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Abstract

I analyze common agency games in which the principals, and possibly the agent, have
private information. I distinguish between games in which the principals delegate the �nal
decisions to the agent, and games in which they retain some decision power after o¤ering
their mechanisms. I show that, in contrast with mechanism design models with one in-
formed principal, Myerson�s Inscrutability Principle fails when there are many informed
principals. I also �nd that, in contrast with common agency models with uninformed prin-
cipals, the Delegation Principle (Menu Theorem) fails when principals are informed. I then
focus on Perfect Bayesian Equilibria in which principals o¤er their mechanisms without
randomizing. I characterize the outcomes of arbitrary games with delegation as outcomes
of a new game in which principals o¤er menus and send cheap-talk signals. Next, I char-
acterize the outcomes of arbitrary games without delegation as outcomes of a new game
in which principals o¤er menus of direct revelation mechanisms, to which they truthfully
report their types.
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1 Introduction

The theory of common agency games has experience a long development since Bernheim and
Whinston�s (1986b) seminal paper, and has achieved high levels of generality and complexity
(see, e.g., Epstein and Peters (1999), Peters (2001), Martimort and Stole (2002), and Pavan
and Calzolari (2010)). Until very recently� see Martimort and Moreira (2010)� this theory has
always assumed that principals have no private information. There are, however, many con-
tracting environments which correspond to common agency games with informed principals.
For example, this class of games includes Martimort and Moreira�s model of public good pro-
vision: in their model, contributors privately know how much they value the public good and
o¤er the common provider contribution schemes to tie their payments to the actual production
of such good. Alternatively, consider menu or package auctions as in Bernheim and Whinston�s
(1986a) model, in which bidders submit a bidding schedule to the auctioneer, who then chooses
the allocation that maximizes his pro�ts. It seems natural to extend Bernheim and Whinston�s
analysis to allow bidders to have private valuations as in standard auction settings.

In the present paper, I focus on characterizing the equilibrium outcomes� intended as maps
from type pro�les to allocations� of common agency games (hereafter, games) with informed
principals. Following the path suggested by Peters (2001), Martimort and Stole (2002), and
Pavan and Calzolari (2010) for games with uninformed principals, my goal is to identify a
tractable class of games that allows to replicate all equilibrium outcomes of some underlying
general game with informed principals. Similarly to those papers, my analysis identi�es the key
strategic roles that mechanisms play in such games.

The main novelty of my work is therefore to allow principals to have private information
when they contract with their common agent. Because of this novel feature, my model departs
from a standard model with uninformed principals also in another dimension: I consider both
the case in which the principals can�t communicate with their mechanisms, as well as the case
in which they can do so. I refer to the �rst class of games as games with delegation, and to the
second class as games without delegation.

Otherwise, my model is equivalent to a standard model with uninformed principals (Bern-
heim and Whinston (1986b)). Most importantly, I assume that contracting is private and that
each principal can�t do three things: 1) directly communicate with the other principals; 2)
condition her mechanisms on the mechanisms of the other principals; and 3) condition her allo-
cations on the allocations of the other principals. These restrictions are the essence of common
agency games; they are natural assumptions in the contexts of menu auctions and public good
provision. I also follow the literature in using (weak) Perfect Bayesian Equilibrium (PBE) as my
solution concept. This concept imposes several re�nements� sequential rationality and on-path
Bayesian updating� which have important implications for my analysis.

By introducing private information on the principals�side, this paper also relates to the lit-
erature on mechanism design with one informed principal (Myerson (1983), Maskin and Tirole
(1990-1992)). In his seminal work about the �theory of inscrutable mechanism selection," Myer-
son (1983) introduces a fundamental result known at the Inscrutability Principle. Roughly, this
Principle says that if an informed principal can sustain a certain outcome by revealing some of
her information through the mechanisms she o¤ers, then she can also sustain the same outcome
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with a sole, uninformative mechanism. The Inscrutability Principle is important because it im-
plies that the signaling component of an informed principal�s o¤ers is irrelevant, and hence it is
safe to assume that all types of the principal choose the same mechanism.

Given the evident usefulness of the Inscrutability Principle, in Section 3 I begin by investi-
gating whether it holds also in contexts with multiple informed principals. Unfortunately, the
answer is no. I argue this important point with an example that explains the fundamental di¤er-
ence between having many rather than one informed principal. Intuitively, if principal i reveals
her type up front, then the agent may sustain an outcome that features some correlation between
principal i�s type and the allocations with all the principals. To achieve such correlation, the
agent clearly needs to learn principal i�s type before he communicates with all principals. This
sequence of events is, however, impossible if principal i selects her mechanism in an inscrutable
way.

The failure of the Inscrutability Principle in games with many informed principals has several
conceptual and practical implications. It implies that, contrary to the case with one informed
principal, signaling through mechanisms becomes an essential strategic component of the game.
Therefore, if we want to characterize all equilibrium outcomes, we can�t safely assume that each
principal o¤ers the same mechanism independently of her private information; we rather have
to allow each principal to a¤ect the agent�s beliefs before he communicates with her opponents.
Dealing with this signaling purpose of the principals�mechanisms is one of the main di¢ culties
of the present analysis.

In Section 4, I turn my attention to another important principle, this time from the literature
on common agency with uninformed principals: the Delegation Principle (Martimort and Stole
(2002)), also known as the Menu Theorem (Peters (2001)). This principle says the following: any
equilibrium outcome of a game in which principals compete in arbitrary indirect mechanisms
is also an equilibrium outcome of a much simpler game in which principals o¤er menus of
allocations and delegate the agent to pick one; the converse holds too. The Delegation Principle
represents a key step to characterize the outcomes of standard games (see, e.g., Martimort and
Stole (2002), and Pavan and Calzolari (2010)). Moreover, it provides important insights to
understand the strategic nature of such games.

Similarly to the Inscrutability Principle, also the Delegation Principle would be extremely
useful to characterize the outcomes of the games in this paper. Unfortunately, it fails when
principals have private information. The �rst reason of this result is tightly linked to the
failure of the Inscrutability Principle, and is easier to understand for games with delegation.
In these games the informed principals use their mechanisms for two purposes: 1) de�ne the
set of allocations that the agent can choose, and 2) signal their private information. Relative
to arbitrary indirect mechanisms, menus certainly allow the principals to achieve the �rst goal,
but they may impose restrictions on the second goal. Intuitively, with arbitrary mechanisms
principal i can o¤er the agent the same set of alternatives, but frame it in di¤erent ways to
signal her private information.

In games without delegation, the Delegation Principle fails also for another, obvious reason.
Without delegation, principal i can keep the agent uncertain about what her mechanism will
select until after he communicates with all principals, and then let her type determine how this
uncertainty resolves. In contrast, even if principal i can o¤er menus of lotteries over allocations,
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she can�t tie the outcome of these lotteries with her types.

In Section 5, I turn to the two main results of the paper. Building on the remarks about the
Inscrutability and the Delegation Principles, I provide two characterizations of the outcomes of
the games with informed principals� one for the games with delegation and one for those without
delegation. However, in both cases I focus on equilibria in which principals do not randomize
when o¤ering their mechanisms� I call these equilibria "deterministic-o¤er equilibria" (D-O
equilibria for short).1 This kind of equilibria represents the focus of almost the entire literature
on common agency due to their realism and simplicity. D-O equilibria involve a straightforward
kind of signaling, which simpli�es my characterizations: after observing principal i�s o¤er, the
agent learns at most that i�s type is in a subset of all her possible types, but he assigns to the
types in this subset the same relative likelihood as under his prior belief.

In the case of games with delegation, I show that the outcomes sustained by D-O equilibria
of an underlying game coincide with the outcomes sustained by D-O equilibria of the following
�signal-menu game.�In such a game the principals o¤er menus of alternatives, as in the standard
menu games, but they also privately send to the agent a �cheap talk�signal. Furthermore, each
principal�s set of signals equals her set of types (any set with the same cardinality would work).

Obtaining this equivalence result requires two conditions. First, similarly to the Delegation
Principle, it is essential that in the new �signal-menu game" each principal have the same ability
to contract as in the underlying game. To ensure this property, I rely on the standard notion
of enlargement from the literature on games with uninformed principals (see, e.g., Pavan and
Calzolari (2010)). Second, it is crucial that in the new game each principal also has the same
ability to signal as in the underlying game. Using the principals�set of types as their set of
signals does the job, if we focus on D-O equilibria. Note that, although my equivalence result
covers only the outcomes sustained by D-O equilibria, it relies on an immediate and minor
extension of the standard menu game of Peters (2001) and Martimort and Stole (2002).

In contrast, characterizing the outcomes of the games without delegation requires a more sub-
stantial departure from simple menus. My characterization, however, retains the spirit of menus
and combines it with the classic notion of direct revelation mechanisms (hereafter, DRMs). In
fact, as in games with delegation all indirect mechanisms are contractually equivalent to menus
of allocations, in games without delegation they are contractually equivalent to menus of DRMs.
By o¤ering such a menu, principal i lets the agent pick a DRM, which she then plays by reporting
some of her types. Menus of DRMs may, however, limit the principals�ability to signal relative
to arbitrary indirect mechanisms. To solve this issue, I suggest to allow each principal to o¤er
menus of restricted DRMs, in the sense that all DRMs in any such menu restrict principal i to
report only a subset of her possible types. Using these menus, principal i can rely on the domain
of the DRMs as a signaling device. Intuitively, suppose that in an equilibrium of the underlying
game principal i reveals her two types by o¤ering di¤erent indirect mechanisms. Then in my
new game, principal i can send the same signal by o¤ering two menus that commit her to report
only her true type.

I derive my second main result using a new game in which principals o¤er menus of restricted
DRMs. I show that the outcomes sustained by D-O equilibria of a game without delegation

1A partial characterization of equilibria with mixed o¤er strategies is available upon request.
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coincide with the outcomes sustained by D-O equilibria of my new game, that have the additional
property that principals report truthfully their types to the DRMs that they o¤er. In fact, these
"truthful" equilibria cover the entire set of outcomes sustained by D-O equilibria of the new
game. Of course, the equivalence result relies on an appropriate notion of enlargement that
makes the new game and the underlying game contractually equivalent.

The paper is organized as follows. Section 2 describes the model. Section 3 is about the
failure of the Inscrutability Principle. Section 4 is about the failure of the Delegation Principle.
Section 5 contains the two main characterization results of the paper. The last section concludes.

2 The Environment

In this Section I describe the class of common agency games that I study in this paper. As
I mentioned in the Introduction, the main di¤erence with respect to common agency games
already examined in the literature consists in introducing private information on the principals�
side. As a standard convention, I shall use feminine pronouns for principals and masculine ones
for the agent.

Players: There are N > 1 principals, denoted by Pi for i 2 N , and a common agent,
denoted by A. Hereafter, N stands both for the number and for the set of principals, and i = 0
stands for the agent. As usual, each Pi has full bargaining power when she interacts with A.
Each Pi o¤ers A a mechanism, which is a procedure to select an outcome for their bilateral
relationship; principals o¤er their mechanisms non-cooperatively.

Information: Before each Pi o¤ers her mechanism, each player i 2 N [ f0g is privately
informed about some relevant aspect of their interaction. This information is represented by the
type �i 2 �i, where �i is a (nonempty) �nite set; as usual, � = �Ni=0�i and ��i = �j 6=i�j with
corresponding elements � and ��i. The players�types are drawn from � according to the joint
probability distribution r, which is commonly known by all players. Given that player i�s type is
�i, the function ri ( �j �i) represents the conditional distribution that i assigns to the opponents�
types in ��i.

Allocations and Mechanisms: By interacting with A, each Pi induces an allocation from
the (nonempty) �nite set Yi: for example, yi can be a price-quantity pair for a transaction
between a buyer and a seller, or a piece of regulation together with a monetary contribution by
a lobbyist. Pi and A choose an allocation in Yi by communicating through a certain language. I
shall model such a language with a �nite2 set of messages for each Pi and for A, denoted by Pi
and Ai. I assume that �i � Pi, so that Pi can at least communicate what she privately knows,
and that �Nj=0�j � Ai for every i 2 N , so that the agent can at least communicate to each Pi
what he privately knows as well as what he may learn about the environment by contracting
with all principals.

A mechanisms mi speci�es how the communication between Pi and A leads to a certain
allocation. As usual, an indirect mechanism is a map mi : Ai � Pi ! Di = �(Yi), that
associates to each pair (ai; pi) a decision di 2 Di which determines (possibly randomly) one

2The assumption that the sets of messages are �nite abviously entails a loss of generality, but it guarantees
that continuation equilibria exists after any principals�o¤ers.
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allocation in Yi. I shall denote by Mi the space of all indirect mechanisms of Pi; Mi represents
all the possible communication devices that Pi can o¤er A to select a certain decision with his
collaboration.3 By changing the sets of messages and the sets of allocations, we obtain di¤erent
spaces of mechanisms, and hence di¤erent contracting environments. For future reference, denote
the range of any mechanism mi by

Im (mi) � fdi 2 Di : 9 (ai; pi) ;mi (ai; pi) = dig ,

and let mi (yi; ai; pi) = di (yi) be the probability that mi assigns to yi given the messages (ai; pi).
Of course, A can decide to accept any subset of the mechanisms that the principals o¤er him.
Instead of explicitly modeling this decision, I assume that each message space Ai contains a
"rejection" message �ai such that sending �ai to any mechanism mi is equivalent to rejecting
it. Note that mi (�ai; �) may still depend on Pi�s messages, because Pi may still a¤ect the �nal
decision in Di even if the agent refuses to contract with her.4

As it is usually assumed in common agency models, principals can fully commit to their
mechanisms. Furthermore, principals can�t directly communicate among themselves, and for
every Pi, neither mi can directly depend on m�i nor yi on y�i. This latter assumption is an
important di¤erence between my environment and those in Peters (2010), Peters and Szentes
(2011), and Celik and Peters (2011).

Timing: The timing of the game is as follows:

� t = 0: each player i observes �i and forms the belief ri ( �j �i);

� t = 1: all principals simultaneously and non-cooperatively o¤er A the mechanisms m1,...,
mN : whereas A observes all mechanisms, each Pi does not observe m�i (private contract-
ing);

� t = 2: both A and each Pi simultaneously,5 non-cooperatively, and privately send their
messages to the respective mechanisms, which in turn independently deliver an allocation
y. The players enjoy their payo¤s and the game is over.

Strategies:

� Agent: a (behavior) strategy � of A is a (measurable) function � : �0 � M ! �(A)
which selects a lottery over message pro�les a as a function of the type �0 and the o¤ered
mechanisms m. Hereafter, I shall refer to � as the "communication strategy" of A.

3Whenever required, �Mi denotes a �-algebra of measurable subsets of Mi. Also, let M= �Ni=1 Mi, A =
�Ni=1Ai, P = �Ni=1Pi, and D = �Ni=1Di, with generic elements m � (m1; : : : ;mN ), a � (a1; : : : ; aN ), p �
(p1; : : : ; pN ) and d � (d1; : : : ; dN ) respectively. I shall restrict the use the symbol j to denote conditional
probabilities.

4Here I follow Maskin and Tirole (1992) in allowing for the case of no pre-existing mechanism, in which case
mi can be a function at most of Pi�s messages. I won�t consider the case of renegotiation of a mechanism, where
mi is a "full-�edged" mechanism.

5I assume that Pi can�t observe m�i at any stage in the game. However, one could consider the possibility
that the principals choose their messages after observing the agent�s messages. This may be more interesting or
realistic, but would make the analysis more complicated.
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� Principal i: a (behavior) strategy �i of Pi is a pair of (measurable) functions (�i; �i). The
function �i : �i ! �(Mi) represents a random choice of mechanisms as a function of the
type �i; the function �i : �i�Mi ! �(Pi) selects a lottery over messages pi as a function
of the type �i and the o¤ered mechanism mi. Hereafter, I shall refer to �i as the o¤er
strategy and to �i as the communication strategy of Pi.

Updating: Upon observing a realization m of the o¤er strategy pro�le �, A updates his
belief about the principals�types. The combination of � and the exogenous distribution r over
� de�nes a joint probability measure over M � �. Using this joint distribution, we can de�ne
the agent�s updated beliefs at the beginning of t = 2 as the (regular) conditional probability
� ( �j �0;m) on ��0, induced by � and r.
Common Agency Game: I shall let GM denote the common agency game in which

P1; : : : ; PN compete in o¤ering A mechanisms, each from the respective set Mi. The game GM

is an incomplete information game with imperfectly observable actions.

Preferences and Payo¤s: Each player i 2 N [f0g is an expected utility maximizer whose
von Neumann-Morgenstern utility function is ui : Y ��! R. Using ui, let U0 (�; �; �0;m; �) be
A�s payo¤ from the communication strategy pro�le (�; �) = (�; (�i)Ni=1), given that his type is
�0, he observes m, and he updates his beliefs according to �. Similarly, let Ui

�
�; �; �i;mi; ��i

�
be Pi�s payo¤ from the communication strategy pro�le (�; �), given that her type is �i, she o¤ers
mi, and her opponents play ��i. Finally, let U i (�; �i; �; �) be Pi�s initial payo¤ from the pro�le
� = (�; �; �), given that her type is �i.

Equilibrium Concept: In this paper I focus on (weak) PBE of the game GM :

De�nition 1 (Equilibrium) The strategy pro�le �� = (��; ��; ��) together with the belief ��

is an equilibrium of GM if and only if:
1. For every �0 2 �0 and m 2M ,

U0 (�
� (�0;m) ; �

�; �0;m; �
�) � U0 (a; ��; �0;m; ��)

for every a 2 A;
2. For every Pi, �i 2 �i, and mi 2Mi,

Ui(�
�
i (�i;mi) ; �

�
�i; �

�; �i;mi; �
�
�i) � Ui(pi; ���i; ��; �i;mi; �

�
�i)

for every pi 2 Pi;
4. For every Pi and �i 2 �i,

U i(�
�
i (�i) ; �

�
�i; �i; �

�; ��) � U i(mi; �
�
�i; �i; �

�; ��)

for every mi 2Mi;
5. On path, �� is a (regular) conditional probability induced by �� and r.

I will denote by E(GM) the set of equilibria of GM . As in Peters (2001), Martimort and Stole
(2002), Pavan and Calzolari (2009), Celik and Peters (2011), and Peters (2011), the existence
of equilibria of GM is assumed here. However, note that the �niteness of the sets of messages
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ensure that after any pro�le of o¤ered mechanisms m, there exists a pro�le of communication
strategies (�; �), possibly mixed, that satisfy conditions 1 and 2 in De�nition 1. Hereafter, I
shall refer to such a pro�le (�; �) as a "continuation equilibrium."

Social Choice Functions: Let F := ff : � ! �(Y )g be the set of all social choice
functions (henceforth SCF). Furthermore, let f�� be the SCF sustained by (��; ��) 2 E(GM),
and let F(GM) be the set of all SCFs that are sustained by elements of E(GM).

3 Failure of the Inscrutability Principle

A fundamental result in the literature on mechanism design with one informed principal is the
so called "Inscrutability Principle". Myerson discovered this principle in his 1983 seminal paper,
and since then the literature has relied on it (see, e.g., Maskin and Tirole). Using Myerson�s
own words, the Inscrutability Principle says: "there is no loss of generality in assuming that
all types of the principal should choose the same mechanism, so that his [...] choice [...] will
convey no information." (p. 1774) The reason is as follows: in models with only one principal
and one agent, if the principal can sustain a sequentially rational allocation by revealing up
front some of her private information through the mechanisms that she o¤ers� and if her set of
feasible mechanisms includes all direct mechanisms� then she can also achieve the same alloca-
tion by appropriately designing a sole, completely uninformative, direct mechanism. This new
mechanism precludes changing agent�s prior belief before communication occurs. Nonetheless,
it replicates the original mapping of the principal�s and the agent�s types into allocations, and
makes both players willing to truthfully reveal their private information.

The Inscrutability Principle is extremely useful because it allows us to completely disregard
the potential role of the principal�s mechanisms as signalling devices. Therefore, it is very impor-
tant for the present paper to understand whether such a Principle applies also to environments
with more than one informed principal. If the answer were a¢ rmative, it would dramatically
simplify our analysis of any game GM , because we could safely assume that each principal follows
the same o¤er strategy, independently of her type. Unfortunately, the Inscrutability Principle
fails when the agent contracts simultaneously with many principals. The next example proves
this claim.

Example 1 There are only two principals, P1 and P2. Let �1 =
�
�1; �1

	
, j�0j = j�2j = 1, and

assume that r(�1) = 1=2. For each principal there are two possible allocations, i.e., Y1 = fy1; y1g
and Y2 = fy2; y2g. The sets of messages are P1 =

�
�1; �1

	
, A1 =

�
�1; �1

	
, A2 =

�
�1; �1

	
, and

for simplicity P2 = fpg. Table 1 reports the players�payo¤s: in each cell the �rst entry is P1�s
payo¤, the second is P2�s payo¤, and the third is A�s payo¤.
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�1 �1

y1=y2 y2 y
2

y1 2; 3; 3 1;�1; 0
y
1

1; 0; 0 �1; 2; 1

y1=y2 y2 y
2

y1 �1; 3;�1 1;�1; 0
y
1

1; 0; 0 2; 2; 3

Table 1: Example 1 payo¤s

Consider the following equilibrium in which P1 reveals her type up front. P1�s o¤er strategy
is such that �1(�1) = m1 and �1 (�1) = m1, where

m1 (a; p) =

8<:
y1 if (a; p) =

�
�1; �1

�
y
1
if (a; p) =

�
�1; �1

�
y1 otherwise

and m1 (a; p) =

8<:
y1 if (a; p) =

�
�1; �1

�
y
1
if (a; p) = (�1; �1)

y1 otherwise
.

P1�s communication strategy is

�1 (�1;m1) =

�
�1 if �1 = �1
�1 if �1 = �1

and �1 (�1;m1) =

�
�1 if �1 = �1
�1 if �1 = �1

.

For m1 =2 fm1;m1g, extend �1 in any sequentially rational way. P2 o¤ers a mechanism m2 such
that m2(�1) = y2 and m2(�1) = y2. As far as A is concerned, when he is o¤ered m2 and either
m1 or m1, let

�(m1;m2) =

�
(�1; �1) if m1 = m1

(�1; �1) if m1 = m1

. (1)

For other m0
2 and if m1 =2 fm1;m1g, extend � in any sequentially rational way: in particular,

holding �1 �xed, if P2 "o¤ers" only y2, A sends message �1 to m1 and �1 to m1, and if P2
"o¤ers" only y

2
, A sends message �1 to m1 and �1 to m1. Note that according to (1), A selects

di¤erent allocations through m2 depending on whether P1 o¤ers m1 or m1.

It is easy to see that the strategy �1 is sequentially rational given � and �2, and P1 is getting
her maximal payo¤ of 2. P2 is also maximizing her payo¤ given �1 and �. Finally, the updated
belief �(�1

��m1) = � (�1jm1) = 1, � satis�es sequential rationality. The equilibrium SCF is then

f�1;�2;� (�1) =

�
(y1; y2) if �1 = �1
(y
1
; y
2
) if �1 = �1

However, there is no mechanism m1 such that if �1(�1) = �1 (�1) = m1, the resulting equi-
librium, if any, sustains the same SCF. Even if P2 allows A to choose between y2 and y2, since
A doesn�t perfectly infer P1�s type, he can�t correctly match the two principals�allocations: with
positive probability, he will end up choosing either y

2
when �1 = �1, or y2 when �1 = �1.

The example highlights why the Inscrutability Principle fails when there is more than one
principal. If P1 allows A to learn something about �1 through the mechanisms she o¤ers, then
A optimally chooses di¤erent contracts with P2. More generally, if in equilibrium the principals
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reveal part of their information up front, then A may combine these pieces of information to
sustain a SCF that exhibits some correlation between � and the �nal allocations. However, A
can�t achieve the same degree of coordination when, say, P1 o¤er strategy is uninformative: A
may learn �1 after observing the consequence of his message tom1, but such a discovery happens
too late, since A has to communicate with P2 before seeing that consequence.

Moreover, it is possible to construct examples in which, holding �xed the strategies of P�i,
each Pi can sustain the same allocation, with regard to her bilateral relationship with A, with an
informative as well as an uninformative o¤er strategies. However, A�s behavior with the other
principals may depend on which strategy Pi uses. Therefore, an equilibrium may exists if Pi
uses an informative o¤er strategy, but it may collapse if Pi uses an uninformative strategy. This
observation highlights a second di¤erence between the games in this paper and the principal-
agent games originally studied by Myerson: the non-cooperative nature of the competition
among the principals.

The bottom line is then as follows. In contrast to what happens in models with one informed
principal and one agent, when there are multiple informed principals contracting with the same
agent, we can no longer disregard the signalling component that the principals� o¤ers may
assume in equilibrium.

4 Failure of the Delegation Principle

I shall now move my attention towards the literature on common agency with uniformed prin-
cipals. An important result there is the so called Delegation Principle, or Menu Theorem (see
Peters (2001) and Martimort-Stole (2002)). The purpose of this Section is to show that the
Delegation Principle does not apply when principals are informed. A di¤erence with standard
common agency games is that in the present model the principals communicate with their mech-
anism, and thus a¤ect the �nal allocation at a second stage. However, this important di¤erence
is not the key reason why the Delegation Principle doesn�t apply here. In fact, I will show
that even if we don�t allow the principals to send messages to their mechanisms, the Delegation
Principle still fails.

To prove my claims, I �rst need to introduce the notion of menu, and recall the statement
of the Delegation Principle, or Menu Theorem. Consistently with Peters (2001), Martimort and
Stole (2002), and Pavan and Calzolari (2009), I de�ne a menu as follows:

De�nition 2 (Simple Menus) For i 2 N , a menu is a mechanism li : Ali ! Di with the
following properties:
1. Ali 2 2Di n?;
2. li depends only on A�s messages;
3. li is the identity function, i.e., li(di) = di.

Properties (1) and (3) together correspond to the standard de�nition of menu� l stands for
"list" of objects. Property (2) instead says that Pi can�t participate in the selection of yi by
sending messages to the mechanism. Of course, this doesn�t mean that Pi can�t in�uence at all
the outcome of her interaction with A; it just precludes one way by which she can do so. As

10



usual, Li is the collection of all menus that Pi has available, and GL is the "menu game" in
which each Pi is o¤ers menus from Li.

The important contribution of Peters (2001) and Martimort and Stole (2002) is that they
identify a game G that is much simpler than any general game with uninformed principals G0,
and has the property that any equilibrium SCF of G0 is also an equilibrium SCF of G and vice
versa (F(G0) = F(G)). This equivalence result requires, of course, that the underlying game G0
and the new game G be comparable from the outset. The notion of enlargement is the usual way
to capture this requirement: in the present environment, I shall say that GM is an enlargement
of GL (GM < GL) if for every i 2 N there exists an embedding6 !i : Li ! Mi (cfr. Pavan-
Calzolari (2009)). A formally equivalent, although false, statement of the Delegation Principle
(Menu Theorem) for the present environment is (cfr. Peters (2001) and Martimort and Stole
(2002)):

Delegation Principle (Menu Theorem): Let GM be an enlargement of GL, and
f be a social choice function. There exists an equilibrium (��; ��) of GM such that
f�� = f if and only if there exists an equilibrium (���; ���) of GL such that f��� = f .

I shall provide two counterexamples to this statement for environments with informed principals.
In the �rst example, in the second example instead only the agent can play the principals�
mechanisms. These examples also help understand the fundamental novelties implied by having
informed principals.

Example 2 As in Example 1, there are only two principals, P1 and P2, �1 = f�1; �1g, j�0j =
j�2j = 1, and r(�1) = 1=2. Furthermore, Y1 = fy1; y01; y001g and Y2 = fy2; y02; y002g. The set of
menus for Pi is Li and, for the sake of simplicity, let Di = Yi. Consider an enlargement GM
where

M1 = fm1 : A1 � P1 ! Y1 j A1 = fu; c; dg ;P1 = �1g 7

and M2 = L2.

As far as the players�payo¤s are concerned, consider the two possibilities reported in Table
2 and 3. In Table 2, both P2�s and A�s payo¤s are independent of �1 ("full" private values).
Instead, in Table 3 A�s payo¤s depend on �1 (common values); note that, conditional �1, A�s
preference over P2�s contracts is independent of y1.

�1 �1

y1=y2 y2 y02 y002
y1 �1; 2; 3 7; 1; 2 �2;�2; 0
y01 0; 1; 4 5; 1; 5 1; 1; 4
y001 1;�2; 0 4; 1; 2 3; 2; 3

y1=y2 y2 y02 y002
y1 2; 2; 3 3; 1; 2 1;�2; 0
y01 �1; 1; 4 5; 1; 5 0; 1; 4
y001 0;�2; 0 6; 1; 2 �1; 2; 3

Table 2: "full" private values

6For example, !i : Li ! Mi can be an injective function such that if mi = !i(li), then for every pi; p0i 2 Pi,
mi(�; pi) = mi(�; p0i) and Im(mi(pi)) = Im(li).
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�1 �1

y1=y2 y2 y02 y002
y1 �1; 2; 3 7; 1; 2 �2;�2; 0
y01 0; 1; 4 5; 1; 3 1; 1; 1
y001 1;�2; 3 4; 1; 2 3; 2; 0

y1=y2 y2 y02 y002
y1 2; 2; 0 3; 1; 2 1;�2; 3
y01 �1; 1; 1 5; 1; 3 0; 1; 4
y001 0;�2; 0 6; 1; 2 �1; 2; 3

Table 3: common values

For both payo¤s�speci�cations, consider the following pro�le (�; �). P2 o¤ers the menu l2
with Al2 = Y2. P1�s strategy satis�es �1(�1) = �1 (�1) = m1, where

m1(a1; �1) =

8<:
y001 if a1 = u
y1 if a1 = c
y001 if a1 = d

and m1 (a1; �1) =

8<:
y1 if a1 = u
y001 if a1 = c
y1 if a1 = d

.

Moreover, �1 (�1;m1) = �1 for every �1. Finally, A�s strategy � satis�es:

� (m1; l2) =

8>><>>:
(c; y02) if y02 2 Al2
(u; y2) if Al2 = fy2; y002g
(u; y2) if Al2 = fy2g
(d; y002) if Al2 = fy002g

. (2)

Complete � (and �1) when m0
1 6= m1 or l02 6= l2 in any sequentially rational way.

I claim that � = (�1; �2; �1; �), together with �(�1jm1; l2) = r(�1) for all m1; l2, is an
equilibrium of GM . First of all, both types of P1 are getting their maximal payo¤s by playing �1
against �. Furthermore, � is sequentially rational because choosing y02 is the unique best reply to
(�1; �1), and if y

0
2 is not available, it is optimal to select y2 (or y

00
2) and then send any message

to m1. Therefore (�1; �1) is optimal for P1. To see that P2 has no pro�table deviation, note
that any menu l02 that "includes" y

0
2 is equivalent to l2; on the other hand, A�s strategy in (2)

together with (�1; �1) prevents P2 from gaining if she deviates to l02 with Al02 2 2
fy2;y002 g n?. The

equilibrium SCF is then

f�(�1) =

�
(y1; y

0
2) if �1 = �1

(y001 ; y
0
2) if �1 = �1

.

However, no equilibrium of GL can sustain f�� this is true for both payo¤s�speci�cations,
but for di¤erent reasons that I shall explain shortly. Suppose on the contrary that such an
equilibrium existed. Since f� deterministically speci�es a di¤erent allocation between A and P1
depending on P1�s type, P1�s o¤er strategy in GL must satisfy �1(�1) 6= �1(�1): otherwise, A
would (randomly) induce the same allocation for �1 and �1. It follows that P1 must reveal her
type up front. In addition, since A strictly prefers the allocation y01, P1 should never allow A to
choose such an allocation, i.e., y01 =2 Al1. Therefore, for at least one of her types, P1 must o¤er
only the allocation that she likes best. Finally, given his degenerate beliefs, A selects y02 with P2
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if and only if �2 = l2 with Al2 = fy02g. But this o¤er strategy is not optimal for P2:8 if P2 o¤ers
the menu l02 with Al02 = fy2; y

0
2; y

00
2g, A will then choose either y2 or y002 , making P2 strictly better

o¤.

Example 2 helps understand the �rst limitation of restricting attention to GL. When P1
can o¤er only menus, she entirely transfers the decision power into the hands of the agent.
Thus, P1 has to rely only on his self-interest to achieve the decision that best matches her type.
However, if P1 constrains A�s choices to menus containing only the allocations that her type
likes best, then P1 may lead A to make undesirable decisions with P�1 for two reasons.9 In the
"full" private values case, although A may update his beliefs about �1 upon observing l1, this
updating has no e¤ect on his preference and hence his decisions. Nonetheless, A�s preference
over Y2 endogenously depend on y1. Therefore, when P1 o¤ers A a subset of Y1, she reduces
A�s uncertainty about their bilateral relationship, thereby inducing a y2 that she dislikes. In
the common value case, instead, A cares directly about the type of P1. Therefore, if P1 reveals
too much information about her type, then A re�nes his preference enough to discover that
some other y02 is better than his current choice. Clearly, none of these issues arise when the
principals can communicate with their mechanisms, but doing so requires more than simple
menus of allocations.

In light of the previous remarks, it seems natural to wonder whether the principals�ability to
communicate with their mechanisms is the only reason why the Delegation Principle fails. Since
such a �exibility may be unappealing or unrealistic in some context (see, e.g., Martimort and
Moreira (2010)), it is important to know what happens if, from the outset, all mechanisms can
depend only on A�s messages. As in games with uninformed principals, in such an environment
each Pi delegates the �nal decisions to the agent.

De�nition 3 (Delegation) The common agency game GM is called a game with delegation,
denoted GD, if for every i 2 N and mi 2Mi, mi : Ai ! Di.

Note that in GD the principals don�t play any active role after o¤ering their mechanisms, there-
fore there is no principals�communication strategy. The solution concept in De�nition 1 natu-
rally extends to GD.

If we focus on games with delegation, we can better understand another important novelty
caused by having informed principals: namely, the signaling content that each mechanism can
assume in equilibrium. The next example illustrates this point and shows that, even in games
with delegation, restricting attention to standard menus may not allow for full generality.

Example 3 Again, there are only two principals, P1 and P2, �1 = f�1; �1g, and r(�1) = 1=2,
whereas P2 and A are uninformed. P1�s set of allocations is Y1 = fy1; y1g and P2�s is Y2 =
fy2; y02; y002g. Table 4 reports the players�payo¤s for every �1. For simplicity, P1 and P2 compete

8Here I am using the assumption that if P2 deviates and P1 doesn�t, A still uses Bayes rule to update his
beliefs about �1. See Fudenberg and Tirole (1991).

9These reasons resemble the e¤ects of private and common values assumptions that Maskin and Tirole (1990-
1992) discuss in their papers.
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in o¤ering A mechanisms of the form mi : Ai ! Yi, where A1 = f�1; �1g and A1 = f�1; �1; cg.

�1 �1

y1=y2 y2 y02 y002
y1 1; 1; 1 1; 3; 2 1; 1; 0
y
1

0; 1; 0 0; 0; 3 0; 1; 0

y1=y2 y2 y02 y002
y1 0; 1; 0 0; 0; 3 0; 1; 0
y
1

1; 1; 0 1; 3; 2 1; 1; 1

Table 4: Example 3 payo¤s

Consider the following equilibrium (�; �). P2 o¤ers m2 such that Im(m2) = fy2; y002g. P1�s
strategy satis�es �1(�1) = m1 and �1(�1) = m1 with

m1 (a) =

�
y1 if a = �1
y
1
if a = �1

and m1 (a) =

�
y1 if a = �1
y
1
if a = �1

.

Then, on path A�s beliefs � will assign probability one to �1 after m1 and probability one to
�1 after m1 (as before, these beliefs remain unchanged after any unilateral deviation of P2).
Finally, A�s communication strategy � is as follows: if P1 and P2 o¤er (m1;m2), A "chooses"
y2 and sends the message �1; whereas if P1 and P2 o¤er (m1;m2), A "chooses" y002 and sends the
message �1. Moreover, if P2 deviates to a mechanism that allow A to choose y02, then A will do
so, and will send the message �1 both to m1 and to m1.

It is immediate to see that the (partially)10 de�ned strategy � is sequentially rational for A,
given � and �1 and �2. Also �1 is a best reply to �2 and �. Similarly, P2 has no pro�table
deviation: even if P2 allowed A to choose y02, A would choose the "wrong" contract with P1,
causing P2�s payo¤ to drop to zero. The equilibrium SCF is

f� (�1) =

�
(y1; y2) if �1 = �1
(y
1
; y002) if �1 = �1

.

I claim that no equilibrium of a menu game GL, with GD < GL, can sustain the same SCF.
On the one hand, if both types of P1 o¤er the same menu containing both y1 and y1, A will
induce the same lottery over fy1; y1g, independently of �1. On the other hand, if either type
of P1 o¤ers the menu containing only her preferred allocation, then P2 can�t be deterred from
o¤ering y02.

Example 3 suggests another limitation of GL that makes this class of games inadequate to
replicate all equilibrium SCFs of GD (and a fortiori of GM). From Section 3, we know that
signaling is necessary to sustain certain equilibrium SCFs of GD. However, the principals�
ability to signal their type can be poorer in GL than in the underlying game GD, therefore
some equilibrium SCFs of GD may disappear in GL. In GL, to de�ne what A can chose and
possibly signal her type, each Pi can use only one instrument: the set of allocations that she

10A�s beliefs and behavior after P1�s deviations can be appropriately de�ned without a¤ecting the message of
the example.
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o¤ers A. Such a restriction can involve some trade-o¤s. In Example 3, if P1 and P2 compete
in menus, to signal her type P1 must exclude from one of her o¤ers a "latent contract" that, in
the equilibrium of GD, deterred P2�s deviations by leveraging on A�s self-interest. In contrast,
in GD such a trade-o¤ doesn�t arise because each Pi can frame her mechanisms in di¤erent ways
to signal her type, while o¤ering A the same choice set.

To summarize, the examples in this section and Section 3 have brought to light the main
strategic components of common agency games with informed principals. Compared to games
with uninformed principals, when principals are informed and there is delegation, the mecha-
nisms play two key roles in equilibrium. The �rst one is to specify a set of allocations among
which A is allowed to choose� this is the only role when principals are uninformed, as the
Delegation Principle shows. The second one is to signal the principals�private information, a
role that can clearly appear only when principals are informed, and is perhaps the key novel
ingredient of the present model. Furthermore, in games without delegation, mechanisms play a
third key role: namely, they allow each principal to further act on her private information after
the agent has communicated with her opponents.

These observations suggest how to extend the intuition behind the Delegation Principle to
identify a class of games that is simpler than GD or GM , but allows to replicate all equilibrium
SCFs of GD and GM . Intuitively, this class should allow principals to o¤er appropriately de�ned
choice sets as well as to send "cheap-talk" signals, so that each Pi has enough �exibility to reveal
di¤erent pieces of information, while o¤ering A the same choice set.

5 Deterministic-O¤er Equilibria: A Simple Characteri-
zation

In this section I focus on equilibria of the underlying games GD and GM in which principals�o¤er
strategies are deterministic functions of their types. This kind of equilibria represents the focus
of almost the entire literature on common agency� to the best of my knowledge, there is no
paper that actually constructs an equilibrium in which principals mix over mechanisms. From
a pragmatic perspective, deterministic-o¤er equilibria are clearly more realistic and appealing.
Furthermore, as we shall see, they are amenable to a simple and intuitive characterization.

I begin by formally de�ning deterministic-o¤er equilibria as follows.

De�nition 4 (D-O equilibrium) A pro�le (�; �) 2 E(GM) (respectively E(GD)) is a deter-
ministic - o¤er equilibrium if for every i 2 N and �i 2 �i, �i (�i) = mi for some mi 2Mi.11

Note that De�nition 4 doesn�t require that the principals�or the agent�s communication strategy
be deterministic.

In D-O equilibria the kind of signaling that the principals achieve through their mechanisms
is relatively simple, and it involves a straightforward inference problem for the agent. When
Pi o¤er strategy is deterministic, with each mechanism she simply signals that her type is to

11The notation �i (�i) = mi stands for �i (�i) = �mi (�mi is the Dirac measure on mi). For simplicity, I shall
use the same convention to describe pure strategies.
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a certain subset of �i� this subset can be a singleton or contain many types. Therefore, upon
observing a pro�le m, A needs only to infer which types ��0 are consistent with m and the
equilibrium behavior; the relative likelihood of these ��0 is then simply pin down by A�s prior
belief. Thus, in contrast to an equilibrium with mixed o¤er strategies, A never has to worry
about the fact that di¤erent pro�les ��0 may play the same m but with di¤erent probabilities.

Hence, to replicate at least the SCFs that result from D-O equilibria of any GD and GM ,
the "cheap-talk" signals of our new class of games should allow each Pi to control the �ow of
information towards A as described above. I shall �rst consider the games with delegation, GD,
and then the games without delegation, GM .

5.1 Games with Delegation

In the case of games with delegation, I augment the standard menu game of Peters (2001) by
endowing each principal with the set of signals Si = �i.12 I then show that the set of SCFs
sustained by D-O equilibria of GD coincides with the set of SCFs sustained by D-O equilibria
of a game in which principals compete in o¤ering menus and signal their types through Si.
Therefore, as long as we are interested in D-O equilibria of an underlying game GD, a very
simple extension of Peters�(2001) menu game is enough to replicate the entire set of possible
SCFs.

I shall refer to my new menu game in which each Pi sends signals in Si as the "signal-menu
game," denoted GSL. In GSL, Pi�s action space is Si �Li, where Li is the usual set of menus of
Pi. A signal-o¤er strategy of Pi is then a map �i from �i to �(Si � Li). On the other hand,
A�s strategy is now a map that, for every pro�le of signals � and menus l, speci�es a lottery in
�(Al).
As usual, to replicate all the equilibrium SCFs of GD, GSL must be comparable to GD from

the outset in terms of the contracting possibilities that the two games allow. To capture this
requirement, I follow the literature again and use the notion of enlargement.

De�nition 5 (GD < GSL) GD is an enlargement of GSL if and only if for every i 2 N we have
that for every menu li 2 Li there exists a mechanism mi 2 Mi such that Im(mi) = Im(li) and
vice versa.

It is important to note that De�nition 5 is essentially the same as the standard notion of
enlargement (see Section 4) as it requires the same fundamental conditions for GD and GSL to
be comparable. Hence, if we start from any GD and we want to identify the game GSL such that
GD < GSL, we have to perform the same exercise as if we were dealing with a standard game
with uniformed principal and had to derive the contractually equivalent, standard menu game.

Following De�nition 4, an equilibrium of GSL is a D-O equilibrium if every Pi chooses deter-
ministically what menu she o¤ers and what signal she sends after observing her type �i: if for
every i 2 N and every �i 2 �i, �i(�i) = (�̂i; li) for some (�̂i; li) 2 Si � Li.
I am now ready to state my main characterization result for games with informed principals

and delegation.

12It will become clear in a moment that the essential property of Si is that jSij = j�ij.
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Theorem 1 Let GD be an enlargement of GSL and f be a social choice function. There exists
a deterministic-o¤er equilibrium (��; ��) of GD such that f�� = f if and only if there exists a
deterministic-o¤er equilibrium (���; ���) of GSL such that f��� = f .

The intuition behind Theorem 1 is as follows. In a D-O equilibrium of GD, by playing mi, Pi
signals that her type is in some Ti(mi) � �i. Now in GSL, all types in Ti(mi) can equivalently
contract with and signal to A by o¤ering him the same bundle of decisions that A can choose
through mi, and by sending him a common signal, e.g., one type in Ti(mi). In GD, Pi�s o¤er
strategy can be at most fully revealing� i.e., jTi(mi)j = 1� but at the same time all types of
Pi could o¤er A the same bundle of decisions (recall Example 3). Again, in GSL each Pi can
equivalently interact with A by o¤ering him such a bundle of decisions, and by simply telling
him her type.

Consider now a D-O equilibrium of GSL. There always exists an outcome-equivalent equi-
librium in GD for two reasons: �rst, by the de�nition of enlargement, each bundle of decisions
that Pi can o¤er in GSL can also be o¤ered in GD through some indirect mechanism. Further-
more, the communication language in GD is su¢ ciently rich to design enough di¤erent indirect
mechanisms that, while leading to the same bundle of decisions, allow Pi to achieve the same
degree of signaling as in the equilibrium of GSL.

5.2 Games without Delegation

In this section, I drop the restriction that principals can�t communicate with their mechanism,
but I still focus on D-O equilibria. My goal is again to identify a class of games, possibly simpler
thanGM , that allows us to replicate all the SCFs sustained by D-O equilibria of GM . As I argued
in Section 4, each Pi�s ability to communicate with her mechanisms requires moving beyond the
standard notion of menus. However, I only need to replace standard menus of decisions with
menus of direct revelation mechanisms to achieve my goal. I proceed in two steps: �rst, I show
that menus of direct revelation mechanisms preserve the same ability to contract that principals
have in games without delegation; I then provide my characterization result.

To identify a tractable class of games that serves our goal, we �rst need to understand how
indirect mechanisms work in GM . I suggest thinking of a mechanism mi : Ai � Pi ! Di as an
array of objects as in Figure 1.

Pi
#

Ai !

mi(ai; pi) mi(ai; p
0
i) � � � mi(ai; p

00
i )

mi(a
0
i; pi) mi(a

0
i; p

0
i) � � � mi(a

0
i; p

00
i )

...
...

. . .
...

mi(a
00
i ; pi) mi(a

00
i ; p

0
i) � � � mi(a

00
i ; p

00
i )

! di 2 Di

Figure 1: Graphical representation of mi.
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Each entry of this array is simply an element of Di, which Pi and A select by independently
submitting a pair of messages. If we now consider the rows of the array, we see that mi identi�es
a collection of maps from Pi�s messages to decisions in Di: for each mi this collection is

Hi (mi) = fhi(mi) : Pi ! Dijhi(�;mi) = mi (ai; �) ; ai 2 Aig .

Also, we can think of A as choosing the row of the array by submitting his message. Thus, mi

also de�nes a map
vi(�;mi) : Ai ! Hi(mi)

for A, where vi(ai;mi) = mi(ai; �). In short, we can interpret any indirect mechanism mi as
working in two steps: �rst, it matches each message of A with a "partial" mechanism hi(mi) for
Pi; second, it uses this partial mechanism to translate Pi�s messages into decisions in Di. Note
that since A and Pi send their messages simultaneously, Pi must play all partial mechanisms in
Hi (mi) in the same way. Finally, Hi =

S
mi2Mi

Hi (mi) represents the collection of all partial
mechanisms that Pi can combine to create any indirect mechanism inMi� graphically, Hi is the
collection of all rows that Pi can stack to form an array as in Figure 1.

Due to the Revelation Principle, direct revelation mechanisms represent a class of partic-
ular interest in the mechanism-design literature. In fact, they play an important role also in
the present environment. For each Pi, de�ne the collection of direct revelation mechanisms
(hereafter, DRMs) as

HR
i =

�
hRi : �i ! �(Yi)

	
.

Note that although �i � Pi, formally HR
i is not a subset of Hi because each hi is a function of

the whole set Pi. Nonetheless, given any communication strategy �i, we can match any partial
mechanism hi 2 Hi to a DRM hRi 2 HR

i in the usual way: for every yi 2 Yi, let

hRi (yi; �i) =
P

Pi di(yi)hi(di; pi;mi)�i(pi; �i;mi).

Hereafter, to concisely represent this transformation of hi (mi) into the corresponding hRi through
�i, I shall use the notation hi (mi).�i (mi). Given �i, if we iteratively apply this transformation
to all the elements of Hi(mi), we obtain the list �

R(mi; �i) of DRMs that A can induce by
communicating to mi: formally,

�R(mi; �i) =
�
hRi 2 HR

i : 9ai 2 Ai; vRi (ai;mi ; �i) = h
R
i

	
,

where vRi (ai;mi; �i) = vi(ai;mi).�i(mi). It is easy to see that, although two indirect mechanisms
mi and m0

i may look completely di¤erent, there may exist a communication strategy �i such
that �R(mi; �i) = �

R(m0
i; �i).

I can now introduce the notion of "list" of DRMs:

De�nition 6 (List of DRMs) A list of direct revelation mechanisms for principal Pi, denoted
lRi , is a function l

R
i : AlRi ! HR

i with the following properties:

1. AlRi 2 2
HR
i n?;

2. lRi is the identity function, i.e., l
R
i (h

R
i ) = h

R
i for all h

R
i 2 AlRi .
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Let LRi be the collection of lists of DRMs of Pi. Figure 2 represents graphically how any l
R
i

works: intuitively, if we compare Figure 1 and Figure 2, we see that any lRi is still an array of
decisions in Di, but now the rows of Figure 1 have become direct revelation mechanisms, which
A chooses by simply naming one.

�i
#

AlRi !

hRi (�i) hRi (�
0
i) � � � hRi (�

00
i )

ĥRi (�i) ĥRi (�
0
i) � � � ĥRi (�

00
i )

...
...

. . .
...

~hRi (�i)
~hRi (�

0
i) � � � ~hRi (�

00
i )

! di 2 Di

Figure 2: Graphical representation of lRi .

Since any pair (mi; �i) corresponds to a list of DRMs, the set LRi contains all contracting
opportunities that Pi can rely on in GM . As I highlighted in Sections 3 and 4, however, we can�t
disregard that Pi�s indirect mechanisms are contracting devices as well as signaling devices.
Therefore, although focussing on LRi does not restrict Pi�s ability to contract, it may still limit
her ability to signal relative to Mi. Intuitively, in an equilibrium of GM Pi may reveal her two
types by playing two di¤erent indirect mechanisms that �i turns into the same list lRi . Clearly,
if constrained to LRi , Pi would face a trade-o¤ between o¤ering the same l

R
i and signaling what

she knows.

Again, to replicate all SCFs sustained by D-O equilibria of GM , I enrich each Pi�s space
LRi to rule out any trade-o¤ between contracting and signalling. In fact, there is a simple and
intuitive way to do so without introducing any dedicated set of signals. The idea is to let each
Pi o¤er lists of restricted DRMs (hereafter, RDRMs) that commit her to report only types in a
subset of �i. More formally, for every Ti 2 2�i n? let

HRR
i (Ti) = fhRRi : Ti ! �(Yi)g.

If we now rewrite De�nition 6 using HRR
i (Ti) in place of HR

i , we obtain all lists of RDRMs
that commit Pi to report types in Ti, denoted LRRi (Ti). And if we repeat the exercise for every
Ti 2 2�i n?, we get the collection LRRi of all lists of RDRMs.

Figure 2 helps understand the intuition behind o¤ering lists of RDRMs. Graphically, an
element of LRRi (Ti) is simply an array of DRMs as in Figure 2 from which we delete the columns
corresponding to all types �i =2 Ti. Now recall that in a D-O equilibrium of GM , when Pi
o¤ers the mechanism mi, at most she signals that her type is in some subset Ti of �i. Then
Pi can signal the same amount of information by o¤ering a list of RDRMs that commit her to
report only the types in Ti. In other words, suppose again that in GM �i and �

0
i o¤er di¤erent

mechanisms mi and m0
i, but �i implies that mi and m0

i boil down to the same l
R
i . Then, within

LRRi , �i and �
0
i can still di¤erentiate themselves by o¤ering l

RR
i (Ti) and lRRi (T 0i ) such that �i =2 T 0i ,

and vice versa.
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In light of the previous considerations, I suggest to consider a game, denoted GLRR, in
which principals compete in lists of RDRMs. In such a game each Pi o¤ers an element of LRRi
simultaneously with P�i. After A has observed all the o¤ers, he selects a RDRMs from each
list, and at the same time Pi submits a report �̂i from the set to which she committed. More
formally, in GLRR each Pi�s strategy is a pair of maps (�i; �i) such that �i : �i ! �(LRRi ) and
�i assigns to each (�i; lRRi ) a lottery over the resulting Ti � �i; and, A�s strategy � assigns to
each pro�le lRR 2 LRR a lottery over AlRR .
As I did for the games with delegation GD, I de�ne when GM and GLRR are comparable

using an appropriate notion of enlargement.

De�nition 7 (GM < GLRR) A game GM is an enlargement of GLRR if and only if for every Pi
two conditions hold:
1. For every lRRi 2 LRRi (�i), there is a mi 2 Mi and a communication strategy �i such that
lRRi = �R(mi; �i);
2. For every mi 2Mi and �i there is an lRRi 2 LRRi (�i) such that �

R(mi; �i) = l
RR
i .

Note that De�nition 7 imposes conditions only on lists of DRMs, rather than on all lists of
RDRMs.

Since in GLRR each Pi ends up playing a RDRM, it seems natural to consider equilibria in
which, at least on path, Pi reports truthfully her �i to the mechanisms she o¤ers.

De�nition 8 (Truthful Equilibrium) An equilibrium (�; �) of GLRR is a (principal) truth-
ful equilibrium if, for every principal Pi, every �i 2 �i, and every lRRi 2 Supp [�i (�i)], we
have �i(�i; lRRi ) = �i.

The next lemma justi�es focussing on truthful equilibria of GLRR.

Lemma 1 If there exists a deterministic-o¤er equilibrium (��; ��) of GLRR that sustains the
social choice function f��, then there exists a deterministic-o¤er, truthful, equilibrium (���; ���)
of GLRR such that f��� = f��.

Truthful equilibria in which principals play deterministic-o¤er strategies represent a simple
and intuitive class of equilibria of GLRR. Moreover, as the next theorem shows, the D-O truthful
equilibria of GLRR exactly replicate all SCFs sustained by D-O equilibria of GM .

Theorem 2 Let GM be an enlargement of GLRR and f be a social choice function. There exists
a deterministic-o¤er equilibrium (��; ��) of GM such that f�� = f if and only if there exists a
deterministic-o¤er, truthful, equilibrium (���; ���) of GLRR such that f��� = f .

Hence, we can interpret a game without delegation GM as being strategically equivalent to a
game in which principals �rst commit to menus of restricted DRMs, the agent then observes all
menus and picks one DRM for each principal, which she plays by truthfully reporting her type.
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6 Conclusions

I have studied the strategic nature of common agency games with informed principals, both in
the case in which the principals delegate the �nal decisions to their agent, and in the case in
which they retain some decision power after they o¤er their mechanisms.

I have shown that, contrary to what happens in mechanism design models with one informed
principal, Myerson�s (1983) Inscrutability Principle fails in games with many informed principals.
This result is important because it shows that in such games signaling through mechanisms is an
essential strategic component. Preserving the principals�ability to signal is therefore necessary
to characterize all the equilibrium outcomes.

I have also shown that, contrary to what happens in common agency games with unin-
formed principals, Martimort and Stole�s (2002) Delegation Principle� equivalently, Peters�
(2001) Menu Theorem� fails when principals have private information. This conclusion im-
plies that simple menus of alternatives don�t capture the entire strategic nature of games with
informed principals. Since signaling through mechanisms is essential, how a principal frames
a set of alternatives matters too. Furthermore, simple menus deprive the principals of their
ex-post decision power if the underlying game is without delegation.

Based on these considerations, I have provided two results that characterize the equilibrium
outcomes of games with informed principals. I have focussed on the equilibria that are typically
of interest in common agency games, namely those in which principals o¤er their mechanisms
following pure strategies. For games with delegation, we can replicate such equilibrium outcomes
using a standard menu game with the only novelty that each principal is endowed with a set
of cheap-talk signals equal to her set of types. For games without delegation, we can replicate
the equilibrium outcomes using a new game in which principals o¤er menus of restricted direct-
revelation mechanisms, which they then play truthfully in equilibrium.

Although my results clarify the strategic essence of games with informed principals and
dramatically reduce their inherent complexity, they represent only a �rst step in providing a
complete and practical piece of machinery to characterize all equilibrium outcomes. A natural
completion of the present analysis would be to extend the results to equilibria in which principals
randomly select their mechanisms. Most importantly, however, future research should try to
address the lack of structure that handicaps menus� Pavan and Calzolari (2010) constitutes a
starting point of this line of research. Solving this issue is likely to improve the usefulness of
common agency models with informed principals, especially for applied research.

7 Appendix

7.1 Proof of Theorem 1

Part 1: ()) Let (��; ��) be a D-O equilibrium of GD. I shall construct a D-O equilibrium
(���; ���) of GSL, and then show that f�� = f���.

Given the o¤er strategy ��i of Pi, let �
�
i (�i) be the set of mechanisms that are o¤ered by

some �i in the equilibrium ��. For every �i it is possible to identify the subset Ti(��i (�i)) =
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(��i )
�1(��i (�i)) � �i. Since ��i is deterministic, the collection fTi(��i (�i))g�i2�i is a partition of

�i with at most j�ij elements. For every Ti(��i (�i)), let #i (��i (�i)) be the type �i 2 Ti(��i (�i))
with the lowest index. Since GD < GSL, for every mi 2 Mi let li (mi) be the menu li such that
Ali = Im(mi). So, for �i 2 �i let ���i be de�ned as follows

���i (�̂i; l̂i; �i) =

8<: (�̂i; l̂i) if �̂i = #i (��i (�i)) and l̂i = li (�
�
i (�i))

0 else.

The same construction applies to every Pi.

Now consider the agent�s strategy ���. Suppose the pro�le (��0; l) is on path. Let m�l be
the pro�le of mechanisms such that m�

i = �
�
i (�i) for every i 2 N . And for every �0 2 �0 and

d 2 Al, let
���(d; �0; ��0; l) =

P
fa2Ajm�l(a)=dg �

� �a; �0;m�l� .
Suppose instead that (��0; l̂) is not on path. Then, if l̂i = l̂i (��i (�i)) let m̂i = �

�
i (�i), otherwise

let m̂i be any mechanism in Mi such that Im (m̂i) = Al̂i. Given the pro�le m̂, for every �0 and
d 2 Al̂, let

���(d; �0; ��0; l̂) =
P

fa2Ajm̂(a)=dg �
� (a; �0; m̂) .

I claim that f��(�) = f���(�) for every �. This is immediate because for every ��0 the principals
give the agent the same selection of pro�les of decisions, and for every l on path, every �0 induces
the same distribution over pro�les of decisions as in the original equilibrium after m�l.

Now consider the agent�s updated belief ���. Suppose the pro�le (�̂�0; l) is on path. Because
���(�̂�0; l; ��0) =

Q
i2N �

��
i (�̂i; li; �i) and �

�� have �nite support, we have for every ��0

���(��0j �0; �̂�0; l) =
Pr���( �̂�0; l

��� ��0)r0(��0j �0)P
�0�0
Pr���( �̂�0; l

��� �0�0)r0(�0�0�� �0)
=

Q
i2N �(#i(��i (�i));li)r0(��0j �0)P

�0�0

Q
i2N �(#i(��i (�0i));li)r0(�

0
�0
�� �0)

=
r0(��0j �0)P
�0�0
r0(�

0
�0
�� �0) = ��(��0j �0; ��(��0)).

For every (�̂�0; l̂) o¤ path, construct m̂ as before and let ���( �j �0; �̂�0; l̂) = ��( �j �0; m̂).
Given the agent�s belief ���, it follows that the strategy ��� is sequentially rational. Take

any (�̂�0; l) either on path� the same argument applies if (�̂�0; l) is o¤ path. Given (�̂�0; l), the
agent�s belief over ��0 coincides with the beliefs he had after observing ��(�̂�0) in the original
equilibrium ��, and ��� induces the same distribution over decisions as did �� having the same
set of alternatives available. Therefore, if the agent has a pro�table deviation from ���, then ��

could not be sequentially rational from the outset. A contradiction.

Given ����i and �
��, no Pi has a pro�table deviation from ���i . Suppose to the contrary that

for some �i there exists (�̂i; l̂i) such that

U i((�̂i; l̂i); �
��
�i; �i; �

��) > U i(�
��
i (�i); �

��
�i; �i; �

��).
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If (�̂i; l̂i) is on the path of play under ���, then it means that l̂i corresponds to some m̂i = �
�
i

�
~�i

�
for ~�i =2 Ti(��i (�i)). Otherwise, let m̂i be the indirect mechanism I used in constructing ��� o¤
path. Because the probability over outcomes that �i induces after deviating l̂i given ����i is
identical to that induced after deviating to m̂i given ���i, we have

U i(m̂i; �
�
�i; �i; �

�) > U i(�
�
i (�i); �

�
�i; �i; �

�).

A contradiction.

Part 2: (() Let (���; ���) be a D-O equilibrium of GSL. I now derive a D-O equilibrium
(��; ��) of GD, and show that f��� = f��.

Consider the strategy ���i for Pi. Let ���i � L��i = Im(���i ) be the �nite set of signals and
menus that Pi can o¤er according to ���i . For every (�̂i; l̂i) 2 ���i � L��i , let �i(l̂i) be the set
of signals that Pi sends while o¤ering l̂i. Now construct

����i(l̂i)��� indirect mechanisms mi(l̂i)

with Im(mi(l̂i)) = Al̂i. This can be done because G
D < GSL and j�ij � jAij for every i 2 N :

choose j�ij messages in Ai and label the elements in Al̂i, other than the "default" option �yi
corresponding to rejecting l̂i, each time starting with a di¤erent element from the set of j�ij
selected messages. And when you get to �yi, assign all remaining messages in Ai to this option.
This procedure delivers j�ij di¤erent indirect mechanisms whose image equals the menu l̂i.
Then, to every �̂i 2 �i(l̂i) associate the indirect mechanism mi(�̂i; l̂i). Now, with a slight abuse
of notation, let Pi strategy in GD be de�ned as ��i (�i) = mi(�

��
i (�i)). And apply the same

construction to every Pi.

Now consider the agent�s strategy ��. Ifm is on path, then let ���((��)�1 (m)) = (���i ((�
�
i )
�1 (mi)))i2N .

For every d 2 Im(m) letA(d) = fa 2 A : m(a) = dg and choose one message pro�le a(d) 2 A(d).
Then for every �0, let

��(â; �0;m) =

�
���(d; �0; �

��((��)�1 (m))) if â = a(d)
0 else

.

Now suppose m̂ is not on path. Let l̂(m̂) be the array of menus with Al̂i = Im(m̂i). Again, for

every d̂ 2 Im(m̂), let A(d̂) = fa 2 A : m̂(a) = d̂g and choose one message pro�le a(d̂) 2 A(d̂).
Then for every �0, let

��(~a; �0; m̂) =

�
���(d̂; �0; �̂�0; l̂(m̂)) if ~a = a(d̂)
0 else

,

where the pro�le of signals �̂�0 is chosen as follows. For every Pi, if m̂i = �
�
i (�i) for some �i,

then let �̂i = ���i ((�
�
i )
�1(m̂i))j�i. Otherwise, let �̂i be any element of �i.

I claim that f��� = f��. This is because any pro�le of principals�types ��0 o¤ers the agent
the same choice set under ��� and ��. Furthermore, given an array of mechanisms, the agent
conditions the distribution over decisions on the speci�c designs of such indirect mechanisms as
he was conditioning on the signals in the equilibrium of GSL.

Consider now the agent�s beliefs. Suppose �rst that the pro�le m is on path according to
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��. Then, for every �0 and ��0

��(��0j �0;m) =
Pr��(mj ��0)r0(��0j �0)P
�0�0
Pr��(mj �0�0)r0(�0�0

�� �0)
=

Pr���(�
��((��)�1 (m))j ��0)r0(��0j �0)P

�0�0
Pr���(���((��)�1 (m))j �0�0)r0(�0�0

�� �0)
= ���(��0j �0; ���((��)�1 (m))).

If instead m̂ is o¤ path. Let l̂(m̂) be the array of menus with Al̂i = Im(m̂i), and let

��(��0j �0; m̂) = ���(��0j �0; �̂�0; l̂(m̂)),

where the signal pro�le �̂�0 is chosen as in the construction of �� o¤ path.

I claim that the pro�le (��; ��) is an equilibrium of GD. With regard to the agent�s strat-
egy, after any pro�le m that is on path, the agent has the same beliefs and induces the same
distributions over pro�les of decisions as after the pro�le of menus and signals ���((��)�1 (m)).
Hence, he cannot have any pro�table deviation. If m̂ is o¤ path, the same argument applies.
With regard to the principals�strategies, suppose some �i of some Pi has a pro�table deviation
to a mechanism ~mi, that is

U i( ~mi; �
�
�i; �i; �

�) > U i(�
�
i (�i); �

�
�i; �i; �

�):

Then it means that the way that the agent interprets �i�s deviation in forming his beliefs and
the resulting distribution over decisions make �i strictly better o¤. On the other hand, by
construction the deviation to ~mi is equivalent to o¤ering ~li with A~li = Im( ~mi) and send the
signal ~�i that I used in the construction of �� and �� above. Since the agent is responding to
���i as he was responding to �

��
�i, it follows that

U i((~�i; ~li); �
��
�i; �i; �

��) > U i(�
��
i (�i); �

��
�i; �i; �

��).

A contradiction.

7.2 Proof of Lemma 1

Let (��; ��) be a D-O equilibrium of GLRR. I shall construct a D-O, turthful, equilibrium of
GLRR that sustains f��� = f��.

Consider �rst Pi. For every �i, let lRR�i (�i) = �
�
i (�i) and let Ti(l

RR�
i (�i)) = (�

�
i )
�1 (lRR�i (�i)) �

�i� clearly, lRR�i (�0i) = lRR�i (�i) if and only if �
0
i 2 Ti(lRR�i (�i)). Now for each �i, construct a

new list lRR��i (�i) as follows: for each hRR�i 2 AlRR�i (�i), let h
R
i (h

RR�
i ) = hRR�i . ��i

�
lRR�i (�i)

�
and

let hRR��i (hRR�i ) = hRi (h
RR�
i )

��
Ti(lRR�i (�i))

; the new lRR��i (�i) is the list consisting of these hRR��i .

Clearly, lRR��i (�i) = lRR��i (�0i) if and only if �
0
i 2 Ti(lRR�i (�i)). So, for every �i let ���i (�i) =

lRR��i (�i), and ���i (�i; �
��
i (�i)) = �i, whereas for lRRi 6= ���i (�i), let �

��
i (�i; l

RR
i ) = ��i (�i; l

RR
i ).

Finally, repeat the same construction for every Pi.
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Now consider the agent. Suppose �rst that lRR is on path under ���. Then, for every �0 and
every hRR 2 AlRR , let

���(hRR; �0; l
RR) =

P
fhRR�2A

lRR� :h
RR��(hRR�)=hRRg �

�(hRR�; �0; l
RR�),

where lRR�i = ��i ((�
��
i )

�1(lRR)). Also, using Bayes rule it follows that on path, for every �,

���(��0j �0; lRR) =
Pr���( l

RR
�� ��0)r0(��0j �0)P

��0
Pr���( lRRj �0�0)r0(�0�0

�� �0)
=

Pr��( l
RR�
�� ��0)r0(��0j �0)P

��0
Pr��( lRR�j �0�0)r0(�0�0

�� �0) = ��(��0j �0; lRR�),
where again lRR�i = ��i ((�

��
i )

�1(lRR)).

I claim that f��� = f��: to see this, note that for every �, both through (��; ��) and through
(���; ���), the principals�essentially give the agent the possibility to choose among the same
pro�les of lotteries over each Yi; furthermore, the agent actually induces the same distribution
over such pro�les under �� as well as under ���.

To complete the construction of the equilibrium (���; ���), for every lRR o¤path let ���(�; �; lRR) =
��(�; �; lRR) and ���( �j �; lRR) = ��( �j �; lRR). Using the assumption that (��; ��) is an equilibrium
of GLRR, it follows that such a pro�le (���; ���) is also an equilibrium of GLRR, which is D-O
and truthful.

7.3 Proof of Theorem 2

Part 1: Let (��; ��) be the D-O equilibrium of GM sustaining the SCF f . The proof proceeds by
constructing the desired equilibrium (���; ���) of GLRR, and concludes by showing that f��� = f .

Given the o¤er strategy ��i of Pi, let �
�
i (�i) be the set of mechanisms that are o¤ered

by some �i in the equilibrium ��. For every �i it is possible to identify the subset Ti(��i (�i)) =
(��i )

�1(��i (�i)) � �i, that is the set of types of Pi who o¤er the same mechanism ��i (�i). Using the
communication strategy ��i and the mapping �

R, recover the list of DRMs lRi (�i) = �
R(��i (�i); �

�
i )

that corresponds to the mechanism o¤ered by �i under ��i . Finally, for every �i identify the
RDRM lRRi (�i) in HR

i (Ti(�
�
i (�i))) by restricting every h

R
i in l

R
i (�i) to h

RR
i = hRi

��
Ti(��i (�i))

. By

construction, it follows that for every �i and �
0
i 2 Ti(��i (�i)), lRRi (�i) = l

RR
i (�0i). Therefore, let

Pi�s o¤er strategy in GLRR be ���i (�i) = l
RR
i (�i). And repeat the same construction for every Pi.

Now consider the communication strategies of the principals and the agent on path. For
every �i of Pi, let ���i (�i; �

��
i (�i)) = �i. With regard to the agent, given lRR on path, let

m(lRR) = ��((���)�1(lRR)) and T (lRR) = T (��((���)�1(lRR))), and for every hRR 2 AlRR , let
A(hRR) = faj vR(a;m(lRR); ��)

��
T (lRR)

= hRRg. In words, A(hRR) is the set of messages that
allowed the agent to induce a pro�le of DRMs (given ��) such that, if we restrict each of them
to Ti(lRRi ), we obtain hRR. Then for each �0, let

���(hRR; �0; l
RR) =

P
a2A(hRR) �

�(a; �0;m(l
RR)).
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Since the strategy ��� is deterministic, we can use Bayes rule to derive the on-path beliefs of
the agent as follows: for every ��0; �0 and lRR on path

���(��0j �0; lRR) =
Pr���( l

RR
�� ��0)r0(��0j �0)P

�0�0
Pr���( lRRj �0�0)r0(�0�0

�� �0)
=

Pr��(m(l
RR)
�� ��0)r0(��0j �0)P

�0�0
Pr��(m(lRR)j �0�0)r0(�0�0

�� �0) = ��(��0j �0;m(lRR)).
I claim that f�� = f���. Fix any � 2 � and letm� and lRR�� be the pro�les of indirect mechanisms
and lists o¤ered by ��0 under �� and ���, we have

f��(y; �) =
P

A
P

P m
�(y; a; p)��(p; ��0;m

�)��(a; �0;m
�)

=
P

hRR2A
lRR��

�i2Nh
RR
i (yi; �i)

P
a2A(hRR) �

�(a; �0;m
�) = f���(y; �).

Using this result, we can see that (���; ���) is a continuation equilibrium given any lRR on path
and ���. This is because, given any (�0; lRR) on path, the agent has the same belief over ��0
and, given ���, he expects the same distribution over outcomes by playing ��� as when he was
playing �� after (�0;m(lRR)). Furthermore, given ��� the agent can�t induce any distribution
over outcomes that he couldn�t induce after m(lRR) given ��. Similarly, each �i of Pi can�t have
a pro�table deviation from her truthful strategy after o¤ering lRRi , because any such deviation
was available also in the original game after o¤ering mi(l

RR
i ).

If lRR is o¤ path and involves deviations by more than one principal, choose any belief for
the agent ���( �j �; lRR) and equilibrium of the resulting continuation game� �niteness of AlRR
and ��0 ensures the existence of at least one continuation equilibrium. Now consider lRR o¤
path induced by the deviation of one single principal Pi. Suppose �rst that �i of Pi o¤ers
lRRi = ���i (�

0
i) for �

0
i 6= �i. Then the agent�s strategy and beliefs are de�ned as on path, and

let ���i (�i; l
RR
i ) 2 �(Ti(��i (�0i))) be any best reply to ��� and ����i. Then for any Pi, no type �i

can pro�t from such a deviation because it was already available to �i in the equilibrium of the
original game GM . The remaining case is when lRR is o¤ path (in the sense that it can�t occur
with positive probability according to ���i ) and only Pi has deviated for some �i. I claim that
there must exist a continuation equilibrium that makes such a deviation unpro�table. Suppose
to the contrary that �i of Pi deviates to o¤ering l̂RRi o¤ path, whereas all other principals follow
����i, and that for any choice of �

��( �j �; l̂RR) any continuation equilibrium can�t deter �i from such
a deviation. I claim that then (��; ��) can�t be an equilibrium of GM . To see this, recall that
since GM < GLRR, for such an l̂RRi there exist an indirect mechanism ~mi and a communication
strategy ~�i( ~mi) for such a mechanism, such that �

R( ~mi; ~�i)
��
Ti(l̂RRi )

= l̂RRi . Hence, consider the

mechanism m̂i such that, for every �i 2 Ti(l̂RRi ), m̂i(�i; �) = ~mi(~�i(�i; ~mi); �) and, for every other
pi 2 Pi n Ti(l̂RRi ), m̂i(pi; �) = m̂i(�

0
i; �) where �0i is the element of Ti(l̂RRi ) with the lowest index.

Then for type �i of Pi o¤ering m̂i in GM is essentially equivalent to o¤ering l̂RRi in GLRR and
then follow the same communication strategy in both games. Now, given the strategy ���i and
any realization m�

�i according to �
�
�i, the set of distribution over outcomes that the agent can

induce after (m̂i;m
�
�i) given (�̂i; �

�
�i) is the same as after the corresponding pro�le l̂

RR given
���. By assumption, it is not possible to �nd a belief ��� and a strategy ��� so that ��� is a
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best reply to ��� and vice versa, and �i of Pi doesn�t pro�t by deviating to l̂RRi . But then,
given any speci�cation of the agent�s belief after (m̂i;m

�
�i), there can�t be a strategy �̂ that

delivers, together with �̂i, a continuation equilibrium such that �i of Pi is deterred from o¤ering
m̂i followed by �̂i. This contradicts the assumption that (��; ��) is an equilibrium of GM , and
the �rst claim I started with follows. We conclude that it is possible to extend the on-path
strategies and beliefs that I have constructed above to obtain an equilibrium (���; ���) of GLRR

such that f��� = f��.

Part 2: Suppose (���; ���) is a D-O truthful equilibrium of GLRR that sustains the SCF f .
I shall show that there exists a D-O equilibrium (��; ��) of GM that sustains the same SCF.

Consider Pi and her o¤er strategy ���i . For every lRRi 2 ���i (�i), consider the mecha-

nism m
lRRi
i 2 Mi constructed as follows. Since GM < GLRR, there exist ~mi and ~�i such that

�R( ~mi; ~�i)
��
Ti(lRRi )

= lRRi , where Ti(lRRi ) is the set of �̂i that lRRi allows Pi to send. Since �i � Pi,

for each �i 2 Ti(lRRi ), let mlRRi
i (�i; �) = ~mi(~�i(�i; ~mi); �), and for every other pi 2 Pi n Ti(lRRi ), let

m
lRRi
i (pi; �) = m

lRRi
i (�0i; �) where �0i is the element of Ti(lRRi ) with the lowest index. There are two

cases to consider. The �rst case corresponds to
��Ti(lRRi )

�� > 1. In this case, each mlRRi
i signals

the same amount of information about Pi�s type as lRRi because both mlRRi
i and lRRi essentially

restrict Pi to choose a message in Ti(lRRi ). The second case corresponds to
��Ti(lRRi )

�� = 1, which
implies that lRRi is essentially a simple menu. In this case, we can match di¤erent �is to dif-
ferent mechanisms mis, even when these mechanisms correspond to the same menu, as in the
proof of Theorem 1. So denote by lRRi (�i) the list of RDRMs that �i o¤ers under ��i and let

m
lRRi (�i)
i be the indirect mechanism we have just constructed. Then, for every Pi and �i, de�ne

��i (�i) = m
lRRi (�i)
i .

Now consider the on-path communication strategies of the principals�and the agent�s. First,
for every Pi and �i, let ��i (�i;m

lRRi (�i)
i ) = �i. Now consider the agent. Given any pro�le m� on

path, recover the corresponding lRR(m�) given the above construction of m�. Also, for every
hRR 2 AlRR(m�), let A(hRR) = faj vR(a;m�; ��)

��
T (lRR(m�))

= hRRg and choose one message
a(hRR) 2 A(hRR). Then for each �0, de�ne

��(~a; �0;m
�) =

�
���(hRR; �0; l

RR(m�)) if ~a = a(hRR)
0 else

.

The agent�s on-path beliefs follow from Bayes rule: for every ��0; �0 and m� on path

��(��0j �0;m�) =
Pr��(m

�j ��0)r0(��0j �0)P
�0�0
Pr��(m�j �0�0)r0(�0�0

�� �0)
=

Pr���( l
RR(m�)

�� ��0)r0(��0j �0)P
�0�0
Pr���( lRR(m�)j �0�0)r0(�0�0

�� �0) = ���(��0j �0; lRR(m�)).

Given the construction of (��; ��) and �� on path, it follows that f�� = f��� because each
type �i of each Pi is o¤ering the same options to the agent and is constraining herself to the same
communication possibilities as in the pro�le (���; ���), and, given that, the agent is inducing
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the same distribution over maps from the principals�messages to outcomes as under ���. This
last observation implies that (��; ��) is a continuation equilibrium given the agent�s belief ��.

It remains to show that ��, ��, and �� can be extended o¤ path to obtain an equilibrium
(��; ��) of GM . If m is o¤ path because more than one Pi deviated, let ��( �j �;m) be any
belief of the agent and let (��; ��) be any equilibrium of the resulting continuation game. Now
suppose m̂ is o¤ path because only Pi deviated for some �i. If m̂i = �

�
i (
~�i) for some ~�i 6= �i, then

the agent�s strategy and beliefs are as if m̂ is on path. Hence, for �i, o¤ering m̂i followed by
some communication strategy, given �� and (���i; �

�
�i) in G

M , is equivalent to o¤ering lRRi (~�i),
again followed by some communication strategy, given ��� and (����i; �

��
�i) in G

LRR. Therefore,
�i can�t gain by o¤ering m̂i. Now consider the case with m̂i 6= ��i (~�i) for any ~�i. Suppose that
for any speci�cation of ��( �j �; m̂), any continuation equilibrium can�t deter �i from deviating to
m̂i. Consider the communication strategy �̂i(�; m̂i) in any such continuation equilibrium, and let
l̂Ri = �

R(m̂i; �̂i). Hence, for �i of Pi o¤ering m̂i followed by �̂i in GM is equivalent to o¤ering l̂Ri
in GLRR followed by a truthful report of �i. Given the pro�le ����i and any l

RR��
�i resulting from

����i, the set of distributions over outcomes that the agent can induce after (l̂
R
i ; l

RR��
i ) given ���

is the same as the set that the agent can induce after the corresponding pro�le (m̂i;m
�
�i) given

(�̂i; �
�
�i). By assumption, for any speci�cation of �

�( �j �; (m̂i;m
�
�i)) there is no �

�(�; (m̂i;m
�
�i))

that is a best reply to �̂i and vice versa, and can deter the deviation by �i of Pi to m̂i. But
then, there is no speci�cation of ���( �j �; (l̂Ri ; lRR��i )) for which a continuation equilibrium can be
constructed that deters �i of Pi from deviating to lRi in G

LRR. This implies that (���; ���) can�t
be an equilibrium of GLRR. A contradiction that implies that it is possible to complete �� and
�� o¤ path to make any deviation from the on path behavior constructed above unpro�table,
and thus obtaining an equilibrium (��; ��) of GM .
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