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Abstract

We study the impact of unobservable replacements on the sustainability of reputation

e¤ects in frequently repeated games played by a long run player facing a sequence of short

run players. At the beginning of every period the long-run player is replaced with a new long

run player with probability (1� �) 2 (0; 1). The new long run player is either a commitment
type who plays the same strategy in every period when he is in the game, or a normal type.

The long run player�s choice of stage game strategy is imperfectly observed by the short run

players. We show that the long run player�s payo¤, in any Nash equilibrium, is bounded

below by what he could get by committing to his most favorite commitment type strategy

after every history of the game, even as his rate of impatience (1 � �) vanishes at the same
rate as his replacement probability. Hence arbitrarily infrequent replacements are su¢ cient

to prevent reputations and their e¤ects from disappearing when the stage game is played

frequently enough.
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Introduction

Consider a dynamic relationship between a large �rm and a large pool of myopic buyers. At

every period, the �rm decides how much to invest for a higher quality production technology,

and the myopic buyers make a purchase decision before they observe the quality level of the

product. The quality of the product is stochastically determined by the production technology,

higher investments produce higher quality products more frequently. The buyers would like to

incentivize the �rm to invest, but since they are myopic, they can�t coordinate their behavior in

later periods to punish the �rm for low quality products. On the other side, the �rm may su¤er

from the lack of e¢ cient punishments, since then he loses his commitment to investment, and the

whole trade possibilities may be destroyed.1

In credit markets, long lived borrowers periodically seek to borrow money. They choose whether

to invest in a high risk project or a low risk project. The only information publicly observed is the

outcome of the project. If the credit market is su¢ ciently large, then the borrower at every period

may interact with a di¤erent lender, hence wriggling out of a potential punishment from the same

lender in the future interactions. The ability to escape punishments may harm the borrower, since

then the moral hazard problem inherent in the absence of dynamic interactions appears again.2

In both of our opening examples, the long run player would like to commit to a variety of

stage game strategies in the one shot game. The dynamic nature of the problem would resolve the

commitment problem, even under imperfect monitoring, if the opponents were long lived too, since

then e¢ cient punishment schemes could be sustained in equilibrium. However if the opponents are

short lived, or if the opponents are a continuum of in�nitesimal long-lived players and only their

aggregate play is observed publicly, then punishments may be ine¢ cient and the moral hazard

problem and commitment issues arise again.

In this paper we consider repeated games played with a long run player and an in�nite sequence

of myopic opponents. The long run player is either a normal type who takes actions optimally

considering the current and future consequences of his actions, or a commitment type who is

committed to playing a particular stage game action at every period he is interacting with an

opponent. The actions of the long run player are imperfectly and publicly observed. At the begin-

ning of every period the long run player may be replaced by a new long run player, possibly with a

small probability. The new player may also be a normal type, or a commitment type. Replacement

correponds to a management change in the �rm, or a change of the economic situations that change

the commitment possibilities of the borrower. In our model, neither replacements nor the type

of the long run player are observed by the myopic players, hence there is perpetual uncertainty

on the long run player�s type. However in equilibrium the myopic players learn about the type of

their opponent from the public signals.

1This is the classic Klein and Le­ er (1981) model.
2See Fudenberg and Levine (1994), Celentani and Pesendorfer (1996) and section 3.6 of Mailath Samuelson

(2007) .
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Our main result shows that, along a sequence of games with varying discount factors and

replacement rates, if the replacement rates are vanishing, but at a rate not faster than that by

which the discount factor is approaching to one, then the long run player receives his highest

possible commitment payo¤ after every history of the repeated game.

Our method of proof delivers a new insight in the study of repeated games and reputations as

a by product. We show that for every small replacement rate, there is a T such that for every

block of T periods, the long run player can guarantee that the ratio of the periods at which his

payo¤s fall short of his commitment payo¤ is small. This ratio decreases (and eventually vanishes

to zero) as the replacement rate vanishes. Hence, if replacements are non negligible with respect

to impatience, yet still very small, then an arbitrarily patient long run player gets his commitment

payo¤ after every history of the repeated game.

Our result �ts very nicely in applications where the same stage game is played very frequently.

Sometimes the exercise of increasing the discount factor to one corresponds to increasing the

frequency with which the stage game is repeated. If the period length between two periods, �,

becomes small, then the e¤ective discount factor between the two adjacent periods becomes very

close to one (i.e., �(�) = e�r� for some r). Now consider a situation where the replacement

events follow a Poisson distribution with a hazard rate �. Then the expected time between two

replacement events is 1=�. In this case, as the period length � becomes small, the probability of a

replacement event between two periods also becomes very small (to be exact, ��). As � vanishes,

the impatience rate (i.e., 1 � � = 1 � e�r�) vanishes at a rate proportional to �. Therefore

the conditions that our thorem require are satis�ed. Hence our result says that no matter how

infrequent replacements are (or how small � is), if the stage game is played frequently enought, then

the long run player receives his commitment payo¤ after every history of these repeated games.

We view replacements as a perturbation of the complete information game. Fudenberg and

Levine (1989) and (1992) (FL from hereon) studied a similar problem. Unlike FL�s model where

the long run player�s identity is �xed once and for all at the beginning of the game, we assume

that at the beginning of every period, the long run player is replaced by a new long run player

with some small probability, 1��. If the long run player is replaced, the new player may be one of
several commitment types, or a normal type. The replacement event is not observed by the short

run players.

There are couple of subtleties we solve when we prove our result. The �rst one is that, we know

from FL�s result that for any initial prior �, there is a critical discount factor such that for discount

factors higher than this critical level, long run player�s equilibrium payo¤s are not lower than his

commitment payo¤s. However the result is silent on how fast this critical number should increase

if the prior probability of the commitment types gets smaller. In our model, the replacement

probability (and hence the lowest possible reputation level after all possible histories) is allowed

to vanish at the same rate or at a slower rate than the rate at which the discount factor goes to

one. Hence, we extend FL�s result in a model with replacements and where the prior uncertainty
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on types vanishes as the discount factor goes to one.

Second, replacement possibility may have an adverse e¤ect on the long run player�s ability to

build a reputation. When long run player almost convinces his opponent that he is the Stackelberg

type, his reputation for being this type decreases next period since he might be replaced by a normal

type, or some other commitment type that he wouldn�t like to mimic. We show that the adverse

e¤ect of replacements disappears rapidly as the replacement probability vanishes.

We elaborate on both of these issues, and why the replacement rate is not allowed to vanish

much faster than the impatience rate in the section where we sketch the argument for a perfect

monitoring stage game.3

Next we discuss related literature. After the introduction, we present our model, and then

we present the main result of the paper. Later we provide a sketch of the proof with a perfect

monitoring stage game example, and discuss how perfect monitoring case is extended to stage

games with imperfect monitoring. We discuss some of the assumptions of our model, and present

a complete proof in the Appendix.

Discussion of Related Literature The �rst papers that introduced the idea that adverse

selection approach to repeated games may create reputation building dynamics are Kreps, Milgrom,

Roberts, and Wilson (1982), Kreps and Wilson (1982) and Milgrom and Roberts (1982). Their

results show that reputation e¤ects may explain cooperation in early rounds of the �nitely repeated

prisoners�dilemma and entry-deterrence in early rounds of the chain store game. In in�nitely

repeated games, the multiplicity of equilibria provided by the folk theorem contrasts with the

intuitive attraction of equilibria that provide relatively high payo¤s. Reputation e¤ects can again

rescue such intuition by imposing lower bounds on equilibrium payo¤s.

Our paper is most closely related to FL, where they show that an arbitrarily patient long run

player can guarentee himself a payo¤ that he could get by publicly committing to playing any

of the commitment type strategies, in any Nash equilibrium of the in�nitely repeated game. In

particular if the commitment types have full support, long run player�s equilibrium payo¤s get

arbitrarily close to his Stackelberg payo¤, as his discount factor approaches one.

The incomplete information game can be seen as a perturbation of the complete information

game. In particular the complete information game is the limit of incomplete information games as

the ex ante commitment type probabilities approach to zero. From this point of view FL�s result

highlights two of the reputation e¤ects: i) Many equilibria of the complete information game don�t

remain equilibria in the nearby incomplete information games ii) There are equilibrium payo¤s

in the incomplete information game that are not sustained by any equilibrium of the complete

3It is very intuitive that for a �xed discount factor �, if the replacement rate is arbitrarily small, then there may
be some histories after which the long run player�s equilibrium continuation payo¤s are very close to his equilibrium
payo¤s in the complete information repeated game. We don�t have a proof of this, however we o¤er this "continuity
argument" only to clarify why our result requires the replacement rate to be not "much" smaller than the impatience
rate.
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information game.

However Cripps, Mailath and Samuelson (2004) (CMS from hereon) showed that this reputation

phenomena is only temporary if monitoring is imperfect. In particular, they show that, �xing the

parameters of the game, there exists a period T such that in the continuation game starting at T ,

long run player�s payo¤ is close to some equilibrium payo¤ of the complete-information game, with

probability close to one. Moreover the equilibrium play of the game after period T resembles some

equilibrium of the complete information repeated game. Therefore all reputation e¤ects (both

payo¤ and behavior e¤ects) eventually disappear.

There are examples in the literature that sustain persistent reputation e¤ects by assuming

replacements as in our model, that is, the type of the player is governed by a stochastic process

and changes through time, rather than being determined once and for all at the beginning of

the game. Holmstrom (1999), Cole, Dow and English (1995), Mailath and Samuelson (2001),

Phelan (2006) and Vial (2008) maintain permanent reputations by assuming particular types of

replacement in their models. Liu (2009) studies a model where short-run players must pay a cost

to observe past signals. Bar-Isaac and Tadelis (2008) studies reputation e¤ects in markets. Liu

and Skrzypacz (2009) study reputation dynamics when short run players have bounded recall and

Ekmekci (2010) studies sustainability of reputation e¤ects when the short run players observe a

summary statistic about the history of the play, such as in online markets.

Most of these papers construct a particular equilibrium (or a class of equilibria) that has

interesting equilibrium dynamics. However none of these papers �nd bounds on long run player�s

equilibrium payo¤s as in FL.

Model

The setup of the model closely resembles the setup of FL (92) and CMS (04). A long run player

plays a �xed stage game against a new short run player in every period of an in�nitely repeated

game. Player 1 is the long run player and player 2 is the short run player in the stage game G.

Player 1 selects an action a1 from a �nite set A1 while player 2 selects from a �nite set A2. An

action pro�le is denoted a 2 A1 � A2. The stage game is a simultaneous move game. However

our results easily generalize to sequential move games as in FL. At the end of each period a public

signal y is observed, and y is drawn from a �nite set Y according to the probability distribution

�(�ja).4 Note that perfect monitoring is a special case of this setup. For any set X, let �(X) be
the set of all probability distributions on X. The set of mixed actions for player i is �(Ai), and �i
represents a typical element of this set. A mixed action pro�le is � = (�1; �2) 2 �(A1)��(A2).
We denote �(yj�) =

P
a2A

�(yja)�1(a1)�2(a2). We assume an identi�cation assumption as in CMS.

4We make this assumption for notational simplicity. Our results would still be true if monitoring technology
were private.
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Assumption: (Identi�cation)�(�j�0
1; a2) 6= �(�j�1; a2) for any �1 6= �01 2 �(A1) and a2 2 A2.

Identi�cation assumption ensures that player 2 learns any stage game strategy of player 1 after

observing su¢ ciently many signals.

Histories, Strategies and Payo¤s

Let R = fr; nrg denote the the set of events "replaced" or "not replaced". We assume that a long
run player at time t observes all replacement events that occurred before period t.

Both the long-run and short-run players can observe and condition their play at time t on the

entire history of the realized outcomes. Let H t
i be the set of player i�s histories at period t. In

particular H t
1 � fA1 �A2 � Y �Rgt denotes a t-period history for player 1, and H t

2 � fA2 � Y gt

denotes a t-period history for player 2. Let f eH t
1g1t=0 denote the �ltration on fA1 �A2 � Y �Rg1

induced by player 1�s histories, and f eH t
2g1t=0 denote the �ltration on fA2�Y g1 induced by player

2�s histories. A pure strategy for a player 2 is a map st2 : H
t
2 ! A2, while the set of all such

strategies is denoted St2. A pure strategy s1 for player 1 is a sequence of maps s
t
1 : H

t
1 ! A1, and

the set of all pure strategies is denoted S1.

Let �1 and �t2 be the sets of probability distributions over S1 and S
t
2 (equivalantly the set of

all behavioral strategies), let �2 =
Q1
t=0�

t
2. Each strategy pro�le � = (�1; �2) � (�1; �02; �12; :::) 2

�1 � �2 gives rise to a probability distribution over in�nite sequences of actions and signals.
Let E� denote the expectation with respect to this distribution (and we denote the conditional

expectations in the standard way), and the expected average discounted payo¤ to player 1 from

the strategy pro�le � is:

U1(�) = (1� �)E�

� 1P
t=0

�tu1(a
t
1; y

t)

�
, (1)

where at is the action pro�le at period t, and at1 is player 1�s action at period t and u1 : A1�Y !
R is the stage game payo¤function of player 1. Let v1(�) =

P
a=(a1;a2)2A;y2Y u1(a1; y)�(yja)�1(a1)�2(a2)

denote the expected stage game payo¤ to player 1 of a mixed action pro�le �. For every ht1 2 H t
1,

let �1;ht1 denote the continuation strategy of player 1 at history h
t
1 2 H t

1 for any t � 0 .5 Similarly,
let

U1(�jht1) = (1� �)E�

� 1P
s=t

�s�tu1(a
s
1; y

s)jht1
�

be the expected average discounted payo¤ of player 1 at history ht1.

All short run players have the same expected utility function u2 : Y � A2 ! R, and each

maximizes her expected payo¤ v2 : �(A1)��(A2)! R; where

v2(�) =
X

a=(a1;a2)2A;y2Y

u2(y; a2)�(yja)�1(a1)�2(a2)

5For a de�nition of continuation strategy, see page 20 in Mailath and Samuelson (2007).
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denotes the expected payo¤ from the mixed action pro�le �.

The payo¤ function of the short run players is common knowledge. On the other side, only

player 1 knows his own type. Player 1 is either a simple commitment type6 or a normal type with

an expected utility function speci�ed as in equation 1. Let W = fw0; w1; :::; wNg be a �nite set
of types. Each wi 2 �(A1) with i � 1 corresponds to a commitment type who is committed to

playing the strategy wi at every period, and w0 corresponds to the normal type with the payo¤

function U1 as in equation 1.

Player 2�s Beliefs

A reputation function � : [1t=0H t
2 ! �(W ) describes the beliefs of short-run players about the

type of their opponent after every history. A belief function �b;t : H t
2 ! �(A1) describes the beliefs

of the short run players about player 1�s play after every history. Each pair of reputation function

and strategy pro�le induces a belief function, in particular

�b;t(ht2)(a) =
X
i>0

�(ht2)(wi)wi(a) + �(ht2)(w0)E(�1(h
t
1)(a)jht2) 8a 2 A1. (2)

The set of all sequences of all such belief functions is �b = f�b : [1t=0H t
2 ! �(A1)g.

Uncertainty and Replacements

At period t = 0, the type of the long run player is drawn from a probability distribution � 2 �(W )
with �(wi) > 0 for each wi 2 W . At the beginning of every period with probability (1� �) player
1 is replaced by a new player 1 whose type is drawn from a probability distribution �� 2 �(W )
with ��(wi) > 0 for each wi 2 W . With the remaining probability � player 1 is not replaced, so

the same player 1 remains in the game. Player 1�s discount factor � may incorporate both his

intertemporal time preference and the likelihood of being replaced, and we allow this, but we don�t

require it.7 Moreover we assume that player 1 observes the occurrence of all past replacement

events. This corresponds for example to a situation where the new owner of a �rm has access to

all information about previous owners and previous transactions about the �rm.8

6A simple commitment type plays a �xed mixed action at every stage of the repeated game until he is replaced.
7One could think of player 1�s intertemporal discounting to be � < 1, and his total discount factor � = ��. We

don�t restrict ourselves to this particular formulation.
8Alternatively we could assume that a long run player at time t does not observe any of the replacement events,

or some of them before the period he joined the game. The observational assumptions about past replacement
events by player 1 are irrelevant for our results.
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Equilibrium

A Bayesian Nash equilibrium, (�; �) is the combination of a strategy pro�le � = (�1; �2) and a

reputation function � such that:

i) �1 is a best response to �2.

ii) �t2 is a best response to player 2�s belief �
b;t about player 1�s play, as de�ned in equation 2.

iii) The reputation function is updated via Bayes�rule. In particular for each ht2 2 H t
2 for t � 1:

�(ht2)(w) = �
�(ht�12 )(w)�(yj�1(ht�12 ; w); at�12 )P

w02W �(ht�12 )(w0)�(yj�1(ht�12 ; w); at�12 )
+ (1� �)��(w) (3)

whenever
X
w02W

�(ht�12 )(w0)�(yj�1(ht�12 ; w); at�12 ) > 0

where,

ht2 = (ht�12 ; at�12 ; y);

�1(h
t�1
2 ; w0) = E(�1(h

t�1
1 )jht�12 )

�1(h
t�1
2 ; wi) = wi for i � 1
�(�) = �:

The �rst 2 conditions describe optimality of behavior for all players. We express optimality of

player 2�s actions by requiring her stage game strategy to be a best response to her beliefs about

her opponent�s current period play. This belief has two components, the probability with which

player 1 is a commitment type (captured by the reputation function �) and the probability with

which he is a normal type and he follows the strategy �1. The third condition states that updating

is Bayesian when possible.

Permanent Reputations

Let G1(�; �) be the repeated game where every period a long run player 1 plays the stage game

G with a short run player who serves as player 2 in the stage game. The replacement probability

for player 1 is (1 � �), and his discount factor is � < 1. In the following, B(�1) denotes the best

reply set of player 2 to player 1�s mixed action �1.

Fix any w 2 Wnfw0g. Let

b2(�1) 2 B(�1), and b2(�1) � arg min
�22B(�1)

v1(�1; �2);

u1(w) = v1(w; b2(w)).

Verbally, b2(�1) is one of the most upsetting (to player 1) strategy of player 2, among player 2�s
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best responses to player 1�s strategy �1. u1(w) is the payo¤ that player 1 would guarantee himself

if he could almost convince player 2 that he is the commitment type w. Note that the stage game

is a �nite simultaneous move game, so the expression with argmin is well de�ned. Moreover, by

upper hemicontinuity of the best response correspondence, there is an � > 0 such that for every

�2 2 B(�1) for any �1 with jj�1 � wjj < �, v1(w; �2) � u1(w).9

In our main theorem, we show that, if the replacement rate and the impatience rate are com-

parably small, then player 1�s payo¤s, calculated after every history of the repeated game, in every

Bayesian Nash equilibrium is bounded below by almost u1(w). Our main theorem is stated below:

Theorem 1 Let v(�; �) be the in�mum of the set of all Bayesian Nash equilibrium payo¤s of the

long run player in G1(�; �) after all histories ht1 2
1[
s=0

Hs
1 . Let (�r; �r)r=0;1::: be a sequence of

replacement probabilities and discount factors such that i) limr!1 �r = 1 ii) lim infr!1 1��r
1��r > 0.

Then lim infr!1 v(�r; �r) � u1(w) for all w 2 Wnfw0g.

Proof. See Appendix B.
In this theorem we show that if the replacement probability (1� �) vanishes at the same rate

or at a slower rate than the impatience rate (1 � �) (in particular if (1��)
(1��) does not go to zero as

(1� �) goes to zero), a lower bound on the long run player�s Nash equilibrium payo¤s calculated

after every history of the game approaches u1(w). Since this is true for any w 2 W , the long run
player guarantees himself a payo¤ that is almost what he could get by fully mimicking his most

favorite commitment type.

The most natural economic environment in which conditions i) and ii) are satis�ed is a repeated

game played very frequently. Consider a game which is played in periods t = 1; 2; ::: in which the

time between the periods is � > 0. Suppose the long run player is replaced according to a Poisson

probability distribution that has parameter �, and his instantenous time preference is r > 0. Then

his e¤ective discount factor between two periods is �(�) = exp(�(r + �)�) and the replacement

probability at any period is ��. As the time between periods, �, goes to zero, �� ! 0 and
��

1��(�) !
�
r+�
, hence player 1�s impatience and replacement probability go to 0 at the same rate.

As we argue in the sketch of argument for a perfect monitoring example, we may strengthen

the theorem by replacing condition ii) by the following weaker condition that ln �r ln(1� �r)! 0.

This weaker condition is satis�ed, for instance if lim inf (1��r)
�

1��r > 0 for some � > 0. In other

words, we can allow the log of the replacement rate to explode at the same rate as the log of the

impatience rate.

In order to gain some intuition for the result, consider a game with perfect monitoring and

with only one commitment type. Moreover assume that � = �. Whenever player 2 plays an action

that is not a best response to the commitment type�s strategy, mimicking the commitment type

increases player 1�s reputation level by a multiple that is bounded from below by a positive number.

9For any two vectors x and y, jjx� yjj denotes the Euclidean distance between x and y.
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If there were no replacement possibility, then along a sequence of periods where player 2 is playing

an action di¤erent from a best response to the commitment type strategy, player 1 can increase his

reputation level from 1 � � to any number � < 1 in O
�
ln
�

1
1��
��
periods.10 The �rst observation

we make is that as � goes to one, ln( 1
1�� ) increases to1 more slowly than ln � approaches to zero.

In particular lim�!1 �
ln( 1

1�� ) = 1.11

The possibility of replacements makes the previous argument easier when the reputation level

is low, since then replacement event increases the reputation of player 1. However, when the

reputation of player 1 is relatively high, the argument is challenged by the fact that replacement

possibility may decrease the reputation of player 1. Here we observe that when the replacement

probability is low, if player 2 is not best responding to the commitment type, the reputation

level will still increase signi�cantly if player 1 mimics the commitment type. However at higher

reputation levels, if player 2 best responds to the commitment type strategy, and if player 1 mimics

the commitment type, then the reputation will decrease by at most an amount proportional to

1 � �. Combining these observations we show that the fraction of periods in the repeated game

where player 2 may not be best responding to the commitment type decreases to zero as � goes

to one. We give a more detailed sketch of the argument for the perfect monitoring case in the

next section. The most challenging part of the proof is to show that the arguments above continue

to hold when monitoring is imperfect. We give the details of the argument for the imperfect

monitoring case in the Appendix, and a less detailed outline of the steps of the proof before the

Appendix.

Perfect Monitoring Case: A Sketch

Consider the product choice game, whose payo¤ matrix is depicted in �gure 1. Player 1 is the

row player and player 2 is the column player in the stage game. The set of actions for player 1 is

A1 = fH;Lg: High quality production and Low quality production. The set of actions for player
2 is A2 = fB;Ng: Buying the product and Not buying the product.
Players who are playing at period t observe the entire history of the action pro�les played

before period t, hence this is a game of perfect monitoring. At the beginning of each period, player

1 is replaced with a new player 1 with probability 1� � 2 (0; 1), and player 1�s discount factor is
� 2 (0; 1). There are 2 types for player 1; a simple commitment type who plays a1 = H at every

period of the game in which he is in the game and a normal type who maximizes his expected

discounted payo¤s in the repeated game where the stage game payo¤s are given in the payo¤

matrix above. The probability that player 1 is a commitment type at the beginning of the game

is � > 0, and the probability that player 1 is a commitment type at any period t conditional on

10O(x) denotes at the order of x.
11To see this, let Y (�) = �ln(

1
1�� ). Taking logs on both sides gives lnY (�) = ln � ln

�
1
1��

�
. Using L�Hopital�s rule

twice delivers lim�!1 lnY (�) = 0, hence the desired result holds.
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B N
H 1,1 0,0
L 2,?1 0,0

Figure 1: The payo¤ matrix for the product choice game.

him being replaced at the beginning of period t is �. Note that the commotment payo¤ of player

1 is 1, and in the remainder of this section we will �nd a lower bound on his equilibrium payo¤s

that is close to 1 and that holds uniformly over all equilibria and after all histories.

Bellman Equation: We start by introducing a Bellman equation, that serves a lower bound

on the set of all Nash equilibrium payo¤s for player 1. Let � = (1��)�, � = �+(1��)�, S � [�; �]
and let V : S ! R be a function satisfying:12

V (�) = inf
1��1��

f(1� �)u1(H; a2(�1)) + �V (�
0(�1; �))g where (4)

�0(�1; �) = �
�

�1
+ (1� �)� for �1 � �:

s:t: a2(�1) = B for �1 > 1=2 and a2(�1) = N for �1 � 1=2

The interpretation of the above program is simple. V is the payo¤ player 1 would get if i) he

always plays H (i.e. mimics the commitment type) and ii) player 2 has a belief about player 1�s

play that minimizes player 1�s total payo¤ (i.e., his current payo¤ and continuation payo¤) from

mimicking the commitment type.

We will argue that V is a lower bound on player 1�s equilibrium payo¤s. Consider any belief �t1
that player 2 has about her opponent�s play at period t. In equilibrium this belief should coincide

with player 1�s equilibrium behavior (which incorporates �1 and player 1�s reputation for being

a commitment type, �). In particular, the equilibrium requires that actions in the support of �t1
be either optimal for player 1�s normal type, or be coming from the commitment type�s strategy.

However, the Bellman program is relaxing the equilibrium constraint that player 2�s belief indeed

coincides with player 1�s equilibrium play (hence the set from which player 2�s belief is chosen is

larger compared to the set of beliefs consistent with any equilibrium). However there is still the

requirement that player 2�s action choice is a best response to this "arbitrary" belief. Since V is the

in�mum of a function over all possible beliefs, relaxing a constraint might only make the objective

function better: in this case make the value function lower. Since mimicking the commitment type

12Since �+ (1� �)� � �0(�1) � (1� �)�, our restriction to the state space S � [(1� �)�; �+ (1� �)�] is without
loss of content.
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is an available strategy for player 1, the set of equilibrium payo¤s for player 1 is bounded from

below by V .

This is a deterministic Bellman equation.13 Note that there is a policy function �1(�), and

a2(�) such that V (�) = (1 � �)u1(H; a2(�)) + �V (�0(�1(�); �)), �1(�) � � and that a2(�1) = B

for �1 > 1=2 and a2(�1) = N for �1 � 1=2. Moreover, for any � 2 S,

V (�) = (1� �)
1X
t=0

�tu1(H; a2(�t))

s:t: �0 = �, and �t = �
�t�1

�1(�t�1)
+ (1� �)� for t � 1. (5)

Every � 2 S induces an in�nite sequence of reputation levels f�tg1t=0 with �0 = � as described

in Equation 5 above. We say that a sequence of reputation levels f�tg1t=0 is admissible if �0 2 S

and �t = �
�t�1

�1(�t�1)
+ (1� �)� for t � 1. In the following, when we use the term period t, we mean

the (t+ 1)st element of an admissible sequence.

We can actually solve for a closed form expression for the functional form of the function V (�).

However, to explain the way the proof for the imperfect monitoring case operates, we will �rst

proceed by putting bounds on V (�) at various subintervals of the state space S. We form our

inequalities and bounds in a very generous way. Although we could make our bounds tighter in

the case of perfect monitoring, the methodology we use to prove our main result becomes tight in

the case of imperfect monitoring.

Belief Dynamics: We start by analyzing how reputations evolve on admissible sequences.

If a2(�) = N , then �1(�) � 1=2 and hence �0(�1; �) = � �
�1
+ (1 � �)� � 2�� + (1 � �)� > 2��.

Intuitively, on the outcome paths where player 1 plays H, if at some period t player 2 is playing

N , i.e., a2(�t) = N , then she is expecting player 1 to play H with a probability at most 0.5, i.e.,

�1(�t) � 1=2, and therefore, �t+1 > 2��t.
Similarly, if a2(�) = B, then �1(�) � 1 and hence �0(�1; �) = � �

�1
+(1��)� � ��+(1��)� >

��. Intuitively, if player 2 is playing B at some period t, i.e., a2(�t) = B, then �1(�t) � 1 and

hence �t+1 > ��t.

Fix a number of periods K > 2. Then there exists a length T such that during a block of T

periods, if player 2 plays N more thanK periods, then at the end of T periods player 1�s reputation

level doubles up compared to its starting level. The following claim formalizes this reasoning. In

the following, for any number x, bxc denotes the largest integer not larger than x.

Claim 1 For any K > 2, 9 � < 1 such that for every � 2 [�; 1), 9 a positive integer T (�) �j
(K�2) ln(2)
� ln(�)

k
such that for any admissible sequence f�tg1t=0: If �0 < 1=2, and if the Kth time at

13For the more general case of imperfect monitoring, the Bellman equation we work with is a stochastic Bellman
equation.
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which a2(�t) = N happens at some period t � T (�), then �t � 2�0. If �0 � 1=2, then there are a
total of less than K times at which a2(�t) = N at or before period T (�).

Proof. The reputation level gets multiplied by at least 2� if a2(�t) = N (i.e. �t+1 � 2��t), and
by at least � if a2(�t) = B (i.e. �t+1 � ��t). Since by the beginning of period t, there has been

K � 1 times when player 2�s action is N , �t � 2K�1(�)t�0, so if T (�) =
j
(K�2) ln(2)
� ln(�)

k
then the �rst

assertion in the claim is satis�ed. In order to ensure that T (�) is positive, we need (K�2) ln(2)
� ln(�) � 1.

If � > � = 22�K then indeed (K�2) ln(2)
� ln(�) � 1. The second assertion in the claim follows from the

fact that if there was a period t when a2(�) = N for the Kth time, then �t � 2�0 = 1. However
�t � �+ (1� �)� < 1, which is a contradiction.

Partitioning the State Space: We partition the state space by �rst de�ning a sequence

of reputation thresholds: �0 = 1=2, �1 =
�0
2
,..., �k =

�0
2k
. Let n be the smallest integer for which

�n � �. The collection of subintervals [�0; 1], [�1; �0),..., [�; �n�1) cover the state space S. Next

we will put lower bounds on V (�) for every interval, by considering admissible sequences f�tg1t=0,
with various initial reputation levels. Let inf��� V (�) = v.

Bound on the Reward Phase: Fix K > 2 and let T = T (�) as in claim 1. Our �rst

observation is that, for �0 � 1=2,

V (�0) � F0 � (1� �)
TX

s=K�1
�s1 + �T+1v: (6)

The inequality uses two observations. When the initial reputation level is su¢ ciently high, then

for the initial T + 1 periods (from period 0 until period T ), player 2�s actions can be N at most

K�1 times. The permutation of payo¤s across the periods that minimizes the average discounted
payo¤s is when during the �rst K � 1 periods, i.e., during s 2 f0; 1; ::::; K � 2g player 1 receives a
payo¤ 0, and afterwards, until and including T if he receives a payo¤ 1. The continuation payo¤

at time T + 1 is bounded below by the least possible value of the value function across the whole

range of the state space, delivering the inequality.

If v � 1, then we have a very tight lower bound on v. In the following development, we will

put a less tight lower bound on v, hence we will assume that v < 1.

Bounds on the Reputation Building Phases If �0 2 [�1; �0), then either player 2 plays
N less than K times during the �rst T periods, or plays N for the Kth time at some period t � T .

In the �rst event, V (�0) � (1� �)
TX

s=K�1
�s1 + �T+1v = F0 because there are at most K � 1 times

when player 2 plays N , and the lowest possible permutation of payo¤s is if these periods occur at

the beginning of the sequence, i.e. at periods t 2 f0; 1; :::; K � 2g. Moreover, at period T + 1, the
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continuation payo¤ is some value from the set of all possible values of the value function, we put

the lowest value in this set. In the second event however,

V (�0) � (1� �)

t�1X
s=K�1

�s1 + �t inf
���0

V (�) � (1� �)

t�1X
s=K�1

�s1 + �tF0:
14

This is because until t, there are at most K� 1 times when player 1�s payo¤ is zero, and his payo¤
is one for all the other times until t. Moreover, by the beginning of t, �t is at least 2�0 � �0. Since

the continuation payo¤ belongs to the set of values where the state variable is at least �0, putting

the lower bound of this set using inequality 6 establishes the lower bound above. Therefore,

V (�0) � min
(

min
K�1�t�T

 
(1� �)

t�1X
s=K�1

�s1 + �tF0

!
; F0

)
.

Since F0 < 1, we deduce that

min
K�1�t�T

 
(1� �)

t�1X
s=K�1

�s1 + �tF0

!
� �K�1F0 � F1.

Therefore V (�0) � �K�1F0 for �0 2 (�1; �0]. A similar argument shows that if �0 2 [�k+1; �k) then

V (�0) � min
(

min
K�1�t�T

 
(1� �)

t�1X
s=K�1

�s1 + �t inf
���k

V (�)

!
; F0

)
.

At this point, we use induction (we�ll skip the induction step in this section) to show that

V (�0) � Fk+1 � (�K�1)k+1F0.

The Number of Reputation Building Phases: Since � = (1��)�, to back out n, we use
the inequality that (1=2)

2n�1 > (1��)�, and rearranging gives n <
� ln[(1��)�]

ln 2
and so n = � ln[(1��)�]

ln 2
� 1

if � ln[(1��)�]
ln 2

is an integer and n =
j
� ln[(1��)�]

ln 2

k
otherwise.

Inequality on v: Since Fk is decreasing in k, V (�) � (�K�1)nF0 for every � 2 S, and

therefore inf�2S V (�) = v � (�K�1)nF0. Rewriting, we get

v � (�K�1)n
 
(1� �)

TX
s=K�1

�s1 + �T+1v

!
: (7)

An interpretation of Equation 7 is as follows. The state variable (reputation level) doubles up

14Note that t � K � 1. We use the convention that if t = K � 1, then
t�1X

s=K�1
�s1 = 0.

14



if there are K�1 periods within T periods where player 2 plays N and if player 1 has been playing

the action H. The worst possible scenario for player 1 is if there are consecutive K � 1 periods
where player 1 su¤ers from player 2�s action N , but in this case he doubles up his reputation

level. Since there is a positive lower bound on the state space, in a �nite number of n steps, the

reputation level reaches above a critical level, which is 1=2. The number of steps n depends on

the lower bound of the state space, and hence the replacement probability. The critical level of

the state variable, 1=2 has the feature that at this reputation level, for a long number of periods,

player 1 gets his commitment payo¤ of one and at the end of these periods, possibly he gets some

di¤erent payo¤, that is non-negative. When his reputation level drops below 1=2, obviously a lower

bound on his continuation payo¤ is v.

We would like to stress again that this bound is very generous, since we know that once the

reputation level drops below 1=2, if it is still close to 1=2, then there may be only one non-best

response to H before player 1 may increase his reputation signi�cantly (i.e. multiply by 2�) and

move it above 1=2. However this non-tight lower bound re�ects the methodology used to prove

the imperfect monitoring case.

The ratio (K�2)=(T +1) measures the adverse e¤ect on player 1 of the replacement possibility
when his reputation level is high. K is �xed and doesn�t depend on the parameters of the model

(but is at least 3), however T depends on the probability of replacement. The higher the probability

of replacement is, the smaller T is, therefore the magnitude of the "guaranteed" rewards at high

reputation levels becomes lower with more frequent replacements. In particular T increases at the

order of (1� �)�1.

The number of steps n required to reach the rewarding reputation level of 1=2 is essentially

the number of subintervals that should be passed before reaching the reward phase. The number

of such intervals, n is at the order of � ln(1 � �). As the replacement probability gets lower n

gets larger. The multiplicative term (�K�1)n measures the time cost of building a high reputation.

Whether reputation building is easy or not depends on the relative speeds by which the discount

factor reaches one (� ! 1) and the replacement probability reaches zero (� ln(1 � �) ! 1 or

n ! 1). Con�rming the usual intuition, for any �xed probability of replacement, as player 1
gets arbitrarily patient (� ! 1), reputation building becomes arbitrarily costless. Recollecting the

terms in equation 7 we get

v
�
1� (�K�1)n�T+1

�
� (�K�1)n(1� �)

 
TX

s=K�1
�s1

!
. (8)

In order for a sequence of lower bounds on vr to converge to 1 along sequences of �r and �r; the

following should be true: (�Kr )
nr ! 1, and K

Tr
! 0 along the sequence. Since T (�r) =

j
(K�2) ln(2)
� ln(�r)

k
,

K
Tr
! 0 only if �r ! 1. On the other side, n is at the order of ln(1 � �), so for a �xed K,

(�K�1r )nr ! 1 only if (�r)ln(1��r) ! 1, or ln �r ln(1� �r)! 0. This is satis�ed, for instance, when
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1� �r and 1� �r disappear at the same rate, or if 1� �r disappears and �r either stays constant

or goes to one more slowly than 1 � �r disappears. Note that the critical property here is that

ln �r ln(1� �r)! 0, hence if lim inf (1��r)
�

1��r > 0 for some � > 0, then ln �r ln(1� �r)! 0.

On the other side, even as �r goes to 1, if �r is not converging to 1, then K
Tr
remains bounded

away from zero. In this case, the reputation bound is weakened by the fact that when the reputation

level is high, then replacement possibilities may indeed lower the reputation levels. On the other

side, since K
Tr
approaches to zero as the replacement probability approaches to zero, we can make

our result a bit stronger by saying that for every " > 0, there exists a �� < 1 such that if �r > ��

for every r > 1, �r ! 1 and if ln �r ln(1� �r)! 0, then lim inf vr > 1� ".

Imperfect Monitoring A Sketch:

In this section, we outline how the arguments work if the stage game actions are imperfectly

observed.

Step 1: We express the stochastic Bellman Equation 10 using the likelihood ratio L = 1��
�

as the state variable instead of �. This equation is the imperfect monitoring counterpart of the

Bellman equation 4. We do this in Appendix B.1. Lemma 1 shows that policy functions �2(L)

and �1(L) which identify a stage game strategy for player 2 and a belief for her about player 1�s

play for each value of the state variable exist.

Step 2: We de�ne the stochastic process fLtg1t=0 induced by the in�nite sum representation of

V (L) and by the policy functions �2(L) and �1(L) and the commitment type strategy. Next we

de�ne the "adjusted" process fStgTt=0 by St = Lt+m� (1��)zt for some constants m and z, and

specify T to be the largest integer such that m� (1� �)zT � 0 (de�nition 4). We look at blocks
of T=2 periods, and evaluate the payo¤ streams within each block.

Step 3: Lemma 5 shows that the adjusted process St is a supermartingale with respect to the

probability measure induced by the policy functions and the commitment type strategy. The heart

of this step is to show that if at any period t; player 1 receives a lower payo¤ than u1(w), i.e. if

v(w; a2(Lt)) < u1(w), then St+1=St is expected to "jump" by at least a certain amount  > 0 with

at least probability  .

We prove this by �rst showing in Lemma 6 that if Lt is not expected to move, then v(w; a2(Lt)) �
u1(w). Lemmata 7 and 8 show that if Lt is expected to move, then St+1=St is expected to "jump"

as in the supposition of this step. Hence we conclude that if v(w; a2(Lt)) < u1(w) then Lt is

expected to move, and if this is the case, then St+1=St is expected to "jump".

Step 4: We de�ne a stopping time � k that picks certain periods, which includes periods in

which St+1=St is expected to jump. In particular, if � k does not pick a period t, then by step 3

v(w; a2(Lt)) � u1(w) (by lemma 11).

Step 5: We de�ne a faster process fSk = S�k . By the de�nition of the stopping process � k, fSk
is an active super martingale. Hence we use Theorem 2 (this is FL�s theorem that is restated in

16



Appendix A) to argue that, if within T=2 periods, the process S has stopped for the Kth time

at a period t, then St � S0=2 with a probability at least 1 � ". Combining this with step 4, and

showing that St � S0=2 implies Lt � L0=2, we argue that if the supposition is true, then:

V (L) � (1� ")

"
(1� �)

t�1X
s=K�1

�su1(w) + �t inf
L0�L=2, and L02S

V (L0)

#
+ "�t inf

L02S
V (L0) (9)

Step 6: We put bounds on the value function at several intervals, using inequality 9 in step 5.15

The �rst bound is for an interval that contains very high reputation levels (i.e. very low values of

the state variable, likelihood ratio). This is similar to the lower bound for the reward phase of the

perfect monitoring example, in Inequality 6. We put further bounds for lower reputation levels by

successively using Inequality 9.

Step 7: In the last step, we collect terms, and get an inequality for infL2S V (L), inequality

16. This is similar to Inequality 8 of the perfect monitoring case. In Appendix C we show that

this lower bound converges to u1(w) when the discount factor goes to one and the replacement

probability goes to zero not faster than the discount factor.

Discussion

In this section, we would like to discuss some of the assumptions of our model. We assume that a

short run player at period t observes the public outcomes of the stage game play of every period

that precedes period t. We form our bounds using the probability measure on histories induced

by the commitment type strategies. Therefore our bound does not depend on whether the beliefs

of the short run players (or the reputation of the long run player) are public (or are known by

the long run player) or private. This is particularly important since Cripps et. al. (2007) show

that reputation e¤ects disappear even if the long run player doesn�t know his own reputation (i.e.,

the short run players observe a di¤erent history than the long run player, and the long run player

does not know this history, but makes inferences using his own history). Hence all our results and

proofs would go through if the outcomes of the stage game were not publicly observed, but instead

the short run players observed a signal that is informative about the long run player�s actions.

In this paper we focus attention to stage games that are �nite and simultaneous move. We could

generalize our results easily (though with a lot of additional notation) to extensive form games,

with the commitment bounds replaced by the self con�rming equilibria and limit (as " ! 0) of "

best responses as in FL. After all, the current paper applies the learning lemmata in FL repeatedly

to achieve a sequence of bounds on the lowest possible equilibrium of the long run player uniformly

across all Nash equilibria. In the same vein, we can dispense with identi�cation assumption by

de�ning the commitment payo¤ through the player 2�s anticipation of the outcomes (i.e., the

15There is also the possibility that the process S has not stopped for K times within the �rst T=2 periods. This
possibility gives us a lower bound which is less tighter than the bound in inequality 9 as we show in the Appendix.
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probability distribution function he assigns to the outcomes), instead of the current form where

they are de�ned as payo¤ functions of the action pro�les.

We assume that replacement events are stationary, and transition probabilities from a type to

another one is independent of the current type. The role of the replacement events is to prevent the

uncertainty about the long run player to disappear. Any stochastic process that changes the type

of the long run player with full support, and uniformly with a small probability (or a probability

that vanishes uniformly with the impatience rate) would be su¢ cient for our results.

Appendix A: Active Supermartingales

Consider an abstract setting with a probability measure P on a set of histories H1 and a �ltration

f eHkg1k=0, where each eHk is generated by a �nite partition, with generic element denoted ehk:
De�nition 1 A positive supermartingale fSkg is active with activity  > 0 (under P) if

Pfh1 :
���� SkSk�1

� 1
���� �  jehk�1g �  

for almost all histories with Sk�1 > 0.

Fudenberg and Levine (1992, Theorem A.1) showed the following remarkable result:

Theorem 2 For every " > 0,  2 (0; 1), R > 1 there is a time K <1 such that

P (h1 : sup
k�K

Sk �
S0
R
) � 1� "

for every positive active supermartingale fSkg with activity  and S0 > 0.

The power of the theorem comes from the fact that the integer K, which depends on the

parameters ",  , and R is otherwise independent of the underlying stichastic process P . Intuitively,

Sk being a supermartingale is weakly decreasing in expectations. The assumption that it is active

says that it must be jumping signi�cantly up or down relative to Sk�1 with a signi�cant probability

each period. The theorem says that if fSkg is an active supermartingale, then there is a �xed time
K by which, with high probability, Sk drops below S0

R
and remains below this number for all future

periods.

Appendix B: Proof of Theorem 1

Theorem 3 Let v(�; �) be the in�mum of the set of all Nash equilibrium payo¤s of the long run

player in G1(�; �) after all histories ht1 2
1[
t=0

H t
1. Let (�r; �r)r=0;1::: be a sequence of replace-

ment probabilities and discount factors such that i) limr!1 �r = 1 ii) lim infr!1 1��r
1��r > 0. Then

lim infr!1 v(�r; �r) � u1(w) for all w 2 Wnfw0g.
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First we normalize the stage game payo¤s (without loss of generality) such that u1(a1; y) � 0
for any a1 2 A1 and y 2 Y . Fix w 2 Wnfw0g.

Appendix B.1: Bellman Equation as a Lower Bound

In order to �nd a lower bound on the set of Nash equilibrium payo¤s of player 1, we look at the

values of the program described below. This program calculates the payo¤s to player 1 from fully

mimicking type w. Since mimicking type w is an available strategy for player 1, his equilibrium

payo¤s are weakly higher than this payo¤. The payo¤ to player 1 from mimicking type w depends

on the actions chosen by player 2 throughout the play of the game. There is a restriction, however,

on player 2�s actions that they each be a best response to the equilibrium strategy of their opponent.

The only restriction the below program puts on player 2�s actions is that they be a best response

to some strategy of player 1, and this action is chosen to be the worst possible choice for player 1

supposing he is mimicking type w.

Note that because of the replacement possibiliy, player 1�s reputation for being a type w can

never be below � = (1 � �)��(w). Let L � 1
(1��)��(w) � 1, S � [0; L] and consider the following

Bellman equation V : S ! R:

V (L) = inf
�12W (L)

(1� �)v1(w; �2) + �Ew;�2fV (L0(y; �1; a2))g (10)

such that

1 : �2 2 B(�1)

2 : W (L) = f�001 2 �(A1)j 9�01 2 �(A1) s.t �001 =
1

1 + L
w +

L

1 + L
�01g

3 :
1

1 + L0(y; �1; a2)
=

1
1+L

�(yjw; a2)
�(yj�1; a2)

�+ (1� �)��(w) for �2(a2) > 0 and �(yj�1; a2) > 0:

In this program, L is the state variable of the value function. This is the likelihood ratio for

player 1 being a w type. If player 2 believes that player 1 is a w type with probability �, then

the likelihood ratio associated with this belief is L = 1��
�
. The �rst constraint in the program

says that player 2�s strategy �2 is a best response to some strategy �1 of player 1. The second

constraint says that this strategy, �1, should be feasible; in particular it should be consistent with

the fact that player 1 is a commitment type w with a probability � = 1
1+L
. The last condition is

the law of motion for the state variable. The likelihood ratio next period is obtained via Bayes�

rule considering player 1�s strategy to be �1. The objective function minimizes player 1�s expected

utility if he were to fully mimick type w given the conditions 1, 2 and 3. The termEw;�2 corrseponds

to expectation over the set of possible realizations of public outcomes (Y �A2) under the strategy
pro�le (w; �2). More precisely,
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Ew;�2fV (L0(y; �1; a2))g =
X

y2Y;a22�2

V (L0(y; �1; a2))�2(a2)�(yjw; a2)

In lemma 1 we show that the value function there exists policy functions �1 : S ! �(A1) and

�2 : S ! �(A2) such that V (L) = (1� �)v1(w; �2(L)) + �Ew;�2(L)fV (L0(y; �1(L); a2))g.

Lemma 1 There exists a policy function �1(L) and �2(L) such that:

V (L) = (1� �)v1(w;�2(L)) + �Ew;�2(L)fV (L0(y; �1(L); a2))g
s:t : �2(L) 2 B(�1(L))

�1(L) 2 W (L)

Proof. See Appendix D.
First observe that the policy functions �1(L) and �2(L) induce a Markovian stochastic process

with a transition function Q on the state variable L 2 S. Let the set of outcomes be O � Y �A2,
the set of t period outcomes be Ot � (Y � A2)

t, the set of in�nite sequence of outcomes be

O1 � (Y � A2)
1, and let f eOtg1t=0 be the �ltration on O1. Any L0 � 0 induces an admissible

stochastic process fLtg that is measurable with respect to the sigma algebra generated by fOtg1t=0
with the corresponding probability measure Q1 and that for �2(a2(Lt)) > 0 and �(yj�1; a2) > 0,

Lt+1(o
t+1 = (ot; y; a2)jot) =

1
1+Lt

�(yjw; a2)
�(yj�1(Lt); a2)

�+ (1� �)��(w).

We can alternatively express V (L) as an expected discounted sum of a sequence whose elements

are v1(w; �2(L)). In particular,

V (L) = (1� �)EQ1

" 1X
t=0

�tv1(w; �2(Lt))

#
L0 = L and fLtg is induced by L0 and Q1.

In the remaining of the paper, P corresponds to probabilities of events and E denotes expec-

tations under the probability measure Q1.

De�nition 2 Let f�tgt�0 be the stochastic process where

�t =
1

1 + Lt
for every t � 0:

In the following lemma we show that the lowest possible value of the value function V (L) on the

state space S constitutes a lower bound for player 1�s Nash equilibrium payo¤s after any history

of the repeated game with replacement probability 1� � and discount factor � (i.e. v(�; �)).
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Lemma 2 infL�L V (L) � v(�; �)

Proof. Note that V (L) is the payo¤ to player 1 of the strategy pro�le where he always plays w and
player 2 best responds to some belief about player 1�s strategy which doesn�t necessarily coincide

with player 1�s equilibrium strategy. This belief is chosen to minimize player 1�s payo¤, if he were to

always play w. So any equilibrium strategy pro�le has one more restriction on how player 2 forms

beliefs (they should coincide with the equilibrium strategies), and player 1�s available strategies

are chosen from a larger set. Since player 2 is choosing the beliefs to minimize player 1�s payo¤,

making the set where player 2 chooses her beliefs from smaller and enlarging player 1�s strategy

set may only increase player 1�s payo¤.

Appendix B.2: Adjusted process fStg is a supermartingale, and St "jumps" if v(w;�2(Lt)) <
u1(w):

De�nition of the adjusted process fStg and showing fStg is a supermartingale:

De�nition 3 Let f : [0; 1]! [(1� �)��(w); �+ (1� �)��(w)] be the function:

f(a) = �a+ (1� �)��(w)

If player 2 assigns probability a to player 1 being a type w at the end of some period t, then

in the beginning of period t+1 she assigns probability f(a) = �a+ (1� �)��(w) to player 1 being
a type w. Alternatively, if player 2 assigns probability �t+1 to his opponent being a type w in the

beginning of period t + 1, then she assigns probability f�1(�t+1) to her opponent being a type w

at the end of period t. In the following lemma we restate a well known fact that the expected

value of the likelihood ratio (for player 1 being a type w) at the end of any period t is equal to the

likelihood ratio at the beginning of t.

Lemma 3 E
h
1�f�1(�t+1)
f�1(�t+1)

j�t
i
= 1��t

�t

Proof. This is a well known fact. We give a proof for completeness. Fix ot 2 Ot. Using Equation
3 in the Bellman program 10, and replacing 1

1+L
with � we obtain for every ot+1 = (ot; o) 2 Ot+1

with P (ot+1jot) > 0 that (let o = (y; a2))

�t+1(o
t+1) = �

P (ot+1jot)�t(ot)
�(yj�1(Lt); a2)�2(a2)

+ (1� �)��(w):

Using the de�nition of f above, we get

f�1(�t+1) =
P (ot+1jot)�t

�(yj�1(Lt); a2)�2(a2)
; and
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1� f�1(�t+1)

f�1(�t+1)
=
�(yj�1(Lt); a2)�2(a2)� P (ot+1jot)�t

P (ot+1jot)�t
and

E

�
1� f�1(�t+1)

f�1(�t+1)
j�t
�
=

1� �t
�t

E

�
�(yj�1(Lt); a2)�2(a2)� P (ot+1jot)�t

P (ot+1jot)(1� �t)
j�t
�

=
1� �t
�t

X
o2O

�(yj�1(Lt); a2)�2(a2)� P (ot; ojot)�t
P (ot; ojot)(1� �t)

P (ot; ojot)

=
1� �t
�t

 P
o2O�(Y�A2) �(yj�1(Lt); a2)�2(a2)

(1� �t)
�
P

o2O P (o
t; ojot)�t

(1� �t)

!

=
1� �t
�t

�
1

(1� �t)
� �t
(1� �t)

�
=
1� �t
�t

:

This last step follows from the fact that
P

o2O�(Y�A2) �(yj�1(Lt); a2)�2(a2) = 1 and
P

o2O P (o
t; ojot) =

1.

In the following lemma, we attain an inequality that bounds how much in expectation the

likelihood ratio at the beinning of a period t + 1 can exceed the likelihood ratio at the beginning

of period t. Let

z =
(1� ��(w))

��(w)2

Lemma 4 E[Lt+1jLt] � Lt +
(1��)
�
z

Proof. For each number satisfying (1� �)��(w) � x � ��(w), we have f�1(x) = x�(1��)��(w)
�

� x,

hence

1� x

x
�
1�

�
x�(1��)��(w)

�

�
�
x�(1��)��(w)

�

� =
1� f�1(x)

f�1(x)
� 1� f�1(x)

f�1(x)
+
(1� �)

�
z.

For 1 > x > ��(w), we have

1� x

x
�
1�

�
x�(1��)��(w)

�

�
�
x�(1��)��(w)

�

� =
(1� �)(x� ��(w))

x(x� (1� �)��(w))
.

Replacing x by 1 in the nominator, and by ��(w) in the denominator yields

1� x

x
�
1�

�
x�(1��)��(w)

�

�
�
x�(1��)��(w)

�

� +
(1� �)(1� ��(w))

��(w)2�
=
1� f�1(x)

f�1(x)
+
(1� �)

�
z
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Hence,

Lt+1 =
1� �t+1

�t+1
� 1� f�1(�t+1)

f�1(�t+1)
+
(1� �)

�
z =

�(yj�1(Lt); a2)�2(a2)� P (ot+1jot)�t
P (ot+1jot)�t

+
(1� �)

�
z

(11)

E[Lt+1jLt] = E

�
1� �t+1

�t+1
j�t
�
� E

�
1� f�1(�t+1)

f�1(�t+1)
+
(1� �)

�
zj�t

�
=

1� �t
�t

+
(1� �)

�
z = Lt +

(1� �)

�
z;

proving the claim.

If there was no replacement possibility, then the likelihood ratio would be a martingale under

the measure induced by the commitment type strategy. In our model with replacements likelihood

ratio is not a martingale, however we still have a bound on how much the likelihood ratio on average

may increase. This bound becomes very tight when � is close to one (or when replacements are

very unlikely), and not tight when � is away from one (when replacements are very likely).

In the following, we make use of change of variables technique and introduce a time dependent

variable St that di¤ers from the likelihood ratio Lt by a time dependent term. For any real number

x, bxc denotes the largest integer less than or equal to x. Fix any m > 0. We specify the exact

value of m in de�nition 5.

De�nition 4 St =

8<: Lt +m� (1��
�
z)t if t � T �

j
m

( 1��
�
z)

k
ST (

1
2
)t�T if t > T

9=; ;

The process St resembles the process Lt for t � T . In fact as we show below using lemma 4 St
is a positive supermartingale.

Lemma 5 E[St+1jSt] � St

Proof. For t � T � 1, St+1 � St = Lt+1 � Lt � (1��� z). Hence, E[St+1 � StjSt] = E[Lt+1 � Lt �
(1��
�
z)jLt]. By using lemma 4 we obtain E[Lt+1�Lt� (1��� z)jLt] � 0. Hence E[St+1�StjSt] � 0.

To prove the claim for t � T , we observe that ST � 0 and then the result follows immediately.

To show that if v1(w; �2(Lt)) < u1(w), then St is expected to jump: This subsection

explores the relation between the expected amount by which the process St jumps at periods

where player 1 receives low payo¤s. Let p+(Lt�1) 2 �(O) be the probability distribution over
outcomes generated by the strategy pro�le (w; �2(Lt�1)). Remember that �1(Lt�1) 2 W (Lt�1),

hence there is a ��1(Lt�1) 2 �(A1) such that �1(Lt�1) = w�t�1 + ��1(Lt�1)(1 � �t�1). In words,

we can decompose the strategy �1(Lt�1) into two parts. The �rst part is the strategy of type w

multiplied by the probability that player 1 is a type w; and the second part is a strategy ��1(Lt�1)
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multiplied by the probability that player 1 is not a type w. Let p�(Lt�1) 2 �(O) be the probabil-
ity distribution function over outcomes generated under the strategy pro�le (��1(Lt�1); �2(Lt�1)).

In words, p�(Lt�1) is the probability distribution function over outcomes conditional on player

1�s type being di¤erent fromw. For notational convenience we sometimes use p+(o) to denote

the probability of outcome o when the state variable is Lt�1 when it doesn�t cause a confusion.

Note that the strategy pro�le (�1(Lt�1); �2(Lt�1)) generates the probability distribution function

p(Lt�1) � p+(Lt�1)�t�1 + p�(Lt�1)(1� �t�1) 2 �(O) over outcomes.
Let d(Lt�1) be the maximum di¤erence in the probabilities of the outcomes between p+(Lt�1)

and p(Lt�1). d(Lt�1) serves as a measure of how the probability distribution functions generated

by the commitment type strategy w and the strategy �1 are apart from eachother. In particular,

let

d(Lt�1) = max
o2O

jp+(o)� (�t�1p+(o) + (1� �t�1)p�(o))j, or (12)

d(Lt�1) = max
o2O

(1� �t�1)jp+(o)� p�(o)j.

Note that when the likelihood ratio L is very close to zero, � is close to one, and d(L) becomes

very close to zero. This is very intuitive since if player 1 is believed to be type w with a very

high probability, then the probability distribution function over outcomes generated by player 1�s

strategy will be very similar to the probability distribution over outcomes generated by type w.

The following lemma shows that player 1 receives at least his commitment payo¤ u1(w) at period

t � 1 if the player 2 believes that the probability distribution over outcomes at period t is very
close to the probability distribution over outcomes generated by type w.

Lemma 6 There exists � > 0 such that whenever d(Lt�1) < �, v1(w; �2(Lt�1)) � u1(w).

Proof. This follows from assumption 1. To be more precise, the set of best responses is upper

hemicontinous hence we can choose "1 > 0 su¢ ciently small so that

min
�22B(�1) for some �12�(A1) satisfying jj�1(L)�wjj<"1

v1(w;�2) � u1(w)

Assumption 1 and the �niteness of the stage game imply that for every " > 0, 9
 > 0 such that
d(L) < 
 implies that jj�1(L)� wjj < ". Now choose " = "1 and pick the corresponding 
 > 0. If

we set � = 
, then the claim is proven.

The following remark points out that if the reputation level is su¢ ciently high (or if the like-

lihood ratio is su¢ ciently close to zero), then the probability distribution function over outcomes

will be very close to the probability distribution function induced by the strategy of type w.

Remark 1 If Lt � (1 � �)�1 � 1 (or equivalently if �t � 1 � �), then d(Lt) < � by equation 12

above and by lemma 6 above v1(w; �2(Lt)) � u1(w).
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De�nition 5 Let m in de�nition 4 be equal to (1��)�1�1
2

> 0.

In the following development we show that if player 1 gets a payo¤ lower than his commitment

payo¤ u1(w), then the adjusted process S jumps by a non-trivial amount with a non-trivial prob-

ability. In particular, if v1(w; �2(Lt�1)) < u1(w) then P
�

St
St�1

� 1 � �(2=3) �jOj jSt�1
�
� (2=3) �jOj ,

or equilvalently that P
�

St
St�1

� 1 � �(2=3) �jOj jSt�1
�
< (2=3) �jOj implies v1(w;�2(Lt�1)) � u1(w).

Lemma 7 If d(Lt�1) > � then 9o 2 O such that p�(o)
p+(o)

� 1� �
jOj and p+(o) �

�
jOj ; and hence

P

�
p�(o)

p+(o)
� 1 � � �

jOj jLt�1
�
� �

jOj

Proof. If d(Lt�1) > � then by equation 12, maxo j(1��t�1)(p+(o)�p�(o))j > �. Since 1��t�1 � 1,
maxo j(p+(o) � p�(o))j > �. Let o1 2 O be an outcome such that j(p+(o1) � p�(o1))j > �. Either

p+(o1)� p�(o1) > � or p�(o1)� p+(o1) > �.

case 1) If p+(o1)� p�(o1) > �, then p+(o1) > � > �
jOj , and

p�(o1)
p+(o1)

� 1� � < 1� �
jOj .

case 2) If p�(o1)� p+(o1) > �, then
P

o2Onfo1g(p+(o)� p�(o)) > �, and hence

(jOj � 1) max
o2Onfo1g

(p+(o)� p�(o)) > �:

Let o2 � argmaxo2Onfo1gfp+(o)� p�(o)g, then p+(o2)� p�(o2) � �
jOj�1 >

�
jOj and so p+(o2) >

�
jOj ,

and p�(o2)
p+(o2)

� 1� �
jOj .

Note that P (ot�1; ojLt�1) = p+(Lt�1(o
t�1))(o) so we have P

�
p�(o)
p+(o)

� 1� �
jOj jLt�1

�
� �

jOj .

Lemma 7 shows that if the distribution over outcomes induced by strategies of type w and

strategies of all remaining types di¤er from eachother signi�cantly, then it is signi�cantly likely

that the likelihood ratio will jump down signi�cantly. We next prove a similar result for the

adjusted process St. If the distribution over outcomes induced by the strategy of type w and that

induced by the strategies of all remaining types di¤er signi�cantly (i.e. d(Lt�1) > �), then it is

signi�cantly likely (i.e. with probability at least (2=3) �jOj)that St will jump down signi�cantly (i.e.

will be multiplied by 1� (2=3) �jOj).

Lemma 8 If d(Lt�1) > � then P
�

St
St�1

� 1 � �(2=3) �jOj
�
� �

jOj > (2=3)
�
jOj .

Proof. Consider an outcome ot = (ot�1; o) for t � T ,

St(o
t)

St�1(ot�1)
=

Lt +m�
�
1��
�
z
�
t

Lt�1 +m�
�
1��
�
z
�
(t� 1)

=0@ 1��t
�t
+m�

�
1��
�
z
�
t

1��t�1
�t�1

+m�
�
1��
�
z
�
(t� 1)

1A �

0@ 1��t�1
�t�1

p�(Lt�1)(o)
p+(Lt�1)(o)

+m�
�
1��
�
z
�
(t� 1)

1��t�1
�t�1

+m�
�
1��
�
z
�
(t� 1)

1A
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The �rst two equalities follow from the de�nitions, and the last inequality is attained by the

following argument. Note that

1� �t
�t

� �(yj�1(Lt�1); a2)�2(a2)� P (otjot�1)�t�1
P (otjot�1)�t�1

+
(1� �)

�
z

from inequality 11. Since player 1 and player 2�s mixing probabilities are independent, and since

�1(Lt�1) = �t�1w + (1� �t�1)�
�
1(Lt�1), we have

�(yj�1(Lt�1); a2)�2(a2)� P (otjot�1)�t�1
P (otjot�1)�t�1

=
1� �t�1
�t�1

p�(Lt�1)(o)

p+(Lt�1)(o)
:

Therefore we get get the inequality by replacing 1��t
�t

+ m �
�
1��
�
z
�
t by 1��t�1

�t�1

p�(Lt�1)(o)
p+(Lt�1)(o)

+ m ��
1��
�
z
�
(t � 1). Note that d(Lt�1) > � implies that �t�1 < 1 � � by equation 12, and hence

Lt�1 > (1� �)�1 � 1 = 2m
Let o be the outcome that satis�es p�(o)

p+(o)
� 1� �

jOj and p+(o) �
�
jOj . Such an outcome exists by

lemma 7. We have
p�(o)

p+(o)
� 1 =

1��t�1
�t�1

p�(Lt�1)(o)
p+(Lt�1)(o)

1��t�1
�t�1

� 1 � � �

jOj (13)

Then, 0@ 1��t�1
�t�1

p�(Lt�1)(o)
p+(Lt�1)(o)

+m� (1��
�
z)(t� 1)

1��t�1
�t�1

+m� (1��
�
z)(t� 1)

1A �

0@ 1��t�1
�t�1

(1� �
jOj) +m

1��t�1
�t�1

+m

1A �

0@ 1��t�1
�t�1

(1� �
jOj) +

1��t�1
�t�1

1
2

1��t�1
�t�1

+
1��t�1
�t�1

1
2

1A =

�
1:5� �

jOj

�
1:5

= 1� (2=3) �jOj

The �rst inequality is attained by using inequality 13 to replace p�(Lt�1)(o)
p+(Lt�1)(o)

by 1� �
jOj , using the

fact that 1 � �
jOj < 1 and by adding (1��

�
z)(t � 1) to both the numerator and the denominator.

The second inequality follows from setting m = (1��)�1�1
2

, and using the fact that �t�1 < 1 � �

implies that 1��t�1
�t�1

> (1� �)�1 � 1 = 2m, and then replacing m with the larger number 1��t�1
�t�1

1
2
.

Since P (ot�1; ojot�1) = p+(Lt�1)(o) we have that P
�

St
St�1

� 1 � �(2=3) �jOj
�
� p+(Lt�1)(o) � �

jOj
when t � T and d(Lt�1) > �.

For t > T , St
St�1

� 1=2, so for � < 3jOj
4
we have P

�
St
St�1

� 1 � �(2=3) �jOj
�
� �

jOj . Hence,

P
�

St
St�1

� 1 � �(2=3) �jOj
�
� �

jOj > (2=3)
�
jOj when d(Lt�1) > � as desired.

In the following lemma we show that if the adjusted process St is not expected to jump down

(i.e. multiplied by 1� (2=3) �jOj)with a non-trivial probability ((2=3)
�
jOj) at time t, then player 2�s

play (�2(Lt�1)) gives player 1 at least his commitment payo¤ u1(w).

Lemma 9 If P
�

St
St�1

� 1 � �(2=3) �jOj
�
� (2=3) �jOj then v1(w; �2(Lt�1)) � u1(w):
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Proof. Suppose to the contrary that v1(w; �2(Lt�1)) < u1(w), then by lemma 6 we have d(Lt�1) >

�. Then using lemma 8 we have P
�

St
St�1

� 1 � �(2=3) �jOj
�
> (2=3) �jOj which is a contradiction.

Appendix B.3: Generating active supermartingales and the faster process eSk.
We de�ne an increasing sequence of stopping times f� kg1k=0 relative to fStg1t=0 and � as follows.

De�nition 6 Let  = (2=3) �
2jOj > 0, and set � 0 = 0. Let � k(o

1) = 1 whenever � k�1(o1) = 1.
If � k�1(o1) <1, let � k(o1) be the smallest integer t > � k�1(o

1) such that either:

Criterion 1 PQ(o
t�1) > 0 and PQ(o1 : St=St�1 � 1 � �2 jot�1) > 2 or

Criterion 2 St=S�k�1 � 1 �  .

If there is no such t that satis�es either Criterion 1 or 2, then set � k(o1) =1.
Let the process feSkg1k=0 be the stopped process with the stopping times f� kg1k=0 and with the

associated �ltration eot, i.e., eSk = S�k if � k <1 and eSk = 0 otherwise.
Lemma 10 The stochastic process feSkg1k=0 is a positive active supermartingale with activity  > 0
(under P ).

Proof. fStg is a positive supermatingale by lemma 5, f� kg1k=0 is a stopping time, so the stopped
process feSkg1k=0 is a positive supermartingale. We will show in the following development that
feSkg1k=0 has activity  , i.e., that P ���� eSkeSk�1 � 1

��� �  jeSk�1� �  when eSk�1 > 0.
If � k�1 =1, then eSk�1 = 0, hence the claim is true vacuously. Suppose � k�1 <1. If � k =1

then the claim is again true, so suppose � k <1.
Let e1 be the event that � k � 1 = � k�1. Then either Criterion 1 or 2 is used to pick � k.

Conditional on Criterion 2 being used to pick � k we have

P

 ����� eSkeSk�1 � 1
����� �  jeSk�1; e1;Criterion 2! �  

trivially. Conditional on Criterion 1 being used to pick � k, we have

P

 eSkeSk�1 � 1 � �2 jeSk�1; e1;Criterion 1
!
� 2 ;

and hence P
���� eSkeSk�1 � 1

��� �  jeSk�1; e1;Criterion 1� �  .

Let e2 be the event that � k � 1 6= � k�1 and S�k=S�k�1 � 1 �  . Then again trivially

P

 ����� eSkeSk�1 � 1
����� �  jeSk�1; e2! �  :
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Let e3 be the event that � k� 1 6= � k�1, S�k=S�k�1 � 1 �  . The fact that � k� 1 6= � k�1 implies

S�k�1=S�k�1 � 1 <  because otherwise Criterion 2 would have been satis�ed for � k � 1, and the
process would have stopped at � k � 1. We know that Criterion 1 is used to pick S�k , so

P

�
S�k
S�k�1

� 1 � �2 jS�k�1; e3
�
> 2 :

Note that
eSkeSk�1 = S�k

S�k�1
=

S�k
S�k�1

S�k�1
S�k�1

. So if S�k
S�k�1

� 1 � 2 and
S�k�1
S�k�1

< 1 +  , then
eSkeSk�1 =

S�k
S�k�1

S�k�1
S�k�1

< (1� 2 )(1 +  ) = 1�  � 2 2 < 1�  . Therefore

P

 ����� eSkeSk�1 � 1
����� �  jeSk�1; e3! > 2 >  :

Since the claim is true conditional on each of the above three events (e1, e2 and e3), and the three

events exhaust all possibilities, the claim is true unconditionally.

Lemma 11 If time t � T is omitted (not picked) by eS from S, then v1(w; �2(Lt)) � u1(w).

Proof. Note that if t � T is omitted (not picked) by eS from S then Criterion 1 of the 2 criteria

used to pick the stopping time is not true for t. Therefore P
�
St+1
St
� 1 � �2 jot

�
� 2 . Since

2 = 2=3 �
jOj , by lemma 9 we have v1(w;�2(Lt)) � u1(w) as desired.

Appendix B.4: Bounds on the value function by successive use of Theorem 2

In the following development, we will put bounds on the value function for di¤erent regions of

the state variable L. For a reminder, let�s express V (L) as the in�nite discounted sum of the

expected payo¤s of player 1, when he is mimicking type w, and player 2�s action at each period t

is determined by the policy function �2(Lt), and the stochastic process fLtg1t=0 follows Q1 de�ned
on the space of histories of outcomes O1, with an associated �ltration f eOtg1t=0. In particular,

V (L) = E

"
(1� �)

1X
s=0

�sv1(w; �2(Ls))

#
.

We start by putting a bound when L is very small, i.e., when the reputation level of player 1

is very close to 1. One thing to remember before we proceed is that, we restricted our state

space to [0; L], and V (L) is bounded, so v = infL�L V (L) exists and �1 < v < 1. Note

that if infL0�L V (L
0) = v � u1(w), then we have our desired result. So from hereon we assume

that v � u1(w). Moreover for the following development, we�ll make a working hypothesis that

v � (1� �)
PT=2�1

s=K�1 �
su1(w) + �T=2v.

Condition 1 (Working Hypothesis) v � (1� �)
PT=2�1

s=K�1 �
su1(w) + �T=2v.
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Let L0 = (1 � �)�1 � 1, L1 = 2L0,..., Lk = 2kL0, and let n be the integer such that L 2
(Ln�1; Ln].16 In the following development, we�ll partition the state space into intervals of the

form [0; L0], (L0; L1],..., (Ln�1; L], and put lower bounds on V (L) for each of these intervals. Also

for the following, we �x " > 0 and choose R = 2 in theorem 2, and pick the K whose existence is

claimed in the theorem. Let the process fStg be de�ned as in De�nition 4, stopping times f� kg
and the corresponding stopped times feStg be de�ned as in De�nition 6.
Claim 2 V (L) � E

"
(1� �)

 
minf�K�1;T=2�1g=NP

s=K�1
�su1(w)

!
+ �N+1V (LN+1)

#

Proof. For any t � T=2, if t is not picked by the stopping time, then v1(w;�2(Lt)) � u1(w). Until

time N , the process has stopped at most K � 1 times since N < �K . Therefore, the summation is

lower when we replace player 1�s payo¤ by 0 at exactly K � 1 periods, and if these K � 1 periods
are at the beginning of the sequence, at periods f0; 1; :::; K � 2g instead of some later periods,
delivering the desired inequality.

De�nition 7 We de�ne the following four events:

� E1 : �K � T=2 and eSK > eS0=2.
� E2 : �K > T=2:

� E3 : �K � T=2 and eSK � eS0=2.
� E4 � E3 : �K � T=2 and eSk � eS0=2 for every k � K.

Also for an event e, ec denotes the complement of e and let V (Lje) denote

E

"
(1� �)

1X
s=0

�sv1(w; �2(Ls))je
#
:

Claim 3

i) V (LjE1) � min
K�1�k�T=2

(1� �)

 
k�1X

s=K�1
�su1(w)

!
+ �kv

ii) V (LjE2) � (1� �)

0@ T=2�1X
s=K�1

�su1(w)

1A+ �T=2v

iii) V (LjE3) � min
K�1�k�T=2

(1� �)

 
k�1X

s=K�1
�su1(w)

!
+ �k inf

L0�L
2

V (L0)

16We can actually calculate the integer n, by using the inequalities that 2n�1L0 < L and 2nL0 � L.
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Proof. i) The event E1 says that the period t = �K at which the process stopped for the Kth

time is not larger than T=2, and eSK = St > eS0=2 = S0
2
.17 In such a case, using claim 2 we get

V (LjE1) � E

"
(1� �)

 
t�1X

s=K�1
�su1(w)

!
+ �tV (Lt+1)j�K = t

#
� (1� �)

 
t�1X

s=K�1
�su1(w)

!
+ �tv

� min
K�1�k�T=2

(1� �)

 
k�1X

s=K�1
�su1(w)

!
+ �kv:

ii) The event E2 says that the period t at which the process stopped Kth time is larger than

T=2. Then, using Claim 2 we get:

V (LjE2) � (1� �)

0@ T=2�1X
s=K�1

�su1(w)

1A+ �T=2v:

iii) The event E3 says that the period t at which the process stopped Kth time is not larger

than T=2, and eS�K � eS0=2, so St � S0
2
. For t � T=2, St � S0

2
implies Lt +m � t(1��

�
z) � L+m

2
.

Rearranging, we have Lt� L
2
� �m

2
+t(1��

�
z). Note that since t � T=2, we have �m

2
+t(1��

�
z) � 0,

hence Lt � L
2
. Then, using the bound in Claim 2 we get:

V (LjE3) � (1��)
 

t�1X
s=K�1

�su1(w)

!
+�tV (Lt) � min

K�1�k�T=2
(1��)

 
k�1X

s=K�1
�su1(w)

!
+�k inf

L0�L
2

V (L0):

Claim 4 Interval [0; L0]: For L � (1� �)�1 � 1, we have the following lower bound:

V (L) � (1� ")

24(1� �)

T=2�1X
s=K�1

�su1(w) + �T=2v

35+ "�K�1v:

Proof. By Theorem 2 and the fact that eSk is a positive supermartingale with activity  (by

Lemma 10) we deduce that P (eSk � eS0=2 for every k � K) > 1� ". The event eSk � eS0=2 for every
k � K is a subset of E2[E4, therefore P (E2[E4) > 1�". Now note that, conditional on the event
E4, during the �rst T=2 periods, the process stops at least K times, and let t be the Kth time the

process stops. At any time t0 such that T=2 � t0 � t, if t0 is not picked by the stopping process,

then v1(w; �2(Lt0)) � u1(w). If t0 is picked by the process, let�s say for the k0th time where k0 � K,

then by the de�nition of the event E4, eSk0 � eS0=2. The implication of this is St0 � S0=2, and

Lt0+m�t0(1��� z) � L+m
2
. Using t0 � T=2 yields Lt0 � L=2. Now notice that since L � (1��)�1�1,

Lt0 � (1��)�1�1
2

and therefore d(Lt0) < � by equation 12 and v1(w; �2(Lt0)) � u1(w) by lemma 6.

17Remember that �0 = 0, hence eS0 = S0.
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Therefore, conditional on E4, during the �rst T=2 periods, player 1 gets a payo¤ less than u1(w)

for at most K � 1 periods. Conditional on E2, there are less than K periods where the process

is stopped before T=2. Conditional on the complement of (E2 [ E4), during the �rst T=2 periods
(note that periods start from zero), the �rst time when the process is stopped for some k0th time

where k0 � K and eSk0 > eS0=2 occurs at some period t � T=2:Until period t, player 1�s payo¤s are

less than u1(w) at ost K � 1 times since a period t0 < t is either not picked by the process, or if

picked, then St0 > S0=2. We have therefore:

V (Lj(E2 [ E4)) � (1� �)

T=2�1X
s=K�1

�su1(w) + �T=2v,

V (Lj(E2 [ E4)c) � min
K�1�k�T=2

 
(1� �)

k�1X
s=K�1

�su1(w) + �kv

!
= �K�1v.

The last equality follows from the assumption that v < u1(w). Note that under Condition 1,

�K�1v � (1 � �)
PT=2�1

s=K�1 �
su1(w) + �T=2v. The total probabilty of E2 and E4 is at least 1 � ",

therefore we get:

V (L) � P (E2 [ E4)

24(1� �)

T=2�1X
s=K�1

�su1(w) + �T=2v

35+ (1� P (E2 [ E4))
�
�K�1v

�

� (1� ")

24(1� �)

T=2�1X
s=K�1

�su1(w) + �T=2v

35+ "�K�1v.

De�nition 8 Let Fm be a sequence de�ned recursively by Fm = (1 � ")�K�1minfF0; :::; Fm�1g +
"�K�1v for m � 1 and

F0 = (1� ")

24(1� �)

T=2�1X
s=K�1

�su1(w) + �T=2v

35+ "�K�1v.

Note that F0 � u1(w) because v � u1(w).18 Moreover Fm � u1(w) for every m � 0 from the

de�nition of the sequence.

Claim 5 Interval (Li; Li+1]: For L 2 (Li; Li+1], if Condition 1 holds true, then we have the

following lower bound:

V (L) � Fi+1 = (1� ")�K�1minfF0; F1; :::; Fig+ "�K�1v

18To see this more clearly, note that the sum of the coe¢ ecients that multiply period payo¤s and the continuation
payo¤ v is less than one, and period payo¤s are not more than u1(w) and v is less than u1(w).
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Proof. We�ll prove the claim by induction. E1, E2, E3 exhaust all possibilities, so P (E1[E2[E3) =
1, moreover by Theorem 2 we have P (E1) < ", therefore P (E2 [ E3) > 1� ".

Using claim 3, we have

i) V (LjE1) � min
K�1�k�T=2

(1� �)

 
k�1X

s=K�1
�su1(w)

!
+ �kv

ii) V (LjE2) � (1� �)

0@ T=2�1X
s=K�1

�su1(w)

1A+ �T=2v

iii) V (LjE3) � min
K�1�k�T=2

(1� �)

 
k�1X

s=K�1
�su1(w)

!
+ �k inf

L0�L
2

V (L0)

Note that V (LjEi) � �K�1v for i 2 f1; 2; 3g since v � u1(w).

For i = 0: V (LjE2) � F0 using the de�nition and the Condition 1. Hence we have V (LjE2) �

�K�1F0. We also have V (LjE3) � minK�1�k�T=2(1 � �)

�
k�1P

s=K�1
�su1(w)

�
+ �k infL0�L

2
V (L0) �

minK�1�k�T=2(1��)
�

k�1P
s=K�1

�su1(w)

�
+�kF0 using claim 4. Since F0 < u1(w), we have V (LjE3) �

�K�1F0. Hence we have V (L) � P (E2 [ E3)maxf�K�1v; �K�1F0g + P (E1)(�
K�1v). Combining

with the fact that P (E2 [ E3) > 1� " yields V (L) � (1� ")�K�1F0 + "�K�1v.

Assume the claim is true for all i � I. Then for i = I + 1, we �rst have V (LjE3) �

minK�1�k�T=2(1��)
�

k�1P
s=K�1

�su1(w)

�
+�k infL0�L

2
V (L0) � minK�1�k�T=2(1��)

�
k�1P

s=K�1
�su1(w)

�
+

�kminfF0; F1; :::; FIg by the induction hypothesis, and then V (LjE3) � �K�1minfF0; F1; :::; FIg by

the fact that F0 < u1(w). Second, we have V (LjE2) � (1� �)
 
T=2�1P
s=K�1

�su1(w)

!
+ �T=2v. Note that

under Condition 1, the de�nition of the sequence Fm = (1 � ")�K�1minfF0; :::; Fm�1g + "�K�1v

implies that Fm � (1 � �)

 
T=2�1P
s=K�1

�su1(w)

!
+ �T=2v for every m � 0. Combining the above

two lines, we get V (LjE2) � �K�1minfF0; F1; :::; FIg. Now using the fact that V (L) � P (E2 [
E3)maxf�K�1minfF0; F1; :::; FIg; �K�1vg+ P (E1)�

K�1v; and that P (E2 [ E3) � 1� ", we get:

V (L) � (1� ")�K�1minfF0; F1; :::; FIg+ "�K�1v

= FI+1

Proposition 1 Under Condition 1 we have:

v � ((1� ")�K�1)nF0 + "�K�1v

n�1X
s=0

((1� ")�K�1)s
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Proof. Suppose the Proposition is not true. Then collecting terms and rearranging, we get

v

"
1� "�K�1

n�1X
s=0

((1� ")�K�1)s � ((1� ")�K�1)n
�
(1� ")�T=2 + "�K�1

�#
<

(1� ")((1� ")�K�1)n(1� �)

T=2�1X
s=K�1

�su1(w)

() v <
(1� ")((1� ")�K�1)n(1� �)

PT=2�1
s=K�1 �

su1(w)

1� "�K�1
Pn�1

s=0 ((1� ")�K�1)s � ((1� ")�K�1)n
�
(1� ")�T=2 + "�K�1

� : (14)

Our �rst observation is that g(i) � (1�")((1�")�K�1)i(1��)
PT=2�1
s=K�1 �

su1(w)

1�"�K�1
Pi�1
s=0((1�")�

K�1)s�((1�")�K�1)i((1�")�T=2+"�K�1)
is a decreas-

ing function in i. Therefore, v < g(i) for every i � n.

The �rst step of the proof is to show that Fm � Fm�1, m = 0; 1; :::n. We will use induction. To

see this, let�s �rst consider m = 0 and m = 1. We can see that v < F0, F1 < F0 and v < F1 from

direct calculation, using inequality 14.Moreover,

F2 = (1� ")�K�1minfF1; F0g+ "�K�1v

= (1� ")�K�1F1 + "�K�1v (15)

= ((1� ")�K�1)2F0 + "�K�1v
1X
s=0

((1� ")�K�1)s

We can thus see that F2 � F1 (from the second line), as well as F2 > v using inequality 14. Now,

suppose by induction hypothesis that Fl � Fl�1, l = 3; :::;m. This implies

Fl = (1� ")�K�1Fl�1 + "�K�1v; l = 1; :::;m

and recursive substitution leads to

Fl = ((1� ")�K�1)lF0 + "�K�1v
l�1X
s=0

((1� ")�K�1)s > v by inequality 14 for every l = 1; :::;m

In particular, Fm > v. Therefore, Fm+1 = (1 � ")�K�1Fm + "�K�1v � Fm, proving the induction

step.

Finally, since Fm is a decreasing sequence, by recursive substitution we get:

Fn = ((1� ")�K�1)nF0 + "�K�1v

n�1X
s=0

((1� ")�K�1)s:
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On the other side since v = infL2S V (L), using claim 5 for every interval contained in S we get

v � minfF0; F1; :::; Fng and we have

v � ((1� ")�K�1)nF0 + "�K�1v

n�1X
s=0

((1� ")�K�1)s

which is a contradiction.

Claim 6 n� 1 < �[ln(1��)+ln(��(w))+ln((1��)�1�1)]
ln 2

Proof. since L = 1�(1��)��(w)
(1��)��(w) and L0 = (1� �)�1 � 1,

2n�1L0 � L =
1� (1� �)��(w)

(1� �)��(w)
<

1

(1� �)��(w)
, hence

n� 1 <
�[ln(1� �) + ln(��(w)) + ln((1� �)�1 � 1)]

ln 2
:

Note that the choice of � is independent of � and �, so we can do the same analysis for every

discount factor � and replacement probability �. Moreover, remember that we �xed " and picked

the K from Theorem 2, so the only variable that " a¤ects is K. Let fvrg be the sequence of
numbers, each corresponding to the in�mum of player 1�s Nash equilibrium payo¤s in a sequence

of repeated games parameterized by �r and �r. Let

mr = (1� ")�K�1r and C(�r; �r) = (1� �r)

0@Tr=2�1X
s=K�1

�sr

1A :

Then we have a sequence of inequalities,

vr � "�K�1r

 
n�1X
s=0

ms
r

!
vr +mn

r

h
(1� ")C(�r; �r)u1(w) + (1� ")�Tr=2r vr + "�K�1r vr

i
(16)

for every " > 0, where Tr = m
z

�r
1��r and K depends on " and neither n nor Tr depends on ".

Recollecting terms we have,

vr

�
1� mr"

1� "

1�mn
r

1�mr

�mn
r

�
(1� ")�Tr=2r + "�K�1r

��
� mn

r (1� ")C(�r; �r)u1(w).

Note that, if the replacement rate is constant along the sequence r, �r = � < 1 and Tr = T and

if �r ! 1 then we have lim�r!1
mn
r (1�")C(�r;�r)�

1�mr"
1�"

1�mnr
1�mr �m

n
r

�
(1�")�Tr=2r +"�K�1r

�� = T=2�(K�1)
(1�")T=2+"(K�1) . Note that the

limit points approach to one if � ! 1 (and hence if T ! 1). For the following, we will however
show that, even if the replacement rate is approaching to zero as the discount factor is approaching
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to one, vr in the limit is bounded below by u1(w). In particular assume that �r ! 1 and that

inf lim (1��r)
(1��r) > 0. We show in Appendix C that in this case

lim inf
r!1

vr � u1(w).

Note if Condition 1 is not true, then we have a tighter bound (a larger lower bound) for v then

inequality 16, hence lim infr!1 vr � u1(w):

Appendix C

Suppose lim infr!1 vr < u1(w). Then there exists a subsequence frkg of frg such that the subse-
quence fvrkg is convergent and that limk!1 vrk < u1(w). Rename the sequence to be frg. Now
we can pick a subsequence of the new sequence r, rk, such that either limk!1

1��
rk

1��
rk
= k� with

1 > k� > 0 or limk!1
1��

rk

1��
rk
= 1. We can choose this subsequence since lim infr!1 1��r

1��r > 0.

Rename this subsequence r again, and note that since this is a subsequence of the second sequence

we have limr!1 vr < u1(w). We will now prove that, on the contrary, along the sequence r,

limr!1 vr � u1(w). Fix " > 0. In the following, for any sequence of numbers xr, limxr denotes

limr!1 xr. Note that limmr = 1� ":

Rearranging inequality 16 we get:

vr

�
1� mr"

1� "

1�mn
r

1�mr

�mn
r

�
(1� ")�T=2r + "�K�1r

��
� mn

r (1� ")C(�r; �r)u1(w),

or:

vr

�
(1� �K�1r )

(1�mr)mn
r (1� ")

�
�
�Tr=2r +

"

1� "
�K�1r

�
+

"mr

(1� ")(1�mr)(1� ")

�
� C(�r; �r)u1(w):

Case 1: lim 1��r
1��r 2 (0;1) :

Claim 7 limC(�r; �r) = lim 1� �Tr=2r > 0.

Proof. First note that C(�r; �r) � (1 � �Tr=2r ) = (1 � �r)
K�2P
s=0

�sr and lim(1 � �r)
K�2P
s=0

�sr = 0, so

limC(�r; �r) = lim 1 � �Tr=2r . Moreover, lim �
1

1��r
r < 1 by L�Hopital�s rule and by lim 1��r

1��r > 0.
19Therefore lim 1� �Tr=2r > 0.

Claim 8 lim (1��K�1r )
(1�mr)mn

r (1�")
= 0 if " is su¢ ciently small.

19To see this, let yr = �
1

1��r
r . Taking logs gives ln yr = 1

1��r ln �r. Note that under case 1, lim d�r=d�r 2 (0;1)
and hence applying L�Hopital�s rule yields lim ln yr = lim

��1r
�d�r=d�r < 0 and hence lim yr < 1.
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Proof. lim (1��K�1r )
(1�mr)mn

r (1�")
= lim 1

(1�mr)(1�") lim
(1��K�1r )

mn
r

, and lim 1
(1�mr)(1�") =

1
(1�")" < 1. Let

(1��K�1r )
mn
r

= yr, then ln yr = ln(1 � �K�1r ) � n lnmr. Note that lim ln yr � limfln(1 � �K�1r ) +

ln(1� �r) ln(1� ") + (K � 1) ln �r ln(1� �r)g = �1 if " is su¢ ciently close to zero.20 Therefore,

lim yr = 0, and hence lim
(1��K�1r )

(1�mr)mn
r (1�")

= 0.

Claim 9 lim "mr

(1�")(1�mr)(1�") �
"
1�"�

K�1
r = 1 for each " > 0.

Proof. limmr = 1� " and lim "
1�"�

K�1
r = "

1�" , therefore the result follows.

Claim 10 lim vr � u1(w)

Proof. We �rst get for every " > 0, lim vr � limC(�r;�r)

lim 1��Tr=2r

u1(w) and noting that limC(�r; �r) =

lim 1� �Tr=2+1r , we conclude that lim vr � u1(w):

Case 2: lim 1��r
1��r =1 : This case is a bit more tricky.

Claim 11 lim (1��K�1r )
(1�mr)mn

r (1�")
1

C(�r;�r)
= 0 if " is su¢ ciently small.

Proof. lim (1��K�1r )
(1�mr)mn

r (1�")
1

C(�r;�r)
= lim 1

(1�mr)(1�") lim
(1��K�1r )
mn
rC(�r;�r)

and lim 1
(1�mr)(1�") =

1
(1�")" < 1.

Since C(�r; �r) = �K�1��Tr=2, lim sup Tr
2
(1��r) <1 and lim inf �Tr=2r = 1, lim sup (

1��K�1r )
C(�r;�r)

1
1��r <

1. Moreover if �r ! 1, then lim (1��r)
(1�")� ln(1��r)�

�(K�1) ln(1��r)
r

= 0 if " is su¢ ciently small.21 Therefore,

lim sup
(1��K�1r )
mn
rC(�r;�r)

= lim sup
(1��K�1r )
C(�r;�r)

1
1��r lim

(1��r)
(1�")� ln(1��r)�

�(K�1) ln(1��r)
r

= 0, and therefore lim (1��K�1r )
mn
rC(�r;�r)

=

0.

Claim 12 lim vr � u1(w).

Proof. Let�s �rst show that lim
"mr

(1�")(1�mr)(1�")�
�
�
Tr=2
r + "

1�" �
K�1
r

�
C(�r;�r)

= 1: Simpli�cation delivers that

"mr

(1�")(1�mr)(1�") �
�
�Tr=2r + "

1�"�
K�1
r

�
C(�r; �r)

= 1� 1� �K�1r�
1� �Tr=2�(K�1)r

� ;
and lim 1��K�1r�

1��Tr=2�(K�1)r

� = 0 delivering the �rst step. Since

lim
(1� �K�1r )

(1�mr)mn
r (1� ")

1

C(�r; �r)
= 0

20This step uses the fact that lim inf ln(1��
K�1
r )

ln(1��r) > 0.
21To see this, we take the log of the expression whose limit we are taking, and we get ln(1��r)+ln(1��r) ln(1�

") + (K � 1) ln(1� �r) ln �r. Or equivalently, ln(1� �r)[1 + ln(1� ") + ln �r]. The term within the square brackets
is positive for small " and �r close to one, and ln(1 � �r) goes to �1. Since this is the log of the expression, the
expression goes to zero.
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for small ", and

lim

"mr

(1�")(1�mr)(1�") �
�
�Tr=2r + "

1�"�
K�1
r

�
C(�r; �r)

= 1; so

lim vr � u1(w):

Appendix D

Proof of lemma 1
There exists a policy function �1(L) and �2(L) such that:

V (L) = (1� �)v1(w;�2(L)) + �Ew;�2(L)fV (L0(y; �1(L); a2))g
s:t : �2(L) 2 B(�1(L))

�1(L) 2 W (L)

Proof: Let�s de�ne the following

w(L) =

�
� 2 �(A1) : 9 �0 2 �(A1) s.t. � =

1

1 + L
w +

L

1 + L
�0
�

and

�(L) = f(�; �2) 2 �(A1)��(A2) : � 2 w(L) and �2 2 B(�)g

and
1

1 + L0(y; a2; L; �)
= �

1
1+L

�(yjw; a2)
�(yj�; a2)

+ (1� �)��(w)

We can reformulate the optimization problem as

V (L) = inf
(�;�2)2�(L)

f(1� �) v1(w; �2) + � Ew;�2 [V (L
0(y; a2; L; �))]g

Lemma 12 �(L) is nonempty, compact and uhc.

Proof. First, note that w(L) is compact. Nonemptiness is obvious. Next, since �(L) �
�(A1)��(A2), we just need to show closedness. Take a convergent sequence from �(L), (�n; �n2 )!
(�; �2). By de�nition, for each n, �n 2 w(L) and �n2 2 B(�n). Since w(L) is compact, � 2 w(L).
So, we are left to show that �2 2 B(�) but this follows from the u.h.c. of B(�), which is a
consequence of the Maximum Theorem. Finally, uhc follows from uhc of B(�).
However, to apply Theorem 9.6 in S&L we need lhc as well. So, we will generalize that result.

First of all, Let LSCb(X) = ff : X ! R : f is lsc and boundedg, where X is a metric space.
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Lemma 13 Let f : X ! R be bounded. Then, f is lsc () for any sequence fxng � X with

xn ! x and 8 � > 0, 9 N such that f(x)� f(xn) < �, 8 n � N .

Proof. Take a sequence fxng � X such that xn ! x 2 X. By lemma 2.39 in Aliprantis &

Border (A&B from now on), f 2 LSC(X) if and only if

lim inf
n

f(xn) � f(x)

)) Suppose not, that is, 9 � > 0 such that f(x) � f(xn) � � in�nitely often. Let fxnkg be such
a subsequence. Then, �K � f(xnk) � f(x) � �, 8 k. By Bolzano-Weierstrass, we can extract a
further subsequence, let�s call it ff(xnk)g as well, so that f(xnk)! z� but

z� � f(x)� � < f(x) � lim inf
n

f(xn)

thus reaching a contradiction.

(( Suppose by way of contradiction that lim infn f(xn) < f(x) and let � > 0 be such that

lim infn f(xn) < f(x) � �. By assumption, 9 N such that f(xn) > f(x) � �, 8 n � N but this

implies lim infn f(xn) � f(x)� �, which is a contradiction.

Lemma 14 The uniform limit of a sequence of lsc real-valued functions is lsc.

Proof. Let K > 0 be such that supx2X jf(x)j < K. Next, take a sequence fxng � X such

that xn ! x 2 X. Suppose ffng � LSC(X) is such that fn
unif�! f . Fix � > 0, then 9 N such that

sup
z2X

jfn(z)� f(z)j < �; 8 n � N

Furthermore, since fN is lhc, by lemma 13, there exists M such that fN(zm) � fN(zm) < �,

8 m �M , whenever zm ! z. So,

f(x)� f(xm) = [f(x)� fN(x)] + [fN(x)� fN(xm)] + [fN(xm)� f(xm)]

� jf(x)� fN(x)j+ [fN(x)� fN(xm)] + jfN(xm)� f(xm)j
� 3�

for anym �M . Since this is true 8 �, applying lemma 13 again, we can conclude that f 2 LSC(X).

Lemma 15 LSCb = ff 2 LSC(X) : f is boundedg is a complete metric space under the supnorm.

Proof. See page 74 in A&B together with lemmas 13 and 14.
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Lemma 16 If f; g 2 LSCb(X), then f + g 2 LSCb(X)

Proof. Take xn ! x, then

lim inf
n

[f(xn) + g(xn)] � lim inf
n

f(xn) + lim inf
n

g(xn)

� f(x) + g(x)

and the result follows from lemma 2.39 in A&B.

Lemma 17 Let � : X ) Y be a nonempty, uhc and compact-valued correspondence and f :

Graph(�)! R be lsc. De�ne V : X ! R by

V (x) = min
y2�(x)

f(x; y)

Then, V (�) is well-de�ned and lsc.

Proof. This is just a modi�cation of the proof of lemma 16.30 in A&B.

Lemma 18 If f 2 LSCb([0; �L]), then

(Mf)(�; �2; L) =

Z
Y�A2

f(L0(y; a2; L; �)) Q(�2; dy; da2)

is bounded and lsc, where

Q(�2; y; a2) = �(yjw; a2)�2(a2)

Proof. Boundedness is obvious. Next, let�s take a sequence (�n; �n2 ; L
n)! (�; �2; L). Then,

(Mf)(�; �2; L)� (Mf)(�n; �n2 ; L
n) �

j(Mf)(�; �2; L)� (Mf)(�; �n2 ; L)j+ [(Mf)(�; �n2 ; L)� (Mf)(�n; �n2 ; L
n)] (17)

= j(Mf)(�; �2; L)� (Mf)(�; �n2 ; L)j

+

Z
[f(L0(y; a2; L; �))� f(L0(y; a2; L

n; �n))] Q(�n2 ; dy; da2)

Let�s consider the �rst term on the rhs. Since jY �A2j <1 and �n2 ! �2, there must exist N such

that j(Mf)(�; �2)� (Mf)(�; �n2 )j < �
2
, 8 n � N . Next, since L0(�) is continuous in both � and L

and f is lsc, by lemma 13, 8 � > 0, 9 N 0 > 0 such that f(L0(y; a2; L; �))� f(L0(y; a2; L; �
n)) < �

2
,

8 n � N 0. Therefore,

(Mf)(�; �2; L)� (Mf)(�n; �n2 ; L
n) < �; 8 n � maxfN;N 0g
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and the same lemma implies that Mf is lsc.

Remark 2 We need Mf to be lsc in L as well to apply lemma 17.

We can now state the following result.

Theorem 4 De�ne the operator T on LSCb([0; �L]) by

(Tf)(L) = min
(�;�2)2�(L)

f(1� �)v1(w; �2) + � (Mf)(�; �2; L)g

Then, T : LSCb([0; �L])! LSCb([0; �L]) is well-de�ned and has a unique �xed point.

Proof. The fact that the operator is well-de�ned follows from the previous lemmas. For the

rest of the proof, we can just apply Blackwell�s theorem (see the proof of Theorem 9.6 in S&L).

Corollary 1 There exist policy functions (�(L); �2(L)) 2 �(L) such that

V (L) = (1� �) v1(w; �2(L)) + � Ew;�2(L) [V (L
0(y; a2; L; �(L)))]
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