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Universitá di Napoli Federico II, Napoli 81026, ITALY
e-mail: marialaura.pesce@unina.it

3Department of Economics
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and
Economics - School of Social Sciences
The University of Manchester, Oxford Road, Manchester M13 9PL, UK
e-mail: nyanneli@illinois.edu, nicholasyannelis@manchester.ac.uk

1



1 Introduction

Ellsberg (1961)’s seminal paper generated a huge literature considering non-expected util-
ity preferences, beginning with Gilboa and Schmeidler (1989) and Schmeidler (1989). In
an early realization of the importance of these developments, Machina (1989, p. 1623)
observed that “non-expected utility models of individual decision making can be used to
conduct analyses of standard economic decisions under uncertainty, such as insurance,
gambling, investment, or search.” However, he foresaw that “unless and until economists
are able to use these new models as engines of inquiry into basic economic questions,
they—and the laboratory evidence that has inspired them—will remain on a shelf.” Un-
fortunately, for a long time Machina’s research program seemed to have been largely
ignored, at least in the field of general equilibrium with asymmetric information.4

The main objective of this paper is to advance Machina’s program in the field of gen-
eral equilibrium with asymmetric information. We consider an asymmetric information
economy with non-expected utility preferences and introduce new core and Walrasian
equilibrium notions which include as a special case the ones of Radner (1968) and Yan-
nelis (1991).

To understand why these definitions are not trivial variations of the Arrow-Debreu
concepts, it may be instructive to recall the “state contingent model”. This model is
an enhancement of the deterministic model of Arrow-Debreu-MacKenzie which allows
for the initial endowments and utility functions to depend on an exogenously given state
space. In this case, agents make contracts before the state of nature is realized, and ex post,
i.e., once the state of nature is realized, agents fulfill their contracts and consumption takes
place. Of course one must assume that there is an exogenous enforcer—a government
or a court—which makes sure that the agreements made ex ante are fulfilled ex post;
otherwise agents may renege on their ex ante contracts. The existence and optimality
results continue to hold for the state contingent model.

Radner (1968) introduced private information into the Arrow-Debreu’s state contin-
gent model. In particular, each agent is now allowed to have her own private information
which was modeled as a partition of the exogenously given state space and assumed that
the allocation of each agent is measurable with respect to her private information, i.e.,

4There are, of course, a few (but recent) notable exceptions, beginning with Correia-da Silva and Hervés-
Beloso (2009) and followed by Condie and Ganguli (2009), Condie and Ganguli (2010) and de Castro and
Yannelis (2008, 2010).
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allocations are private information measurable. Although, Radner continued to give the
state contingent interpretation of Arrow-Debreu, clearly such a story is not appealing now
because if the government or court will enforce the contacts ex post, why should agents
write measurable contacts? After all measurability reduces efficiency. By now it is known
that the private measurability assumption guarantees that the contacts are incentive com-
patible and thus enforceable (see for example Koutsougeras and Yannelis (1993), Krasa
and Yannelis (1994) and Angeloni and Martins-da Rocha (2009), among others for a dis-
cussion of this issue). Thus, if ones assumes that agents are subjective utility maximizers
and allocations are private information measurability then the resulting Walrasian equi-
librium notion of Radner (1968) and the private core notion of Yannelis (1991) result in
outcomes which are incentive compatible and private information measurable efficient
(in other words restricted efficient). Of course, we know that it is not possible to write
contacts using the standard expected utility which are first best efficient and incentive
compatible simultaneously.

It should be noted that the fundamental problem in mechanism design and equilibrium
under asymmetric information is the conflict between efficiency and incentive compati-
bility. The recent work of de Castro and Yannelis (2008, 2010) has made clear that this
problem is inherent to the expected utility framework. However, once we consider a spe-
cial form of the maximin expected utility of Gilboa and Schmeidler (1989), the conflict
between efficiency and incentive compatibility ceases to hold—see details in de Castro
and Yannelis (2010).

In this paper we consider an asymmetric information economy where the agents have
general non expected preferences and introduce new core and Walrasian equilibrium no-
tions. We recapture the state contingent model of Arrow-Debreu but in terms of a much
more general class of preferences. One of the advantages of our new modeling is that
whenever we specialize the non expected utility to the maximin expected utility, we will
guarantee that any maximin efficient allocation is incentive compatible. Hence, any max-
imin core and maximin Walrasian equilibrium which is maximin efficient is also incentive
compatible.

According to the maximin core, agents maximize interim expected utility taking into
account what is the worse possible state to occur. The latter works like a prevention
mechanism for any coalition of agents, not to be cheated by any other coalition. Al-
though agents in a coalition have their own private information, they do not need to share
it. Specifically, each member of the coalition calculates his expected utility based on his
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own private information. In that sense this notion resembles the private core of Yannelis
(1991), but there are two main differences: first allocations need not be measurable with
respect to the private information of each individual and second the expected utility func-
tional form is now different as we are using the maximin expected utility and not the
subjective expected utility (SEU). A formal comparison of the two concepts is given in
Section 3, which indicates that although those concepts are quite different, once we im-
pose private information measurability on allocations and utility functions, both notions
coincide.

It should be noted that the private core results in allocations that are incentive compat-
ible. However the private information measurability of allocations restricts the efficiency
of the private core and although we have a solution of the consistency of efficiency and
incentive compatibility, this solution amounts to “second best” efficiency. In other words,
the private core does provide a solution to the inconsistency between efficiency and incen-
tive compatibility, but there is a welfare loss associated with this solution. To the contrary,
our approach provides a framework to analyze equilibrium notions which are first best ef-
ficient and also incentive compatible.

Koutsougeras and Yannelis (1993) and Krasa and Yannelis (1994) suggest that for ef-
ficient contacts to be viable, they must be coalitional incentive compatible and not just
individual incentive compatible. Of course, coalitional incentive compatible allocations
are a fortiori individual incentive compatible. Thus, we will work with a notion of coali-
tional incentive compatibility which is an extension of the one of Krasa and Yannelis
(1994), de Castro and Yannelis (2008) and de Castro and Yannelis (2010). We show that
the maximin core notions introduced in this paper are maximin coalitional incentive com-
patible.

Our paper also introduces a new Walrasian equilibrium notion (called maximin Wal-
rasian equilibrium) which is also based on the maximin expected utility formulation. We
prove that the maximin Walrasian equilibrium exists and belongs to the maximin core.
Moreover, we show that under private information measurability assumptions on the al-
locations and on the random utility function, the standard Walrasian expectations equilib-
rium in the sense of Radner (1968) coincide with our maximin Walrasian expectation. In
general, however, those concepts are quite different. It should be noted that Correia-da
Silva and Hervés-Beloso (2009) were the first to study MEU into the Walrasian model,
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however their notion is different than ours.
The paper proceeds as follows. Section 2 describes the model and establishes some

basic results about the preferences considered. Section 3 defines and compares the private
core and the ex ante maximin core. We introduce and discuss our notions of equilibrium
in section 4. Our analysis is particularized to the maximin preferences in section 5, where
we establish incentive compatibility and existence of equilibrium. Section 6 is a brief
conclusion.

2 Differential information economy and preferences

This section describes our model, beginning in subsection 2.1, that lays down basic no-
tation. Subsection 2.2 describes the class of preferences that each individual will be as-
sumed to have, but without referring to any specific individual. Then, in subsection 2.3
we describe the economy.

2.1 Notation

In what follows, Ω is the finite set of states of nature and F ⊆ 2Ω is an algebra of events.
Let Π be a partition of Ω, which generates the algebra G ⊆ F , that is, Π (and hence G) is
coarser than F . Let Π(ω) denote the element of Π that contains ω ∈ Ω.5,6

The set of consumption bundles for all individuals is a convex set X ⊆ R`
+. Let

L denote the set of functions f : Ω → X . Since Ω is finite, L is a subset of a finite
dimensional euclidean space. Therefore, there is no ambiguity about its topology. For
each E ⊂ Ω, let LE be the set of functions f : E → X . Therefore, we can identify L with
×E∈ΠLE , that is, for each f ∈ L, there is one (and only one) profile (fE)E∈Π ∈ ×E∈ΠLE
such that f(ω) = fE(ω) if ω ∈ E. We will use this notation repeatedly, that is, given any
function f ∈ L, we will denote by fE ∈ LE the restriction of f : Ω → X to E ⊂ Ω.
Also, given f, g ∈ L and E ⊂ Ω, we will write (fE, gEc) for the function that is valued
f(ω) if ω ∈ E and g(ω) otherwise. Given x ∈ X and E ⊂ Ω, we will also denote by x
the function f : E → X defined by f(ω) = x for every ω ∈ E. This standard abuse of
notation will not cause confusion.

5Although this will not be essential for the discussion in this subsection, we clarify that later the partition
Π will be substituted by the private information partition of each agent.

6Sometimes, we will also denote Π(ω) by EΠ(ω).

5



Given a collection Π̃ of elements of the partition Π, let Π̃c denote Π\Π̃ and LΠ̃ denote
the set of profiles (fE)E∈Π̃ ∈ ×E∈Π̃LE . Therefore, we may write L = LΠ = ×E∈ΠLE .

2.2 Preferences

We will consider three kind of preferences: ex ante, interim and ex post. The ex ante
preference is a binary relation < on L. The interim preferences form a profile (<E)E∈Π,
such that <E is a binary relation on LE , for each E ∈ Π. Correspondingly, the ex post
preferences form a profile (<ω)ω∈Ω, where each <ω is a binary relation on L{ω} = X .

The objective of this subsection is to define properties and study the relationship be-
tween these preferences in such a way that can serve as a foundation for a satisfactory
theory of asymmetric information with special preferences (and not only expected util-
ity). Although the facts collected in this section are based on known results, we are not
aware of papers explicitly discussing general ex ante, interim and ex post preferences and
their relation as we do here.

It is clear from this discussion that an ex ante, interim or ex post preference can be
abstractly denoted by <E where E ⊂ Ω.7 Therefore, we can make the following assump-
tions:

Axiom 1 (Weak Order) <E is non-trivial, complete and transitive.

Axiom 2 (Continuity) The sets {g ∈ LE : g <E f} and {g ∈ LE : f <E g} are
closed for any f ∈ LE .

Let us begin by observing a trivial consequence of these axioms.

Proposition 2.1 Assume that the ex ante, interim and ex post preferences satisfy axioms
1 and 2. Then, there exist continuous functions U : L → R; u : Π × L → R and
ũ : Ω×X → R such that for all f, g ∈ L, E ∈ Π and ω ∈ Ω:

f < g ⇐⇒ U(f) > U(g); (1)

fE <E gE ⇐⇒ u(E, f) > u(E, g); (2)

f(ω) <ω g(ω) ⇐⇒ ũ(ω, f(ω)) > ũ(ω, g(ω)). (3)

7More clearly, the notation has the following meaning: if E = Ω, <E is an ex ante preference (and we
write < instead of <Ω); if E ∈ Π, <E is an interim preference and if E = {ω} for some ω ∈ Ω, <E is an
ex post preference. The axioms are supposed to hold for the three cases, for the respectively relevant sets.
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Moreover, these functions are unique up to monotonic increasing transformations.8

Proof: It is an immediate consequence of the classical Debreu’s result (Debreu (1954,
Theorem II)) applied separately to each of of these preferences. �

The above result is useful to setting the notation that we are going to use in the rest of
the paper, but, of course, the existence of continuous functions representing the ex ante,
interim and ex post preference is just the initial step towards our objective. What interests
us the most is the consistency requirement between these preferences.9

Axiom 3 (Ex ante/Interim Consistency) For any E ∈ Π and f, g, h ∈ L,

fE <E gE =⇒ (fE, hEc) < (gE, hEc).

Axiom 4 (Interim/Ex post Consistency) For any E ∈ Π, ω ∈ E and f, g, h ∈ L,

f(ω) <ω g(ω) =⇒ (f(ω), hE\{ω}) <E (g(ω), hE\{ω}).

We have the following:

Proposition 2.2 Assume that the preferences satisfy axioms 1 and 2 and let U, u and ũ be
the functions given by Proposition 2.1.

1. If axiom 3 holds, then there exists a continuous and monotonic function A : R|Π| →
R such that U(f) = A(u(E, f)E∈Π).

2. If axiom 4 holds, then there exists a continuous and monotonic function I : R|E| →
R such that u(E, f) = I(ũ(ω, f(ω))ω∈E).

8 The interim preferences could be more properly represented by a profile of functions uE : LE → R,
that is, instead of (2), we could write fE <E gE ⇐⇒ uE(fE) > uE(gE). Depending on the context,
one or other form is more convenient. Observe also that although the second entry of u is on L, the only
important part for defining u(E, f) is fE , that is, if f, g ∈ L are such that f(ω) = g(ω) for all ω ∈ E then
u(E, f) = u(E, g).

9We were not able to find any suitable statement of these axioms in our framework. The closest that we
were able to find was Koopmans (1960).
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Proof: We prove only the first statement; the proof of the second is analogous. Fix
h ∈ L. Using the notation discussed in footnote 8, (2) means that for any f, g ∈ L,
fE <E gE ⇐⇒ uE(fE) > uE(gE). Therefore, by axiom 3 and (1),

uE(fE) > uE(gE) =⇒ (fE, hEc) < (gE, hEc) ⇐⇒ U(fE, hEc) > U(gE, hEc). (4)

In particular, uE(fE) = uE(gE) =⇒ U(fE, hEc) = U(gE, hEc). Since h is arbitrary,
this allows us to write: U(f) = A1(uE(fE), fEc). Because of (4), this function A1 is
monotonic increasing in its first entry. Using A1(uE(fE), fEc) in (4) for E ′ 6= E,E ′ ∈ Π,
we obtain A2(uE(fE), uE′(fE′), f(E∪E′)c), monotonic increasing in the first two entries.
Repeating this argument for each E ∈ Π, we obtain U(f) = A (uE(fE)E∈Π), as we
wanted. �

We can call the functions A and I given by the above proposition the ex ante and
interim aggregators. For most purposes, the above properties and characterizations are
enough. However, for some applications, it will be useful to obtain a more precise char-
acterization of the ex ante aggregator. For this, we need some new definition.

Fix Π̃ ⊂ Π and h = (hE)E∈Π̃ ∈ LΠ̃. Let the preference given h , denoted <h, be the
binary order induced on LΠ̃c , that is, for any profiles f, g ∈ LΠ̃c:

f <h g ⇐⇒ (f, h) < (g, h).

Consider the following axiom.

Axiom 5 (Independence) Given a collection Π̃ of elements of the partition Π, the
preference given h does not depend on h ∈ LΠ̃.

Proposition 2.3 Assume that the preferences satisfy axioms 1-5 and assume that Π has at
least three elements. Then, there exist continuous functions U : L→ R and u : Π×L→
R such that U(f) =

∑
E∈Π u(E, f) represents <, that is,

f < g ⇐⇒
∑
E∈Π

u(E, f) >
∑
E∈Π

u(E, g). (5)

Proof: By axiom 1, <E is not trivial for each E ∈ Π. Thus, we have all the
assumptions of Debreu (1960, Theorem 3), which implies the conclusion. �

In the above theorem, we can relax the assumption that Π has three elements. This is
important in some examples. For doing this, it is enough to require that the preferences
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satisfy the hexagon condition given by Karni and Safra (1998). The reader can see that
paper for more details. Another relevant comment is that some specific formulations of
state dependent utility (not restricted to the separability condition presented in Proposition
2.3) can be found in Cerreia, Maccheroni, Marinacci, and Rustichini (2011).

Below, where Π will represent the information partition of the decision maker, we
will refer to the function ũ : Ω × R`

+ → R as the ex post utility function and to u :

Π × L → R as the interim utility function. Although the first argument of u is a set,
we will sometimes abuse notation and write u : Ω × L → R, with the proviso that u is
Π-measurable, that is, u(ω, ·) = u(ω′, ·) whenever Π(ω) = Π(ω′).

Notice that the state dependent utility is consistent with any kind of priors. That is,
if π is a probability measure on Ω, such that π({E}) > 0 for every E ∈ Π, then we can
define u′(ω, f) = u(ω,f)

π(E)
. In this case, we can write (5) as

f < g ⇐⇒
∑
E∈Π

u′(E, f)π(E) >
∑
E∈Π

u′(E, g)π(E). (6)

In what follows, we will denote by P the system of ex ante, interim and ex post pref-
erences. In subsection 2.4 below, we exemplify some relevant systems of ex ante and
interim preferences.

2.3 Differential information economy

For all i ∈ I , we define the following:

- Fi is a measurable partition10 of (Ω,F) denoting the private information of agent i,
that is, if ω ∈ Ω is the state of nature that is going to be realized, agent i observes
Fi(ω) the element of Fi which contains ω.

- Li ⊂ L is the set of agent i’s private measurable consumption allocations:

Li = {xi ∈ L : xi(·) is Fi−measurable}.

- Pi is the system of ex ante, interim and ex post preferences of agent i and satisfying
axioms 1, 2, 3 and 4 of subsection 2.2.11

10By an abuse of notation we will still denote by Fi the algebra that the partition Fi generates.
11Ocasionally, we will assume also additive separation and use the representation (6). It will be clear

from the context what representation we are using.
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- ei : Ω → X is agent i’s random initial endowment of physical resources.

We assume that ei ∈ Li.
A differential information exchange economy E is a set

E = {(Ω,F); (Xi,Fi,Pi, ei) : i ∈ I = {1, . . . , n}}.

As usual, we can interpret the above economy as a three time period model (ex ante
or t = 0, interim or t = 1 and ex post or t = 2). At the ex ante stage, it is common
knowledge only the above description of the economy. At the interim stage, t = 1, agent
i only knows that the realized state belongs to the event Fi(ω∗), where ω∗ is the true state
at t = 2. We will consider two main situations of trade: either ex ante or interim. In the ex
ante case, agent i chooses bundles in L according to the preference<i and write contracts
for delivery of those bundles. Similarly, in the interim case, agent i chooses bundles in
LXi

according to the preference <Fi(ω)
i when the state is ω. At the ex post stage (t = 2),

agents execute the contracts and consumption takes place.
A function x : Ω → Xn writen as x = (x1, ..., xn) is said to be a random consump-

tion vector or allocation. Let L̄ = ×i∈ILi . An allocation x ∈ Ln is said to be feasible
if ∑

i∈I

xi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

2.4 Examples of preferences

Before we conclude this section, it seems useful to specify important examples of the
preferences discussed above.

2.4.1 Expected utility (EU)

We define now the (Bayesian or subjective expected utility) ex-ante and interim expected
utility. For each agent i and for any assignment xi : Ω → X , agent i’s ex-ante expected
utility function is given by

Vi(xi) =
∑
ω∈Ω

ũi(ω, xi(ω))πi(ω).
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For each i, let (Ω,F , πi) be a probability space and Πi ⊂ F be any partition of Ω. For
any assignment xi : Ω → X , agent i’s interim expected utility function with respect to
Πi at xi in state ω is given by

vi(xi|Πi)(ω) =
∑
ω′∈Ω

ũi(ω
′, xi(ω

′))πi(ω
′|ω),

where

πi(ω
′|ω) =

0 for ω′ /∈ Πi(ω)
πi(ω

′)

πi

(
Πi(ω)

) for ω′ ∈ Πi(ω).

We can also express the interim expected utility using conditional probability as

vi(xi|Πi)(ω) =
∑

ω′∈Πi(ω)

ũi(ω
′, xi(ω

′))
πi(ω

′)

πi
(
Πi(ω)

) .
In the applications below, the partition Πi will be the original partition Fi.

2.4.2 Maximin Preferences

The maximin interim utility of each agent i with respect to Πi of Ω is:

ui(Π(ω), xi) = ui(ω, xi) ≡ min
ω′∈Π(ω)

ũi(ω
′, xi(ω

′)).

We will abuse notation by writing both uΠi
i (ω, xi) and uΠi

i (E, xi), but no confusion should
arise. The maximin ex ante utility is just an expectation of this value, that is,

Ui(xi) ≡
∑
E∈Π

ui(E, xi)πi(E).

3 General core versus private core

Below we recall the notion of private core (see Yannelis (1991)).

Definition 3.1 A feasible allocation x is said to be an interim private core allocation
for the economy E if for all i ∈ I , xi(·) is Fi-measurable and there do not exist a coalition
S and an allocation y such that

(i) yi(·) is Fi-measurable for all i ∈ S

11



(ii) vi(yi|Fi)(ω) > vi(xi|Fi)(ω) for all i ∈ S and for all ω ∈ Ω

(iii)
∑

i∈S yi(ω) =
∑

i∈S ei(ω) for all ω.

Definition 3.2 Moreover, if we replace condition (ii) in Definition 3.1 with

Vi(yi) > Vi(xi) for all i ∈ S,

the feasible allocation x is said to be an ex ante private core allocation for the economy
E .

Another notion of interim core present in the literature has been introduced by Hahn
and Yannelis (1997) which we recall below.

Definition 3.3 A feasible allocation x is said to be a weak interim private core alloca-
tion for the economy E if for all i ∈ I , xi(·) is Fi-measurable and there do not exist a
coalition S, a state ω̄ and an allocation y such that

(i) yi(·) is Fi-measurable for all i ∈ S

(ii) vi(yi|Fi)(ω̄) > vi(xi|Fi)(ω̄) for all i ∈ S and

(iii)
∑

i∈S yi(ω) =
∑

i∈S ei(ω) for all ω.

Clearly, any weak interim private core allocation belongs to the interim private core.
It is still an open question if a weak interim private core allocation exists. On the other
hand, it is known that the ex ante as well as the interim private core is non empty under
standard assumptions (see Angeloni and Martins-da Rocha (2009) and Yannelis (1991)).
It is easy to check that any ex ante private core allocation cannot be privately blocked in
the interim stage, as the next proposition states.

Proposition 3.4 Any ex ante private core allocation belongs to the interim private core.

Proof: See Appendix.

The measurability assumption of allocations is an exogenous theoretical requirement
that may be difficult to justify in real economies and moreover it reduces efficiency (see
de Castro and Yannelis (2010)). We now define the notion of core with general prefer-
ences and without measurability hypothesis on allocations.

12



Definition 3.5 A feasible allocation x is said to be an interim core allocation for the
economy E if there do not exist a coalition S and an allocation y such that

(i) ui(ω, yi) > ui(ω, xi) for all i ∈ S and ω ∈ Ω,

(ii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Notice that the above notion is related to the one given by Yannelis (1991), since
members of the coalition S prefer the allocation y in each state ω. The notion of interim
core parallel to the one given in Definition 3.3 is the following.

Definition 3.6 A feasible allocation x is said to be a weak interim core allocation for
the economy E if there do not exist a coalition S, a state ω̄ and an allocation y such that

(i) ui(ω̄, yi) > ui(ω̄, xi) for all i ∈ S,
(ii)

∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Also with general preferences, any weak interim core allocation belongs to the interim
core. However, the converse may not be true as the following example indicates.

Example 3.7 Consider a differential information economy with three equiprobable state
of nature, i.e., Ω = {a, b, c} with πi(ω) = 1

3
for each i and ω. There are two agents

asymmetrically informed and only one good. Moreover the primitives of the economy are
given as follows:

e1 = (5, 5, 0) F1 = {{a, b}; {c}} u1(·, x1) =
√
x1

e2 = (5, 0, 5) F2 = {{a, c}; {b}} u2(·, x2) =
√
x2.

One can easily prove that the allocation x1 = (5, 4, 1) and x2 = (5, 1, 4) is a maximin
interim core allocation, but it does not belong to the maximin weak interim core. Indeed,
it is blocked by the grand coalition I in state a via the initial endowment, since

min{
√

5,
√

5} =
√

5 > 2 = min{
√

5,
√

4}.

Definition 3.8 If we replace condition (i) in Definition 3.5 with

Ui(yi) > Ui(xi) for all i ∈ S,

the feasible allocation x is said to be an ex ante core allocation for the economy E .
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The same relationship of Proposition 3.4 holds true between interim and ex ante core
allocations, i.e., the ex ante core is included in the interim core.

Proposition 3.9 Any ex ante core allocation is in the interim core.

Proof: See Appendix.

We have already noticed that any private (ex ante as well as interim) core allocation
exists under standard assumptions. We are now ready to show that the same existence re-
sults hold for general preferences. Precisely, by using Scarf’s Theorem (see Scarf (1967)),
we will prove that an ex ante core allocation exists. Clearly, the non emptiness of the ex
ante core implies the existence also of an interim core allocation.

Theorem 3.10 Assume that for all i ∈ I Ui(·) is continuous and concave and that X is
convex and compact12. Then, the ex ante core is non empty.

Proof: See Appendix.

As observed before the non emptiness of the ex ante core implies the existence of an
interim core allocation, as the next corollary states.

Corollary 3.11 Assume that for all i ∈ I Ui(·) is continuous and concave and that X is
convex and compact. Then, the interim core is non empty.

Proof: This directly follows from Theorem 3.10 and Proposition 3.9. �

We now compare the notions of private and general core both in the interim and ex ante
stage. We will show that in order to get a relationship the measurability of allocations is
needed, otherwise examples show that a private core allocation may not be in the general
core.

Proposition 3.12 Assume that for all i ∈ I and t ∈ R`
+, ũi(·, t) is Fi-measurable. Then,

any ex ante core allocation x, such that xi(·) is Fi-measurable for all i ∈ I , belongs to
the ex ante private core. The converse may not be true.

12Notice that for all i ∈ I and ω ∈ Ω,X is also non empty, since it contains at least i’s initial endowment.
Moreover, one may take X to be the order interval, i.e., X = [0,maxω∈Ω

∑
i∈I ei(ω)], which is clearly

non empty, convex and compact. Alternatively, one can use standard truncation arguments to relax the
compactness assumption.
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Proof: See Appendix.

Proposition 3.13 Assume that for all i ∈ I and t ∈ R`
+, ũi(·, t) is Fi-measurable. Then,

any interim core allocation x, such that xi(·) is Fi-measurable for all i ∈ I , belongs to
the interim private core. The converse does not hold true.

Proof: See Appendix.

4 General Walrasian equilibrium versus Walrasian ex-
pectations equilibrium

We define a price vector p as a function from Ω to the simplex of R`
+, denoted by ∆, such

that p(·) is F-measurable. Notice that since for each ω, p(ω) ∈ ∆, then p(ω) 6= 0. This
guarantees that p : Ω→ ∆ is a non-zero function.

We now recall below the notion of a Walrasian expectations equilibrium in the sense
of Radner (1968).

Definition 4.1 A pair (p, x), where p is a price vector and x is a feasible allocation, is
said to be an ex ante Walrasian expectations equilibrium (WEE) if for each i, xi(·) is
Fi-measurable and maximizes

Vi(x) =
∑
ω∈Ω

ũi(ω, xi(ω))πi(ω)

subject to the ex ante budget set, i.e.,

Bi(p) =

{
xi ∈ Li :

∑
ω∈Ω

p(ω) · xi(ω) ≤
∑
ω∈Ω

p(ω) · ei(ω)

}
.

It is known that a WEE belongs to the ex ante private core, therefore it is second
best efficient and also under standard assumptions it exists (see Angeloni and Martins-da
Rocha (2009)). We now define the related notion of an ex ante Walrasian equilibrium
(WE).
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Definition 4.2 A pair (p, x) is said to be an ex ante Walrasian equilibrium (WE) if p is a
price vector and x is a feasible allocation, such that for each i, xi maximizes the ex ante
expected utility Ui(xi), subject to the ex ante budget set Bi(p).

Notice that in the above concept there is no private measurability assumption on al-
locations. Thus, this ex ante WE notion is first best efficient and one can prove with
standard arguments that it exists. Later, we will prove that for the interim case, when we
specialize the utility into maximin formulation, a maximin interim Walrasian equilibrium
exists as well.

We now define the related Walrasian equilibrium concept in asymmetric information
economies with the standard Bayesian subjective expected utility functions.

Definition 4.3 An allocation x is said to be an interim Walrasian expectations equilib-
rium allocation (IWEE) if there exists a price vector p such that

(i) xi(·) is Fi −measurable for all i ∈ I,
(ii) for all i and ω, xi(ω) maximizes

vi(xi|Fi)(ω) =
∑

ω′∈Fi(ω)

ũi(ω
′, xi(ω

′))
π(ω′)

π (Fi(ω))

subject to the interim budget set, i.e.,∑
ω′∈Fi(ω)

p(ω′)xi(ω
′)

π(ω′)

π (Fi(ω))
≤

∑
ω′∈Fi(ω)

p(ω′)ei(ω
′)

π(ω′)

π (Fi(ω))

(iii)
∑
i∈I

xi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

Notice that the concept above is different from the rational expectations equilibrium,
since agents do not take into account the information generated by prices. An interim
Walrasian expectations equilibrium seems to be very similar to the notion of Bayesian
Walrasian equilibrium introduced by Balder and Yannelis (2009), but condition (iii) is
replaced by

p(ω) ·
∑
i∈I

[xi(ω)− ei(ω)] = max
1≤h≤`

∑
i∈I

[xhi (ω)− ehi (ω)]h for all ω ∈ Ω.
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It is proved in Balder and Yannelis (2009) that the set of interim Walrasian expec-
tations equilibria may be empty; while a Bayesian Walrasian equilibrium always exists
under standard assumptions.

The problem of the existence of an interim Walrasian expectations equilibrium is
deeply linked to the private information measurability requirement of allocations. We
now introduce the notion of an interim Walrasian equilibrium with general preferences
and we will show that, by using the maximin formulation, such an equilibrium exists.

Definition 4.4 A feasible allocation x is said to be an interim Walrasian equilibrium
allocation (IWE) if there exists a price vector p such that for all i ∈ I and ω ∈ Ω, xi
maximizes the interim utility function ui(ω, ·) subject to the interim budget set

Bi(ω, p) = {yi ∈ L : p(ω′) · yi(ω′) ≤ p(ω′) · ei(ω′) for all ω′ ∈ Fi(ω)}.

Before to prove the existence of an IWE allocation, we want to compare the interim
Walrasian equilibrium (IWE) and the interim Walrasian expectations equilibrium alloca-
tion (IWEE).

Proposition 4.5 An interim Walrasian expectations equilibrium may not be an interim
Walrasian equilibrium.

Proof: See Appendix.

The above proposition is useful also to notice that the set of interim WEE may be
empty, as the following corollary states. On the other hand, in the next section, we will
show that a maximin IWE exists.

Proposition 4.6 The set of IWEE may be empty.

Proof: See Appendix.
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5 Maximin preferences: existence and incentive compat-
ibility results

In this section, we particularize our notions to the setting of the maximin preferences stud-
ied by de Castro and Yannelis (2008), which is a particular case of Gilboa and Schmeidler
(1989)’s MEU preferences. See the definition of maximin preferences on section 2.4.2. In
this section we show the existence of IWE for maximin preferences. We first particularize
the equilibrium notion to this case.

Definition 5.1 A feasible allocation x is said to be a maximin interim Walrasian equi-
librium allocation (MIWE) if there exists a price vector p such that for all i ∈ I and
ω ∈ Ω,

ui(ω, xi) = max
yi∈Bi(ω,p)

ui(ω, yi), where,

Bi(ω, p) = {yi ∈ L : p(ω′) · yi(ω′) ≤ p(ω′) · ei(ω′) for all ω′ ∈ Fi(ω)}.

In order to prove that the set of MIWE is non empty, the following proposition plays a
crucial role.

Proposition 5.2 If (x, p) is an ex post Walrasian equilibrium, then (x, p) is a maximin
interim Walrasian equilibrium.

Proof: See Appendix.

It is well known that an ex post Walrasian equilibrium exists; therefore, from the above
proposition we can conclude that the set of maximin interim Walrasian equilibria is non
empty.

It is an open question if a maximin IWE is maximin efficient. We now introduce a
different notion of maximin equilibrium which is efficient.

Definition 5.3 A feasible allocation x is said to be a maximin Walrasian equilibrium
allocation (MWE) if there exists a price vector p such that for all i ∈ I and ω ∈ Ω,

ui(ω, xi) = max
yi∈B∗i (ω,p)

ui(ω, yi), where,

B∗i (ω, p) = {yi ∈ L : p(ω) · yi(ω) ≤ p(ω) · ei(ω)}.
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Clearly, any maximin Walrasian equilibrium is a maximin IWE. We now show that any
MWE is maximin efficient. We first introduce the notion of maximin Pareto optimality.

Definition 5.4 A feasible allocation x is said to be maximin efficient (or maximin Pareto
optimal) if there do not exist a state ω̄ and an allocation y ∈ LX such that

(i) ui(ω̄, yi) > ui(ω̄, xi) for all i ∈ I and
(ii)

∑
i∈I

yi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

The following proposition guarantees that any MWE is maximin efficient.

Proposition 5.5 Any maximin Walrasian equilibrium allocation is maximin efficient.

Proof: Appendix.

5.1 Incentive Compatibility Notions

We now recall the notion of coalitional incentive compatibility of Krasa and Yannelis
(1994).

Definition 5.6 An allocation x is said to be coalitional incentive compatible (CIC) if the
following does not hold: there exist a coalition S and two states a and b such that

(i) Fi(a) = Fi(b) for all i /∈ S,
(ii) ei(a) + xi(b)− ei(b) ∈ R`

+ for all i ∈ S, and
(iii) ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)) for all i ∈ S.

If S = {i}, then the above definition reduces to individual incentive compatibility.
A Pareto optimal allocation may be not coalitional incentive compatible and a contract
which is individual incentive compatible may not be coalitional incentive compatible (see
Glycopantis and Yannelis (2005) and de Castro and Yannelis (2010))13.

13The reader is also referred to Krasa and Yannelis (1994) and Koutsougeras and Yannelis (1993) for an
extensive discussion of the Bayesian incentive compatibility in asymmetric information economies.
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In this section we will prove that any maximin core is incentive compatible. To
this end we need the following definition of maximin coalitional incentive compatibility,
which is an extension of the Krasa and Yannelis (1994) definition to incorporate maximin
preferences (see also de Castro and Yannelis (2008) for a related notion).

Definition 5.7 A feasible allocation x is said to be maximin coalitional incentive com-
patible (MCIC) if the following does not hold: there exist a coalition S and two states a
and b such that

(i) Fi(a) = Fi(b) for all i /∈ S,
(ii) ui(a, ·) = ui(b, ·) for all i /∈ S,
(iii) ei(a) + xi(b)− ei(b) ∈ R`

+ for all i ∈ S, and
(iv) ui(a, yi) > ui(a, xi) for all i ∈ S,

where for all i ∈ S,

(∗) yi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

According to the above definition, an allocation is said to be maximin coalitional in-
centive compatible if it is not possible for a coalition to misreport the realized state of
nature and have a distinct possibility of making its members better off in terms of max-
imin expected utility. Notice that in addition to Definition 5.6 we require that agents in
the complementary coalition to have the same utility in states a and b that they cannot dis-
tinguish. Obviously, if S = {i} then the above definition reduces to individual incentive
compatibility.

Remark 5.8 Condition (ii) of Definition 5.7 does not necessarily mean that for all i /∈ S
and y ∈ R`

+, ui(·, y) is Fi-measurable. Indeed it may be the case that there exists ω ∈
Fi(a) \ {a, b} such that ui(ω, ·) 6= ui(a, ·) = ui(b, ·). Moreover, condition (ii) is not
required for each state, but only for the realized state of nature which the members of S
may misreport. Observe that Definition 5.7 implicity requires that the members of the
coalition S are able to distinguish between a and b; i.e., a /∈ Fi(b) for all i ∈ S. One
could replace condition (i) by Fi(a) = Fi(b) if and only if i /∈ S.
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It has been proved in de Castro and Yannelis (2008) that any coalitional incentive
compatible allocation is maximin CIC, but the converse may not be true.

5.2 Maximin efficiency implies maximin incentive compatibility

In this paper, we use a slightly different definition of incentive compatibility that the one
used in de Castro and Yannelis (2010) for type models. Because of that, we include a
complete proof of the following result:

Theorem 5.9 Assume that for all i ∈ I and for all ω, ui(ω, ·) is continuous and strongly
monotone. Then, any maximin Pareto optimal assignment is maximin coalitional incentive
compatible.

Proof: Let x be a maximin Pareto optimal assignment and assume on the contrary that it
is not maximin CIC. This means that there exist a coalition S and two states a and b such
that

(i) Fi(a) = Fi(b) for all i /∈ S,
(ii) ui(a, ·) = ui(b, ·) for all i /∈ S,
(iii) ei(a) + xi(b)− ei(b) ∈ R`

+ for all i ∈ S, and

(iv) ui(a, yi) > ui(a, xi) for all i ∈ S,

where for all i ∈ S,

yi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

Define for all i ∈ I ,

zi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

Notice that for all i /∈ S, from (i) it follows that zi(a) = xi(b). Moreover condition (ii)

implies that ui(a, xi(b)) = ui(b, xi(b)). Hence,

ui(a, zi) = min
ω∈Fi(a)

ui(ω, zi(ω)) =

min
ω∈Fi(a)\{a}

ui(ω, xi(ω)) ≥ min
ω∈EFi (a)

ui(ω, xi(ω))

= ui(a, xi).
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On the other hand, for all i ∈ S, from (iv) it follows that

ui(a, zi) = ui(a, yi) > ui(a, xi).

Since for all i ∈ I and ω ∈ Ω, ui(ω, ·) is continuous, there exists ε ∈ (0, 1) such that

ui(a, εzi) > ui(a, xi) for all i ∈ S.

Define for all ω ∈ Ω,

z̃i(ω) =

{
εzi(ω) if i ∈ S
zi(ω) + 1−ε

|I\S|
∑

i∈S zi(ω) if i /∈ S.
Notice that for all i ∈ S, ui(a, z̃i) > ui(a, xi). Moreover, for all i /∈ S from (iii) and

from the strong monotonicity of the utility function it follows that ui(a, z̃i) > ui(a, zi) ≥
ui(a, xi).

Therefore there exist a ∈ Ω and z̃ such that ui(a, z̃i) > ui(a, xi) for all i ∈ I . To get
a contradiction we just need to show that z̃ is feasible.

For any ω 6= a, we have

∑
i∈I

z̃i(ω) =
∑
i∈S

εzi(ω) +
∑
i/∈S

zi(ω) + (1− ε)
∑
i∈S

zi(ω) =∑
i∈I

zi(ω) =
∑
i∈I

xi(ω)

=
∑
i∈I

ei(ω).

Finally, in state a we have

∑
i∈I

z̃i(a) =
∑
i∈S

εzi(a) +
∑
i/∈S

zi(a) + (1− ε)
∑
i∈S

zi(a) =∑
i∈S

zi(a) +
∑
i/∈S

zi(a) =
∑
i∈S

ei(a) +
∑
i∈S

[xi(b)− ei(b)] +

+
∑
i/∈S

ei(a) +
∑
i/∈S

[xi(b)− ei(b)] =
∑
i∈I

ei(a) +
∑
i∈I

[xi(b)− ei(b)]

=
∑
i∈I

ei(a).
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This means that z̃ is feasible and hence we get a contradiction. �

The above Theorem and Proposition 5.5 imply the following corollary.

Corollary 5.10 Any maximin Walrasian equilibrium allocation is maximin coalitional
incentive compatible and a fortiori individual incentive compatible.

6 Concluding remarks and Open questions

We examined the core and the Walrasian equilibrium in an asymmetric information econ-
omy where agents behave as non-expected utility maximizers, and obtained results on the
existence, efficiency and incentive compatibility of these notions. The results contained
in this paper may be summarized as follows:

• We provided a general framework for systems of ex ante, interim and ex post pref-
erences.

• We introduced the following new concepts:

1. General ex ante and interim core;

2. General ex ante and interim Walrasian equilibrium;

3. Maximin Walrasian equilibrium.

• We compared our concepts and some of the more important ones in the literature:

1. ex ante core (private vs general);

2. interim core (private vs general);

3. interim Walrasian equilibrium (private vs general).

• We provided new existence results for:14

1. ex ante core with general preferences;

2. interim core with general preferences;

14We also provided an example to show that the standard interim Walrasian expectation equilibrium may
fail to exist.
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3. ex ante Walrasian equilibria with general preferences;

4. maximin interim Walrasian equilibria (for maximin preferences).

• We also established some incentive compatibility results:

1. we proved that efficiency implies coalitional incentive compatibility;

2. a maximin Walrasian Equilibrium is maximin coalitional incentive compati-
ble.

The number of agents in our model is finite and as a consequence at this stage we have
not obtained any equivalence results for the maximin core and the maximin Walrasian
equilibrium. The rate of convergence of the maximin core seems to be a challenging
question as the MEU may fail to be differentiable and the standard arguments may not be
directly applicable. We hope to take up those details in subsequent work.
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A Appendix

Proof of Proposition 3.4: Let x be an ex ante private core allocation and assume
on the contrary that there exist a coalition S and an allocation y such that

(i) yi(·) is Fi−measurable for all i ∈ S
(ii) vi(yi|Fi)(ω) > vi(xi|Fi)(ω) for all i ∈ S and for all ω ∈ Ω

(iii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Notice that for each agent i and each t ∈ L,

∑
ω∈Ω

vi(t|Fi)(ω)πi(ω) =
∑
ω∈Ω

 ∑
ω′∈Fi(ω)

ũi(ω
′, t(ω′))

πi(ω
′)

πi(Fi(ω))

 πi(ω)

=
∑
E∈Fi

[∑
ω′∈E

ũi(ω
′, t(ω′))

πi(ω
′)

πi(E)

]
πi(E)

=
∑
ω∈Ω

ũi(ω, t(ω))πi(ω) = Vi(t).

Thus, condition (ii) implies that Vi(yi) > Vi(xi) for all i ∈ S, and hence x does not
belong to the ex ante private core. This is a contradiction. �

Proof of Proposition 3.9: Let x be an ex ante core allocation and assume on
the contrary that there exist a coalition S and an allocation y such that

(i) ui(ω, yi) > ui(ω, xi) for all i ∈ S and ω ∈ Ω,

(ii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Since for each i, Ui(·) =
∑

ω∈Ω ui(ω, ·)πi(ω), condition (i) implies that Ui(yi) >

Ui(xi) for all i ∈ S. Therefore, x does not belong to the ex ante core, which is a contra-
diction. �

Proof of Theorem 3.10: In this proof we use the same arguments of Theorem
1.5.10 in Aliprantis, Brown, and Burkinshaw (1990), we write it for sake of completeness.
Define for each i ∈ I the set,
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L = {xi : Ω→ R`
+ : xi(ω) ∈ X for all ω ∈ Ω},

and let Ln =
∏

i∈I L. Notice that since for all i and ω, X is non empty15, convex and
compact, so is L.

We want to show that the ex ante core is non empty. To this end, define a game V as
follows: for each S ⊆ I ,

V (S) =

{
v ∈ Rn : there exists y ∈ LS =

∏
i∈S

L such that

Ui(yi) ≥ vi for all i ∈ S and
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω

}
.

We just need to show that V satisfies all the proprieties of Scarf’s Theorem. Clearly,
by definition, each V (S) is comprehensive from below16, bounded from above17 and such
that if v1 ∈ Rn, v2 ∈ V (S) and v1i = v2i for all i ∈ S, then v1 ∈ V (S). Moreover for
each S, V (S) is closed. Indeed, let vk be a sequence of V (S) converging to v∗, we need to
show that v∗ ∈ V (S). Since for each k, vk ∈ V (S), then there exists a sequence yk ∈ LS

such that

(i) Ui(yki) ≥ vki for all i ∈ S and k ∈ N
(ii)

∑
i∈S

yki(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω and k ∈ N.

Since L is compact, so is LS . Thus, there exists a subsequence of yk, still denoted by
yk, which converges to y∗. Clearly, y∗ ∈ LS and from (ii), it follows that∑

i∈S

y∗i (ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Moreover, the continuity of the utility functions implies that, taking the limits in (i),

Ui(y
∗
i ) ≥ v∗i for all i ∈ S.

15Notice that X is non empty since it contains at least the initial endowment of each agent.
16V (S) is comprehensive from below if v1 ≤ v2 and v2 ∈ V (S) imply v1 ∈ V (S).
17Each V (S) is bounded from above if for each coalition S there exists someMS > 0 satisfying vi ≤MS

for all v ∈ V (S) and for all i ∈ S.
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Therefore, v∗ ∈ V (S), i.e., V (S) is closed. To conclude the proof, we just need
to verify that the game V is balanced18. Let B be a balanced family of coalitions with
weights {λS : S ∈ B} and let v be an element of

⋂
S∈B V (S). We must show that

v ∈ V (I). For each i ∈ I , define Bi = {S ∈ B : i ∈ S}. Since v ∈
⋂
S∈B V (S), then

for each S ∈ B there exists yS ∈ LS such that

(i) Ui(y
S
i ) ≥ vi for all i ∈ S

(ii)
∑
i∈S

ySi (ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Define for each i ∈ I ,

zi =
∑
S∈Bi

λSy
S
i , where

∑
S∈Bi

λS = 1,

and notice that the concavity assumption of the utility functions implies that for all
i ∈ I ,

Ui(zi) ≥
∑
S∈Bi

λSUi(y
S
i ) ≥

∑
S∈Bi

λSvi = vi.

Moreover for all ω ∈ Ω,

∑
i∈I

zi(ω) =
∑
i∈I

∑
S∈Bi

λSy
S
i (ω) =

∑
S∈B

λS
∑
i∈S

ySi (ω)∑
S∈B

λS
∑
i∈S

ei(ω) =
∑
i∈I

∑
S∈Bi

λSei(ω) =
∑
i∈I

ei(ω).

Thus, by Scarf’s Theorem the n-person game has a non empty core. Pick v ∈ Core(V ) =

V (I)\
⋃
S⊆I IntV (S) and since, in particular, v ∈ V (I), let x ∈ Ln be an allocation such

18A game V is said to be balanced whenever every balanced family B of coalitions satisfies⋂
S∈B

V (S) ⊆ V (I).

A non empty family B of 2I is said to be balanced whenever there exist non negative weights {λS : S ∈ B}
satisfying ∑

S∈B
i∈S

λS = 1 for all i ∈ I.
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that Ui(xi) ≥ vi for each i ∈ I and
∑

i∈I xi(ω) =
∑

i∈I ei(ω) for each ω ∈ Ω. To
complete the proof we just need to show that x is an ex ante core allocation. Clearly, x is
feasible. Now, suppose on the contrary that there exist a coalition S and an allocation y
such that

(i) Ui(yi) > Ui(xi) ≥ vi for all i ∈ S and

(ii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Therefore, conditions (i) and (ii) together with the continuity of Ui(·) imply that
v ∈ IntV (S), which contradicts the fact that v ∈ Core(V ). Hence, x is an ex ante core
allocations. �

Proof of Proposition 3.12: Let x be an ex ante core allocation such that xi(·)
is Fi-measurable for all i ∈ I . Assume on the contrary that there exist a coalition S and
an allocation y such that

(i) yi(·) is Fi−measurable for, all i ∈ S
(ii) Vi(yi) > Vi(xi) for all i ∈ S and

(iii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Notice that since for all i ∈ S and for all t ∈ R`
+, ũi(·, t) and yi(·) are Fi-measurable,

it follows that
ui(ω, yi) = ũi(ω, yi(ω)) for all ω ∈ Ω.

Hence, since for each i, Ui(·) =
∑

ω∈Ω ui(ω, ·)πi(ω), then for all i ∈ I , Vi(yi) =

Ui(yi) and similarly Vi(xi) = Ui(xi). Therefore, x is not in the ex ante core and this is a
contradiction.

We now want to prove that the converse may not be true. To this end, consider a dif-
ferential information economy with three equiprobable state of nature, i.e., Ω = {a, b, c}
with πi(ω) = 1

3
for each i and ω. There are two agents asymmetrically informed and only

one good. Moreover the primitives of the economy are given as follows:

e1 = (5, 5, 0) F1 = {{a, b}; {c}} u1(·, x1) =
√
x1

e2 = (5, 0, 5) F2 = {{a, c}; {b}} u2(·, x2) =
√
x2.
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It is easy to show that the initial endowment is an ex ante private core allocation. On
the other hand, if we consider the MEU formulation19, the initial endowment is blocked
by the grand coalition I via the feasible allocation y1 = (5, 4, 1) and y2 = (5, 1, 4). �

Proof of Proposition 3.13: Let x be an interim core allocation such that xi(·)
is Fi-measurable for all i ∈ I . Assume on the contrary that there exist a coalition S and
an allocation y such that

(i) yi(·) is Fi−measurable for, all i ∈ S
(ii) vi(yi|Fi)(ω) > vi(xi|Fi)(ω) for all i ∈ S and ω ∈ Ω,

(iii)
∑
i∈S

yi(ω) =
∑
i∈S

ei(ω) for all ω ∈ Ω.

Notice that from (i) it follows that for all i ∈ S and ω ∈ Ω, vi(yi|Fi)(ω) = ũi(ω, yi(ω)) =

ui(ω, yi). Similarly vi(xi|Fi)(ω) = ũi(ω, xi(ω)) = ui(ω, xi) for all i ∈ S. Hence, x is
not in the interim core and this is a contradiction.

We now want to prove that the converse may not be true. To this end, consider a
differential information economy with two equiprobable state of nature, i.e., Ω = {a, b}
with πi(ω) = 1

2
for each i and ω. There are two agents asymmetrically informed and two

goods. Moreover, the primitives of the economy are given as follows:

e1(a, b) = ((6, 4), (6, 4)) F1 = {{a, b}} u1(·, x1, y1) = x1 · y1

e2(a, b) = ((0, 1), (1, 0)) F2 = {{a}; {b}} u2(a, x2, y2) = x2 + 1
2
y2 u2(b, x2, y2) = y2 + 1

2
x2.

It is easy to show that the initial endowment is an interim private core allocation. On
the other hand, it is not in the interim core with MEU formulation20. Indeed, it is blocked
by the grand coalition I via the feasible allocation ((5, 5); (7, 3.49)) and ((1, 0); (0, 0.51)).

�
19In the MEU formulation, the ex ante maximin utility is:

Ui(xi) =
∑
ω∈Ω

min
ω′∈Fi(ω)

ũi(ω
′, xi(ω

′))πi(ω).

20In the MEU formulation, the interim maximin utility is:

ui(ω, xi) = min
ω′∈Fi(ω)

ũi(ω
′, xi(ω

′)).
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Proof of Proposition 4.5: Consider a differential information economy with
two equiprobable states of nature, i.e., Ω = {a, b} with πi(ω) = 1

2
for each i and ω. There

are two agents asymmetrically informed and two goods. Moreover, the primitives of the
economy are given as follows:

e1(a, b) = ((6, 4), (6, 4)) F1 = {{a, b}} u1(·, x1, y1) = x1 · y1

e2(a, b) = ((1, 2), (2, 1)) F2 = {{a}; {b}} u2(a, x2, y2) = x2 + 1
2
y2 u2(b, x2, y2) = y2 + 1

2
x2.

We first calculate the IWEE.
Agent 1 in the event {a, b} has to solve the following constraint maximization problem:

max
1

2
x1(a) · y1(a) +

1

2
x1(b) · y1(b) such that

1
2

[p(a)x1(a) + q(a)y1(a)] + 1
2

[p(b)x1(b) + q(b)y1(b)] ≤ 6
2

[p(a) + p(b)] + 4
2

[q(a) + q(b)]

x1(a) = x1(b)

y1(a) = y1(b).

Agent 2 in state a has to solve the following constraint maximization problem:

max x2(a) +
1

2
y2(a) such that

p(a)x2(a) + q(a)y2(a) ≤ p(a) + 2q(a).

Agent 2 in state b has to solve the following constraint maximization problem:

max
1

2
x2(b) + y2(b) such that

p(b)x2(b) + q(b)y2(b) ≤ p(b) + 2q(b).

By solving those constrain maximization problems and by imposing the feasibility
condition, we get that the unique solution is the initial endowment with p(a) = 2q(a),
q(b) = 2p(b). and 2[q(a) + q(b)] = 3[p(a) + p(b)]. However, once we impose that for
each ω, p(ω) ∈ ∆, we get a contradiction. Therefore there do not exist any IWEE.

We now calculate the IWE.
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Agent 2 in state a and b solves the problems as before; while agent 1 has to solve the
following:

max min{x1(a) · y1(a) ; x1(b) · y1(b)} such that

p(a)x1(a) + q(a)y1(a) ≤ 6p(a) + 4q(a).

p(b)x1(b) + q(b)y1(b) ≤ 6p(b) + 4q(b).

If x1(a) · y1(a) ≤ x1(b) · y1(b), we get a contradiction. Hence, x1(a) · y1(a) >

x1(b) · y1(b); which means that

max x1(b) · y1(b) such that

p(a)x1(a) + q(a)y1(a) ≤ 6p(a) + 4q(a).

p(b)x1(b) + q(b)y1(b) ≤ 6p(b) + 4q(b).

By solving those constrain maximization problems and by imposing the feasibility con-
dition, we get that the IWE allocations are as follows:

(x1(a), y1(a)) = (k, 16− 2k) (x2(a), y2(a)) = (7− k, 2k − 10) with k ∈
[
5, 8+

√
15

2

)
,

(x1(b), y1(b)) =
(
7, 7

2

)
(x2(b), y2(b)) =

(
1, 3

2

)
The equilibrium prices are such that p(a) = 2q(a) and q(b) = 2p(b); and by imposing

that for each ω, p(ω) ∈ ∆, it follows that the unique equilibrium price is:

(p(a), q(a)) =

(
2

3
,
1

3

)
(p(b), q(b)) =

(
1

3
,
2

3

)
.

�

Proof of Proposition 4.6 : The same example used in the above proof, can be
used to show that the set of interim Walrasian expectations equilibria may be empty. �

Proof of Proposition 5.2 : Let (x, p) be an ex post Walrasian equilibrium and
assume, on the contrary that (x, p) is not a MIWE. First, notice that since for all i ∈ I and
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ω ∈ Ω, p(ω) · xi(ω) ≤ p(ω) · ei(ω), then for all i ∈ I and ω ∈ Ω, xi ∈ Bi(ω, p). Thus,
there exist an agent i, a state ω̄ ∈ Ω and an allocation yi such that

ui(ω̄, yi) > ui(ω̄, xi) and

yi ∈ Bi(ω̄, p), that is p(ω′) · yi(ω′) ≤ p(ω′) · ei(ω′) for all ω′ ∈ Fi(ω̄). (7)

Since Ω is finite, there exists a state ω′ ∈ Fi(ω̄) such that

ui(ω̄, xi) = min
ω∈Fi(ω̄)

ui(ω, xi(ω)) = ui(ω
′, xi(ω

′)).

Thus,
ui(ω

′, yi(ω
′)) ≥ ui(ω̄, yi) > ui(ω̄, xi) = ui(ω

′, xi(ω
′)),

which implies that

p(ω′) · yi(ω′) > p(ω′) · ei(ω′), (8)

because (x, p) is an ex post Walrasian equilibrium. Notice that (8) contradicts (7). There-
fore, (x, p) is a maximin interim Walrasian equilibrium. �

Proof of Proposition 5.5: Let x be a MWE allocation and assume on the con-
trary that there exist a state ω̄ and an allocation y ∈ LX such that

(i) ui(ω̄, yi) > ui(ω̄, xi) for all i ∈ I and

(ii)
∑
i∈I

yi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

From (i), one can deduce that p(ω̄) · yi(ω̄) > p(ω̄) · ei(ω̄) for all i ∈ S, and hence

p(ω̄) ·
∑
i∈I

yi(ω̄) > p(ω̄) ·
∑
i∈I

ei(ω̄),

which contradicts (ii). �

References
ALIPRANTIS, C., D. BROWN, AND O. BURKINSHAW (1990): Existence and optimality

of competitive equilibria. Springer.

32



ANGELONI, L., AND V. MARTINS-DA ROCHA (2009): “Large economies with differen-
tial information and without free disposal,” Economic Theory, 38(2), 263–286.

BALDER, E., AND N. YANNELIS (2009): “Bayesian–Walrasian equilibria: beyond the
rational expectations equilibrium,” Economic Theory, 38(2), 385–397.

CERREIA, S., F. MACCHERONI, M. MARINACCI, AND A. RUSTICHINI (2011): “Ax-
iomatic ECON,” Discussion paper, Bocconi University.

CONDIE, S., AND J. GANGULI (2009): “Ambiguity and rational expectations equilibria,”
Discussion paper, University of Cambridge.

(2010): “Informational efficiency with ambiguous information,” Discussion pa-
per, University of Cambridge.
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