)

)]

≤ 1

2

[

1 − δ

1 + δ

1

2

]

=
2 + δ

4(1 + δ)

<
1

1 + δ
(21)

for any δ ∈ [0, 1].

Case 2 : f > zt. We first consider a unit u ∈ P(ht). Then,

∂γ(u, f)

∂f
=

∂

∂f

[

m+ dη

(√
l

d
,
f −m

d

)]

(22)

=
∂η

∂k2

=
δ

1 + δ
Φ

(

k2 − x∗∗

σk1

√

x∗∗(1 − x∗∗)

)

∈
(

0,
δ

1 + δ

)

where x∗∗ ∈ arg maxx∈[0,1] η̄
(

x,
√
l
d
, f−m

d

)

, for the unit u. Also, the last inequality follows

from x∗∗ ∈
(

1
2
, 1
)
, by Proposition 2.

Next, since f > z ≥ fa, we have

∂γ(u′(f), f)

∂f
=

∂

∂f

[

fa + (f − fa)η

( √
l

f − fa
, 1

)]

(23)

= η

( √
l

f − fa
, 1

)

−
√
l

f − fa

∂η

∂k1

=
1

1 + δ

[

x̂(1 + δ) + δ(1 − x̂)Φ

(

1

σk1

√

1 − x̂

x̂

)]

∈
(

δ

1 + δ
, 1

)

where the last inequality follows from x̂ ∈
(

1
2
, 1
)
, by Proposition 2. Comparing (22) and (23)

and recalling δ < 1, it is immediate to notice that the slope of the index of the new unit is

always higher than the slope of the index for any old unit, whenever f > z.
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Combining Case 1 and Case 2 shows that the two indexes intersect exactly once. The

intersection occurs at an outcome f̄ ≤ z if mht(z) ≥ γ(u′(z), z), otherwise f̄ > z.

Proof of Proposition 5 The index for radical innovation at time t+1 is given by γRt+1(f) =

f + ψ(ρt+1) = f + ψ (max{(zt − f), 0}). So, for any f ≥ zt, γ
R
t+1(f) = f + ψ(0), and then

∂γR
t+1

∂f
= 1.

Next, suppose f < zt. Lemma 4 shows that there exists ρ̃ such that ρt+1 > ρ̃ implies

a negative value of radical innovation, that is, the optimal radical innovation is given by

xR(ht+1) = f . Let f̃ be such that zt − f̃ = ρ̃. Then, for any f ≤ f̃ , it follows that

γRt+1(f) = f+δzt

1+δ
, which implies

∂γR
t+1

∂f
= 1

1+δ
.

For f ∈ (f̃ , zt),
∂γR

t+1

∂f
= 1 − δ

1+δ
Φ
(
zt−f
σ
√
y∗

)

∈
(

1
1+δ

, 1
)
, where y∗ is the optimal size of the

radical innovation following history ht+1.

Case 1 : ρt = 0. Let f̄ be the cutoff derived in Lemma 3. If f̄ ≥ zt, the index of marginal

innovation is flat for any f < zt. While

∂γMt+1

∂f
∈
{ (

0, δ
1+δ

)
if zt ≤ f < f̄

(
δ

1+δ
, 1
)

if f ≥ f̄

which follows from the proof of Lemma 3. Thus, γRt+1 and γMt+1 as functions of f cross exactly

once. Let f̂ denote such intersection.

Similarly, if f̄ < zt, the index for radical innovation is unchanged, but

∂γMt+1

∂f
∈







0 if f < f̄
(
0, 1

1+δ

)
if f̄ ≤ f < zt

(
δ

1+δ
, 1
)

if f ≥ zt

and, once again, there is a unique intersection.

Case 2 : ρt > 0. If f̄ ≥ zt, the analysis is the the same as for Case 1. Thus, there exists a

unique intersection f̂ .

If f̄ < zt, the slope of the index of marginal innovation over the range [f̄ , zt) is given by (19),

which cannot be compared with the slope of γRt+1 in an unambiguous way. Thus, there could
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be multiple intersections between the two indexes.

Proof of Lemma 4 The right-hand side of (11) is strictly increasing in y, under Assumption

1. The left-hand side of (11) flattens towards 0 as ρ increases, and for fixed ρ, the left-hand

side converges to 0 as either y → 0 or y → +∞. Also, the left-hand side is bounded above

by δσ2φ(1)
2ρ

, which converges to 0, as ρ increases. Thus, there exists ρ′ > 0 such that ρ > ρ′

implies yR(ρ) = 0. Next, define ρ̃ = inf
{
ρ > 0 : ρ′′ > ρ⇒ yR(ρ′′) = 0

}
. Clearly, ρ > ρ̃

implies yR(ρ) = 0.

Proof of Proposition 6 We already know from Lemma 4 that there exists ρ̃ > 0 such that

xR(ρ) = xf , for any ρ > ρ̃. To prove the result, we need to show that

Prob
(

zt − f(xft ) > ρ̃, for some t ≥ 0
)

= 1.

Without loss of generality, it suffices to focus on Prob
(
f(xRt ) < −ρ̃, for some t ≥ 0

)
. Sup-

pose by way of contradiction that radical innovation happens infinitely often, fix a sample

path for which this happens, and let {φ(t)} be the subsequence for which yRφ(t) = xRφ(t)−x
f
φ(t) >

0, for any t ≥ 0.

Lemma 6 x
f
φ(t) → +∞.

Proof. [Proof of Lemma] Suppose by way of contradiction that xfφ(t) → x̃ < +∞, then this

implies that yRφ(t) → 0. By Proposition 4, there exists a further subsequence {ψ(t)} such

that the sequence {ρψ(t) = zψ(t) − f(xfψ(t))} is increasing, and bounded above by ρ̃ from

the definition of {ψ(t)}. Therefore, zψ(t) − f(xfψ(t)) → g̃. If g̃ < ρ̃, then it follows that

yRψ(t) → ȳ > 0, which is a contradiction. Therefore, we must necessarily have g̃ = ρ̃, which

also implies that zψ(t) → z̃. This means that for sufficiently high t, the expected payoff from

radical innovation is approximately equal to f(x̃)+δz̃,24 which is strictly less than the payoff

from exploitation (1 + δ)z̃, as ρ̃ > 0. Thus, a young decision maker would prefer to exploit,

but this contradicts the definition of the subsequence {φ(t)}.

By Proposition 4, Λ = yR(0) ≥ yR(ρ), for any ρ > 0, and then |xfφ(t+1) − x
f
φ(t)| ≤ 2Λ. Next,

define

Aγ(−ρ̃) = sup

{

x′ − x : max
x≤x′′≤x′

f(x) < −ρ̃, and x < x′ < γ

}

24Recall that the maximization problem of a young decision maker is now given by (4).
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Lemma 7 With probability one, Aγ(−ρ̃) > 2Λ as γ → +∞.

Proof. [Proof of Lemma] By recurrence of Brownian motion, there exists (a.s.) x̃ such that

f(x̃) < −ρ̃. Therefore, there also exists γ > 0 such that Aγ(−ρ̃) > 0 a.s. Now, the result

follows from the scaling property of Brownian motion.

From Lemma 6 and 7, the optimal sequence of actions will almost surely hit a region where

the gap z − f(xf) exceeds ρ̃ and radical innovation stops, thus reaching a contradiction.

Proof of Proposition 10 Since infz>0
∂2c(0,αz)
∂y2

> 0, the lower envelope generated by the

family of cost functions parametrized by z is increasing. This implies that there exists

ρ̃ = inf
{
ρ ≥ 0 : ρ′ > ρ =⇒ yR(αz, ρ′) = 0, ∀ z ≥ 0

}

such that ρ > ρ̃ leads to yR(αz, ρ) = 0, for any z ≥ 0. Also, there exists 0 < M̄ < +∞ such

that limz→+∞ yR(αz, 0) < M̄ , and thus we can repeat the same proof as in Proposition 6.

Proof of Proposition 11

Suppose first that µ <
∂c(0)
∂y

. We prove that there exists ρ̃ > 0 such that ρ > ρ̃ implies

yR(ρ) = 0. The expected utility of an old agent from radical innovation is

max
x∈[xf

t ,+∞)

Eht

[

f(x) − c(x− x
f
t )
]

= f(xft ) + µ(x− x
f
t ) − c(x− x

f
t ) (24)

An old agent never pursues radical innovation in this case, while the expected utility of any

technology x > xf for a young decision maker is

f(xf) + µy − c(y) + δ

{

(f(xf) + µy)

(

1 − Φ

(
ρ− µy

σ
√
y

))

+ σ
√
yφ

(
ρ− µy

σ
√
y

)

+(ρ+ f(xf)) Φ

(
ρ− µy

σ
√
y

)}

= (1 + δ)[f(xf ) + µy] − c(y) + δ

{

(ρ− µy)Φ

(
ρ− µy

σ
√
y

)

+ σ
√
yφ

(
ρ− µy

σ
√
y

)}

(25)

where ρ = z − f(xf). The first-order condition is

µ

(

1 + δ − δΦ

(
ρ− µy

σ
√
y

))

+
δσ

2
√
y
φ

(
ρ− µy

σ
√
y

)

=
dc(y)

dy
(26)
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The left-hand side of (26) flattens towards µ as ρ increases, and for fixed ρ, the left-hand side

converges to µ(1 + δ) as y → +∞, and to µ as y → 0. Also, the left-hand side is bounded

above by

µ(1 + δ) +
δσ2φ(1)

2ρ

which converges to µ(1 + δ), as ρ increases. Thus, limy→+∞
dc(y)
dy

> µ(1 + δ) implies that

there exists ρ̃ > 0 such that ρ > ρ̃ implies yR(ρ) = 0.

Next, if we differentiate (26) with respect to ρ, we obtain

− δφ

2σ
√
y

[

µ+
ρ

y

]

< 0, ∀ ρ, y > 0

By Monotone Comparative statics, we can conclude that yR(0) ≥ yR(ρ), ∀ ρ > 0. We can

thus repeat the same argument of Proposition 6 to conclude that radical innovation ends in

finite time a.s.

Next, suppose µ >
dc(0)
dy

. Lemma 5 implies that yO,R > 0 if and only if ρ < ξ. Thus, we

assume without loss of generality that ρt > ξ, so that an old agent doesn’t innovate today

and then the expected utility today of any x > x
f
t for a young decision maker is simply

E[f(x) − c(x− x
f
t )] + δ{E[f(x) + ξ|f(x) ≥ zt − ξ] Prob(f(x) ≥ zt − ξ) + zt Prob(f(x) < zt − ξ)}

= (1 + δ)(f(xft ) + µy) − c(y) + δ

{

σ
√
yφ

(
ρt − ξ − µy

σ
√
y

)

+ ξ + (ρt − ξ − µy)Φ

(
ρt − ξ − µy

σ
√
y

)}

The first-order condition is

µ

[

1 + δ − δΦ

(
ρt − ξ − µy

σ
√
y

)]

+
δσ

2
√
y
φ

(
ρt − ξ − µy

σ
√
y

)

=
∂c(y)

∂y
(27)

Notice that the right-hand side is always at least µ. Since ρt − ξ > 0, then the right-

hand side converges to µ as y → 0, and to µ(1 + δ) as y → +∞. Therefore, there always

exists a nondegenerate and finite solution to the first-order equation (27). Also, under

limy→+∞
dc(y)
dy

> µ(1 + δ), the solution is unique for high values of ρ. In this case, as

ρ increases, yR(ρ) approaches yOR, that is, the optimal size of the innovation for a young

decision maker converges to the optimal size for an old decision maker. This follows from the

fact that the first-order condition is approximately equal to µ ≈ ∂c(y)
∂y

. Thus, for sufficiently
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high ρ, the maximized expected utility is approximately equal to

(1 + δ)(f(xft ) + ξ) + δ

[

µyO,R

(

1 − Φ

(

ρt − ξ − µyO,R

σ
√

yO,R

))

+σ
√

yO,Rφ

(

ρt − ξ − µyO,R

σ
√

yO,R

)

+ (ρt − ξ)Φ

(

ρt − ξ − µyO,R

σ
√

yO,R

)]

≈ f(xft ) + ξ + δzt

Since we assumed ρt > ξ, it follows that f(xft ) + ξ + δzt < (1 + δ)zt. This means that the

only nondegenerate candidate for radical innovation gives an expected payoff which is lower

than what the young decision maker could get by simply exploiting. Thus, there exists ρ̃ > 0

such that the young decision maker prefers exploitation for any gap greater than ρ̃.

In order to apply the same steps of Proposition 6, we still need to show that there is an

upper bound on the size of the innovations that agents might want to undertake. First, if

an old decision maker doesn’t innovate today, the value function of a young decision maker

is submodular in y and ρ, which shows that yR(0) ≥ yR(ρ), for any ρ > 0. Next, suppose

an old decision maker innovates today. This means that the outside option tomorrow is

higher in expectation, which reduces the young decision maker’s incentives to perform radical

innovation today. Formally, if the young decision maker decides to innovate today as well,

and he chooses xft < x ≤ x
f
t + yOR, then his innovation clearly has yOR as an upper bound.

Otherwise, the expected payoff associated with any x > x
f
t + yOR is

E[f(x) − c(x− x
f
t )]

+ δ
{

E[f(x) + ξ|f(x) ≥ max{zt, f(xt + yOR)} − ξ] Prob(f(x) ≥ max{zt, f(xft + yOR)} − ξ)

+E[{zt, f(xft + yOR)}|f(x) < max{zt, f(xt + yOR)} − ξ] Prob(f(x) < max{zt, f(xft + yOR)} − ξ)
}

.

Submodularity implies that the optimal size of the radical innovation is largest when the gap

is zero. This shows the existence of an upper bound M on the size of any radical innovation,

uniform over all histories.
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B Preliminary Results for Propositions 7 and 8

Since we are assuming that radical innovation has already stopped, the feasible region can

be normalized to the interval X = [0, 1]. The set of sample paths is the space of continuous

functions from (0, 0) to (1, d) with d ≥ 0, which we denote by Θ. Since Θ is unbounded, it is

convenient to apply a monotone and continuous transformation F : R → R, with F strictly

increasing, F (0) = 0, F (1) = d and lim|y|→∞ |F (y)| ≤ Λ. We can thus define the new space

Θ̃ = F (Θ), which is a subset of C[0, 1] as well. Without loss of generality, we can work with

Θ̃.

We can see our problem as a learning problem involving a stochastic process with an unknown

parameter θ ∈ Θ̃. The initial belief µ0 over Θ̃ is represented by the law of the Brownian

bridge, given (0, 0) and (1, d). The underlying true parameter is denoted by θ0 ∈ Θ̃.

For any (x, θ) ∈ X × Θ̃, we can also define a conditional density function over outcomes

g(y|x, θ) = 1θ(x)(y), for any y ∈ Y = [−Λ,Λ], which is the Dirac measure. Let µt be the

belief at time t and (xt, yt) the current action with the corresponding outcome. We can

define the belief at time t+ 1 as follows

µt+1(A) =

∫

A
g(yt|xt, θ)dµt

∫

Θ̃
g(yt|xt, θ)dµt

where A is a Borel subset of Θ̃, and the integrals are to be interpreted in the Stieltjes sense.

The function r : [−Λ,Λ]2 → R specifies the reward following the observation of an outcome

y, when the best known outcome is z. In our framework, we can restrict attention to the

function r(y, z) = y + δmax{y, z}. For convenience, we define the payoff function

u(x, µ, z) =

∫

Θ̃

[∫

R

r(y, z)g(y|x, θ) dy
]

dµ

=

∫

Θ̃

r(θ(x), z) dµ

The following technical lemma will prove to be useful in our analysis.

Lemma 8 u(x, µ, z) is continuous over [0, 1] × ∆(Θ̃) × [−Λ,Λ].

Proof. Let {(xn, µn, zn)} be a sequence from [0, 1] × ∆(Θ̃) × [−Λ,Λ] which converges to

(x, µ, z) ∈ [0, 1] × ∆(Θ̃) × [−Λ,Λ]. Then,
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|u(xn, µn, zn) − u(x, µ, z)| =

∣
∣
∣
∣

∫

Θ̃

r(θ(xn), zn) dµn −
∫

Θ̃

r(θ(x), z) dµ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Θ̃

[r(θ(xn), zn) − r(θ(xn), z)] dµn

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Θ̃

[r(θ(xn), z) − r(θ(x), z)] dµ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Θ̃

[r(θ(xn), z) − r(θ(x), z)] dµn

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Θ̃

r(θ(x), z) dµn −
∫

Θ̃

r(θ(xn), z) dµ

∣
∣
∣
∣

≤ δ|zn − z| + 2

∫

Θ̃

|r(θ(xn), z) − r(θ(x), z)| dµ

+

∫

Θ̃

|r(θ(xn), z) − r(θ(x), z)| dµn +

∣
∣
∣
∣

∫

Θ̃

r(θ(x), z) dµn −
∫

Θ̃

r(θ(x), z) dµ

∣
∣
∣
∣

The last term converges to zero by weak convergence of the beliefs. We focus on the second

term
∫

Θ̃

|r(θ(xn), z) − r(θ(x), z)| dµ ≤ (1 + δ)

∫

Θ̃

|θ(xn) − θ(x)| dµ

which converges to zero by the Bounded Convergence theorem. Next,
∫

Θ̃

|r(θ(xn), z) − r(θ(x), z)| dµn ≤ (1 + δ)

∫

Θ̃

|θ(xn) − θ(x)| dµn

Recall that X is compact and every θ ∈ Θ̃ is continuous, therefore it is also uniformly

continuous. Fix ǫ > 0 and define

A

(
1

m
, ǫ

)

=

{

θ ∈ Θ̃ : ∃ λ > 1

m
s.t. |x− y| < λ =⇒ |θ(x) − θ(y)| < ǫ

}

By the previous observations, it also follows that for any θ ∈ Θ̃, there exists m = m(θ) such

that θ ∈ A
(

1
m′
, ǫ
)
, ∀ m′ > m. Thus, Θ̃ =

⋃∞
m=1A

(
1
m
, ǫ
)
.

Next, let pm = µ
(
A
(

1
m
, ǫ
))

. Since
{
A
(

1
m
, ǫ
)}

converges to Θ̃, it follows that for any η > 0,

there exists M > 0 such that µ
(
A
(

1
m
, ǫ
))

> 1 − η
2
, ∀ m > M . Fix m̃ > M , by weak

convergence of beliefs, there exists N > 0 such that
∣
∣µn
(
A
(

1
m̃
, ǫ
)c)− µ

(
A
(

1
m̃
, ǫ
)c)∣∣ < η

2
, for

any n > N .

Since xn → x, there exists N ′ > N such that |xn − x| < 1
m̃

, for any n > N ′. Finally, we
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obtain, for n > N ′,
∫

Θ̃

|θ(xn) − θ(x)| dµn =

∫

A( 1

m̃
,ǫ)

|θ(xn) − θ(x)| dµn +

∫

A( 1

m̃
,ǫ)

c
|θ(xn) − θ(x)| dµn

≤ sup
θ∈A( 1

m̃
,ǫ)

|θ(xn) − θ(x)| + 2Λµn

(

A

(
1

m̃
, ǫ

)c)

≤ ǫ+ 2Λ

[∣
∣
∣
∣
µn

(

A

(
1

m̃
, ǫ

)c)

− µ

(

A

(
1

m̃
, ǫ

)c)∣
∣
∣
∣
+

∣
∣
∣
∣
µ

(

A

(
1

m̃
, ǫ

)c)∣
∣
∣
∣

]

≤ ǫ+ 2Λη

Since ǫ and η are arbitrary, this completes the proof.

We can thus rewrite the maximization problem of a young decision maker as

V (µ, z) = max
x∈[0,1]

u(x, µ, z), ∀ (µ, z) ∈ ∆(Θ̃) × [−Λ,Λ]

Let X∗(µ, z) = argmaxx∈[0,1] u(x, µ, z), which is well-defined by Lemma 8, and also upper-

hemicontinuous as a consequence of the Maximum Theorem. The analysis proceeds by

restricting attention to a selection x∗(·) from the correspondence X∗(·).

Lemma 9 There exists a measurable selection x∗(·) from X∗(·).

Proof. It is a consequence of the upper-hemicontinuity of X∗(·), and the Kuratowski-Ryll-

Nardzewski Selection Theorem.25

In order to talk about convergence of beliefs, we need to be more precise about the underlying

probability space.26 Let Γ = [0, 1] × [−Λ,Λ] and H =
∏∞

t=0 Γ. Also, define the family

of t-cylinder sets H̃t =
{
C ⊆ H : C = D ×∏∞

s=t+1 Γ, for D Borel subset of
∏t

s=1 Γ
}
, and

H̃ =
∨∞
t=0 H̃t. For any θ ∈ Θ̃ and C ∈ H̃t, we can define the probability measure Pθ(C) =

Pθ ({(x∗(µs), ys)}ts=0 ∈ D) where D is the base of the cylinder C. Also notice that Pθ is

measurable in θ as a consequence of the measurability of the density g(·), and the optimal

selection x∗(·). We can thus define the measurable space (Θ̃ × H, σ(B(Θ̃) × H̃)) and the

measure P̃ , which is the extension of P (B × C) =
∫

B
Pθ(C) dµ0, for any B ∈ B(Θ̃) and

C ∈ H̃.

25See Theorem 17.13 in Aliprantis and Border (1999).
26The construction of the probability space follows the steps outlined in Easley and Kiefer (1988).
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We can now state the following result,

Lemma 10 Given x∗(·), {µt} is a martingale.

Proof. It is well-known. For example, see Easley and Kiefer (1988).

Also, beliefs converge in the long-run.

Theorem 2 There exists a H̃-measurable random variable µ̄ such that µt → µ̄ P̃ -a.s.

Proof. It is a consequence of the Martingale Convergence Theorem. The proof is identical

to Theorem 4 in Easley and Kiefer (1988).

Recall that in our framework, not every belief in ∆(Θ̃) is admissible. So, define

∆f (Θ̃) =
{

µ ∈ ∆(Θ̃) : ∃ t and h ∈ H s.t. µ = µ0|ht

}

where µ0|ht denotes Bayesian updating of the prior belief µ0 following the truncated history

ht. Also, define

∆∞(Θ̃) =
{

µ ∈ ∆(Θ̃) : ∃ h ∈ H s.t. µt → µ P̃ − a.s., where µt = µ0|ht, ∀ t
}

Next, take µ ∈ ∆f (Θ̃). By definition, there exists t and h ∈ H such that µ = µ0|ht . Notice

that the history is not necessarily unique. However, the only thing that matters is the

partition induced over [0, 1] together with the corresponding outcomes. Hence, the history

is unique in the sense that every history that leads to the same partition leads to the same

measure under Bayesian updating. Without loss of generality, we can thus focus on histories

ht such that 0 ≤ x0 ≤ x1 ≤ ... ≤ xt−1 ≤ 1, which will be referred to as reduced histories.

We define a function Z : ∆∞(Θ̃) → R such that

1. if µ ∈ ∆f (Θ̃), then Zt(µ) = f (x̂t(ht)), where ht is the unique reduced history corre-

sponding to µ.

2. Consider now µ ∈ ∆∞(Θ̃)\∆f(Θ̃) and let h ∈ H be a history compatible with µ. We

can then define the sequence {zt = Z(µ0|ht)}, which is nondecreasing and bounded.

Hence, it admits a unique limit ẑ and we can define Z(µ) = ẑ.
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Since there might be many histories compatible with a belief µ ∈ ∆f(Θ̃), we need to show

that the function Z(·) is well-defined.

Lemma 11 Fix µ ∈ ∆∞(Θ̃)\∆f (Θ̃). Let h, h′ ∈ H with h 6= h′ be two histories compatible

with µ. Then, Z(µ|h) = Z(µ|h′).

Proof. Suppose by way of contradiction that Z(µ|h) > Z(µ|h′). Then, by the properties

of the Brownian Bridge, the limit beliefs associated with h and h′ must be different, thus

contradicting the fact that h and h′ are both compatible with µ. Similarly, it cannot be

Z(µ|h) < Z(µ|h′) either. Thus, we are left with Z(µ|h) = Z(µ|h′), which completes the

proof.

The next steps show that convergence of beliefs implies convergence of behavior.

Definition 3 Given a sequence of actions {xt}∞t=0, let M({xt}) be the set of its limit points.

Theorem 3 Fix µ ∈ ∆∞(Θ̃) and let {xt = x∗(µt, Z(µt))} be the corresponding sequence of

optimal actions. Then,

x ∈ M({xt}) =⇒ x ∈ argmax
x̃∈[0,1]

u(x̃, µ, Z(µ))

and V (µ, Z(µ)) = (1 + δ)Z(µ).

Proof. Let x ∈ M({xt}). Thus, there exists a convergent subsequence {xtk}. By construc-

tion, u(xtk , µtk , Z(µtk)) ≥ u(x′, µtk , Z(µtk)), for any x′ ∈ [0, 1]. Taking limits, we arrive at

u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ)).

Next, as k increases, the length xr − xl of the intervals containing x shrinks to zero. By the

continuity of the path of a Brownian motion, f(xr)−f(xl) ≈ 0, and the variance over [xl, xr]

is of the order o(|xr − xl|). Thus, for t sufficiently large, it follows that

E[xt
l ,x

t
r] [f(x) + δmax{f(x), zt}] ≈ (1 + δ)f(xtl) + δ(zt − f(xtl))

Since xtl converges to x and f(·) is continuous, by the limit optimality of x, we get f(xtl) →
z(µ). Therefore, V (µ, z(µ)) = (1 + δ)z(µ).

Proof of Proposition 7
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Lemma 12 If γ(u, z) < z for some z > 0, then γ(u, z′) < z′ for any z′ > z.

Proof. The condition γ(u, z) < z can be rewritten as

η

(√
l

d
,
z −m

d

)

<
z −m

d

It is easy to show that ∂η
∂z

= δ
(1+δ)d

Φ < 1
h
, and the result follows.

Lemma 13 For any unit u of finite length, there exists z = z(u) such that γ(u, z) < z.

Proof. By (18), for z > f(xr) sufficiently high, η(k1, k2) ≈ 1+δk2
1+δ

, which implies γ(u, z) ≈
f(xr)+δz

1+δ
< z.

Next, define It = {u : K(u, zt) ≤ 0} as the family of units on which innovation has ceased.

Lemma 14
⋃

u∈It
u ↑ [0, 1], as t→ +∞.

Proof. Monotonicity follows immediately from Lemmas 12 and 13, together with the

monotonicity of {zt}. Suppose by way of contradiction that limt→+∞
⋃

u∈It
u 6= [0, 1], then

there exists at least one unit ũ of positive length such that γ(ũ, z(µ)) > z(µ), by Proposition

2. Thus, by innovating in ũ, a decision maker can guarantee himself an expected payoff

strictly higher than (1 + δ)z(µ), but this contradicts Theorem 3.

Lemma 15 For any history ht ∈ Ht,

KM(ht) ≤
δσ

2(1 + δ)
√

2π

√

∆t (28)

where ∆t = max {l : ∃ u ∈ [0, 1]\It of length l} is the length of the largest unit with positive

value of innovation at time t.

Proof. Fix a unit u = [I,m,M ] of finite length. It is immediate to notice that the value

function for that interval is bounded above by the value function of the unit u′ = [I, z, z],

which is given by

max
x∈[xl,xr]

E[xl,xr] [f(x) + δmax{f(x), zt}] = (1 + δ)

[

zt +
δσ

√
xr − xl

2(1 + δ)
√

2π

]
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Thus, the value of innovation of u is bounded by δσ
2(1+δ)

√
2π

√
l, where l is the length of u. By

definition, any u ∈ It has K(u, zt) ≤ 0, and the result follows.

Finally, Lemma 14 and Proposition 2 imply that ∆t → 0, which completes the proof.

Proof of Proposition 8 We start with some preliminary results.

Lemma 16 Consider a unit u with l > 0, such that γ(u, z) < z, for some z > 0. Then, with

probability 1, either [0, xl] or [xr, 1] is visited only finitely many times.

Proof. Consider the innovation problem with initial domain [0, xl], and let Zl = Z(µ) be

the limit value of the best known outcome, which exists by Theorem 3. Similarly, we can

define Zr over [xr, 1]. Zl and Zr are two random variable which are different a.s.

Next, suppose by way of contradiction that both [0, xl] and [xr, 1] are visited infinitely often.

Given the independence of the distributions over the two subintervals, it must be the case

that the subsequence visiting each subinterval coincides with the sequence of optimal actions

from the corresponding subproblem, in which only that subinterval is available. Thus, the

maxima on each subinterval in the more general problem must equal Zl and Zr. Since

Zl 6= Zr a.s., a decision maker will eventually prefer one subinterval over the other, which

leads to a contradiction.

Lemma 17 Fix a unit u. For each 0 < q < 1
2
, there exists a subinterval [x′l, x

′
r] ⊆ [xl, xr],

with length at least q(xr − xl), and an a.s. finite stopping time τ , such that [x′l, x
′
r] is part of

unit u′ at time τ , with γ(u′, zτ ) < zτ .

Proof. Suppose the lemma is false. Then, all subintervals of [xl, xr] of length at least

q(xr − xl) are visited infinitely often. This implies that each subinterval contains a point

from M({xt}), and then we can get arbitrarily close to z(µ). However, this happens with

probability zero.

Lemma 18 Suppose x ∈ M({xt}). Then, for any ǫ > 0 and T ≥ 0, there exist t, t′ ≥ T

such that xt ∈ (x− ǫ, x) and xt′ ∈ (x, x+ ǫ).

Proof. Suppose the claim is false. Without loss of generality, let w = min {xt : xt > x, t ≥ 0} >
x, which is well-defined, and let u be the unit with interval [x, w]. In the limit, γ(u, z(µ)) >
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z(µ) by the proof of Proposition 2. Then, a decision maker would find it profitable to inno-

vate in [x, w], because the highest payoff in the limit is (1 + δ)z(µ). We have thus reached a

contradiction.

Now, suppose by way of contradiction that there exists x, y ∈ M({xt}), with x < y. We

consider the interval [x, y]. By Lemma 18, we can always find two known actions x′ and y′

such that x < x′ < y′ < y. By Lemma 17, there exists a subinterval [x′′, y′′] ⊆ [x′, y′], as

well as an a.s. finite stopping time τ , such that [x′′, y′′] is not visited after τ . Thus, Lemma

16 implies that either [0, x′′] or [y′′, 1] is visited only finitely many time, but this contradicts

the assumption that both x and y are accumulation points.
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