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Abstract

We characterize the firm’s optimal contract for a manager who faces costly effort decisions

and whose ability to generate profits for the firm changes stochastically over time. The optimal

contract is obtained as the solution to a dynamic mechanism design problem with hidden actions

and persistent private shocks to the manager’s productivity. When the manager is risk-neutral,

the optimal contract often entails a simple pay package that is linear in the firm’s cash flows.

Furthermore, the power of incentives (i.e., the sensitivity of pay to performance) typically increases

over time, thus providing a possible justification for the practice of putting more stocks and

options in the packages of managers with a longer tenure in the firm. Building on the insights

from the risk-neutral case, we then explore the properties of optimal contracts for risk-averse

managers. We find that risk-aversion reduces, and in some cases can even revert, the profitability

of seniority-based compensation schemes whose power of incentives increases over time.
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1 Introduction

The contracts that the most successful firms offer to their top employees are designed taking into ac-

count that managerial ability to generate profits is bound to change over time. Shocks to managerial

productivity are expected to originate from variations in the business environment that are to a large

extent anticipated at the time of contracting but whose ultimate effect on managerial productivity

is the managers’private information.

The questions that this paper addresses are the following: (i) How should firms respond to such

shocks to managerial productivity? In particular should they induce their managers to work harder

when their productivity increases or rather when they experience a negative productivity shock? and

(ii) What type of compensation schemes induce the managers to respond to the shocks the way it is

optimal for the firm, when both managerial effort and the shocks to managerial productivity are the

managers’private information?

We assume that the firm perfectly understands the value of not reneging on its promises and

thus commits to the compensation scheme that it offers to its managers at the time they are hired.

We then use a mechanism design approach to solve for the dynamic contract that maximizes the

expected sum of the firm’s cash flows, net of managerial compensation.

Our first result provides a characterization of a class of contracts that permit the firm to sustain

any implementable effort policy at minimum cost. These compensation schemes are the dynamic

analog of those proposed by Laffont and Tirole (1986) for a static setting. They specify a bonus

for each period that is paid conditional upon the firm’s cash flows exceeding a critical target that

typically depends on past cash-flows, as well as on possible messages sent by the manager over time.

The role of these messages is to permit the firm to adjust its compensation scheme in response to

variations in managerial productivity.

Our second and third results identify conditions for a given effort policy to be implementable,

as well as for the possibility of implementing a given effort policy with a linear or a pseudo-linear

compensation scheme. By a linear scheme, we mean one whose compensation is linear in perfor-

mance, i.e., in cash flows; by a pseudo-linear scheme, we mean one that gives the manager an utility

1



that is linear in performance. While such schemes are less high-powered than the bonus schemes

described above, there are interesting cases where the optimal effort policy for the firm can indeed

be implemented at minimum cost with such schemes (e.g., when the manager is risk neutral and the

shocks to managerial productivity are expected to follow an ARIMA process).

Equipped with the aforementioned results, we then investigate the properties of profit-maximizing

contracts, and in particular the optimality of seniority-based compensation schemes. The latter are

schemes that provide managers with a longer tenure in the firm with more high-powered incentives,

thus inducing them to exert higher effort. To this purpose, we start by considering the case where

the manager is risk-neutral.1 We show that, for many processes of interest, the power of incentives

under the optimal contract indeed increases over time, thus providing a possible explanation for the

frequent practice of putting more stocks and options in the package of managers with a longer tenure

in the firm (see, e.g., Lippert and Porter, 1997, but also Gibbons and Murphy, 1991). Contrary to

other explanations proposed in the literature (e.g., declining disutility of effort or career concerns2),

the optimality of seniority-based schemes is not driven by variations in the managers’preferences,

or by variations in their outside option. It results from an optimal allocation of informational rents

over time. In other words, it originates in the firm’s desire to minimize the managers’compensation

while preserving their incentives for both effort and information revelation.

The driving force behind this result is the assumption that the effect of a manager’s initial

productivity θ1 on his future productivity θt (formally captured by the impulse response of θ1 on

θt, as explained in detail below) is expected to decline over time. For example, when the manager’s

private information evolves according to an AR(1) process, this assumption is satisfied as long as

the coeffi cient of linear dependence of θt on θt−1 is less than one. The property of declining impulse

responses implies that, to minimize a manager’s information rent, as computed at the time of hiring,

the firm finds it optimal to induce low effort in the early periods of the relationship and higher effort

1Because the firm contracts with the manager at the time the latter is already privately informed about his initial

productivity, interesting dynamics emerge even without risk aversion, and even without imposing limited liability on the

manager side. Private information at the contracting stage in fact implies that the firm cannot "sell out" its business

to the manager, for there does not exist a uniform price that extracts all surplus from all types of the manager.
2For a detailed analysis of career concerns incentives, see e.g., Dewatripont, Jewitt and Tirole (1999).
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in the subsequent periods. The reason is that the surplus that a manager who is highly productive

at the contracting stage can obtain by mimicking a less productive type increases in the effort that

the firm asks the latter to exert, as shown first in Laffont and Tirole 1986. Indeed, this surplus

originates in the possibility of generating, on average, the same cash flows as the less productive type

by working less, thus economizing on the disutility of effort. It follows that, by reducing the effort of

those types who are less productive at the contracting stage, the firm reduces the rent that it must

provide to the most productive types. The benefit of reducing the effort of the least productive types

is however higher when done in the early stages of the relationship, when the effect of the initial

productivity is still pronounced, than in the distant future, when such an effect is fable. It follows

that effort (and by implication the power of incentives in the compensation scheme that sustains it)

typically increases with tenure and gradually approaches the first-best level in the long run.3

We also show that, when the manager is risk neutral, the optimal effort policy can often be

sustained by paying the manager according to a simple (state-contingent) linear scheme according

to which, in each period, the firm pays the manager a fixed salary plus a bonus that is linear in the

firm’s cash flows (or, equivalently, in the firm’s stock price, assuming that the latter also depends on

managerial effort). When the manager’s productivity evolves according to an ARIMA process (more

generally, according to any process where the impulse responses exhibit a certain separability with

respect to the initial productivity), the slope of the linear scheme increases deterministically over

time, i.e., it depends only on the manager’s initial productivity and on the number of periods he has

been working for the firm. More generally, though, the optimal contract requires that the manager

be given the possibility of proposing changes to his pay over time in response to the shocks to his

productivity.4

3This property of declining distortions is quite common in the literature on dynamic contracting with adverse

selection (see, e.g., Baron and Besanko, 1984, Besanko, 1986, Courty and Li 2000, Battaglini, 2005, among others). As

explained in Pavan, Segal, and Toikka (2009), the precise statistical property that is responsible for this result is the

assumption of declining impulse responses of θ1 on θt, as opposed to other properties of the stochastic process such

as the degree of correlation between θ1 and θt, or the ability of θ1 to forecast θt, as measured by the volatility of the

forecast error of θt given θ1. One of the key contributions of the current paper is to study the extent to which such

predictions are robust to the possibility that the agent is risk averse.
4The idea that a manager must be given the possibility of proposing changes to his reward package is consistent with

the recent empirical literature on managerial compensation where it is found that this practice has become frequent in
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Building on the insights from the risk-neutral case, we then explore the properties of optimal

compensation schemes for risk-averse managers. We find that, other things equal, risk-aversion

reduces (and in some cases can even revert) the profitability of seniority-based compensation schemes

whose power of incentives increases, on average, over time. The reason is that these schemes entail

a high sensitivity of compensation to performance precisely in those periods in which the manager

faces high uncertainty about his ability to generate cash flows for the firm. Indeed, while a manager’s

productivity at the time he is hired is a fairly good predictor of his productivity in the near future,

it is a fairly poor predictor of his productivity in the distant future. Increasing the sensitivity of

compensation to performance over time thus means exposing the manager to a great deal of risk.

Whether risk-averse managers with a longer tenure in the firm receive more or less high-powered

incentives than younger ones then depends on the interaction between their degree of risk-aversion

and the dynamics of the impulse responses of the process governing the evolution of managerial

productivity (more below).

We also find that, contrary to the risk-neutral case, the effort that the firm asks a manager to

exert after the first period need not be monotone in his productivity, nor need it converge to the

first-best level in the long run. Contrary to the risk neutral case, the characterization of the optimal

effort policy under risk aversion cannot be derived in closed forms. Part of the contribution of the

paper is also in showing how the optimal effort policy can be obtained through a recursive approach

that leads to a program whose solution can be obtained numerically. Although a closed form solution

is in general not available, the numerical solutions when applied to simple examples confirm that the

driving forces behind the dynamics of the optimal contract are the ones discussed above.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 character-

izes a compensation scheme that sustains all implementable effort policy at minimum cost. Section 4

provides conditions for an effort policy to be implementable, and for the possibility of implementing

it at minimum cost with linear and pseudo-linear schemes. Section 5 characterizes the properties

of optimal contracts and discusses the effect of risk aversion on the optimality of seniority-based

the last decade (see, among others, Kuhnen and Zwiebel, 2008, and Bebchuck and Fried, 2004).
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schemes. Section 6 discusses the related literature. Section 7 concludes with a few final remarks. All

proofs are in the Appendix at the end of the manuscript.

2 The Model

2.1 The environment

Players, actions and information. The firm’s shareholders (hereafter referred to as the principal)

hire a manager (the agent) to work on a project over T periods, where T can be either finite or infinite.

In each period t ∈ N+ the agent receives some private information θt ∈ Θt ⊂ R about his ability to

generate profits for the firm (his type), and then chooses effort et ∈ E = R.5

Payoffs. The principal’s payoff is the discounted sum of the firm’s cash flows, net of the agent’s

compensation:

UP (πT , cT ) =
T∑
t=1

δt−1 [πt − ct] .

where δ < 1 is the common discount factor,

πt = θt + et

is the period-t cash flow, ct is the period-t compensation to the agent, πT ≡ (πt)
T
t=1, and cT ≡

(ct)
T
t=1.

6 The function UP also corresponds to the principal’s Bernoulli utility function used to

evaluate lotteries over (πT , cT ). Both θT and eT are the agent’s private information. On the contrary,

the stream of cash flows πT is verifiable, which implies that the agent can be rewarded as a function

of the firm’s cash flows. By choosing effort et in period t, the agent suffers a disutility ψ(et). The

agent’s preferences over (lotteries over) streams of consumption levels cT and streams of effort choices

5That effort can take negative values should not raise concerns: effort simply stands for the effect of the manager’s

activity on the firm’s performance, which can be either positive or negative.
6Note that, because θt is not restricted to be independent of past shocks θt−1 ≡ (θ1, ..., θt−1), there is no loss of

generality in assuming that πt depends only on θt, as opposed to the entire history θt = (θ1, ..., θt). To see this, suppose

that πt = ft(θ
t)+ht(e

t) for some functions ft : Rt → R and ht : Rt → R. It then suffi ces to change variables and simply
let θnewt = ft(θ

t). The assumption that effort in period t affects the cash flows only in period t is more restrictive,

although common in the literature. This assumption is not essential for our results. We refer the reader to the earlier

version of the paper (Garret and Pavan, 2009) for the analysis of the case where πt is a function of the entire history

et of past effort choices.
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eT ≡ (et)
T
t=1 are described by an expected utility function with Bernoulli utility given by

7

UA(cT , eT ) = V
(

T∑
t=1

δt−1vt(ct)

)
−

T∑
t=1

δt−1ψ(et) (1)

where V : R→ R and all vt : R→ R functions are strictly increasing, weakly concave, surjective (i.e.,

onto) and differentiable. This representation covers as special cases the situation where the agent

has time-additive-separable preferences for consumption smoothing (vt strictly concave, V linear) as

well as the case where the agent is risk-averse but cares only about his total compensation (V strictly

concave, vt linear). The case of risk neutrality corresponds to both v and V linear. As standard,

the aforementioned specification presumes time consistency. In what follows, we will thus assume

that, at each history ht, the agent maximizes the expectation of UA(cT , eT ), where the expectation

is taken with respect to whatever information is available to the agent at history ht.

Stochastic process. In each period t, θt is drawn from a cumulative distribution function

Ft(·|θt−1), where θt−1 ≡ (θ1, ..., θt−1) ∈ Θt−1 ≡ ×t−1
s=1Θs is the history of past productivity levels. We

assume that, for any t any θt−1, Ft(·|θt−1) is absolutely continuous over R and strictly increasing

with density ft(θt|θt−1) > 0 over a connected set8 Supp[Ft
(
·|θt−1

)
] ⊂ Θt, and then denote by

θt(θ
t−1) ≡ inf{Supp[Ft

(
·|θt−1

)
]} and θ̄t(θt−1) ≡ sup{Supp[Ft

(
·|θt−1

)
]} the infimum and supremum

of the support. We also assume that, for each t, Ft(θt|·) is differentiable in θt−1.9 Hereafter, we

identify the process governing the evolution of the agent’s productivity with the collection of kernels

F ≡ 〈Ft〉Tt=1. For each t, we then let

Rt ≡
{
θt ∈ Θt : θ1 ∈ Θ1 and θl ∈ Supp[Fl

(
·|θl−1

)
], all l = 2, . . . , t

}
denote the set of productivity histories that are consistent with the process F . We then define the

impulse responses corresponding to the process F as follows. For any t any θt ∈ Θt, we let J tt
(
θt
)
≡ 1,

7As is common in the literature, we equate the agent’s period-t consumption ct with the compensation from the

principal. In other words, we assume that the agent cannot secretely save.
8The notation Supp[Ft(·|θt−1)] stands for the support of the distribution Ft(·|θt−1), defined to be the smallest

compact subset of R whose complement has probability zero. Note that the kernels Ft(·|θt−1) are defined for all
possible histories θt−1 ∈ Θt−1 including those that have zero measure from an ex ante perspective.

9Throughout, if θt−1 is such that θs = θs for some s < t, then ∂Ft(θt|θt−1)/∂θs denotes the right-hand derivative
of Ft with respect to θs. Likewise, if θs = θ̄s, then ∂Ft(θt|θt−1)/∂θs denotes the left-hand derivative.
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whereas, for any t any τ > t, any θτ such that θt ∈ Θt and θs ∈ Supp[Fs
(
·|θs−1

)
] any s > t, we let

Jτt (θτ ) ≡
∑

K∈N, l∈NK+1:
t=l0<...<lK=τ

K∏
k=1

I lklk−1(θ
lk),

with

Iml (θm) ≡ −∂Fm(θm|θm−1)/∂θl

fm(θm|θm−1)
.

These J functions are the nonlinear analogs of the familiar constant linear impulse responses for

autoregressive processes. For example, when productivity evolves according to an AR(1) process,

i.e., when θt = γθt−1 + εt, when γ is a scalar and (ε̃s)
T
s=1 is a sequence of independent random

variables, the impulse response of θt on θτ , τ > t, is simply Jτt = γτ−t. More generally, the impulse

response Jτt (θτ ) of θt on θτ captures the total effect of an infinitesimal variation of θt on θτ , taking

into account all effects on intermediate types (θt+1, ..., θτ−1). In the special case of a Markov process,

because each Iml (θm) is equal to zero for all l < m− 1 and depends on θm only through (θm, θm−1),

the impulse response Jτt (θτ ) reduces to a function of (θt, ..., θτ ) and can be conveniently written as

Jτt (θt, θt+1, ..., θτ ) = Πτ
k=t+1I

k
k−1 (θk, θk−1), with each Ikk−1 given by

Ikk−1 (θk, θk−1) =
−∂Fk(θk|θk−1)/∂θk−1

fk (θk|θk−1)
.

As anticipated in the Introduction, these impulse response functions play a key role in determining

the dynamics of the profit-maximizing contract. Throughout, we will assume that the process F

satisfies the property of “first-order stochastic dominance in types”: for all t ≥ 2, θt−1 > θt−1′

implies Ft(θt|θt−1) ≤ Ft(θt|θt−1′) for all θt. This assumption in turn implies that Jτt (θτ ) ≥ 0 for any

t and τ , τ ≥ t, any θτ ∈ Rτ .

Technical assumptions. To validate a certain dynamic envelope theorem (see Pavan, Segal, and

Toikka 2009 for details), and guarantee interior solutions, we will also make the following technical

assumptions. We will assume that the sets Θt and the functions Jτt (·) are uniformly bounded, in the

following sense: there exist nonnegative scalars B1, B2 < +∞ such that |θt| < B1 and Jτt (θτ ) < B2,

all t and τ , τ ≥ t, all θτ ∈ Rτ .10 Lastly, we will impose the following conditions on the disutility
10Throughout, given any function g : RT → R the notation Eθ̃

T |θt [g(θ̃
T

)] will denote the expected value of the
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function ψ. Firstly, ψ (e) = 0 for all e ≤ 0. Secondly, ψ is continuously differentiable over R. Thirdly,

there exists a scalar ē > 0 such that (i) ψ′ (ē) > 1, and (ii) ψ is thrice continuously differentiable

over (0, ē) with ψ′′(e) > 0 and ψ′′′(e) ≥ 0 for all e ∈ (0, ē). Finally, there exist scalars C > 0 and

L > 1 such that ψ(e) = Le − C for all e > ē. These conditions are satisfied, for example, when

ē > 1, ψ(e) = (1/2)e2 for all e ∈ (0, ē), and ψ(e) = ēe − ē2/2 for all e > ē. As mentioned above,

these conditions guarantee that the agent’s payoffsatisfies certain equi-Lipschitz continuity conditions

which in turn permit one to conveniently express the value function through a differentiable envelope

formula.

2.2 The mechanism design problem

The principal’s problem consists of choosing a mechanism detailing for each period t a recommen-

dation for the agent’s effort along with a level of consumption where both effort and consumption

possibly depend on the history of observed cash flows πt and on messages sent by the agent over

time.

By the Revelation Principle, we restrict attention to direct revelation mechanisms for which a

truthful and obedient strategy is optimal for each type θ1 of the agent. Hereafter, we refer to any

such mechanism as incentive compatible.11 Letting Πt = ×tτ=1Πτ , with Πτ = {πτ ∈ R : πτ = θτ + e,

θτ ∈ Θτ , e ∈ E} denoting the set of possible period-t feasible cash flows, a direct mechanism

Ω = 〈ξt, st〉Tt=1 thus consists of a collection of functions ξt : Θt×Πt−1 → E and st : Θt×Πt → R such

that ξt(θ
t, πt−1) is the recommended level of effort for period t given the agent’s reports θt and the

observed history of cash flows πt−1, while st(θt, πt−1, πt) is the principal’s payment (equivalently, the

agent’s consumption) at the end of period t given the reports θt and the cash flows πt = (πt−1, πt).

Note that st(θt, πt−1, πt) depends on both past and current cash flows.With a slight abuse of notation,

function g(θ̃
T

) given the unique probability measure over ΘT that corresponds to the kernels F starting from history

θt.
11A truthful and obedient strategy prescribes that the agent truthfully reports his private information and follows

the principal’s effort recommendation at each history. Such a strategy is said to be optimal for type θ1 if it maximizes

type θ1’s expected payoff among all possible (measurable) strategies. By the principle of optimality, in any incentive-

compatible mechanism, with F -probability one, truthful and obedient behavior must remain optimal also at future

histories that are consistent with truthful and obedient behavior in the past.
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for any θt ∈ Rt, we then denote by et(θt) ≡ ξ(θt, πt(θt)) the equilibrium effort choice for period

t and by ct(θ
t) = st(θ

t, πt(θt)) the equilibrium consumption level for period t, given θt, where

πt(θt) = (πs(θ
s))ts=1 with πs(θ

s) defined recursively by πs(θs) = θs + es(θ
s) all s ≤ t.

The timing of play in each period t is the following:

• At the beginning of period t, the agent learns θt ∈ Θt;

• The agent then sends a report θ̂t ∈ Θt;

• The mechanism reacts by prescribing an effort choice ξt(θ̂
t
, πt−1) and a contingent reward

scheme st(θ̂
t
, πt−1, ·) : Πt → R;

• The agent privately chooses effort et, the cash flows πt = θt + et are then observed, and the

compensation ct = st(θ
t, πt) is paid and consumed.

The principal offers the mechanism Ω at date 1, after the agent has observed the first realization

θ1 of the process F.12 If the agent refuses to participate in the mechanism Ω, both the agent and

the principal receive their outside options, which we assume to be equal to zero. If, instead, the

agent accepts Ω, he then stays in the relationship in all subsequent periods.13 In the terminology of

mechanism design, we refer to a mechanism for which participation is optimal for each type θ1 as

individually rational.

Definition 1 We say that the compensation scheme s ≡ 〈st(·)〉t=Tt=1 implements the effort policy

e ≡ 〈et(·)〉t=Tt=1 if any mechanism Ω = 〈ξt, st〉Tt=1 in which the compensation scheme is s and the

recommendation policy ξ satisfies ξt(θ
t, πt−1) = et(θ

t) for any (θt, πt−1) such that θt ∈ Rt and

πs = θs + es(θ
s) all s ≤ t− 1, is incentive-compatible and individually-rational for the agent. We say

that the policy e is implementable if there exists a compensation scheme that implements it.

12As explained above, this assumption implies that the principal cannot simply sell out the firm to the agent even

in the absence of limited liability constraints and in the presence of risk neutrality.
13That participation must be guaranteed only in period one is clearly not restrictive when the principal can ask

the agent to post bonds. Below, we will discuss situations/implementations where, even in the absence of bonding,

participation can be guaranteed after any history consistent with truthful and obedient play in past periods.
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3 Cost-minimizing compensation schemes

We start by characterizing a compensation scheme that implements all implementable effort policies

at minimal cost for the principal.

Proposition 1 Suppose that the effort policy e is implementable. Let copt(·; e) ≡
〈
coptt (·; e)

〉t=T
t=1

denote the (R-measurable) solution to the following problem:

min
c
Eθ̃

T

[
T∑
t=1

δt−1ct(θ̃
t
)

]
(2)

s.t. V
(

T∑
t=1

δt−1vt(ct(θ
t))

)
= W

(
θT
)
for F -almost all θT

where, for each θT ∈ RT ,

W
(
θT
)
≡

T∑
t=1

δt−1ψ(et(θ
t)) +

∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′(et(θ̃

t
))

]
ds+

T∑
t=2

δt−1Ht(θ
t)

with

Ht

(
θt
)
≡

∫ θt
θt(θ

t−1)
Eθ̃

T |θt−1,s

[
T∑
τ=t

δτ−tJτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

−Eθ̃t|θt−1
[∫ θ̃t

θt(θ
t−1)

Eθ̃
T |θt−1,s

[
T∑
τ=t

δτ−tJτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

]

for all t ≥ 2, all θt ∈ Rt. Consider the compensation scheme s defined as follows: in each period

t, given the reports θt ∈ Θt and the observed cash flows πt ∈ Rt, the principal pays the agent a

compensation st(θt, πt) = coptt (θt; e) if θt ∈ Rt and πt ≥ πt(θ
t) ≡ θt + et(θ

t) and charges the agent a

suffi ciently low penalty otherwise. The compensation scheme s described above implements the policy

e at minimum cost for the principal.

By definition, if a mechanism Ω exists which implements the policy e, then at any period t

and for F -almost all truthful histories14 θt, the agent’s expected payoff in Ω under a truthful and

obedient strategy must coincide with the value function V Ω(θt) defined to be the supremum of the

agent’s expected payoff in Ω, given the truthful history θt, among all possible strategies. The proof
14A truthful history is one that is reached by reporting truthfully and following the principal’s effort recommendations

in each previous period. Without loss, these histories can be denoted by the realized sequence of productivities θt.
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in the Appendix then uses the envelope theorem for dynamic stochastic problems of Pavan, Segal

and Toikka (2009) to establish that, after any truthful history θt−1, V Ω(θt−1, ·) must be Lipschitz

continuous in θt and satisfy the following envelope condition

∂V Ω(θt)

∂θt
= Eθ̃

T |θt
[

T∑
τ=t

δτ−1Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
(3)

for F -almost every truthful history θt. Using the fact that, in any incentive-compatible mechanism

Ω, at F -almost every truthful history θt

V Ω(θt) = Eθ̃t+1|θ
t
[
V Ω
(
θt, θ̃t+1

)]
and iterating across periods then permits us to establish that, for F -almost all histories θT , the

agent’s utility from the compensation he receives from the principal must satisfy

V
(

T∑
t=1

δt−1vt(ct(θ
t))

)
= W

(
θT
)

+ V Ω(θ1) (4)

with V Ω(θ1) nonnegative so as to guarantee participation by all period-1 types. This means that the

utility that the agent derives from his compensation is essentially uniquely determined by the effort

policy e, up to a nonnegative constant.

Given the property above, if the principal replaces the original mechanism Ω implementing the

policy e with one where the compensation is as in the proposition then (i) the agent continues to have

the right incentives to report truthfully and follow the principal’s effort recommendations (this step

follows from replication arguments similar to those that establish the Revelation Principle, adapted

to the environment considered here) and (ii) the cost to the principal is no greater than under the

original scheme Ω, thus establishing the result.

The value of Proposition 1 is twofold: it characterizes the cost to the principal of sustaining

any implementable policy e, and it shows that all implementable effort policies can be sustained by

offering the agent a compensation scheme that, in each period t, pays a bonus conditional upon the

period-t cash flows exceeding a target that depends on the history of reports about the manager’s

productivity.
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A necessary condition for copt(·; e) to solve program (2) in the Proposition is that it satisfies the

inverse Euler equation in Corollary 1 below. (The proof in the Appendix adapts arguments similar

to those in Rogerson (1985) to the present environment.15)

Corollary 1 Given any policy e, the compensation copt(·; e) solves program (2) in Proposition 1 only

if, with F -probability one, the following condition holds for any two adjacent periods 1 ≤ t, t+ 1 ≤ T :

1

v′t
(
ct
(
θt
)) = Eθ̃t+1|θt

 δ

v′t+1

(
ct+1

(
θt, θ̃t+1

))
 . (5)

4 Implementable policies

Building on the result in the previous section we now provide conditions for a given effort policy to

be implementable. We start with the following definition.

Definition 2 We say that the recommendation policy ξ is an extension of the effort policy e from

R to Θ if (i) for any t, ξt(θ
t, πt−1) is independent of past cash flows πt−1 (and hence denoted by

ξt(θ
t)), and (ii) for any t any θt ∈ Rt, ξt(θt) = et(θ

t).

An extension is thus a recommendation policy that is insensitive to the observed cash flows and

that recommends the equilibrium effort whenever the agent, with his reports, does not reveal any

departure from truthtelling in the past. We then have the following result.

Proposition 2 Suppose that there exists an extension ξ of the policy e that satisfies the following

single-crossing conditions

Eθ̃
T |θt


ψ′(ξt(θ̂

t−1
, θt))− ψ′(ξt(θ̂

t−1
, θ̂t) + θ̂t − θt)

+
∑T

τ=t+1 δ
τ−tJτt

(
θt, θ̃t+1, . . . , θ̃τ

)
×[ψ′(ξτ (θ̂

t−1
, θt, θ̃t+1 . . . , θ̃τ ))− ψ′(ξτ (θ̂

t−1
, θ̂t, θ̃t+1 . . . , θ̃τ ))]

 [θt − θ̂t] ≥ 0. (6)

for any t, any θt ∈ Rt, any θ̂t ∈ Θt. In addition, assume that one of the following conditions holds:

(i) the process F is Markov; (ii) each ξt(θ
t) depends on θt only through θ1. In each of these cases,

the policy e is implementable.

15Note that Condition (5) holds irrespective of whether the agent’s perferences are time-additively-separable.
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Note that the single-crossing conditions in the propositions are trivially satisfied for example

when, in each period, the effort that the firm recommends is nondecreasing in the history of reported

productivity. More generally, these conditions are weaker monotonicity conditions requiring only

that, in the continuation game starting with an arbitrary history (θt, θ̂
t−1

, et−1), effort increases, on

average, with the agent’s report about his current productivity.

To see the idea behind the result in the proposition, consider first the case where the process is

Markov. In this case, whether or not the agent has been truthful in the past is irrelevant for the

incentives he faces in the continuation game that starts after any history (θt, θ̂
t−1

, et−1). Suppose,

then, that the principal offers a scheme of the type described in Proposition 1; that is, in each period

t, given the reports θ̂
t ∈ Θt, the principal pays a bonus ct(θ̂

t
) if the current cash flow exceeds the

target πt = θ̂t + ξt(θ̂
t
) and charges the agent a suffi ciently low penalty otherwise. Faced with this

scheme, the effort that the agent exerts in each period t is determined entirely by the history of

reports θ̂
t
made over time, and by the agent’s current type θt and is given by êt = ξt(θ̂

t
) + θ̂t − θt,

all t. Then let U(θt; θ̂
t−1

, θ̂t) denote the agent’s expected payoff in the continuation game that starts

in period t with history (θt, θ̂
t−1

) when, in period t, the agent sends the report θ̂t, he then chooses

effort êt = ξt(θ̂
t
) + θ̂t − θt, and then starting from period t + 1 onward he follows a truthful and

obedient strategy. The proof in the Appendix verifies that, when the single-crossing conditions in

the proposition are satisfied, there exists a compensation scheme of the type described above such

that [
dU(θt; θ̂

t−1
, θt)

dθt
− ∂U(θt; θ̂

t−1
, θ̂t)

∂θt

] [
θt − θ̂t

]
≥ 0,

all θt ∈ Rt, θ̂t ∈ Θt. As is well known, this endogenous single-crossing condition on derivatives implies

that U(θt; θ̂
t−1

, θt) ≥ U(θt; θ̂
t−1

, θ̂t) all θt ∈ Rt, θ̂
t ∈ Θt, meaning that no one-shot deviation from the

truthful and obedient strategy is ever profitable for the agent. Together with continuity at infinity,

this implies that, under the proposed scheme, following a truthful and obedient strategy is optimal

for each type θ1, thus establishing the implementability of the proposed effort policy.16

16Note that the scheme described above, contrary to that in Proposition 1, does not constrain the agent to report

only feasible sequences of types θT ∈ R. Allowing the agent to report also types that are inconsistent with the process
F is just a trick that permits us to establish the suboptimality of one-stage deviations from the truthful and obedient
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Next consider the case where the process is possibly non-Markov, but where the effort policy

depends only on θ1. The proof in the Appendix shows that one can construct compensation schemes

in which the agent is asked to report only his initial type and such that the utility that he derives

from the payments he receives over time is linear in the cash flows πt, t > 1. The idea here is the

following. First, because the policy depends only on θ1, the agent does not need to report anything

to the principal after the first period. This eliminates the complication stemming from the fact that,

with non-Markov processes, verifying the agent’s incentives for truthtelling is typically hard due to

the fact that his continuation payoff may depend on the entire history of past types. Second, by

using a scheme that makes the agent’s payoff, gross of his disutility of effort, linear in the cash flows

πt, t > 1, the principal can control the agent’s incentives for effort without the need to set bonuses

that depend on past types (i.e., without communicating with the agent after the first period). It

suffi ces to set the sensitivity of the the payoff to each cash flow πt, t > 1, equal to ψ′ (ξt(θ1)). It is

then easy to see that, conditional on having reported truthfully in the first period, and irrespective

of the effort exerted in the preceding periods, at any period t > 1, the agent finds it optimal to

choose a level of effort et = ξt(θ1) for which the marginal disutility is equal to the marginal increase

in compensation. The only diffi culty for the principal is then to induce the agent to report truthfully

in the first period. When the effort policy satisfies the single-crossing condition in the proposition17,

this can be achieved by committing to pay, in addition to the compensation described above, a

bonus in period one conditional upon the period-1 cash flow exceeding a target π1 = θ1 + ξ1(θ1)

that depends only on the first period announcement. It is important to recognize that, while the

schemes described above do facilitate the verification of the implementability of a policy, they are

not essential for its sustainability: any effort policy that can be sustained with a scheme of the type

described above can also be sustained with a bonus scheme of the type described in Proposition 1,

at a weakly lower cost for the principal.

strategy after any history, including those that entailed a deviation in the past. Together with continuity a infinity,

this in turn establishes the optimality of the truthful and obedient strategy, and hence the implementability of the

desired effort policy.
17Note that, when the policy depends only on θ1, the only relevant single-crossing condition is the one for t = 1.

14



Lastly, note that the case where the effort policy is independent of the agent’s reports after the

first period is of particular interest. As we will shown below, the optimal policy takes this form for

example when the agent is risk neutral and the process for the agent’s productivity is separable in

the first component, in the following sense.

Definition 3 The process F is separable in the first component (SFC) if each impulse response

function J t1(θt) depends on θt only through θ1, which in turn is the case when the process F admits

the following representation

θt = κt(θ1) + φt(ε2, . . . , εt)

for some functions κt : Θ1 → R and φt : E t → R, with each shock εt drawn independently from a

distribution Gt with support Et ⊂ R.

Note that the family of processes that satisfy the SFC property includes all ARIMA processes:

in this case, each impulse response J t1 is simply a scalar.

4.1 Implementability (at minimum cost) with linear and pseudo-linear schemes

Before turning to the properties of optimal policies, we conclude this section with a result concerning

the possibility of implementing certain effort policies with linear and pseudo-linear schemes. By the

former, we mean compensation schemes in which the total compensation that the agent receives over

time is linear in the cash flows. By the latter, we mean compensation schemes in which the utility

that the agent derives from his compensation is linear in the cash flows.18 The reason for looking at

these schemes is twofold. Many compensation packages used in the real world based on a time-varying

combination of stocks and options are known to give rise to linear sensitivities of compensation to

firm’s performance, as measured for example by cash flows and stock prices. Second, such schemes

provide a desirable form of robustness. They guarantee that the agent finds it optimal to report

truthfully and choose the desired level of effort even if he is concerned about the possibility that the

18The discussion after Proposition 2 mentioned already some of the advantages of linear and pseudo-linear schemes.

However, there we restricted attention to policies that depend only on θ1. Furthermore, we did not address the question

of what conditions guarantee that such schemes implement the desired effort policies at minimal cost for the principal.
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firm’s cash flow are not only a function of his productivity and effort but also of noise that is beyond

his control. In other words, such schemes continue to implement the desired effort policy even if the

agent believes the cash flows to be given by πt = θt+et+ηt where ηt is transitory noise, independent

of the process F and of the agent’s effort decisions.

Motivated by the aforementioned considerations, we then have the following result.

Proposition 3 Let ξ be any extension of the policy e satisfying the following single-crossing condi-

tions

Eθ̃T |θt
 ∑T

τ=t δ
τ−tJτt

(
θt, θ̃t+1, . . . , θ̃τ

)
×[ψ′(ξτ (θ̂

t−1
, θt, θ̃t+1 . . . , θ̃τ ))− ψ′(ξτ (θ̂

t−1
, θ̂t, θ̃t+1 . . . , θ̃τ ))]

 [θt − θ̂t] ≥ 0 (7)

for any t, any θt ∈ Rt, any θ̂t ∈ Θt. In addition, assume that one of the following conditions holds:

(i) the process F is Markov; (ii) each ξt(θ
t) depends on θt only through θ1. In each of these cases,

the policy e can be implemented at minimal cost for the principal with an appropriately designed

pseudo-linear scheme.

First note that the single crossing conditions in the proposition are stronger than those in Propo-

sition 2. These schemes thus permit the principal to implement fewer effort policies than the corre-

sponding bonus schemes of Proposition 2. Nonetheless, there are interesting cases where the optimal

effort policies can indeed be implemented with such schemes, as will be shown below.

Next note that these schemes are designed so as to achieve multiple goals at once. First, they

undo the agent’s risk-aversion by making his payoff, gross of the cost of effort, linear in the cash-

flows πt, t ≥ 1. By setting the sensitivity to each cash flow equal to αt(θt) = ψ′(ξt(θ
t)) such linearity

guarantees that, conditional on having reported truthfully, and irrespective of past effort choices,

the agent finds it optimal to exert the right level of effort, thus taking care of the moral-hazard part

of the problem. Second, these schemes are designed so as to induce truthtelling. This is obtained

through a careful design of the part of the compensation that is independent of the realized cash flow

but which depends on the reported productivity. This takes care of the adverse selection part of the

problem. Lastly, these schemes are designed so that the compensation the agent receives over time is
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the one that minimizes the cost to the principal. This is obtained by distributing the compensation

over time according to Rogerson inverse Euler condition, as defined in Corollary 1, thus taking care

of the optimal consumption smoothing part of the problem.

To illustrate, consider for simplicity the case where V is linear but where each vt is possibly

strictly concave, thus maintaining a preference for consumption smoothing, while making the payoff

time-additively separable. Let ξ be any extension of the desired effort policy e from R to Θ. Let

copt (·; ξ) be the cost-minimizing allocation of consumption over time, as defined in the program of

Proposition 1, with all policies and corresponding constrains naturally extended from R to Θ. Then

consider the following pseudo-linear payment scheme sPL. In each period t, and for all
(
θt, πt

)
, the

principal pays the agent a compensation

sPLt
(
θt, πt

)
= v−1

t

(
vt

(
coptt

(
θt; ξ

))
+ ψ′(ξt(θ

t))[πt − θt − ξt(θt)]
)
. (8)

It is easy to see that, under such a scheme, in each period t, conditional on having reported truthfully,

the agent has the right incentives for choosing the desired level of effort ξt(θ
t). It is also easy to see

that, on path, the compensation that the agent receives over time is given by sPLt
(
θt, πt

)
= coptt

(
θt; ξ

)
which is exactly the compensation that minimizes the cost to the principal among all those that are

consistent with the agent’s incentive compatibility, as indicated in Proposition 1. As shown in the

proof in the Appendix, that the effort policy satisfies the single crossing conditions in the proposition

in turn guarantees that, when either the process is Markov, or the policy depends only on θ1, (i) the

agent has the right incentives to report all his types truthfully, and (ii) each type θ1 has the incentive

to participate, thus establishing implementability of the desired effort policy.

Next, consider the special case where the agent is risk neutral (both V and each vt linear). It is

worthwhile noticing that, while in this case the particular way the compensation is distributed over

time is irrelevant, certain choices have the advantage of guaranteeing that, even if the agent had the

option to leave the relationship after the first period, he would never find it optimal to do so. To

see this, consider for example the case where F is Markov, R = Θ, and T is finite. By committing

17



to pay the agent in each period a compensation

st(θ
t, πt) = St(θ

t) + αt(θ
t)πt (9)

with

St(θ
t) ≡ ψ(ξt(θ

t))− αt(θt)
[
θt + ξt(θ

t)
]

+Ht(θ
t)

if t > 1 and

S1(θ1) ≡ ψ(ξ1(θ1))− α1(θ1) [θ1 + ξ1(θ1)] +

∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′
(
ξt(θ̃

t
)

)

]
ds

if t = 1, the principal guarantees that, after each period t, the agent’s continuation payoff under a

truthful and obedient strategy from period t onwards is equal to

∫ θt
θt
Eθ̃

T
>t|s

[
T∑
τ=t

δτ−1Jτt (s, θ̃
τ
>t)ψ

′(ξτ (θ̂
t−1

, s, θ̃
τ
>t))

]
ds

irrespective of whether or not the agent has been truthful and obedient in the past. Because the

latter is clearly positive, this implies that the agent never finds it optimal to leave the firm.

When the agent is risk-averse, the pseudo-linear schemes give the agent a payoff which is linear

in the cash flows but typically entail a non-linear compensation. However, when the single crossing

conditions of Proposition 3 hold, it may be possible to implement the desired effort policy with a

payment scheme where the compensation itself is linear in the cash flows. To illustrate, consider

again the case where V is linear but where each vt is strictly concave and let wt ≡ v−1
t . Then let sL

be the linear scheme defined for all t, all
(
θt, πt

)
, by

sLt
(
θt, πt

)
≡ coptt

(
θt; ξ

)
+ w′t

(
vt

(
coptt

(
θt; ξ

)))
ψ′(ξt(θ

t))[πt − θt − ξt(θt)]

By the convexity of each wt and Jensen’s inequality, we then have that

sLt
(
θt, πt

)
≤ sPLt

(
θt, πt

)
,

with equality if and only if πt = θt + ξt(θ
t), where sPL is the pseudo-linear scheme defined in (8).

Faced with the above linear scheme, the agent’s payoff under a truthful and obedient strategy is thus

the same as when he faces the corresponding pseudo-linear scheme, whereas his payoff under any
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other plan is weakly lower. This means that, whenever the desired effort policy is implementable

at minimal cost with a pseudo-linear schemes it is also implementable at minimal cost with a linear

scheme. Given the popularity of linear schemes in the real world and in the managerial compensation

literature, the above result is somewhat reassuring.

5 Profit-maximizing policies

5.1 Risk-neutrality

Equipped with the results in the previous section, we now characterize the policies that maximize the

firm’s expected cash flows, net of the cost of managerial compensation. We start by characterizing

optimal policies for risk-neutral agents. Recall that, by definition, in any mechanism that is incentive-

compatible for the agent, the payoff that each type θ1 expects under a truthful and obedient strategy

must coincide with the value function. Applying (3) to t = 1, the latter in turn must satisfy

V Ω (θ1) =

∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′(et(s, θ̃

t
>1))

]
ds+ V Ω(θ1) (10)

for all θ1. Integrating (10) by parts, we then have that the expected surplus that the principal must

leave to the agent, as computed at the time of hiring, is given by

E
[
V Ω(θ̃1)

]
= Eθ̃

T

[
η(θ̃1)

T∑
t=1

δt−1J t1(θ̃
t
)ψ′
(
et(θ̃

t
)
)]

+ V Ω(θ1)

where η(θ1) ≡ [1 − F1(θ1)]/f1(θ1) denotes the inverse hazard rate of the first-period distribution.

Using the fact that the principal’s expected payoff is equal to

E[UP ] = E

[
T∑
t=1

δt−1{θ̃t + et(θ̃
t
)− ψ(et(θ̃

t
))}
]
− E

[
V Ω(θ̃1)

]
we then have that

E[UP ] = E

[
T∑
t=1

δt−1
{
θ̃t + et(θ̃

t
)− ψ(et(θ̃

t
))− η(θ̃1)J t1(θ̃

t
)ψ′(et(θ̃

t
))
}]
− V Ω(θ1). (11)

Given that J t1
(
θt
)
≥ 0 for all t all θt under FOSD, we then have that the effort policy that maximizes

(11) can be obtained by pointwise maximization of E[UP ] and is given in the next proposition.
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Proposition 4 Suppose that the agent is risk neutral. (i) Let e∗ be the effort policy implicitly defined,

for all t all θt ∈ Rt, by19

ψ′(e∗t (θ
t)) = 1− η(θ1)J t1

(
θt
)
ψ′′(e∗t (θ

t)). (12)

Suppose that the policy e∗ is implementable. Then, under any optimal contract for the principal, e∗

is sustained in each period at F -almost all histories.

(ii) The following conditions guarantee that the policy e∗ is implementable: (a) the process F

is either Markov, or separable in the first component (SFC); and (b) each function η(θ1)J t1
(
θt
)
is

nonincreasing. Under these conditions, the policy e∗ can also be implemented by a linear schemes.20

Furthermore, by committing to pay the agent in each period t according to (9) the principal guarantees

that the agent never finds it optimal to leave the relationship.

First, consider part (i). It is easy to see that the policy e∗ maximizes (11). That, when it is

implementable, e∗ is sustained under any optimal contract for the principal then follows from the

fact that the principal’s payoff in any mechanism that is incentive-compatible for the agent is given

by (11), together with the fact that, from Proposition 1, there exists a compensation scheme s∗ that

implements e∗ and that gives the lowest period-1 type θ1 an expected payoff equal to his outside

option, in which case V Ω(θ1) = 0.

Next consider part (ii). The result follows from Propositions 2 and 3. When each function

η(θ1)J t1
(
θt
)
is nonincreasing, then each function e∗t (θ

t) is nondecreasing. In the Appendix, we show

that, when this is the case, there always exists an extension ξ of e∗ from R to Θ that satisfies not

only the single-crossing conditions (6) of Proposition 2 but also the more stringent conditions (7) of

Proposition 3. The results in those propositions then imply that when F is Markov, or it is separable

in the first component (SFC)– in which case each e∗t (θ
t) and hence also each corresponding ξt(θ

t)

depends on θt only through θ1– then the policy e∗ can be implemented both by the bonus schemes

of Proposition 1 and by the linear schemes described in (9). That, in this case, participation can

19The formula in (12) presumes that the effort e∗(θt) implicitely defined by (12) is strictly positive, which is the case

if and only if ψ′′(0) < 1/[η(θ1)J
t
1(θ

t)]. When this is not the case then e∗t
(
θt
)

= 0.
20The extension ξ of the policy e∗ from R to Θ is given in the Appendix.
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be guaranteed not only in the first period but also in any subsequent period then follows from what

discussed after Proposition 3.

Note that the assumption that each function η(θ1)J t1
(
θt
)
is nondecreasing in θt is trivially satis-

fied, for example, when the density of the first period distribution F1 is log-concave and the process

F is ARIMA. As anticipated above, in this case, the impulse response functions J t1 are scalars and

the dynamics of effort under the optimal contract is entirely deterministic. The implementation of

the optimal contract is then particularly simple. In period one, the principal offers the agent a menu

of contracts, indexed by θ1. Each contract specifies for each period t a fixed payment St(θ1), given

by (9), along with a variable pay αt(θ1)πt that is linear in the observed cash flow πt. Both the fixed

component St(θ1) and the variable component αt(θ1) vary over time, but in the case of a process

that is separable in the first component, do not depend on the productivity shocks experienced after

the first period.

A few more observations are in order. First, note that, when the optimal effort policy is the one

in Proposition 4, then in each period t, the agent’s effort e∗t (θ
t) is downward distorted with respect to

the first-best level, which is implicitly defined by ψ′(eFB) = 1 for all t all θt. This property originates

in the principal’s desire to limit the surplus (equivalently, the rent) that she must leave to the agent

to induce him to truthfully reveal his productivity level. By offering to those types who are less

productive at the hiring stage (for which η(θ1) is high) a contract with low-powered incentives, the

principal makes it less attractive for the most productive types to mimic. As anticipated in the

Introduction, this is because the surplus that a more productive type obtains by mimicking a less

productive one is the disutility of effort that he can save by generating the same cash flows as the

less productive type by working less. This means that the lower the effort that the least productive

types are induced to exert, the lower the surplus that the principal must leave to the most productive

ones.

Second, note that the dynamics of effort under the policy e∗ is entirely driven by the dynamics

of the impulse responses J t1(θt). The reason is that these functions capture the extent to which the

agent’s initial private information θ1 has persistent effects on the surplus that the principal must
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leave to the most productive types to induce them to reveal their private information. To illustrate,

consider the following examples.

Example 1 Suppose that θt evolves according to an AR(1) process

θt = γθt−1 + εt

for some γ ∈ (0, 1). Then J t1(θt) = γt−1 for all t all θt. It follows that e∗t increases over time and,

for any θ1,

lim
t→∞

e∗t (θ1) = eFB.

Example 2 Assume that each θt is i.i.d., so that J t1(θt) = 0 for all t ≥ 2 all θt. Then effort is

distorted only in the first period, i.e. e∗1(θ1) < eFB1 and e∗t (θ
t) = eFB for all t ≥ 2 all θt.

Example 3 Suppose that θt follows a random walk, i.e.

θt = θt−1 + εt

Then e∗t (θ
t) is constant over time and depends only on θ1.

The property that effort increases over time and gradually converges to the first-best level under

the AR(1) process of Example 1 is actually more general; it also applies for example to any ARIMA

processes for which J t1 decreases with t with limt→∞ J t1 = 0, where J t1 are nonnegative scalars that

depend on the various parameters of the ARIMA process.

Note that, as the examples make clear, the statistical property of the process F that is responsible

for the dynamics of effort is the dynamics of the impulse responses J t1(θt) and not the dynamics of

the correlation between θ1 and θt, or the extent to which θ1 is a good predictor of future types θt, as

measured by the variance of the forecast error of θt given θ1. As one can see for example by looking

at the random walk case of Example 3, Corr(θ1, θt) decreases over time and V ar([θt − E(θt|θ1)]2)

increases over time. Nonetheless, e∗t (θ
t)− eFB is constant over time due to the fact that the impulse

responses J t1 of θ1 on θt are constant in the random walk case.
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Also note that, when productivity evolves according to a random walk, then because effort is

constant over time, the optimal mechanism can be implemented by offering in period one the same

menu of linear contracts that the principal would offer in a static relationship, and then committing

to use the same compensation scheme that the agent selects in period one also in each subsequent

period. Each linear scheme (indexed by θ1) has a fixed compensation of

S(θ1) ≡ ψ(e∗(θ1)) +

∫ θ1

θ1

ψ′(e∗(s))ds− α(θ1)[θ1 + e∗(θ1)]

together with a piece-rate α(θ1)π1 with α(θ1) = ψ′(e∗(θ1)) that is constant over time. These contracts

are reminiscent of those derived in Laffont and Tirole (1986) in a static setting. Contrary to the static

case, the entire linear scheme S(θ1) + α(θ1)πt – as opposed to the point S(θ1) + α(θ1)[θ1 + e∗(θ1)]

– is now used over time. This is a direct consequence of the fact that the firm’s performance πt now

changes stochastically over time in response to the shocks affecting the agent’s productivity. Also

note that while the optimal mechanism can be implemented by using in each period the static optimal

contract for period one, this does not mean that the dynamic optimal mechanism coincides with a

sequence of static optimal contracts, as in Baron and Besanko (1984). Because the agent’s type θt

(and its distribution) changes over time, the sequence of static optimal contracts entails a different

choice of effort for each period. What the result implies is that, despite the lack of stationarity, it

is optimal for the principal to commit to use the same scheme selected in period one also in each

subsequent period, thus inducing the same effort as if the agent’s type were constant over time. Out

of curiosity, also note that the optimal reward scheme (and the corresponding effort dynamics) when

θt follows a random walk coincides with the one that the principal would offer in an environment in

which the shocks have only a transitory (as opposed to permanent) effect on the agent’s productivity.

Indeed, it is easy to verify that the dynamics of effort under the optimal contract is the same when

θt = θ1 +
∑t

s=2 εs as when θt = θ1 + εt. This property holds more generally for any process F that

is separable in the first component, i.e., such that θt = κt(θ1) + φt(ε2, . . . , εt) for some functions κ

and φ: the dynamics of effort is then completely independent of the functions φt that determine the

effect of shocks experienced after period one on the agent’s productivity.
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Seniority. We now turn to the key property discussed in the Introduction that the power of

incentives increases with tenure (i.e., with the length of the employment relationship). What the

examples above have in common is the property that the effect of the agent’s initial productivity on

his future productivity, as captured by the impulse response J t1 is either constant (in the random

walk-case) or declines over time (gradually, in the AR(1) case, and with a single jump to zero at

t = 2 in the case of independent types). More generally, all these examples share the property of

“declining impulse responses”defined as follows.

Definition 4 The process F satisfies the property of “declining impulse responses” if, for any

s > t ≥ 1, any
(
θt, θs>t

)
, θs ≥ θt implies that Js1

(
θt, θs>t

)
≤ J t1

(
θt
)
.

Inspecting the formula for the principal’s expected payoffas given by (11), together with standard

comparative statics arguments, then immediately reveals that, when this property holds, then as long

as the agent’s productivity does not fall, the effort that he is asked to exert under the optimal policy

does not fall either. Declining impulse responses thus provide a condition under which the agent’s

effort increases monotonically over time.

An alternative definition of the diminishing effect of the agent’s initial productivity on his future

productivity can be obtained by taking an ex-ante view and assuming that

∂Eθ̃
T |θ1 [θ̃t]

∂θ1
= Eθ̃

t|θ1
[
J t1(θ̃

t
)
]

decreases with t. In case the agent’s disutility of effort is quadratic, one can indeed verify that, under

this condition, the agent’s expected effort under the optimal policy, Eθ̃t|θ1 [e∗t
(
θ̃
t
)

] (as well as the

expected slope of the incentive scheme that sustains it) increases over time. This property, however,

does not necessarily extend to more general disutility functions, for it relies on a certain convexity

property of the principal’s payoff as given by (11).

What the aforementioned definitions of declining impulse responses both capture is the idea that

the effect of a manager’s initial productivity on his subsequent productivity declines over time, a

property that seems appropriate for many situations of interest. This property implies that, as a

manager’s tenure in the firm grows, the firm finds it optimal to induce him to exert higher effort.
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This requires a higher sensitivity of his compensation to performance, which can be obtained, for

example, by putting more stocks and options in the compensation package.

Interestingly, note that the reason why, in our theory, the power of incentives increases over

time has nothing to do with variations in the manager’s preferences or in his outside option (as, for

example, in the career-concerns or in the learning-by-doing literature). It is entirely driven by the

fact that, when hired, the manager is expected to possess private information about his ability to

generate profits for the firm, along with the fact that the effects of such initial private information

on future productivity is expected to decline over time. Under these assumptions, to reduce the

incentives of those managers who are most productive at the hiring stage from mimicking the less

productive ones, it is more effective for the firm to distort effort in the latter’s contracts more in the

first few periods, when the effect of the initial productivity is still pronounced, than in the distant

future when such an effect is fable. Our theory thus complements the aforementioned two theories

by offering an alternative justification for the optimality of seniority-based schemes whose power of

incentives increases over time.

5.2 Risk aversion

We now investigate how the optimality of seniority-based schemes may be affected by the possibility

that the agent is risk-averse. For simplicity, we assume here that T is finite (in which case discounting

can be dropped) and start by considering the case where the agent does not have preferences for

consumption smoothing, so that V is concave, but each vt is linear. Using the result in Proposition

1, the principal’s expected payoff under any cost-minimizing compensation scheme can be expressed

as

E[UP ] = E

[
T∑
t=1

(
θ̃t + et(θ̃

t
)
)]

(13)

−E

V−1

 ∑T
t=1 ψ(et(θ̃

t
)

+
∫ θ̃1
θ1
Eθ̃

T |s
[∑T

t=1 J
t
1(θ̃

t
)ψ′(et(θ̃

t
))
]
ds+

∑T
t=2Ht(θ̃

t
)


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where

Ht

(
θt
)
≡

∫ θt
θt(θ

t−1)
Eθ̃

T |θt−1,s

[
T∑
τ=t

Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

−Eθ̃t|θt−1
[∫ θ̃t

θt
Eθ̃

T |θt−1,s

[
T∑
τ=t

Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

]
The expression in (13) is the analogue of the dynamic virtual surplus formula in (11) for the case of

a risk-averse agent. We now show how the formula in (13) can be used to characterize the profit-

maximizing effort policy. We start by considering policies that depend on θ1 only, and denote these

policies by ê. We return to policies that depend on the full history θT at the end of the section. To

facilitate the characterization of the necessary conditions, we consider an example in which θt follows

an ARIMA process (in which case the J t1 functions are scalars) and where the inverse of the agent’s

utility function over consumption is quadratic.

Example 4 Suppose that T <∞ and that the process F is ARIMA with θ1 drawn from an absolutely

continuous distribution F1 strictly increasing on an interval Θ1 = [θ1, θ̄1] ⊂ R, and with each shock

εt drawn from an absolutely continuous distribution Gt strictly increasing on a compact interval

Et ⊂ R, independently from θ1 and from any other shock. Assume that the agent’s utility function

over consumption is given by V(c) = 1
α

√
2αc+ β2 − β

α with α, β > 0 and note that this function

is chosen so that V−1 (u) = α
2u

2 + βu. Let K > 1/β and assume that the disutility of effort ψ is

such that logψ′ is strictly concave on (0, ē) and that for any e ≥ ē, ψ(e) = ψ (ē) + (e− ē)K. The

essentially unique21 policy ê∗ that maximizes the principal’s expected payoff, as given by (13), among

those that depend on θ1 only is such that, for any t, F -almost any θ1,

ψ′(ê∗t (θ1))

[
α

(
T∑
s=1

ψ (ê∗s (θ1)) +

∫ θ1

θ1

T∑
s=1

Js1ψ
′ (ê∗s(q)) dq

)
+ β

]
(14)

≥ 1− ψ′′(ê∗t (θ1))J t1
f1 (θ1)

∫ θ̄1

θ1

[
α

(
T∑
s=1

ψ (ê∗s (q)) +

∫ q

θ1

T∑
s=1

Js1ψ
′ (ê∗s(r)) dr

)
+ β

]
f1 (q) dq

−α
t∑

s=2

[(
T∑
τ=s

Jτs ψ
′(ê∗τ (θ1))

)
J tsψ

′′(ê∗t (θ1))

]
V ar(εs),

with the inequality holding as equality if ê∗t (θ1) > 0.

21The qualifier “essentially” is due to the fact that the optimal policy is determined only F−almost everywhere.
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Recall that the choice of the optimal effort policy trades off two concerns: (1) limiting the

agent’s intertemporal informational rent (as perceived at the time of hiring) and (2) insuring the

agent against the risk associated with variations in his compensation that are necessary to guarantee

incentive-compatibility. To see this more clearly, assume that T = 2. When applied to t = 1 (and

assuming an interior solution), Condition (14) becomes

ψ′(ê∗1 (θ1))

[
α

(
2∑
s=1

ψ (ê∗s (θ1)) +

∫ θ1

θ1

2∑
s=1

Js1ψ
′ (ê∗s(q)) dq

)
+ β

]
(15)

= 1− ψ′′(ê∗1 (θ1))

f1 (θ1)

∫ θ̄1

θ1

[
α

(
2∑
s=1

ψ (ê∗s (q)) +

∫ q

θ1

2∑
s=1

Js1ψ
′ (ê∗s(r)) dr

)
+ β

]
f1 (q) dq.

Because θ1 is known at the time of contracting, the agent does not face any risk concerning his

period-one productivity. The optimal choice of effort for period one is thus determined uniquely by

the desire to limit the agent’s informational rent. It is easy to see that Condition (15) reduces to

Condition (12) for the risk-neutral case when α = 0 and β = 1. Also note that, as in the risk-neutral

case, the policy ê∗1(θ1) is increasing in θ1. This simply follows from the fact that the (measure of

the) set of types (θ1, θ̄1) to whom the principal must give a higher rent when he increases ê∗1 (θ1) is

decreasing in θ1. However, contrary to the risk-neutral case, distortions do not vanish “at the top”.

In fact, when applied to θ̄1, Condition (15) becomes

ψ′(ê∗1
(
θ̄1

)
)

[
α

(
2∑
s=1

ψ
(
ê∗s
(
θ̄1

))
+

∫ θ̄1

θ1

2∑
s=1

Js1ψ
′ (ê∗s(q)) dq

)
+ β

]
= 1, (16)

whereas effi ciency (under risk aversion) requires that in each period the agent exerts a constant level

of effort eFB implicitly given by

ψ′
(
eFB

)
= V ′

(
V−1

(
Tψ
(
eFB

)))
(17)

which, when applied to the example here, becomes

ψ′(eFB)
[
α
(
2ψ
(
eFB

))
+ β

]
= 1.

The reason is that, with risk aversion, the compensation that the principal must pay to type θ̄1 to

discourage him from mimicking a lower type reduces θ̄1’s marginal utility of money; this in turn
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makes effort more costly to sustain which explains why the principal finds it optimal to distort

(downwards) type θ̄1’s effort (see also Battaglini and Coate, 2008, for a similar result in a two-type

model).

Next, consider the effort policy for t = 2. When applied to t = 2, Condition (14) becomes

(assuming again an interior solution):

ψ′(ê∗2 (θ1))

[
α

(
2∑
s=1

ψ (ê∗s (θ1)) +

∫ θ1

θ1

2∑
s=1

Js1ψ
′ (ê∗s(q)) dq

)
+ β

]
(18)

= 1− ψ′′(ê∗2 (θ1))J2
1

f (θ1)

∫ θ̄1

θ1

[
α

(
2∑
s=1

ψ (ê∗s (q)) +

∫ q

θ1

2∑
s=1

Js1ψ
′ (ê∗s(r)) dr

)
+ β

]
f (q) dq

−αψ′(ê∗2 (θ1))ψ′′(ê∗2 (θ1))V ar(ε2).

The key difference between (18) and (15) is the last term on the right-hand side of (18). This term

captures the principal’s concern about exposing the agent to the risk associated with the uncertainty

that the agent faces about his second period’s productivity. Other things equal, this term contributes

to reducing effort, as anticipated in the Introduction.

To further appreciate the distinctions/similarities between the risk-neutral and the risk-averse

case, take the specification of the example, and suppose that θt = γθt−1 + εt, γ ∈ (0, 1], with θ1

uniformly distributed over [0, 1]. In addition, assume that β = 1, and that ψ (e) = e2

4 for all e ∈ (0, ē),

with ē > 4 and K = ē
2 . Then note that, under risk-neutrality (α = 0, β = 1), the (fully)22 optimal

policies are given by ê∗1 (θ1) = 2 − (1 − θ1) and ê∗2 (θ1) = 2 − (1 − θ1)γ, with eFB1 = eFB2 = 2. As

discussed above, to minimize the agent’s informational rent, the principal optimally distort both e1

and e2 downward. Furthermore, because the effect of the agent’s initial type on his future types,

as captured by the impulse responses J t1 = γt−1, declines over time, it is optimal to distort more

in the early stages of the relationship than in the later ones. Furthermore, the smaller the impulse

responses, the smaller the distortion from the first-best effort: in the example, ê∗2 (θ1) = ê∗1 (θ1) [i.e.,

no seniority] when γ = 1 [random walk case] and ê∗2 (θ1) = eFB when γ = 0 [θ1 and θ2 independent].

22Recall, from Proposition 4, that under risk-neutrality the optimal policy depends on θ2 only via θ1 when F is

ARIMA.
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Figure 1: Optimal (shock-independent) effort policies: AR1

Now, to see how risk aversion affects the choice of effort, Figure 1 depicts the optimal θ1-contingent

policies for the aforementioned specification with α = β = 1, γ = 1
2 , and ε2 uniformly distributed

over [0, 1].23

While a form of seniority continues to hold (ê∗2(θ1) is higher than ê∗1(θ1) for most period-one

types), risk aversion tends to depress e2, thus reducing the optimality of reward schemes that pay

managers with a longer tenure with more high powered incentives. Furthermore, now there exist

values of θ1 for which ê∗2 (θ1) < e∗1 (θ1) . To see the reason for this, note that, when evaluated at θ̄1,

equations (15) and (18) are symmetric except for the term −αψ′′
(
ê2

(
θ̄1

))
ψ′
(
ê2

(
θ̄1

))
V ar(ε2). As

discussed above, this term captures the additional cost associated with a high second-period effort.

This cost stems from the fact that a higher effort requires a higher sensitivity of compensation to

performance and hence a higher volatility of the agent’s compensation. To better appreciate where

this term comes from, recall, from Proposition 1, that incentive-compatibility requires that the total

compensation that the agent receives in each state (θ1, θ2) – equivalently, (θ1, ε2) – be given by

V−1

(∑2

t=1
ψ (êt (θ1)) + ψ′(ê2(θ1))[ε2 − E[ε̃2]] +

∫ θ1

θ1

[∑2

t=1
J t1ψ

′ (êt(s))
]
ds

)
. (19)

It is then immediate that reducing ê2(θ1) permits the principal to reduce the agent’s exposure to

the risk generated by ε2. For high values of θ1, this new effect dominates the rent-extraction effect

discussed above for the case of risk neutrality, thus resulting in ê∗2 (θ1) < ê∗1 (θ1).

23We approximated the solution using a sixth-order polynomial.
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Figure 2: Optimal (shock-independent) effort policies: AR1 and random walk

When the effect of θ1 on θ2 is small (i.e., for low values of γ), this new effect mitigates but does

not overturn the optimality of compensation schemes that provide managers with a longer tenure

with more high powered incentives. When instead the effect of θ1 on θ2 is strong (i.e., for high values

of γ) this new effect can completely reverse the optimality of such schemes. In the limit, when the

shocks to the agent’s productivity become fully persistent (θt follows a random walk, i.e. γ = 1),

one can easily see from (15) and (18) that ê∗2 (θ1) < ê∗1 (θ1) for all θ1.

The aforementioned properties extend to T > 2. Figure 2 depicts the optimal policies for the

same specification considered above but now letting T = 3. The left-hand side is for the case of an

AR(1) process with γ = 1/2 , while the right-hand side is for the case of a random-walk (γ = 1).

As the figure shows, when γ = 1, effort decreases over time, for all θ1. As anticipated in the

Introduction, this reflects the fact that reducing effort in period t is more effective in reducing the

agent’s exposure to risk than reducing effort in period s < t. When instead γ = 1/2 then, on

average, effort is higher in the later periods than in early ones, although the opposite is true for high

values of θ1, as in the T = 2 case. Furthermore, effort in later periods can now be decreasing in
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θ1. This follows from the fact that, when t is high, reducing the agent’s effort in period t has little

effect on the agent’s informational rent– which continues to be given by (10) as in the risk-neutral

case– while it has a strong effect on the agent’s exposure to risk (the opposite is true when t is

small). Now, distorting effort in any period t to reduce the agent’s rent is always relatively more

effective for low types than for high ones. The reason is the same as in a static setting: When the

period-1 distribution is log-concave, the measure of types whose rent is reduced when reducing type

θ1’s effort is decreasing in θ1. This explains why the optimal effort policy is increasing in θ1 in the

early stages of the relationship. Together with the fact that a reduction in effort in period s is an

(imperfect) substitute for a reduction of effort in period t > s when it comes to reducing the agent’s

total exposure to risk, this implies that the optimal effort policy must eventually become decreasing

in type once t has grown large enough.

Another way the principal could mitigate the effect of the agent’s uncertainty about his future

productivity on his compensation is by conditioning the effort policy in periods t > 1 on the shocks

to productivity experienced after the first period. To gauge the effect of this additional flexibility,

consider again the same specification assumed above. While a complete analytical characterization of

the fully-optimal policy escapes us because of the complexity of the optimization problem, we could

approximate the optimal policy with 6th-degree polynomials. The result for the case where T = 2 is

depicted in Figure 3, where we considered the same parametrization as in Figure 1, but now allowed

the second-period effort to depend on the shock ε2 [equivalently on θ2 = γθ1 + ε2]. Again, when the

effect of θ1 on θ2 is not too high (in the example, λ = 1/2), the optimality of seniority-based schemes

that provide more high powered incentives over time is maintained: Ee∗2 (θ1, ε̃2) is on average higher

than e∗1 (θ1) , with the inequality reversed only for suffi ciently high values of θ1 [here Ee∗2 (θ1, ε̃2) is a

short-cut for Eθ̃2|θ1 [e∗2(θ1, θ̃2)]].

Also note that second-period effort is typically decreasing in the shock ε2 [equivalently in θ2, for

given θ1], as illustrated in Figure 4. This negative correlation permits the principal to further reduce

the agent’s exposure to risk, as one can see directly from (19).
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Figure 3: (Fully optimal) first-period and average second-period effort policies

Figure 4: (Fully-optimal) second-period effort

32



The fact that the optimal policy e∗2(θ1, ε2) is typically decreasing in ε2 also implies that, with risk

aversion, it becomes diffi cult to sustain the optimal effort policy with the pseudo-linear schemes of

Proposition 3. Indeed, as one can see from the single crossing-conditions (7), these schemes typically

require that effort be nondecreasing in type in the last period. In contrast, the bonus schemes of

Proposition 1 simply require the cash flows (as opposed to effort) to be nondecreasing, as one can see

from (6). We thus expect firms to rely more on bonus schemes and less on linear and pseudo-linear

schemes when they value reducing their managers’exposure to risk.

Consumption smoothing.

We now turn to the case where not only is the agent risk averse, he also has preferences for

intertemporal consumption smoothing. For simplicity, and without any serious loss, we assume that

vt = v all t, with v strictly concave, while V is linear. Because the agent’s payoff now depends on

the timing the payments are made, the principal must now distribute the payments optimally over

time, adding an additional dimension to the problem. One way to arrive to the optimal policy e∗ is

the following. Using Proposition 1 along with Corollary 1, one determines the cost for the principal

of sustaining any effort policy e. Once this is accomplished, one then chooses the policy e∗ that

maximizes the principal’s expected cash flows, net of the compensation to the agent.

An alternative route, which is often more parsimonious, is the following. One treats the utility

of consumption as an additional control and then maximizes the principal’s expected payoff with

respect to effort and the agent’s utility of consumption, subject to the latter satisfying the necessary

condition for incentive-compatibility

T∑
t=1

v(ct(θ
t)) = W

(
θT
)
for F -almost all θT (20)

where W is the function defined in Proposition 1. This alternative approach often facilitates the

computation, for it does not require computing the cost-minimizing compensation scheme for each

possible effort policy. To illustrate, suppose for simplicity that T = 2 and that δ = 1. Denote the

utility of consumption in each period by u1 (θ1) = v (c1 (θ1)) and u2 (θ1, θ2) = v (c2 (θ1, θ2)). Then,
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for any θT = (θ1, θ2), the necessary condition (20) can be rewritten as

u1 (θ1) + u2 (θ1, θ2) =
2∑
t=1

ψ(et(θ
t)) +

∫ θ1

θ1

Eθ̃2|s
[

2∑
t=1

J t1(θ̃
t
)ψ′(et(θ̃

t
))

]
ds (21)

+
∫ θ2
θ2
ψ′(e2(θ1, s))ds− Eθ̃2|θ1

[∫ θ̃2
θ2
ψ′(e2(θ1, s))ds

]
.

Evaluating (21) at (θ1, θ2) allows us to express each function u1 (θ1) and u2 (θ1, θ2) as functions of

the effort policy e and the auxiliary function u2 (·, θ2). Specifically, for all (θ1, θ2),

u1 (θ1) = −u2 (θ1, θ2) + ψ (e1 (θ1)) + ψ (e2 (θ1, θ2)) (22)

+

∫ θ1

θ1

ψ′ (e1 (s)) ds+

∫ θ1

θ1

Eθ̃2|s
[
J2

1 (s, θ̃2)ψ′(e2

(
s, θ̃2

)
)
]
ds

−Eθ̃2|θ1
[∫ θ̃2
θ2
ψ′(e2(θ1, s))ds

]
,

and

u2 (θ1, θ2) = u2 (θ1, θ2) + ψ (e2 (θ1, θ2))− ψ (e2 (θ1, θ2)) (23)

+

∫ θ2

θ2

ψ′ (e2 (θ1, s)) ds

where Condition (23) follows from applying (3) to T = 2 with the above utility specification. The

optimal mechanism can then be obtained by maximizing the principal’s expected payoff

E
[
θ̃1 + θ̃2 + e1(θ̃1) + e2(θ̃1, θ̃2)− v−1(u1(θ̃1))− v−1(u2(θ̃1, θ̃2))

]
,

with respect to the functions e1 (·), e2 (·, ·), and u2 (·, θ2), and then using the fact that the utilities

of consumptions u1 and u2 are given by (22) and (23).

As an illustration, consider the same specification as in Example 4, i.e. let v(c) = 1
α

√
2αc+ β2− β

α

for α, β > 0, and assume that J2
1 (θ1, θ2) = 1

2 (an equivalent choice was made for Figures 3 and 4).

Using again sixth-order polynomials, we can then compute numerically the optimal effort policies.

These policies have the same qualitative features as the ones obtained above for the case without

consumption smoothing, i.e., for the case where V is strictly concave and v linear. In particular, both

e1 (θ1) and Eθ̃2|θ1
[
e2(θ1, θ̃2)

]
are increasing in θ1, and e2 (θ1, θ2) is decreasing in θ2, as in Figures 3
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and 4. We thus expect the key trade-offs identified above to extend to the case of risk-aversion with

preferences for consumption smoothing. The only key difference is that the firm must now optimally

distribute the payments to the agent over time in accordance to the inverse Euler condition of

Corollary 1.

6 Related literature

The literature on managerial compensation is clearly too large to be successfully summarized within

the context of this paper. We refer the reader to Prendergast (1999) for an excellent overview and

to Edmans and Gabaix (2009) for a survey of some recent developments.

Particularly related to our paper is the empirical literature on the use of seniority-based compen-

sation schemes. This literature finds mixed evidence as to the effect of tenure on performance-based

pay. While some papers suggest that managers with a longer tenure tend to have weaker incentives

and explain this by the fact that the board of directors tends to become captured by the CEOs over

time (e.g., Hill and Phan, 1991), others point to the contrary (e.g., Lippert and Porter, 1997, but also

Gibbons and Murphy, 1991). These differences often originate in the choices about which incentive

measures are relevant (e.g., whether to consider stock options). At the theoretical level, our paper

contributes to this literature by offering a novel explanation for the optimality (or suboptimality) of

seniority-based schemes which, to the best of our knowledge, was not noticed before.

The paper is also related to the literature on “dynamic moral hazard” and to its application

to managerial compensation. Seminal works in this literature include Lambert (1983), Rogerson

(1985) and Spear and Srivastava (1987). These works provide qualitative insights about the optimal

policy, but do not provide a full characterization. This has been possible only in restricted settings:

Phelan and Townsend (1991) characterize optimal policies numerically in a discrete-time model, while

Sannikov (2008) uses a continuous-time setting with Brownian shocks to characterize the optimal

policy as the solution to a differential equation. In contrast to these results, Holmstrom and Milgrom

(1987) show that the optimal contract has a simple structure when (a) the agent does not value the

timing of payments, (b) noise follows a Brownian motion and (c) the agent’s utility is exponential
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and defined over consumption net of the disutility of effort. Under these assumptions, the optimal

contract takes the form of a simple linear aggregator of aggregate profits. Contrary to this literature,

in the current paper, we assumed that, in each period, the agent observes the shock to his productivity

before choosing effort. In this respect, the paper is closely related to Laffont and Tirole (1986) who

first proposed this alternative timing. This alternative approach permits one to use techniques from

the mechanism design literature to solve for the optimal contract. This approach has been recently

applied to dynamic managerial compensation by Edmans and Gabaix (2010). Relative to their

work, our contribution is twofold: (i) We provide conditions for the implementability of contingent

effort policies that permit the manager to change effort in response to the shocks to his productivity

and (ii) we characterize the contracts that permit the firm to respond to such contingencies. We

then used such a characterization to determine the profit-maximizing effort policy.24 Allowing for

general processes and characterizing the optimal effort policies is instrumental to our results about

the dynamics of the power of incentives, the optimality of linear and pseudo-linear schemes, and the

effect of the agent’s risk aversion on the dynamics of the power of incentives. In this respect, the paper

is also related to our work on managerial turnover in a changing world (Garrett and Pavan, 2010).

In that paper we assumed that all agents are risk-neutral and focused on the dynamics of retention

decisions. In this paper, in contrast, we abstracted from retention (i.e., assumed a single agent)

and focused instead on the effect of risk-aversion on the dynamics of effort and on the optimality of

seniority-based compensation schemes.

Related is also the literature on the optimal use of financial instruments in dynamic principal-

agent relationships. For instance, DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007),

Sannikov (2007),25 and Biais et al. (2010) study optimal financial contracts for a manager who

privately observes the dynamics of cash-flows and can divert funds from investors for private con-

24Two other important differences are that (i) we allow for the possibility that the agent is privately informed at

the time he signs the contract, and (ii) we consider the possibility that the agent has preferences for consumption

smoothing. Such possibilities are not only realistic, they have important implications for the dynamics of effort and of

the sustaining compensation scheme.
25As in our work, and contrary to the other papers cited here, Sannikov (2007) allows the agent to possess pri-

vate information prior to signing the contract. Assuming the agent’s initial type can be either "bad" or "good", he

characterizes the optimal separating menu where only good types are funded.
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sumption. In these papers, it is typically optimal to induce the highest possible effort (which is

equivalent to no stealing/no saving); the instrument which is then used to create incentives is the

probability of terminating the project. One of the key findings is that the optimal contract can often

be implemented using long-term debt, a credit line, and equity. The equity component represents

a linear component to the compensation scheme which is used to make the agent indifferent as to

whether or not to divert funds for private use. Since the agent’s cost of diverting funds is constant

over time and output realizations, so is the equity share. In contrast, we provide an explanation for

why and how this share typically changes over time. While these papers suppose that cash-flows

are i.i.d., Tchistyi (2006) explores the consequences of correlation and shows that the optimal con-

tract can be implemented using a credit line with an interest rate that increases with the balance.

DeMarzo and Sannikov (2008) consider an environment in which both the investors and the agent

learn about the firm’s true productivity (which evolves according to a Brownian motion). In this

last paper, as in ours, the agent’s private information is correlated over time.

From a methodological standpoint, in this paper we applied recent results from the dynamic

mechanism design literature to arrive to the characterization of optimal contracts. In particular,

the approach here builds on the techniques developed by Pavan, Segal, and Toikka (2009). That

paper provides a general treatment of incentive compatibility in dynamic settings. It extends previous

work by Besanko (1985), Courty and Li (2003), and Battaglini (2005), among others, by allowing

for significantly more general payoffs and stochastic processes and by identifying the role of impulse

responses as the key driving force for the dynamics of optimal contracts.26 An important dimension in

which the current paper makes progress is the characterization of optimal mechanisms for risk-averse

agents with correlated information27. In this respect, the paper is also related to the literature on

optimal dynamic taxation (also known as Mirrleesian taxation, or new public finance). Battaglini and

Coate (2008) consider a discrete-time-two-type model with Markov transitions and show continuity of

the optimal mechanism with respect to the agent’s degree of risk aversion.28 Zhang (2009) considers

26We refer the reader to that paper for a more extensive review of the dynamic mechanism design literature.
27For static models with risk aversion, see also Salanie (1990), and Laffont and Rochet (1998).
28Their characterization of the optimal scheme with risk-aversion is partial, but nonetheless it shows that the optimal

scheme converges to the one for risk-neutrality as the coeffi cient of risk-aversion vanishes.
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a model with finitely many types, but where contracting occurs in continuous-time and where the

arrival rate of the transitions between types follows a Poisson process. For most of the analysis, he

restricts attention to two types and finds that many of the results derived for the i.i.d. case (e.g.,

Albanesi and Sleet, 2006) carry over to the environment with persistent types. In particular, the

celebrated “immiserization result” according to which consumption converges to its lower bound,

extends to a setting with correlated types. One qualitative difference with respect to the i.i.d.

case is that the size of the “wedges”, i.e. the distortions due to the agent’s private information, is

significantly larger when types are persistent, a result which is consistent with the findings in the

current paper. Consistent with Battaglini and Coate (2006), he also finds that, contrary to the

risk-neutral case, distortions do not vanish as soon as the agent becomes a high type. More recently

Fahri and Werning (2010) use techniques similar to those developed in Pavan, Segal, and Toikka

(2009) and in the current paper to provide insights on the dynamics of taxes in a setting with a

continuum of types drawn from an AR(1) process. Our results appear broadly consistent with the

aforementioned findings; however, by considering more general processes and payoffs, we shed light

on properties of the optimal contract not identified before (in particular on the effect of risk-aversion

on the optimality of seniority-based schemes).

7 Conclusions

We investigated the properties of optimal compensation schemes in an environment in which man-

agerial ability to generate profits is expected to change over time and is the managers’ private

information. We showed how optimal contracts can be obtained as a solution to a dynamic mecha-

nism design problem. We then used the solution (i) to shed light on the properties of compensation

schemes that sustain the desired effort policy at minimal cost for the firm, (ii) to identify conditions

for a given effort policy to be implementable, and (iii) to derive the properties of profit-maximizing

effort policies.

When the manager is risk-neutral, we showed that it is typically optimal for the firm to offer a

reward package whose power of incentives increases over time, thus inducing the manager to exert,
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on average, more effort as his tenure in the firm grows. This result hinges on the assumption that

the effect of the manager’s productivity at the time he is hired on his productivity in the subsequent

periods declines over time, a property that appears reasonable for many cases of interest. Under this

assumption, reducing the power of incentives in the contracts of those types who are least productive

at the initial contracting stage so as to discourage more productive types to mimic is more effective

when done in the early periods, when the effect of the initial private information is still pronounced

than in the later periods when such an effect has vanished.

Building on the results for the risk neutral case, we then showed that risk aversion reduces, and

in some cases can even revert, the profitability of such seniority-based schemes. The reason is that

contracts whose power of incentives increases, on average, over time require a high sensitivity of

pay to performance precisely in those periods in which the uncertainty the manager faces about his

productivity (and hence about his pay), as perceived at the time he is hired, is the highest, thus

exposing him to a lot of risk.

While the results described above refer to contracts for managerial compensation, many of the

insights apply more generally to other dynamic contracting problems. In particular, we expect our

results to offer valuable insights also for the design of optimal taxes in environments with persistent

shocks to workers’productivity, a problem that is at the frontier of the new public finance literature.

8 Appendix

Proof of Proposition 1. The proof proceeds in three steps and is based on two lemmas. Lemma

1 establishes that, in any incentive-compatible mechanism implementing the policy e, the agent’s

value function at each history must satisfy a certain envelope condition. The second lemma uses this

envelope condition iteratively to show that for F -almost all sequences θT , the utility that the agent

derives from the compensation he receives from the principal must be equal toW
(
θT
)

+K, whereW

is uniquely pinned down by the policy e and where K is a constant that must be nonnegative if the

mechanism is individually rational for the agent. The last step verifies that, if a mechanism Ω exists
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that implements the policy e, then the one whose compensation is as defined in the proposition also

implements the same policy at a (weakly) lower cost for the principal, thus establishing the result.

Step 1. Given any mechanism Ω = 〈ξ, s〉, and any history ht, let V Ω(ht) denote the agent’s value

function at history ht. This function is defined to be the supremum of the agent’s expected payoff

over all possible reporting and effort strategies. We say that the mechanism Ω remains incentive

compatible at history ht if V Ω(ht) coincides with the agent’s expected payoff under a truthful and

obedient strategy from t onwards. We then have the following result.

Lemma 1 Fix the history ht−1 = (θt−1, θ̂
t−1

, et−1).29 If the mechanism Ω remains incentive com-

patible at Ft(·|θt−1)-almost all histories ht = (ht−1, θt), then V Ω(ht−1, ·) is Lipschitz continuous in

θt over Supp[Ft(·|θt−1)] and at each θt ∈ Supp[Ft(·|θt−1)] at which V Ω(ht−1, ·) is differentiable and

Ω is incentive compatible

dV Ω(ht−1, θt)

dθt
= Eθ̃

T |θt
[

T∑
τ=t

δτ−1Jτt (θ̃
τ
)ψ′(ξτ ((θ̂

t−1
, θ̃
τ
≥t), π̃

τ−1(ht−1, θ̃
τ−1
≥t ))

]

where πτ−1(ht−1, θ
τ−1
≥t ) = (πs)

τ−1
s=1 with πs = θs + es for all s < t and πs = θs + ξs(θ̂

t−1
, θs≥t, π

s−1) all

s ≥ t.

Proof of the lemma. Consider the following fictitious environment. At any period s ≥ t, the

agent can misreport his private information θs but is then “forced”to choose effort so as to perfectly

“hide”his lies. That is, at any period s ≥ t, and for any given sequence of reports (θ̂
s
), the agent

must exert effort es so that the observed cash flow πs = θs + es equals the one expected by the

principal when the agent’s period-s type is θ̂s and he follows the principal’s recommended effort

choice ξs(θ̂
s
, πs−1). This is to say that, at any period s ≥ t, given the public history (θ̂

s
, πs−1) and

the true productivity θs the agent must choose effort

es(θs; θ̂
s
, πs−1) = θ̂s + ξs(θ̂

s
, πs−1)− θs. (24)

Now fix the period-(t − 1) history ht−1. Given the reports θ̂
T

≥t, let (ĉT≥t, π̂
T
≥t) be the stream of

payments and cash flows in the continuation game that starts at period t with history (ht−1, θt) when

29The first element of ht−1 denotes the true productivity history, whereas the term θ̂
t−1

denotes the history of

reports. The last term et−1 denotes the history of effort choices.
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in the continuation game the agent sends the reports (θ̂
T

≥t) and then follows the behavior described

above (i.e., chooses effort according to (24)). For any θ̂
T

≥t and any sequence of true types (θT≥t), the

agent’s payoff in this fictitious environment is given by

UA(θT≥t; θ̂
T

≥t, ht−1) =
T∑
s=t

δs−1[ĉs − ψ(θ̂s + ξs(θ̂
s
, π̂s−1)− θs)]

+X(ht−1)

where X(ht−1) is a function of the past history ht−1. The assumptions that ψ is continuously differ-

entiable with derivative bounded uniformly over E implies that UA is totally differentiable in θs≥t,

any s ≥ t, and equi-Lipschitz continuous in θT≥t in the norm:

||θT≥t|| ≡
∑

s≥t δ
s−t|θs|.

Together with the assumption that the impulse responses are uniformly bounded, this means that the

value function V Ω(ht−1, ·) is Lipschitz continuous in θt over Θt and hence also over Supp[Ft(·|θt−1)].

This result follows from Pavan, Segal, and Toikka (2009).

Now suppose that, given ht−1, the mechanism Ω remains incentive compatible at Ft(·|θt−1)-almost

any history ht = (ht−1, θt) in the unrestricted game where the agent is free to choose any effort he

wants at any point in time. It is then necessarily incentive compatible also in this fictitious game

where he is forced to choose effort according to (24). The results in Pavan, Segal, and Toikka then

imply that at any θt ∈ Supp[Ft(·|θt−1)], at which V Ω(ht−1, ·) is differentiable and Ω is incentive

compatible

dV Ω(ht−1, θt)

dθt
= Eθ̃

T |θt
[

T∑
τ=t

δτ−1Jτt (θ̃
τ
)
∂UA(θ̃

T
≥t; θ̃

T
≥t, ht−1)

∂θτ

]
where ∂UA(θT≥t; θ

T
≥t, ht−1)/∂θτ denotes the partial derivative of UA(θT≥t; θ

T
≥t, ht−1) with respect to

the true type θτ under truthtelling. The result then follows from the fact that

∂UA(θT≥t; θ
T
≥t, ht−1)

∂θτ
= ψ′(ξτ ((θ̂

t−1
, θτ≥t), π

τ−1(ht−1, θ
τ−1
≥t )).

�

Step 2. Using the previous lemma inductively, then leads to the following result.
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Lemma 2 Let Ω be any incentive-compatible and individually rational mechanism implementing the

policy e. Then for F -almost all θT

V
(

T∑
t=1

δt−1vt(ct(θ
t))

)
= W

(
θT
)

+K

with K ≥ 0.

Proof of the lemma. Using the result in the previous lemma and the fact that any mechanism

Ω that is individually-rational and incentive-compatible for all θ1 must remain incentive-compatible

at F -almost all truthful histories30 θt ∈ Rt, any t, we then have that, for F -almost all truthful

histories θt ∈ Rt

V Ω(θt) = V Ω(θt−1, θt(θ
t−1)) +

∫ θt
θt(θ

t−1)
Eθ̃

T |θt−1,s

[
T∑
τ=t

δτ−1Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds. (25)

Furthermore, the fact that Ω is incentive compatible for all θ1, implies that, for any t, F -almost all

truthful histories θt−1 ∈ Rt,

V Ω(θt−1) = Eθ̃t|θ
t−1
[
V Ω
(
θt−1, θ̃t

)]
.

Combining, we have that

V Ω(θt−1, θt(θ
t−1)) = V Ω(θt−1)− Eθ̃t|θt−1

[∫ θ̃t
θt(θ

t−1)
Eθ̃

T |θt−1,s

[
T∑
τ=t

δτ−1Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

]
.

Applying (25) to V Ω(θt−1) we then have that

V Ω(θt−1, θt(θ
t−1)) = V Ω(θt−2, θt−1(θt−2)) (26)

+
∫ θt−1
θt−1(θt−2)

Eθ̃
T |θt−2,s

[
T∑

τ=t−1

δτ−1Jτt−1(θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

−Eθ̃t|θt−1
[∫ θ̃t

θt(θ
t−1)

Eθ̃
T |θt−1,s

[
T∑
τ=t

δτ−1Jτt (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

]
.

30As explaiend also in the main text, a truthful history ht = (θt, θ̂
t−1

, et−1) is one that is reached by reporting

truthfully and following the principal’s effort recommendations in each previous period. Because in any such history

θ̂s = θs and es = ξs(θ
s, πs−1(θs−1)) all s < t, without risk of confusion, these histories can be conveniently denoted by

the realized sequence of productivities θt.
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Combining (25) with (26) we then have that

V Ω(θt) = V Ω(θt−2, θt−1(θt−2)) +
∫ θt−1
θt−1(θt−2)

Eθ̃
T |θt−2,s

[
T∑

τ=t−1

δτ−1Jτt−1(θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds

+δt−1Ht

(
θt
)
.

Applying the same steps inductively to each V Ω(θs−1, θs(θ
s−1)), s ≤ t, then leads to the conclusion

that

V Ω(θt) = V Ω(θ1) +
∫ θ1
θ1
Eθ̃

T |s

[
T∑
τ=1

δτ−1Jτ1 (θ̃
τ
)ψ′(eτ (θ̃

τ
))

]
ds (27)

+
t∑

s=2

δs−1Hs(θ
s).

Using the fact that the agent’s payoff under a truthful and obedient strategy must coincide with

the value function at F -almost all histories and, in the case T = ∞, continuity at infinity, then

establishes the result, with K = V Ω(θ1). The fact that the mechanism is individually-rational for all

θ1 then implies that K ≥ 0. �

Step 3. Now it is easy to see that, if a mechanism Ω exists that implements the policy e, then e

can also be implemented by a mechanism Ω′ such that s′t(θ
t, πt) = ct(θ

t) if θt ∈ Rt and πt ≥ πt(θt) ≡

θt + et(θ
t), and s′t(θ

t, πt) = −Lt with Lt > 0 large enough, otherwise [here ct(θt) = st(θ
t, πt(θt)) is

the equilibrium compensation under the original mechanism Ω]. The proof follows from essentially

the same replication arguments that establish the Revelation Principle.

Having established that, in any mechanism Ω that implements the policy e, the utility the agent

derives from his compensation must satisfy

V
(

T∑
t=1

δt−1vt(ct(θ
t))

)
= W

(
θT
)
for F -almost all θT ,

by the definition of copt(·; e), it is then easy to see that any mechanism Ωopt where the compensation

scheme is such that st(θt, πt) = coptt (θt; e) if θt ∈ Rt and πt ≥ πt(θt) ≡ θt+et(θt), and st(θt, πt) = −Lt

otherwise, implements e at minimum cost. That it induces participation by all period-1 types follows

from the fact that the payoff that each type θ1 expects under a truthful and obedient strategy is

given by ∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′(et(θ̃

t
))

]
ds
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which is nonnegative under the assumption of first-order-stochastic dominance in types.

Proof of Corollary 1. The proof is by contradiction. Suppose copt(·; e) solves program (2) in

Proposition 1 and assume that there exists a period t and an F -positive probability set Q ⊂ Rt such

that, for θt ∈ Q,
1

v′t

(
coptt

(
θt; e

)) > Eθ̃t+1|θt
 δ

v′t+1

(
coptt+1

(
θt, θ̃t+1; e

))
 .

The argument for the case where the inequality is reversed is symmetric. Then consider the following

alternative policy c#(·; e). For any τ 6= t, t+ 1, any θτ ∈ Rτ , c#
τ (θτ ; e) = coptτ (θτ ; e) ; in period t,

c#
t (θt; e) =

{
coptt

(
θt; e

)
if θt /∈ Q

v−1
t

(
vt

(
coptt

(
θt; e

))
+ k
)
if θt ∈ Q,

while in period t+ 1,

c#
t+1(θt+1; e) =

{
coptt

(
θt; e

)
if θt /∈ Q

v−1
t+1

(
vt+1

(
coptt+1

(
θt+1; e

))
− k/δ

)
if θt ∈ Q.

Clearly, this scheme also satisfies the constraints in program (2). The difference in terms of ex-ante

expected cost to the principal under this scheme and under the original scheme copt(·; e) is given by

∆(k) ≡ F (θ̃
t ∈ Q)E{θ̃

t
:θ̃
t∈Q}

 δt−1[v−1
(
v
(
coptt

(
θ̃
t
; e
))

+ k
)
− coptt

(
θ̃
t
; e
)

]

+δtEθ̃t+1|θ̃
t

[v−1
(
v
(
coptt+1

(
θ̃
t+1

; e
))
− k

δ

)
− coptt+1

(
θ̃
t+1

; e
)

]


where F (θ̃

t ∈ Q) denotes the ex-ante probability that θ̃
t ∈ Q and E{θ̃

t
:θ̃
t∈Q}[·] denotes the conditional

expectation of [·] over Rt, given the sigma-algebra generated by the event that θ̃t ∈ Q.

Clearly, ∆(0) = 0 and

∂∆(0)

∂k
= F (θ̃

t ∈ Q)E{θ̃
t
:θ̃
t∈Q}δt−1

[
1

v′t(c
opt
t (θ̃

t
; e))

+ Eθ̃t+1|θt
(

δ

v′t+1(coptt+1(θ̃
t+1

; e))

)]
> 0.

The principal can then reduce her expected payment to the agent by switching to the compensation

c#(·; e) with k < 0 arbitrarily small, contradicting the assumption that copt (·; e) solves program (2).

Proof of Proposition 2. We start with (i). Consider the following compensation scheme s. For

any t any (θt, πt) ∈ Θt×Πt, st(θ
t, πt) = ct(θ

t) if πt ≥ θt+ ξt(θ
t) and st(θt, πt) = −Lt otherwise, with
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the functions ct satisfying for all θT ∈ ΘT ,

V
(

T∑
t=1

δt−1vt(ct(θ
t))

)
=

T∑
t=1

δt−1ψ(ξt(θ
t)) (28)

+

∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′
(
ξt(θ̃

t
)
)]

ds

+

T∑
t=2

δt−1Ht(θ
t)

where for each θt ∈ Θt31

Ht

(
θt
)
≡

∫ θt
θt
Eθ̃

T
>t|s

[
T∑
τ=t

δτ−tJτt (s, θ̃
τ
>t)ψ

′
(
ξτ

(
θt−1, s, θ̃

τ
>t

))]
ds

−Eθ̃t|θt−1
[∫ θ̃t

θt
Eθ̃

T
>t|s

[
T∑
τ=t

δτ−tJτt (s, θ̃
τ
>t)ψ

′(ξτ (θt−1, s, θ̃
τ
>t))

]
ds

]
.

Under the proposed scheme, given the announcement θ̂
s
and the true type profile θs, the effort

the agent chooses in each period s is given by

es(θs; θ̂
s
) = ξs(θ̂

s
) + θ̂s − θs (29)

Hence, we can conveniently denote histories by (θt, θ̂
t
). Now let

U(θt; θ̂
t
) ≡ Eθ̃

T
>t|θt

[
V
(

t∑
s=1

δs−1vs(cs(θ̂
s
)) +

T∑
s=t+1

δs−1vs(cs(θ̂
t
, θ̃
s
>t))

)]

−Eθ̃
T
>t|θt

[
t∑

s=1

δs−1ψ(es(θs; θ̂
s
)) +

T∑
s=t+1

δs−1ψ(ξs(θ̂
t
, θ̃
s
>t))

]

denote the expected payoff when, following (θt, θ̂
t−1

), in period t the agent sends the message θ̂t, he

then chooses effort et(θt; θ̂
t
) = ξt(θ̂

t
) + θ̂t − θt and then from period t+ 1 onwards follows a truthful

31Note that the expressions for the expectations of the future realizations of the process use the property that the

process is Markov.
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and obedient strategy. Under the proposed scheme,

U(θt; θ̂
t
) =

t∑
s=1

δs−1
[
ψ(ξt(θ̂

t
))− ψ(es(θs; θ̂

s
))
]

+

∫ θ̂1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′(ξt(θ̃

t
))

]
ds

+

t∑
s=2

δs−1Hs(θ̂
s
)

+Eθ̃t+1|θt
[∫ θ̃t+1

θt+1
Eθ̃

T
>t+1|s

[
T∑

τ=t+1

δτ−1Jτt+1(s, θ̃
τ
>t+1)ψ′(ξτ (θ̂

t
, s, θ̃

τ
>t+1))

]
ds

]

−Eθ̃t+1|θ̂t
[∫ θ̃t+1

θt+1
Eθ̃

T
>t+1|s

[
T∑

τ=t+1

δτ−1Jτt+1(s, θ̃
τ
>t+1)ψ′(ξτ (θ̂

t
, s, θ̃

τ
>t+1))

]
ds

]
.

Integrating by parts and using (29) one can verify that

∂U(θt; θ̂
t
)

∂θt
= δt−1ψ′(ξt(θ̂

t
) + θ̂t − θt) + Eθ̃

T
>t|θt

[
T∑

s=t+1

δs−1Jst (θt, θ̃
s
>t)ψ

′(ξs(θ̂
t
, θ̃
s
>t))

]
.

One can also verify that

dU(θt; θ̂
t−1

, θt)

dθt
= δt−1ψ′(ξt(θ̂

t−1
, θt)) + Eθ̃

T
>t|θt

[
T∑

s=t+1

δs−1Jst (θt, θ̃
s
>t)ψ

′(ξs(θ̂
t−1

, θt, θ̃
s
>t))

]

The single crossing conditions in the proposition imply that[
dU(θt; θ̂

t−1
, θt)

dθt
− ∂U(θt; θ̂

t−1
, θ̂t)

∂θt

] [
θt − θ̂t

]
≥ 0

all θt ∈ Rt, θ̂t ∈ Θt, which in turn implies that U(θt; θ̂
t−1

, θt) ≥ U(θt; θ̂
t−1

, θ̂t) all θt ∈ Rt, θ̂
t ∈ Θt.

Because these conditions apply to all t, all histories (θt, θ̂
t
) ∈ Rt ×Θt, we then conclude that, after

any history (θt, θ̂
t−1

), a single deviation in period t from the truthful and obedient strategy in the

continuation game that starts in period t with history (θt, θ̂
t−1

) is never optimal for the agent.

Together with continuity at infinity, this establishes that, when the principal offers the mechanism

Ω = 〈ξ, s〉 with recommendation policy ξ satisfying the single-crossing conditions in the proposition

and with compensation scheme as defined above, then each type θ1 finds it optimal to participate

and follow a truthful and obedient strategy at all periods. This establishes that e is implementable.

Next, consider case (ii) and note that in this case the single-crossing conditions (6) are trivially

satisfied at any t > 1. Let wt ≡ v−1
t and W ≡ V−1. Let s be the compensation scheme defined as
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follows. For t = 1,

s1(θ1, π1) = w1

W
 ∑T

t=1 δ
t−1ψ(ξt(θ1)) +

∫ θ1
θ1
Eθ̃

T
>1|s

[∑T
t=1 δ

t−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

−Eθ̃
T
>1|θ1

[∑T
t=2 δ

t−1ψ′ (ξt(θ1))(θ̃t + ξt(θ1))
] 

if π1 ≥ θ1 + ξ1(θ1) and s1(θ1, π1) = −L1 otherwise. For any t > 1,

st(θ
t, πt) = wt


−δ1−t∑t−1

τ=1 δ
τ−tvτ (sτ (θτ , πτ ))

+δ1−tW


∑T

t=1 δ
t−1ψ(ξt(θ1)) +

∫ θ1
θ1
Eθ̃

T
>1|s

[∑T
t=1 δ

t−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

−Eθ̃
T
>1|θ1

[∑T
t=2 δ

t−1ψ′ (ξt(θ1))(θ̃t + ξt(θ1))
]

+
∑t

τ=2 δ
τ−1ψ′ (ξτ (θ1))πτ




if π1 ≥ ξ1(θ1) + θ1, and st(θt, πt) = −Lt otherwise. Note that the above scheme is constructed so

that, at each period t, if the agent were to receive no further payments from the principal in the

future, then upon meeting the first-period target π1 = ξ1(θ̂1) + θ̂1, his utility from past and current

payments would depend only on the first period report θ̂1 and be linear in the cash flows (πs)
t
s=2

generated between period 2 and period t. To see that such a scheme induces the desired effort choices,

suppose first that T is finite. By construction, given any history of reports θ̂
T
and any history of

profit realizations πT , with π1 ≥ ξ1(θ̂1) + θ̂1, the agent’s total utility from money is given by

V
(

T∑
t=1

δt−1vt

(
st(θ̂

t
, πt)

))
=

T∑
t=1

δt−1ψ(ξt(θ̂1)) +

∫ θ̂1

θ1

Eθ̃
T
>1|s

[
T∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

+

T∑
t=2

δt−1ψ′(ξt(θ̂1))(πt − Eθ̃
T
>1|θ̂1

[
θ̃t

]
− ξt(θ̂1)).

Next, consider the case where T =∞. By continuity of V,

V
( ∞∑
t=1

δt−1vt

(
st(θ̂

t
, πt)

))
= lim

Z→∞
V
(

Z∑
t=1

δt−1vt

(
st(θ̂

t
, πt)

))

=
∞∑
t=1

δt−1ψ(ξt(θ̂1)) +

∫ θ̂1

θ1

Eθ̃
T
>1|s

[ ∞∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

+
∞∑
t=2

δt−1ψ′
(
ξt(θ̂1)

)
(πt − Eθ̃

T
>1|θ̂1

[
θ̃t

]
− ξt(θ̂1)).

It is then easy to see that, under the proposed scheme, the agent’s decision problem is time-

separable after t = 1. After having reported θ̂1 in period one, and having delivered a cash flow

π1 ≥ ξ1(θ̂1) + θ̂1, at any period t > 1, and for any possible history (θt, (θ̂1, θ̂
t

>1), et−1), it is optimal
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for the agent to choose a level of effort et = ξt(θ̂1). To establish the result it then suffi ces to verify

that each type θ1 finds it optimal to report truthfully in period one. The payoff that each type θ1

obtains by reporting θ̂1 and then choosing optimally a level of effort e1(θ1; θ̂1) = ξ1(θ̂1) + θ̂1− θ1 for

t = 1 and et = ξt(θ̂1) for any t > 1 is

U(θ1; θ̂1) = ψ(ξ1(θ̂1))− ψ(ξ1(θ̂1) + θ̂1 − θ1)

+

∫ θ̂1

θ1

Eθ̃
T
>1|s

[
T∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

−Eθ̃
T
>1|θ̂1

[
T∑
t=2

δt−1ψ′(ξt(θ̂1))(θ̃t + ξt(θ̂1))

]
+ Eθ̃

T
>1|θ1

[
T∑
t=2

δt−1ψ′(ξt(θ̂1))(θ̃t + ξt(θ̂1))

]
Once again, integrating by parts, one can verify that the single-crossing condition (6) in the propo-

sition implies that [
dU(θ1; θ1)

dθ1
− ∂U(θ1; θ̂1)

∂θ1

] [
θ1 − θ̂1

]
≥ 0

which in turn implies that U(θ1; θ1) ≥ U(θ1; θ̂1) all θ1, θ̂1 ∈ Θ1, thus establishing the result.

Proof of Proposition 3.

We start with the following definition. For any given extension ξ of any given policy e, let

copt(·; ξ) ≡
〈
coptt (·; ξ)

〉t=T
t=1

denote any arbitrary (Θ-measurable) extension of the compensation copt(·; e)

defined in Proposition 1 such that

V
(

T∑
t=1

δt−1vt(c
opt
t (θt))

)
= W#

(
θT
)

all θT ∈ ΘT (30)

where

W#
(
θT
)
≡

T∑
t=1

δt−1ψ(ξt(θ
t))

+

∫ θ1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′
(
ξt(θ̃

t
)

)

]
ds+

T∑
t=2

δt−1H#
t (θt)

with

H#
t

(
θt
)
≡

∫ θt
θt(θ

t−1)
Eθ̃

T
>t|θt−1,s

[
T∑
τ=t

δτ−tJτt

(
θt−1, s, θ̃

τ
>t

)
ψ′
(
ξτ

(
θ̂
t−1

, s, θ̃
τ
>t

))]
ds

−Eθ̃t|θt−1
[∫ θ̃t

θt
Eθ̃

T
>t|s

[
T∑
τ=t

δτ−tJτt (θt−1, s, θ̃
τ
>t)ψ

′(ξτ (θ̂
t−1

, s, θ̃
τ
>t))

]
ds

]
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In other terms, copt(·; ξ) is any (Θ-measurable) compensation c ≡ 〈ct(·〉t=Tt=1 that minimizes E
[∑T

t=1 δ
t−1ct(θ̃

t
)
]

among those that satisfy the constraints given by (30).

Next, consider the following pseudo-linear scheme. For t = 1,

s1 (θ1, π1) = wt

(
W
(
V
(
vt

(
copt1 (θ1; ξ)

))
+ ψ′(ξ1(θ1)) [π1 − θ1 − ξ1(θ1)]

))
while for any t > 1 any

(
θt, πt

)
st
(
θt, πt

)
= wt

(
1

δt−1
W
(
V
(∑t

τ=1 δ
τ−1vt

(
coptτ (θτ ; ξ)

))
+
∑t

τ=1 δ
τ−1ψ′(ξτ (θτ )) [πτ − θτ − ξτ (θτ )]

)
− 1
δt−1

∑t−1
τ=1 δ

τ−1vt (sτ (θτ , πτ ))

)

where recall that wt ≡ v−1
t and W ≡ V−1. Note that this scheme is constructed so that, when the

agent reports his type truthfully and chooses effort obediently, the payments he receives over time

coincide with the cost-minimizing compensations given by copt(·; ξ). From Proposition 1, it then

follows that, if this scheme implements the policy e, it then necessarily implements it at minimal

cost for the principal. In what follows, it thus suffi ces to show that, under such a scheme, a truthful

and obedient strategy is optimal for the agent. To this purpose, note that this scheme is also chosen

so that, given any sequence of reports and cash flows (θT , πT ), the utility that the agent derives from

the entire stream of payments is given by

V
(

T∑
t=1

δt−1vt(st(θ
t, πt))

)
= W#

(
θT
)

+
T∑
t=1

δt−1ψ′(ξt(θ
t))
(
πt − θt − ξt

(
θt
))
.

The latter is linear in each cash-flow πt with coeffi cient of linear dependence αt(θt) = ψ′(ξt(θ
t)). As

mentioned already in the proof of Proposition 2, such linearity guarantees that the decision problem

for the agent is time-separable: in each period t ≥ 1, after having reported θ̂
t
and irrespective of the

history (θt, et−1), the agent finds it optimal to choose a level of effort et = ξt(θ̂
t
). In other words,

such linearity takes care of the moral-hazard part of the problem. To establish the result, it then

suffi ces to verify that, in each period t, the agent finds it optimal to report his type θt truthfully. To

49



establish this, let

U(θt; θ̂
t
, et−1)

≡

Eθ̃
T
>t|θt

V


t−1∑
τ=1

δτ−1vτ

(
sτ

(
θ̂
τ
, (θz + ez)

τ
z=1

))
+

+δt−1vt

(
st

(
θ̂
t
,
(

(θz + ez)
t−1
z=1 , θt + ξt(θ̂

t
)
)))

+
T∑

τ=t+1
δτ−1vτ

(
sτ

(
(θ̂
t
, θ̃
τ
>t),

(
(θz + ez)

t−1
z=1 , θt + ξt(θ̂

t
), (θ̃z + ξz(θ̂

t
, θ̃
z
>t)

τ
z=t+1)

)))



−

t−1∑
τ=1

δτ−1ψ (eτ ) + δt−1ψ(ξt(θ̂
t
))− Eθ̃

T
>t|θt

[
T∑

τ=t+1

ψ(ξτ (θ̂
t
, θ̃
τ
>t))

]

denote the expected payoff when, under the proposed scheme, following the history (θt, θ̂
t−1

, et−1),

in period t the agent sends the message θ̂t, he then chooses optimally effort et = ξt(θ̂
t
) and then from

period t+1 onwards he follows a truthful and obedient strategy. To establish that truthful reporting

in each period is optimal for the agent, we consider the two cases in the Proposition separately.

Case (i): Markov process. Using the definitions of s and copt(·; ξ) and the fact that the

process is Markov, we have that in this case

U(θt; θ̂
t
, et−1) =

∫ θ̂1

θ1

Eθ̃
T |s

[
T∑
t=1

δt−1J t1(θ̃
t
)ψ′
(
ξt(θ̃

t
)

)

]
ds (31)

+
t−1∑
τ=1

δτ−1
{
ψ(ξτ (θ̂

τ
))− ψ(eτ ) + ψ′(ξτ (θ̂

τ
))
[
θτ + eτ − θ̂τ − ξτ (θ̂

τ
)
]}

+δt−1ψ′(ξt(θ̂
t
))
[
θt − θ̂t

]
+

t∑
τ=2

δτ−1H#
τ (θ̂

τ
) + Eθ̃

T
>t|θt

[
T∑

s=t+1

δs−1H#
s (θ̂

t
, θ̃
s
>t)

]

from which we obtain that

∂U(θt; θ̂
t
, et−1)

∂θt
= δt−1ψ′(ξt(θ̂

t
)) + Eθ̃

T
>t|θt

[
T∑

s=t+1

δs−1Jst (θt, θ̃
s
>t)ψ

′(ξs(θ̂
t
, θ̃
s
>t))

]

and

dU(θt; θ̂
t−1

, θt, e
t−1)

dθt
= δt−1ψ′(ξt(θ̂

t−1
, θt)) + Eθ̃

T
>t|θt

[
T∑

s=t+1

δs−1Jst (θt, θ̃
s
>t)ψ

′(ξs(θ̂
t−1

, θt, θ̃
s
>t))

]
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The single crossing conditions in the proposition imply that[
dU(θt; θ̂

t−1
, θt)

dθt
− ∂U(θt; θ̂

t−1
, θ̂t)

∂θt

] [
θt − θ̂t

]
≥ 0

all θt ∈ Rt, θ̂t ∈ Θt, which in turn implies that U(θt; θ̂
t−1

, θt) ≥ U(θt; θ̂
t−1

, θ̂t) all θt ∈ Rt, θ̂
t ∈ Θt. As

argued in the proof of Proposition 2, these conditions guarantee that, after any history (θt, θ̂
t−1

, et−1),

a single deviation in period t from the truthful and obedient strategy in the continuation game that

starts in period t with history (θt, θ̂
t−1

, et−1) is never optimal for the agent. Together with continuity

at infinity, this implies that the agent finds it optimal to report truthfully at all histories. The above

scheme s thus implements the policy e.

Case (ii). Policies depending on θ1 only. Using the fact that

Eθ̃
T |θt−1,θt

[
Jτt (θ̃

τ
)
]

=
∂

∂θt

[
Eθ̃

T |θt−1,θt
[
θ̃τ

]]
all t, τ , τ > t, all θt, one can verify that

V
(

T∑
t=1

δt−1vt

(
st(θ̂

t
, πt)

))
=

T∑
t=1

δt−1ψ(ξt(θ̂1)) +

∫ θ̂1

θ1

Eθ̃
T
>1|s

[
T∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

+

T∑
t=2

δt−1ψ′
(
ξt(θ̂1

)
)(πt − Eθ̃

T
>1|θ̂1

[
θ̃t

]
− ξt(θ̂1)).

It is therefore easy to see that, under the proposed scheme, after having reported θ̂1 in period one,

at any period t ≥ 1, and for any possible history (θt, θ̂
t
, et−1), it is optimal for the agent to choose a

level of effort et = ξt(θ̂1). It is also easy to see that the payoff that each type θ1 obtains by reporting

θ̂1 in period one and then choosing effort optimally at any subsequent information set is equal to

U(θ1; θ̂1) =

∫ θ̂1

θ1

Eθ̃
T
>1|s

[
T∑
t=1

δt−1J t1(s, θ̃
t
>1)ψ′ (ξt(s))

]
ds

+
T∑
t=1

δt−1ψ′(ξt(θ̂1))
[
Eθ̃t|θ1 [θ̃t]− Eθ̃t|θ̂1 [θ̃t]

]
from which we obtain that

∂U(θ1; θ̂1)

∂θ1
= Eθ̃

T
>1|θ1

[
T∑
t=1

δt−1J t1(θ1, θ̃
t
>1)ψ′(ξt(θ̂1))

]
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and

dU(θ1; θ1)

dθ1
= Eθ̃

T
>1|θ1

[
T∑
t=1

δt−1J t1(θ1, θ̃
t
>1)ψ′(ξt(θ1))

]
Once again, the single-crossing condition (6) in the proposition implies that, for all θ1, θ̂1 ∈ Θ1,[

dU(θ1; θ1)

dθ1
− ∂U(θ1; θ̂1)

∂θ1

] [
θ1 − θ̂1

]
≥ 0.

thus implying that U(θ1; θ1) ≥ U(θ1; θ̂1) all θ1, θ̂1 ∈ Θ1, which establishes the result.

Proof of Proposition 4. Part (i). The assumptions that ψ is continuously differentiable with

ψ(e) = 0 for all e < 0, ψ′′(e) > 0 and ψ′′′(e) ≥ 0 for all e ∈ [0, ē], ψ′(e) = K for all e > ē, together

with J t1(θt) ≥ 0 for all t all θt, imply that, for all t all θt ∈ Rt, the principal’s payoff, as given by

(11), is strictly increasing in et for all et < e∗t (θ
t), and strictly decreasing in et for all et > e∗t (θ

t),

where e∗t (θ
t) is implicitly given by (12) when ψ′′+(0) < 1/

[
η(θ1)J t1(θt)

]
and by e∗t (θ

t) = 0 otherwise.

It is then immediate that when the policy e∗ is implementable, then, under any optimal contract for

the principal, e∗ is implemented in each period t at F -almost all histories. This follows from the fact

that the principal’s payoff in any mechanism that is incentive-compatible and individually-rational

for the agent is given by (11) together with the fact the policy e∗ maximizes (11) and the fact that, if

the policy e∗ is implementable, then from Proposition 1 there exists a compensation scheme s∗ that

implements e∗ and that gives the lowest period-1 type θ1 an expected payoff equal to his outside

option, in which case V Ω(θ1) = 0.

Part (ii). The result follows from Propositions 2 and 3. Consider the following extension of the

policy e∗ from R to Θ. For any t ≥ 2, any 2 ≤ s ≤ t, let ϕs : Θt → Θt be the function defined, for

all θt ∈ Θt, by

ϕs(θ
t) ≡


θt if θs ∈ Supp[Fs(·|θs−1)]}
(θs−1,min{SuppFs(·|θs−1)]}, θs+1, ..., θt) if θs < min{Supp[Fs(·|θs−1)]}
(θs−1,max{Supp[Fs(·|θs−1)]}, θs+1, ..., θt) if θs > max{Supp[Fs(·|θs−1)]}

.

For all θ1 ∈ Θ1, then let λ1 (θ1) ≡ θ1, while for any t ≥ 2, let λt : Θt → Rt be the function defined,

for all θt ∈ Θt, by λt(θt) ≡ ϕt ◦ ϕt−1 ◦ · · · ◦ ϕ2(θt). Note that the function λt maps each vector

of reports θt ∈ Θt\Rt which reveals that the agent has been untruthful in previous periods into a
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vector of reports θ̂
t

= (λts(θ
t))ts=1 that is consistent with truthtelling in all previous periods. This

is obtained by replacing recursively any report θs that, given the past reports θ̂
s−1

= (λtl(θ
t))s−1

l=1

is smaller than any feasible type with θ̂s = min{Supp[Fs(·|θ̂
s−1

)]}, and, likewise, by replacing any

report θs that is higher than any feasible type with θ̂s = max{Supp[Fs(·|θ̂
s−1

)]}.

Now, let ξ be the recommendation policy given by ξt(θ
t) = e∗t (λ

t(θt)) all t, all θt ∈ Θt. Clearly,

when Θt = Rt all t, the policy ξ is simply the policy which recommends the equilibrium effort at

all histories irrespective of whether or not the agent has been truthful in the past. When, instead,

Rt ⊂ Θt for some t, the policy ξ is obtained by replacing the reports that indicate a departure from

truthtelling in past periods with the reports λt(θt) and then recommending the equilibrium effort

e∗t (λ
t(θt)) for the type history λt(θt).

Assumption (b) in the proposition guarantees that each function e∗t (θ
t) is nondecreasing. By

construction, each function ξt(θ
t) is also nondecreasing. We conclude that the extension ξ constructed

above satisfies not only the single-crossing conditions (6) of Proposition 2 but also the stronger

conditions (7) of Proposition 3. From the results in those propositions, we then conclude that when,

in addition, F is Markov or each function JT1 (θt) depends only on θtonly through θ1 (in which case

so does each function ξt), then the policy e
∗ can be implemented at minimum costs by both the

bonus schemes of Proposition 1 or by the linear schemes of Proposition 3.

Proof of Example 4. Using (13), the principal’s expected payoff in any incentive-compatible

mechanism Ω̂ implementing a policy ê that is contingent on θ1 only (i.e. such that there exists a

collection of functions êt : Θ1 → R, t = 2, . . . , T , such that et(θ1, ε
t) = êt(θ1) for all εt) is given by

E[Z(θ̃1)], where, for any θ1 ∈ Θ1,

Z(θ1) ≡ E

[
T∑
s=1

(
Js1θ1 +

s∑
τ=2

Jsτ ε̃τ

)]
+

T∑
s=1

ês (θ1)

−α
2
E


 T∑

s=1
ψ(ês(θ1)) + V Ω̂(θ1)

+
∫ θ1
θ1

∑T
s=1 J

s
1ψ
′ (ês (z)) dz +

∑T
s=2 Ĥs(θ1, ε̃

s)


2

−βE


T∑
s=1

ψ(ês(θ1)) + V Ω̂(θ1)

+
∫ θ1
θ1

∑T
s=1 J

s
1ψ
′
(
ês

(
θ̃1

))
dθ̃1 +

∑T
s=2 Ĥs(θ1, ε̃

s)

 ,
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where, for s = 2, . . . , T ,

Ĥs (θ1, ε
s) = [εs − E [ε̃s]]

T∑
τ=s

Jτs ψ
′ (êτ (θ1)) .

For each s = 2, . . . , T , let σ2
s ≡ V ar(ε̃s). Then

Z(θ1) =

T∑
s=1

(
Js1θ1 +

s∑
τ=2

JsτE [ε̃τ ]

)
+

T∑
s=1

ês (θ1)

−α
2

(
T∑
s=1

ψ(ês(θ1)) + V Ω̂(θ1) +

∫ θ1

θ1

T∑
s=1

Js1ψ
′ (ês (z)) dz

)2

−α
2

T∑
s=2

σ2
s

[
T∑
τ=s

Jτs ψ
′ (êτ (θ1))

]2

−β
(

T∑
s=1

ψ(ês(θ1)) + V Ω̂(θ1) +

∫ θ1

θ1

T∑
s=1

Js1ψ
′ (ês (z)) dz

)
.

The principal’s relaxed program then consists of choosing a vector of effort functions êt : Θ1 → R,

t = 1, ..., T , along with a scalar V Ω̂(θ1) ≥ 0, so as to maximize E[Z(θ̃1)]. It is immediate that, at

the optimum, V Ω̂(θ1) = 0. Furthermore, given that ψ′(ē) > 1/β, it is also immediate that any policy

ê = (êt(·))Tt=1 that maximizes E[Z(θ̃1)] must have the property that, for any t, êt(θ1) ∈ [0, ē] for

almost every θ1 ∈ Θ1.

Now let g : [0,K]→ R be the function defined by g(0) = 0, g(y) = ψ′−1(y), all y ∈ (0,K), and

g(K) = ē. For any t = 1, . . . , T , any θ1 ∈ Θ1, then let ut(θ1) ≡ ψ′ (êt(θ1)) and xt (θ1) ≡
∫ θ1
θ1
ut (z) dz.

Omitting the first term, which does not depend on the effort policy, the principal’s relaxed problem

thus consists in choosing functions u : Θ1 → [0,K]T and x : Θ1 → RT+ that maximize∫ θ̄1

θ1

L (θ1, u(θ1), x (θ1)) dθ1

where, for any (θ1, u, x) ∈ Θ1 × [0,K]T × RT+,

L (θ1, u, x) ≡ f (θ1)


∑T

s=1 g(us)− α
2

(
T∑
s=1

ψ(g (us)) +
∑T

s=1 J
s
1xs

)2

−α
2

∑T
s=2 σ

2
s

(∑T
τ=s J

τ
s uτ

)2
− β

(
T∑
s=1

ψ(g (us)) +
∑T

s=1 J
s
1xs

)


under the constraint that

xt (θ1) =

∫ θ1

θ1

ut(z)dz, ∀t = 1, ..., T, ∀θ1 ∈ Θ1. (32)
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We solve this problem with optimal control treating u as the vector of control variables and x as

the vector of state variables. First we verify that a solution to this optimal control problem exists by

applying the Tonelli existence theorem.32 To this aim, we first show that, for any (θ1, x) ∈ Θ1×RT+,

the function L (θ1, ·, x) is strictly concave. Note that, for any y ∈ (0,K),

g′′ (y) =
d

dy

[
1

ψ′′ (g (y))

]
=
−ψ′′′ (g (y))

[ψ′′ (g (y))]3
< 0.

This implies that
∑T

s=1 g (us) is strictly concave in u. Next, note that, for any y ∈ (0,K),

d2

dy2
ψ(g (y)) =

d

du

[
ψ′ (g (y))

ψ′′ (g (y))

]
=

h′ (g (y))

ψ′′ (g (y))

where h (z) ≡ ψ′(z)
ψ′′(z)

, and so h′ (z) ≡ d
dz

(
ψ′(z)
ψ′′(z)

)
= d

dz

({
d logψ′(z)

dz

}−1
)
> 0, since logψ′ is concave.

Hence ψ(g (y)) is convex. Therefore,
T∑
s=1

ψ(g (us)) is convex in u. Moreover, since (·)2 is convex and

is increasing whenever its argument is non-negative, −
(

T∑
s=1

ψ(g (us)) +
∑T

s=1 J
s
1xs

)2

is concave in

u as well. The same argument implies that, for any s, the function −
(∑T

τ=s J
τ
s uτ

)2
is concave in u

so that −α
2

∑T
s=2 σ

2
s

(∑T
τ=s J

τ
s uτ

)2
is weakly concave. Together these observations imply that L is

strictly concave in u, as required. Moreover, L is continuous.33 Finally, that u is bounded renders

the “coercivity”condition of Tonelli’s theorem unnecessary.34 Thus a solution exists. Finally, that

L is weakly jointly concave in (u, x) and strictly concave in u implies that the solution is essentially

unique.

By Proposition 2.1 of Clarke (1989), that u is bounded and that L is strictly concave in u for each

x, then guarantees that each xt (·) is continuously differentiable and that the Pontryagin principle

applies.

The Hamiltonian function is given by

H = L (θ1, u (θ1) , x (θ1)) + µ(θ1)>u (θ1) .

32See, for example, Theorem 3.7 of Buttazzo, Giaquinta and Hildebrandt (1998).
33All that is required for a Tonelli-type existence theorem is that L be measurable in θ1 for all admissible x and

u ∈ [0,K]T , and continuous in (x, u) for almost every θ1. See Theorem 3.6 of Buttazzo, Giaquinta and Hildebrandt

(1998).
34See, for instance, Theorem 3.7 of Buttazzo, Giaquinta and Hildebrandt (1998). The role of the coercivity condition

in Tonelli’s result is exactly to guarantee that the controls u are essentially bounded.
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where µ is the vector of co-state variables associated with the law of motions given by

ẋ (θ1) = u(θ1) a.e. θ1. (33)

Pointwise maximization of the Hamiltonian then requires that for almost every θ1 ∈ Θ1, all t =

1, . . . , T ,35

f (θ1)

 g′ (ut(θ1))− ψ′ (g (ut(θ1))) g′ (ut(θ1))

[
α

(
T∑
s=1

ψ(g (us(θ1))) +
∑T

s=1 J
s
1xs(θ1)

)
+ β

]
−α

∑t
s=2

[(∑T
τ=s J

τ
s uτ (θ1)

)
Jτs σ

2
s

]
+µt (θ1) ≤ 0,

(34)

with inequality satisfied as equality if ut(θ1) > 0. Furthermore, for almost every θ1 ∈ Θ1, any

t = 1, . . . , T , the adjoint equations

µ̇t (θ1) = f (θ1) J t1

[
α
(∑T

s=1 ψ(g (us(θ1))) +
∑T

s=1 J
s
1xs(θ1)

)
+ β

]
(35)

must hold. Finally, the following boundary and trasversality conditions must be satisfied:

µt
(
θ̄1

)
= xt (θ1) = 0, t = 1, . . . , T. (36)

Combining together (34)-(36), and using absolute continuity of the co-state variables, gives (14).
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