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Abstract: We introduce a new notion of rational expectations equilibrium (REE)

called maximin rational expectations equilibrium (MREE), which is based on the maximin

expected utility (MEU) formulation. In particular, agents maximize maximin expected

utility conditioned on their own private information and the information that the equi-

librium prices generate. Maximin equilibrium allocations need not to be measurable with

respect to the private information of each individual and with respect to the information

that the equilibrium prices generate, as it is in the case of the Bayesian REE. We prove

that a maximin REE exists universally (and not generically as in Radner (1979) and Allen

(1981)), it is efficient and incentive compatible. These results are false for the Bayesian

REE.
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1 Introduction

In seminal papers, Radner (1979) and Allen (1981) prove the generic existence of a
rational expectations equilibrium (REE). Indeed, Kreps (1977) provides an example
that shows that REE may not exist universally. However, a careful examination
of Krep’s example of the nonexistence of the REE indicates that there is nothing
wrong with the REE concept other than the fact that we impose on agents the
Bayesian (subjective expected utility) decision doctrine. We show that replacing
the Bayesian expected utility by the maximin expected utility (MEU) leads to a
REE which turns out to be efficient and incentive compatible in Kreps’s example.
This poses the following questions that we will address in this paper:

Why should one dictate a priori a Bayesian expected utility maximization? Does
the replacement of the Bayesian doctrine with the MEU provide better outcomes?
Does the REE exist universally under the MEU decision making? Is it efficient
and incentive compatible? The Bayesian and the MEU formulations provide two
different expected utility functional forms; is the MEU formulation superior to the
Bayesian?

We introduce a new notion of REE which abandons the Bayesian decision mak-
ing adopted in the papers of Radner (1979) and Allen (1981). Under the Bayesian
decision making, agents maximize their subjective expected utilities conditioned on
their own private information and also on the information that the equilibrium prices
generate. The resulting equilibrium allocations are measurable with respect to the
private information of each individual and also with respect to the information the
equilibrium prices generate and clear the market for every state of nature.

Our non-expected utility reformulation of the rational expectations equilibrium
of Radner (1979) and Allen (1981) is based on the adoption of the MEU (see Gilboa
and Schmeidler (1989)). Specifically, in our new setup agents maximize their MEU
conditioned on their own private information and also on the information the equi-
librium prices have generated. In this setting the resulting maximin REE may
not be measurable with respect to the private information of each individual and
also with respect to the information that the equilibrium prices generate (contrary
to the Bayesian REE). Nonetheless, market clearing occurs for every state of nature.

An attempt to introduce non-expected utility into general equilibrium theory
was previously made by de Castro-Yannelis (2008). Specifically, de Castro-Yannelis
(2008) showed that by replacing the Bayesian (subjective expected utility) by the
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maximin expected utility, the conflict between efficiency and incentive compatibil-
ity ceases to exist. In this paper, we continue this line of research by introducing
non-expected utility into the rational expectations equilibrium.

The introduction of the MEU into the general equilibrium modeling, enables us
to prove that the maximin REE exists universally under the standard continuity
and concavity assumptions of the utility function. Furthermore, we show that the
maximin REE is incentive compatible and efficient. These results are false for the
Bayesian REE (see Kreps (1977) and Glycopantis-Yannelis (2005), p.31 and also
Example 9.1.1, p.43).

The paper is organized as follows: in Section 2 we introduce the notion of max-
imin REE. In Section 3 we compare the maximin REE with the Bayesian REE. In
particular, we show that in the Kreps’s example 3.4, where a REE does not exist,
a maximin REE does exist. Section 4 states the assumptions which guarantee the
existence of a maximin REE. Sections 5 and 6 prove the efficiency and the incentive
compatibility of the maximin REE. The related literature is discussed in Section
7. Some concluding remarks and open questions are collected in Section 8. The
appendix contains the proof of the existence of the maximin REE.

2 Differential information economy and maximin

REE

2.1 Differential information economy

We define the notion of a finite-agent economy with differential information. Let
Ω be the finite set of states of nature and F be an algebra on Ω. Let IR`

+ be
the commodity space and I be a set of n agents. A differential information
exchange economy E is a set

E = {(Ω,F); (Xi,Fi, ui, ei, πi) : i ∈ I = {1, . . . , n}},

where for all i ∈ I

- Xi : Ω→ 2IR
`
+ is agent i’random consumption set of each agent4.

4Throughout the paper, we consider for each i ∈ I and ω ∈ Ω, Xi(ω) to be the commodity

space, i.e., Xi(ω) = IR`
+, expect when additional assumptions on Xi are required.
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- Fi is a measurable partition5 of (Ω,F) denoting the private information of
agent i. The interpretation is as usual: if ω ∈ Ω is the state of nature that is
going to be realized, agent i observes EFi(ω) the element of Fi which contains
ω.

- a random utility function representing her (ex post) preferences:

ui : Ω× IR`
+ → IR

(ω, x) → ui(ω, x).

- a random initial endowment of physical resources represented by the function

ei : Ω → IR`
+.

We assume that ei is Fi-measurable and ei(ω) ∈ Xi(ω) for all ω ∈ Ω.

- πi is a probability on Ω, whose role will be clarified below. It is assumed that
πi(ω) > 0 for all ω ∈ Ω.

The structure above does not describe yet the preference of each agent. In
fact, we will consider two types of preferences: the Bayesian or Expected Utility
(EU) preferences (described in section 2.2 below) and the Maximin Expected Utility
preference (described in section 2.3). The above structure, including each agent’s
preference, is common knowledge for all agents.

As usual, we can interpret the above economy as a two time period (t = 1, 2)
model, since the ex ante stage (t = 0) does not play a role in rational expectation
theory. At the interim stage, t = 1, agent i only knows that the realized state belongs
to the event EFi(ω∗), where ω∗ is the true state at t = 2. With this information (or
with the information acquired through prices, as we discuss below), agents trade.
At the ex post stage (t = 2), agents execute the trades according to the contract
agreed in period t = 1, and consumption takes place.

We define a price vector p as a function from Ω to the simplex of IR`
+, denoted

by ∆, such that p(·) is F -measurable. Notice that since for each ω, p(ω) ∈ ∆, then
p(ω) 6= 0. This guarantees that p : Ω→ ∆ is a non-zero function.

Define for each price vector p, the budget set of agent i in state ω as follows:

Bi(ω, p(ω)) = {yi ∈ Xi(ω) : p(ω) · yi ≤ p(ω) · ei(ω)}.
5By an abuse of notation we will still denote by Fi the algebra that the partition Fi generates.
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In order to introduce the rational expectation notions in section 3, we need
the following notation. Let σ(p) be the smallest sub-algebra of F for which p is
measurable and let Gi = Fi ∨ σ(p) denote the smallest algebra containing both Fi
and σ(p).

A function x : I × Ω → IR`
+ is said to be a random consumption vector or

allocation if for each i ∈ I and ω ∈ Ω, xi(ω) ∈ Xi(ω). Define for all i ∈ I, the sets

LXi
= {xi : Ω→ IR`

+ : xi(ω) ∈ Xi(ω) for all ω ∈ Ω},
L̄Xi

= {xi ∈ LXi
: xi(·) is Fi−measurable}.

L̄REEXi
= {xi ∈ LXi

: xi(·) is Gi−measurable}.

Let LX =
∏

i∈I LXi
, L̄X =

∏
i∈I L̄Xi

and L̄REEX =
∏

i∈I L̄
REE
Xi

.

An allocation (i.e., x ∈ LX) is said to be feasible if∑
i∈I

xi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

2.2 Expected utility (EU)

We define now the (Bayesian or subjective expected utility) interim expected utility.
For each i, let (Ω,F , πi) be a probability space and Πi ⊂ F be any partition of Ω.
For any assignment xi : Ω → IR`

+, agent i’s interim expected utility function
with respect to Πi at xi in state ω is given by

vi(xi|Πi)(ω) =
∑
ω′∈Ω

ui(ω
′, xi(ω

′))πi(ω
′|ω),

where

πi(ω
′|ω) =

0 for ω′ /∈ EΠi(ω)
πi(ω

′)

πi

(
EΠi (ω)

) for ω′ ∈ EΠi(ω).

We can also express the interim expected utility using conditional probability as

vi(xi|Πi)(ω) =
∑

ω′∈EΠi (ω)

ui(ω
′, xi(ω

′))
πi(ω

′)

πi
(
EΠi(ω)

) .
In the applications below, the partition Πi will be the original partition Fi or,

more frequently, the partition generated by the prices, Gi = Fi ∨ σ(p).
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2.3 Maximin Expected Utility (MEU)

As before, let Πi ⊂ F be a partition of Ω. The maximin utility of each agent i with
respect to Πi of Ω is:

uΠi
i (ω, xi) = min

ω′∈EΠi (ω)
ui(ω

′, xi(ω
′)).

Whenever for each agent i the measurable partition Πi is his private information
Fi, then we do not use the superscript, i.e.,

ui(ω, xi) = min
ω′∈EFi (ω)

ui(ω
′, xi(ω

′)).

On the other hand, when we deal with the notion of rational expectations equi-
librium (according to which agents take into account also the information that the
equilibrium prices generate), then for each agent i the measurable partition Πi is Gi
and the maximin utility is defined as

uREEi (ω, xi) = min
ω′∈EGi (ω)

ui(ω
′, xi(ω

′)), where Gi = Fi ∨ σ(p).

As the reader can see, this corresponds to an interim notion and does not require
any expected utility representation. Therefore, we could have named it only maximin
preference instead of MEU. However, this interim preference may come from an ex
ante MEU, as defined by Gilboa and Schmeidler (1989), as we clarify below.

2.4 Motivating MEU preferences

We can introduce the MEU preferences defined above in a more intuitive way. For
this, let us consider again the standard Bayesian (subjective expected utility) pref-
erence defined above. Recall that we have assumed that the prior πi is defined on F .
What does justify this assumption? This is exactly the central tenet of the Bayesian
paradigm: the agent has a prior about everything that he ignores, that is, a prior
for all ω’s. However, the Bayesian paradigm has been the target of many criticisms
and it seems desirable to consider other paradigms. For this, let us make the weaker
assumption that the agent has a prior not over all events, but only about those
events that he can observe, that is, events measurable with respect to the private
information partition Fi. Although this assumption may yet be subject to criticism,
it is a weaker assumption and may be justified on the grounds that each agent, by
observing the occurrence of the events EFi(ω), could learn their likelihood.
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Therefore, it seems reasonable to assume that πi is the prior of each agent i ∈ I,
restricted to Fi, the private information of agent i. The ex ante preference �oi of
individual i can then be described as:6,7

f �oi g ⇔
∫

Ω

ui(ω, f(ω))dπi ≥
∫

Ω

ui(ω, g(ω))dπi for all f, g ∈ L̄Xi
.

This ex ante preference seems a completely standard EU preference. However,
as de Castro-Yannelis (2008) have noticed, these preferences are incomplete. To see
this, it is sufficient to observe that the preferences are capable of comparing only Fi-
measurable allocations. If the allocation h is not Fi-measurable, its integral

∫
h dπi

is not defined and, therefore, it is not possible for individual i to compare h with
any other allocations. In other words: neither f �oi h nor h �oi f hold for any allo-
cation f , which is the same as saying that the preference �oi is incomplete. As it was
discussed in de Castro-Yannelis (2008), individuals can complete their preferences
by adopting the maximin expected utility (MEU) of Gilboa and Schmeidler (1989).8

We now recall the formal definition of preferences due to de Castro-Yannelis (2008).

Let P denote the set of measures µ : F → [0, 1]. Define for each i, the following
set

Pi = {µ ∈ P : µ(A) = πi(A), for all A ∈ Fi}. (1)

Thus, Pi is the set of all extensions of πi from Fi to F , that is the set of all
probability measures defined in F that agree with πi in the event that individual i
is informed about. We now consider the preference �i which extends �oi from L̄Xi

to the set of all allocations, LXi
, i.e.,

f �i g ⇔ min
µ∈Pi

∫
Ω

ui(ω, f(ω)) dµ ≥ min
µ∈Pi

∫
Ω

ui(ω, g(ω)) dµ for all f, g ∈ LXi
. (2)

The preferences �i are complete. De Castro and Yannelis (2008) have proved

6We use the notation �o
i instead of the more standard �i for a reason that will become clear

in a moment.
7In this section, we will consider only ex ante preferences. The natural interim counterpart

of the ex ante maximin expected utility preference defined here is the maximin utility defined on

section 2.3.
8 We will actually consider a special case of Gilboa-Schmeidler’s preference: the one with the

richest set of possible priors. De Castro-Yannelis (2008) show that this specialization is important:

other preferences do not have the same incentive-compatibility property. See details in that paper.
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that the preferences �i given by (2) can be equivalently characterized by:

f �i g ⇔
∫

Ω

min
ω′∈EFi (ω)

ui(ω
′, f(ω′)) dπi

≥
∫

Ω

min
ω′∈EFi (ω)

ui(ω
′, g(ω′)) dπi for all f, g ∈ LXi

.

When we are interested in the notion of rational expectation equilibrium, we
need to change expression (1) since agents take into account also the information
that the equilibrium prices generate, Gi = Fi ∨ σ(p). Therefore, Pi defined in (1)
must be replaced by9

PREEi = {µ ∈ P : µ(A) = πi(A), for all A ∈ Gi}. (3)

Thus, PREEi is the set of all extensions of πi from Gi to F , that is the set of all
probability measure defined in F that agree with πi in the events that individual i
is informed about. Then, we consider the preference �REEi which extends �oi from
L̄REEXi

to the set of all allocations, LXi
, i.e.,

f �REEi g ⇔ min
µ∈PREE

i

∫
Ω

ui(ω, f(ω)) dµ ≥ min
µ∈PREE

i

∫
Ω

ui(ω, g(ω)) dµ for all f, g ∈ LXi
.

Similarly to (2) observe that the preferences �REEi given by the above expression
can be equivalently characterized by:

f �REEi g ⇔
∫

Ω

min
ω′∈EGi (ω)

ui(ω
′, f(ω′)) dπi

≥
∫

Ω

min
ω′∈EGi (ω)

ui(ω
′, g(ω′)) dπi for all f, g ∈ LXi

.

Now, as we said before, the interim specialization of this preference corresponds
to the maximin utility defined on section 2.3.

3 Maximin REE vs the Bayesian REE

3.1 Rational expectations equilibrium (REE)

Recall that σ(p) is the smallest sub-algebra of F for which p is measurable and
Gi = Fi ∨ σ(p) denotes the smallest algebra containing both Fi and σ(p). We shall

9Note that this definition requires πi to be defined on Gi instead of just Fi. However, the

justification (based on learning) given above for πi being defined on Fi also works for Gi.
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also condition the expected utility of the agents on Gi which produces a random
variable. The notion below is due to Radner (1979) and Allen (1981).

Definition 3.1 A price vector p and a feasible allocation x are said to be a rational

expectations equilibrium (REE) for the economy E if

(i) for all i the allocation xi(·) is Gi-measurable;

(ii) for all i and for all ω, xi(ω) ∈ Bi(ω, p(ω));

(iii) for all i and for all ω, xi maximizes the interim expected utility function

vi(xi|Gi)(ω) subject to Bi(ω, p(ω)).

Remark 3.2 Since, the REE is an interim solution concept, one should expect that

in condition (iii) above the budget set is interim, i.e.,∑
ω′∈EGi (ω)

p(ω′) · xi(ω′)
πi(ω

′)

πi (EGi(ω))
≤

∑
ω′∈EGi (ω)

p(ω′) · ei(ω′)
πi(ω

′)

πi (EGi(ω))
(4)

instead of

p(ω) · xi(ω) ≤ p(ω) · ei(ω). (5)

However, we show that (4) and (5) are equivalent. Indeed, since Gi = Fi∨σ(p), then

p(·) is Gi-measurable for all i ∈ I, as well as xi(·) (see condition (i)). Furthermore,

since for all i ∈ I, ei(·) is Fi-measurable and Fi ⊆ Gi, then ei(·) is Gi-measurable.

Therefore, for all ω ∈ Ω∑
ω′∈EGi (ω)

p(ω′) · xi(ω′)
πi(ω

′)

πi (EGi(ω))
= p(ω) · xi(ω) and

∑
ω′∈EGi (ω)

p(ω′) · ei(ω′)
πi(ω

′)

πi (EGi(ω))
= p(ω) · ei(ω).

This means that (4) is equivalent to (5).

The REE is an interim concept since agents maximize conditional expected utility
based on their own private information and also on the information that equilibrium
prices have generated. The resulting allocation clears the market for every state of
nature.

9



It is by now well known that a rational expectations equilibrium (REE), as
introduced in Radner (1979) may not exist. It only exists in a generic sense and
not universal. Moreover, it fails to be fully Pareto optimal and incentive compatible
and it is not implementable as a perfect Bayesian equilibrium of an extensive form
game (Glycopantis-Muir-Yannelis (2005)).

3.2 Maximin REE

We now define the notion of a maximin REE.

Definition 3.3 A price vector p and a feasible allocation x are said to be a max-

imin rational expectations equilibrium (MREE) for the economy E if:

(i) for all i and for all ω the allocation xi(ω) ∈ Bi(ω, p(ω));

(ii) for all i ∈ I and for all ω ∈ Ω, uREEi (ω, xi) = maxyi∈B∗i (ω,p) u
REE
i (ω, yi),

where

B∗i (ω, p) =
{
yi ∈ LXi

: p(ω′) · yi(ω′) ≤ p(ω′) · ei(ω′) for all ω′ ∈ EGi(ω)
}
.

Conditions (i) and (ii) indicate that each individual maximizes her maximin
expected utility conditioned on her private information and the information the
equilibrium prices have generated, subject to the budget constraint.

A free disposal REE or maximin REE is defined as before, except that the
feasibility of the allocations is defined with an inequality, i.e.,∑

i∈I

xi(ω) ≤
∑
i∈I

ei(ω) for all ω ∈ Ω.

Either a REE or a maximin REE are said to be (i) fully revealing if the price
function reveals to each agent all states of nature, (ii) partially revealing if the price
function reveals some but not all states of nature.

3.3 Relationship between the maximin REE and the Bayesian

REE

We now show that the notions of maximin REE and of REE seem to be not com-
parable as the following example (due to Kreps (1977)) indicates. In particular, in
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the Kreps’s example, which proves that the REE does not exist, we will show that a
maximin REE does exist. From this we can conclude that maximin REE and REE
are two different solution concepts.

Example 3.4 There10 are two agents, two commodities and two equally probable

states of nature Ω = {ω1, ω2}. The primitives of the economy are:

e1 =

((
3

2
,
3

2

)
,

(
3

2
,
3

2

))
F1 = {{ω1}, {ω2}};

e2 =

((
3

2
,
3

2

)
,

(
3

2
,
3

2

))
F2 = {{ω1, ω2}}.

The utility functions of agents 1 and 2 in states ω1 and ω2 are given as follows

u1(ω1, x1, y1) = log x1 + y1 u1(ω2, x1, y1) = 2 log x1 + y1

u2(ω1, x2, y2) = 2 log x2 + y2 u2(ω2, x2, y2) = log x2 + y2.

It is well known that for the above economy a rational expectations equilibrium

does not exist (see Kreps (1977)), however we will show below that a maximin REE

does exist.

The information generated by the equilibrium price can be either {{ω1}, {ω2}}
or {{ω1, ω2}}. In the first case the maximin REE coincides with the Bayesian

REE, therefore it does not exist. Thus, let us consider the case σ(p) = Ω, i.e.,

p(ω1) = p(ω2) = p and q(ω1) = q(ω2) = q.

Since for each ω, EG1(ω) = {ω}, agent 1 solves the following constraint maxi-

mization problems:

Agent 1 in state ω1:

max
x1(ω1),y1(ω1)

log x1(ω1) + y1(ω1) subject to

px1(ω1) + qy1(ω1) ≤ 3

2
(p+ q).

10We are grateful to T. Liu and L. Sun for having checked the computations of Example 3.4.
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Thus,

x1(ω1) =
q

p
y1(ω1) =

3

2

p

q
+

1

2
.

Agent 1 in state ω2:

max
x1(ω2),y1(ω2)

2 log x1(ω2) + y1(ω2) subject to

px1(ω2) + qy1(ω2) ≤ 3

2
(p+ q).

Thus,

x1(ω2) =
2q

p
y1(ω2) =

3

2

p

q
− 1

2
.

Agent 2 in the event {ω1, ω2} maximizes

min{2logx2(ω1) + y2(ω1); logx2(ω2) + y2(ω2)}.

Therefore, we can distinguish three cases:

I Case: 2logx2(ω1) + y2(ω1) > logx2(ω2) + y2(ω2). In this case, agent 2 solves

the following constraint maximization problem:

max logx2(ω2) + y2(ω2) subject to px2(ω1) + qy2(ω1) ≤ 3
2
(p + q) and px2(ω2) +

qy2(ω2) ≤ 3
2
(p+ q). Thus,

x2(ω2) =
q

p
y2(ω2) =

3

2

p

q
+

1

2
.

From feasibility it follows that p = q, and

(x1(ω1), y1(ω1)) = (1, 2) (x1(ω2), y1(ω2)) = (2, 1)

(x2(ω1), y2(ω1)) = (2, 1) (x2(ω2), y2(ω2)) = (1, 2).

Notice that 2logx2(ω1) + y2(ω1) = 2log2 + 1 > log1 + 2 = logx2(ω2) + y2(ω2).

II Case: 2logx2(ω1) + y2(ω1) < logx2(ω2) + y2(ω2). In this case, agent 2 solves

the following constraint maximization problem:

max 2logx2(ω1) + y2(ω1) subject to px2(ω1) + qy2(ω1) ≤ 3
2
(p+ q) and px2(ω2) +

qy2(ω2) ≤ 3
2
(p+ q) Thus,

x2(ω1) =
2q

p
y2(ω1) =

3

2

p

q
− 1

2
.
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From feasibility it follows that p = q, and

(x1(ω1), y1(ω1)) = (1, 2) (x1(ω2), y1(ω2)) = (2, 1)

(x2(ω1), y2(ω1)) = (2, 1) (x2(ω2), y2(ω2)) = (1, 2).

Clearly, as noticed above, 2log2 + 1 > log1 + 2. Therefore, in the second case

there is no maximin REE.

III Case: 2logx2(ω1) + y2(ω1) = logx2(ω2) + y2(ω2). In this case, agent 2

solves one of the following two constraint maximization problems:

max logx2(ω2)+y2(ω2) or max 2logx2(ω1)+y2(ω1) subject to px2(ω1)+qy2(ω1) ≤
3
2
(p+ q) and px2(ω2) + qy2(ω2) ≤ 3

2
(p+ q). In both cases, from feasibility it follows

that p = q, and

(x1(ω1), y1(ω1)) = (1, 2) (x1(ω2), y1(ω2)) = (2, 1)

(x2(ω1), y2(ω1)) = (2, 1) (x2(ω2), y2(ω2)) = (1, 2).

Hence, since 2logx2(ω1) + y2(ω1) = 2log2 + 1 > log1 + 2 = logx2(ω2) + y2(ω2),

there is no maximin REE in the third case.

Therefore, we can conclude that the unique maximin REE allocation is given by

(x1(ω1), y1(ω1)) = (1, 2) (x1(ω2), y1(ω2)) = (2, 1)

(x2(ω1), y2(ω1)) = (2, 1) (x2(ω2), y2(ω2)) = (1, 2).

Observe that the maximin REE bundles are not Fi-measurable.

Remark 3.5 It should be noted that in the above example whenever agents max-

imize a Bayesian (subjective) expected utility as Kreps showed, the REE either

revealing or non revealing does not exist. However, allowing agents to maximize a

non expected utility, i.e., the maximin expected utility, we showed that a maximin

REE exists. The example makes clear that the Bayesian choice of optimization

seems to impose a functional restriction on the utility functions which does not

allow agents to achieve the desired outcome. The functional form of the maximin

expected utility seems to be achieving what we want agents to accomplish, i.e., to

reach an equilibrium outcome. As we will see in the next section, this outcome is

incentive compatible and efficient.
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Remark 3.6 As we have already observed the maximin REE allocations may not be

Gi-measurable. However, if we assume strict concavity and Fi-measurability of the

random utility function of each agent, then the resulting maximin REE allocations

will be Gi- measurable, as the following proposition indicates.

Proposition 3.7 Let (p, x) be a maximin REE and Gi = Fi ∨ σ(p) for all i ∈ I.

Assume that for all i, (i) ui(·, y) is Gi-measurable for all y ∈ IR`
+ and (ii) ui(ω, ·) is

strictly concave for all ω ∈ Ω. Then xi(·) is Gi-measurable for all i ∈ I.

Proof: Assume on the contrary that there exist i ∈ I and a, b ∈ Ω such that
a ∈ EGi(b) and xi(a) 6= xi(b). Consider zi(ω) = αxi(a) + (1 − α)xi(b) for all
ω ∈ EGi(b), where α ∈ (0, 1), and notice that zi(·) is Gi-measurable. Moreover,

uREEi (b, zi) = min
ω∈EGi (b)

ui(ω, zi(ω)) = min
ω∈EGi (b)

ui(ω, αxi(a) + (1− α)xi(b))

Since ui(·, y) is Gi-measurable for all y ∈ IR`
+, from strict concavity of ui it follows

that

uREEi (b, zi) = ui(b, αxi(a) + (1− α)xi(b)) > αui(b, xi(a)) + (1− α)ui(b, xi(b))

= αui(a, xi(a)) + (1− α)ui(b, xi(b)) ≥ uREEi (b, xi).

Since (p, x) is a maximin REE it follows that zi /∈ B∗i (b, p), that is there exists a
state ωi ∈ EGi(b) such that

p(ωi) · zi(ωi) > p(ωi) · ei(ωi) ⇒ αp(ωi) · xi(a) + (1− α)p(ωi) · xi(b) > p(ωi) · ei(ωi).

Moreover, since p(·) and ei(·) are Gi-measurable and xi(ω) ∈ Bi(ω, p(ω)) for all ω

(see condition (i) in Definition 3.3), it follows that p(·) · ei(·) > p(·) · ei(·), which is

a contradiction. �

It was shown in Example 3.4 that the maximin and the Bayesian REE are

not comparable. We will show below that whenever the utility functions are Fi-
measurable, then any maximin REE is also a REE and vice versa. Note that in

Example 3.4, utility functions are not Fi-measurable and therefore Example 3.4

does not fulfill the assumptions of Lemma 3.8 below.

Lemma 3.8 Assume that for all i ∈ I and for all y ∈ IR`
+, ui(·, y) is Fi-measurable.

If (p, x) is a REE, then (p, x) is a maximin REE. The converse is also true if xi(·)
is Gi-measurable for all i ∈ I.
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Proof: All we need to show is that the maximin expected utility and the interim

expected utility coincide. Since for all i ∈ I and for all y ∈ IR`
+, ui(·, y) is Fi-

measurable and Fi ⊆ Gi, then ui(·, y) is Gi-measurable.

Moreover, since for each i ∈ I, xi(·) is Gi-measurable it follows that for all i ∈ I
and ω ∈ Ω, both maximin and interim utility function are equal to the ex-post

utility function. That is,

ui(ω, xi) = min
ω′∈EGi (ω)

ui(ω
′, xi(ω

′)) = ui(ω, xi(ω)) (6)

and

vi(xi|Gi)(ω) =
∑

ω′∈EGi (ω)

ui(ω
′, xi(ω

′))
πi(ω

′)

πi (EGi(ω))
= ui(ω, xi(ω)). (7)

From (6) and (7) it follows that for all i and ω, ui(ω, xi) = vi(xi|Gi)(ω). There-

fore, we can conclude that (p, x) is a maximin REE if and only if (p, x) is a Bayesian

REE. �

Remark 3.9 The above lemma remains true if we replace the Fi-measurability of

the allocations by the strict concavity of the random utility functions. This follows

by combining Proposition 3.7 and Lemma 3.8.

4 Existence of a Maximin REE

In this section we prove the existence of a maximin REE. It should be noted that

under the assumptions, which guarantee that a maximin REE exists, the Bayesian

REE need not exist. The following assumptions are needed:

(A.1) For every i ∈ I and ω ∈ Ω, Xi(ω) is a non-empty, convex and closed

subset of IR`
+;

(A.2) For every i ∈ I and ω ∈ Ω, the initial endowment ei(ω) belongs to the

interior of Xi(ω);
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(A.3) For every i ∈ I and ω ∈ Ω, the function ui(ω, ·) is continuous, concave

and strongly monotone.

Theorem 4.1 (Main Existence Theorem) : Assume that assumptions (A.1), (A.2)

and (A.3) hold, then there exists a maximin REE in E .

The following auxiliary theorem plays an important role in the proof of Theorem

4.1. The proofs of both theorems are in the appendix.

Theorem 4.2 Suppose that assumptions (A.1), (A.2) and (A.3) hold and that for

every i ∈ I and ω ∈ Ω, Xi(ω) is a compact set. Then, a free disposal maximin REE

exists.

4.1 Proof of the main existence theorem

For k ∈ IN , i ∈ I and ω ∈ Ω, let Xk
i (ω) be the set of all x ∈ Xi(ω) such that

∑̀
h=1

xh ≤ k
∑
ω∈Ω

∑̀
h=1

ehi (ω).

Assumption (A.1) implies that Xk
i (ω) is compact and convex; while assumption

(A.2) guarantees that it is also non empty for all k. Therefore, by the Auxiliary

Theorem 4.2 it follows that for every k, there exists a free disposal maximin REE,

i.e., there exists a sequence (pk, xk) ∈ LXk × L4, where for all i ∈ I,

LXk
i

= {xi : Ω→ IR`
+ : xi(ω) ∈ Xk

i (ω) for all ω ∈ Ω}

LXk =
∏
i∈I

LXk
i

L∆ = {p : Ω→ ∆ such that p(·) is F −measurable} ,
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such that for all k ∈ IN ,

(ik) for all i and ω, xki (ω) ∈ Bi(ω, p
k(ω)).

(iik) for all i ∈ I and ω ∈ Ω, uREEi (ω, xki ) = max
yi∈B∗i (ω,pk)

uREEi (ω, yi), where

B∗i (ω, p
k) =

{
yi ∈ LXk

i
: pk(ω′) · yi(ω′) ≤ pk(ω′) · ei(ω′) for all ω′ ∈ EGi(ω)

}
.

(iiik)
∑
i∈I

xki (ω) ≤
∑
i∈I

ei(ω) for all ω ∈ Ω.

Since for any i and k ∈ IN , the sequence (pk, xk) belongs to the compact set L∆×LXk ,

there exists a subsequence, still denoted by (pk, xk), which converges11 to (p∗, x∗).

We need to prove that (p∗, x∗) is a maximin REE. First of all, notice that p∗ ∈ L∆

and x∗ ∈ LX ; moreover from (ik) and (iiik) it follows that for every i ∈ I and

ω ∈ Ω, x∗i (ω) ∈ Bi(ω, p
∗(ω)) and

∑
i∈I x

∗
i (ω) ≤

∑
i∈I ei(ω), which actually becomes

an equality because of the monotonicity assumption, i.e.,
∑

i∈I x
∗
i (ω) =

∑
i∈I ei(ω).

To complete the proof, we must show that for all i ∈ I and ω ∈ Ω, uREEi (ω, x∗i ) =

maxyi∈B∗i (ω,p∗) u
REE
i (ω, yi) where

B∗i (ω, p
∗) =

{
yi ∈ LXi

: p∗(ω′) · yi(ω′) ≤ p∗(ω′) · ei(ω′) for all ω′ ∈ EGi(ω)
}
.

Assume, on the contrary, that there exist i ∈ I, ω̄ ∈ Ω and yi ∈ LXi
such that

uREEi (ω̄, yi) > uREEi (ω̄, x∗i ) and p∗(ω) · yi(ω) ≤ p∗(ω) · ei(ω) for all ω ∈ EGi(ω̄).

By the continuity of the maximin expected utility function and assumption (A.2),

without loss of generality we may consider an allocation yi such that

p∗(ω) · yi(ω) < p∗(ω) · ei(ω) for all ω ∈ EGi(ω̄). (8)

By continuity of the maximin expected utility function, there exists k̄ such that

for all k > k̄, uREEi (ω̄, yi) > uREEi (ω̄, xki ). Since for all k, (pk, xk) is a free disposal

maximin REE, from (iik) it follows that for all k > k̄, there exists ωk ∈ EGi(ω̄) such

that

pk(ωk) · yi(ωk) > pk(ωk) · ei(ωk).
11We mean that the sequence (pk, xk) converges pointwise to (p∗, x∗), that is for all i and ω,

p∗(ω) = lim
k→∞

pk(ω) and x∗i (ω) = lim
k→∞

xki (ω).
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Since Ω is finite, we may conclude that there exists ω ∈ EGi(ω̄) such that for infinitely

many k ∈ IN ,

pk(ω) · yi(ω) > pk(ω) · ei(ω).

Therefore, by limit arguments,

p∗(ω) · yi(ω) ≥ p∗(ω) · ei(ω),

which contradicts (8). Thus, (p∗, x∗) is a maximin REE and this completes the

proof. �

Remark 4.3 Assume that assumptions (A.1), (A.2) and (A.3) hold. If for all y ∈
IR`

+ and for all i ∈ I, ui(·, y) is Fi-measurable and ui(ω, ·) is strict concave, then

from Remark 3.9 and Theorem 4.1 it follows that there exists a REE in E . .

Remark 4.4 Notice that in Example 3.4, where the REE does not exist, not all

the above assumptions of Remark 4.3 are satisfied. In particular, the random utility

functions are not Fi-measurable. Hence, the Kreps’s example of the nonexistence of

a REE does not contradict Remark 4.3.

5 Efficiency of the maximin REE

We now define the notion of maximin Pareto optimality and we will prove that any

maximin REE is maximin Pareto optimal.

Definition 5.1 A feasible allocation x is said to be maximin efficient (or maximin

Pareto optimal) with respect to information structure Π, if there do not exist a state

ω̄ and an allocation y ∈ LX such that

(i) uΠi
i (ω̄, yi) > uΠi

i (ω̄, xi) for all i ∈ I and
(ii)

∑
i∈I

yi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

Proposition 5.2 If for any i ∈ I, and t ∈ R`
+, ui(·, t) is Fi-measurable12, then any

maximin REE allocation is maximin efficient.

12Notice that the measurability assumption of the utility does not imply that the maximin utility

coincides with the ex post one, since the allocation may not be measurable.
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Proof: Let (p, x) be a maximin REE and notice that since agents take into account

the information that the equilibrium price have generated, then the private informa-

tion of each agent is Gi = Fi ∨ σ(p). Thus, for each i ∈ I, Πi = Gi and uΠ
i = uREEi .

Assume to the contrary that x is not maximin efficient, that is, there exist a state

ω̄ and an allocation y ∈ LX such that

(i) uREEi (ω̄, yi) > uREEi (ω̄, xi) for all i ∈ I and

(ii)
∑
i∈I

yi(ω) =
∑
i∈I

ei(ω) for all ω ∈ Ω.

From condition (i) it follows that for all i ∈ I, yi /∈ B∗i (ω̄, p), that is there exists

a state ωi ∈ EGi(ω̄) such that p(ωi) · yi(ωi) > p(ωi) · ei(ωi). Consider, the coalition

S defined as follows:

S = {i ∈ I : p(ω̄) · yi(ω̄) ≤ p(ω̄) · ei(ω̄)}.

If S is empty, then p(ω̄) · yi(ω̄) > p(ω̄) · ei(ω̄) for all i ∈ I and hence

p(ω̄)
∑
i∈I

yi(ω̄) > p(ω̄)
∑
i∈I

ei(ω̄),

which contradicts condition (ii). On the other hand, if S 6= ∅, then for all i ∈ S,

consider the constant allocation hi such that hi(ω) = yi(ω̄) for all ω ∈ EGi(ω̄).

Since p(·) and ei(·) are Gi-measurable, it follows that hi(ω) ∈ Bi(ω, p(ω)) for all

ω ∈ EGi(ω̄), that is hi ∈ B∗i (ω̄, p), and hence

uREEi (ω̄, hi) ≤ uREEi (ω̄, xi) < uREEi (ω̄, yi),

because (p, x) is a maximin REE. Moreover, since ui(·, y) is Gi-measurable, it follows

that

ui(ω̄, yi(ω̄)) = ui(ω, yi(ω̄)) = uREEi (ω̄, hi) < uREEi (ω̄, yi) ≤ ui(ω̄, yi(ω̄)),

which is clearly a contradiction. Thus, x is maximin efficient. �

6 Incentive Compatibility of the maximin REE

We now recall the notion of coalitional incentive compatibility of Krasa-Yannelis

(1994).
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Definition 6.1 An allocation x is said to be coalitional incentive compatible (CIC)

if the following does not hold: there exist a coalition S and two states a and b such

that

(i) EFi(a) = EFi(b) for all i /∈ S,
(ii) ei(a) + xi(b)− ei(b) ∈ IR`

+ for all i ∈ S, and
(iii) ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)) for all i ∈ S.

In order to explain what incentive compatibility means in an asymmetric infor-

mation economy, let us consider the following two examples13.

Example 6.2 Consider an economy with two agents, three equally probable states

of nature, denoted by a, b and c, and one good per state denoted by x. The primitives

of the economy are given as follows:

u1(·, x1) =
√
x1; e1(a, b, c) = (20, 20, 0); F1 = {{a, b}; {c}}.

u2(·, x2) =
√
x2; e2(a, b, c) = (20, 0, 20); F2 = {{a, c}; {b}}.

Consider the following risk sharing (Pareto optimal) redistribution of initial en-

dowment:

x1(a, b, c) = (20, 10, 10)

x2(a, b, c) = (20, 10, 10).

Notice that the above allocation is not incentive compatible. Indeed, suppose

that the realized state of nature is a, agent 1 is in the event {a, b} and she re-

ports c, (observe that agent 2 cannot distinguish between a and c). If agent 2

believes that c is the realized state of nature as agent 1 has claimed, then she

gives her ten units. Therefore, the utility of agent 1, when she misreports, is

u1(a, e1(a) + x1(c) − e1(c)) = u1(a, 20 + 10 − 0) =
√

30 which is greater than

u1(a, x1(a)) =
√

20, the utility of agent 1 when she does not misreport. Hence, the

allocation x1(a, b, c) = (20, 10, 10) and x2(a, b, c) = (20, 10, 10) is not incentive

compatible. Similarly, one can easily check that when a is the realized state of na-

ture, agent 2 has an incentive to report state b and benefit.

13The reader is also referred to Krasa-Yannelis (1994), Koutsougeras-Yannelis (1993) and

Podczeck-Yannelis (2008) for an extensive discussion of the Bayesian incentive compatibility in

asymmetric information economies.
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In order to make sure that the equilibrium contracts are stable, we must insist

on a coalitional definition of incentive compatibility and not an individual one. As

the following example shows, a contract which is individual incentive compatible

may not be coalitional incentive compatible and therefore may not be viable.

Example 6.3 Consider an economy with three agents, two good and three equiprob-

able states of nature Ω = {a, b, c}. The primitives of the economy are given as

follows: for all i = 1, 2, 3, ui(·, xi, yi) =
√
xiyi and

F1 = {{a, b, c}}; e1(a, b, c) = ((15, 0); (15, 0); (15, 0)).

F2 = {{a, b}, {c}}; e2(a, b, c) = ((0, 15); (0, 15); (0, 15)).

F3 = {{a}, {b}, {c}}; e3(a, b, c) = ((15, 0); (15, 0); (15, 0)).

Consider the following redistribution of the initial endowments:

x1(a, b, c) = ((8, 5), (8, 5), (8, 13))

x2(a, b, c) = ((7, 4), (7, 4), (12, 1)) (9)

x3(a, b, c) = ((15, 6), (15, 6), (10, 1)).

Notice that the only agent who can misreport either state a or b to agents 1 and

2 is agent 3. Clearly, agent 3 cannot misreport state c since agent 2 would know

it. Thus, agent 3 can only lie if either state a or state b occurs. However, agent 3

has no incentive to misreport since she gets the same consumption in both states a

and b. Hence, the allocation (9) is individual incentive compatible, but we will show

that it is not coalitional incentive compatible. Indeed, if c is the realized state of

nature, agents 2 and 3 have an incentive to cooperate against agent 1 and report b

(notice that agent 1 cannot distinguish between b and c). The coalition S = {2, 3}
will now be better off, i.e.,

u2(c, e2(c) + x2(b)− e2(b)) = u2(c, (0, 15) + (7, 4)− (0, 15))

= u2(c, (7, 4)) =
√

28 >
√

12 = u2(c,x2(c))

u3(c, e3(c) + x3(b)− e3(b)) = u3(c, (15, 0) + (15, 6)− (15, 0))

= u3(c, (15, 6)) =
√

90 >
√

10 = u3(c,x3(c)).

In Example 6.2 we have constructed an allocation which is Pareto optimal but

it is not individual incentive compatible; while in Example 6.3 we have shown that
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an allocation, which is individual incentive compatible, need not be coalitional in-

centive compatible.

In view of Examples 6.2 and 6.3, it is easy to understand the meaning of Defini-

tion 6.1. An allocation is coalitional incentive compatible if no coalition of agents S

can cheat the complementary coalition (i.e., I \S) by misreporting the realized state

of nature and make all its members better off. Notice that condition (i) indicates

that coalition S can only cheat the agents not in S (i.e., I \ S) in the states that

the agents in I \ S cannot distinguish. If S = {i} then the above definition reduces

to individual incentive compatibility.

6.1 Maximin Incentive Compatibility

In this section we will prove that the maximin REE is incentive compatible. To this

end we need the following definition of maximin coalitional incentive compatibility,

which is an extension of the Krasa-Yannelis (1994) definition to incorporate maximin

preferences (see also de Castro-Yannelis (2008)).

Definition 6.4 A feasible allocation x is said to be maximin coalitional incentive

compatible (MCIC) with respect to information structure Π, if the following does not

hold: there exist a coalition S and two states a and b such that

(i) EΠi(a) = EΠi(b) for all i /∈ S,
(ii) ui(a, ·) = ui(b, ·) for all i /∈ S,
(iii) ei(a) + xi(b)− ei(b) ∈ IR`

+ for all i ∈ S, and
(iv) uΠi

i (a, yi) > uΠi
i (a, xi) for all i ∈ S,

where for all i ∈ S,

(∗) yi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

According to the above definition, an allocation is said to be maximin coalitional

incentive compatible if it is not possible for a coalition to misreport the realized state

of nature and have a distinct possibility of making its members better off in terms of
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maximin expected utility. Notice that in addition to Definition 6.1 we require that

agents in the complementary coalition to have the same utility in states a and b that

they cannot distinguish. Obviously, if S = {i} then the above definition reduces to

individual incentive compatibility.

Remark 6.5 Example 6.2 shows that whenever agents use the Bayesian expected

utility an allocation may not be incentive compatible. We now show that it is not

the case when agents use the maximin expected utility. Precisely, if agents take

into account the worse possible state that can occur, then the allocation xi(a, b, c) =

(20, 10, 10) for i = 1, 2 in Example 6.2, is maximin incentive compatible. Indeed, if

a is the realized state of nature, agent 1 does not have an incentive to report state

c and benefit, because when she misreports she gets:

u1(a, y1) = min{u1(a, e1(a) + x1(c)− e1(c));u1(b, x1(b))} = min{
√

30,
√

10} =
√

10.

When agent 1 does not misreport, she gets:

u1(a, x1) = min{u1(a, x1(a));u1(b, x1(b))} = min{
√

20,
√

10} =
√

10.

Consequently agent 1 does not gain by misreporting contrary to the subjective

expected utility, as we saw in Example 6.2. Similarly, one can easily check that

agent 2, when a is the realized state of nature, does not have an incentive to report

state b and benefit. Indeed, if the realized state of nature is a, agent 2 is in the event

{a, c}. If agent 2 reports the false event {b} then her maximin expected utility does

not increase since

u2(a, y1) = min{u2(a, e2(a) + x2(b))− e2(b);u2(c, x2(c))} = min{
√

20 + 10− 0,
√

10} =

=
√

10 = min{
√

20,
√

10} = u2(a, x2).

Remark 6.6 Condition (ii) of Definition 6.4 does not necessarily mean that for all

i /∈ S and y ∈ R`
+, ui(·, y) is Πi-measurable. Indeed it may be the case that there

exists ω ∈ EΠi(a) \ {a, b} such that ui(ω, ·) 6= ui(a, ·) = ui(b, ·). Moreover, condition

(ii) is not required for each state, but only for the realized state of nature which

the members of S may misreport. Observe that Definition 6.4 implicity requires

that the members of the coalition S are able to distinguish between a and b; i.e.,

a /∈ EΠi(b) for all i ∈ S. One could replace condition (i) by EΠi(a) = EΠi(b) if and

only if i /∈ S.
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Lemma 6.7 Condition (iv) and (∗) in the Definition 6.4, imply that for all i ∈ S,

ui(a, xi(a)) = min
ω∈EΠi (a)

ui(ω, xi(ω)) = uΠi
i (a, xi).

Proof: Assume, on the contrary, there exist an agent i ∈ S and a state ω1 ∈
EΠi(a) \ {a} such that uΠi

i (a, xi) = ui(ω1, xi(ω1)) = minω∈EΠi (a) ui(ω, xi(ω)).

Notice that

uΠi
i (a, yi) = min

ω∈EΠi (a)\{a}
{ui(a, ei(a) + xi(b)− ei(b));ui(ω, xi(ω))}.

If, ui(a, ei(a) + xi(b) − ei(b)) = ui(a, yi(a)) = uΠi
i (a, yi), then in particular

ui(a, yi(a)) ≤ ui(ω1, xi(ω1)) = uΠi
i (a, xi). This contradicts (iv). On the other hand,

if there exists ω2 ∈ EΠi(a) \ {a} such that ui(ω2, xi(ω2)) = uΠi
i (a, yi), then in partic-

ular uΠi
i (a, yi) = ui(ω2, xi(ω2)) ≤ ui(ω1, xi(ω1)) = uΠi

i (a, xi). This again contradicts

(iv). �

6.2 Comparison between maximin CIC and CIC

Proposition 6.8 If x is CIC, then it is also maximin CIC. The converse may not

be true.

Proof: Let x be a CIC and assume on the contrary that there exist a coalition S

and two states a and b such that14

(i) EFi(a) = EFi(b) for all i /∈ S,
(ii) ui(a, ·) = ui(b, ·) for all i /∈ S,
(iii) ei(a) + xi(b)− ei(b) ∈ IR`

+ for all i ∈ S, and
(iv) ui(a, yi) > ui(a, xi) for all i ∈ S,

where for all i ∈ S,

14Instead of Fi, we can use any structure Πi. This means that if in the Definition 6.1 we use Πi

instead of Fi, then we would have maximin CIC with respect to Πi. The proof is the same with

the obvious adaptations.
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yi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

Notice that from (iv) and Lemma 6.7 it follows that for all i ∈ S,

ui(a, ei(a) + xi(b)− ei(b)) = ui(a, yi(a)) ≥ ui(a, yi) > ui(a, xi) = ui(a, xi(a)).

Hence x is not CIC, which is a contradiction. For the converse, we construct the

following counterexample. Consider the economy, described in Example 6.2, with

two agents, three equally probable states of nature, denoted by a, b and c, and one

good per state denoted by x. Assume that

u1(·, x1) =
√
x1; e1(a, b, c) = (20, 20, 0); F1 = {{a, b}; {c}}.

u2(·, x2) =
√
x2; e2(a, b, c) = (20, 0, 20); F2 = {{a, c}; {b}}.

Consider the allocation

x1(a, b, c) = (20, 10, 10)

x2(a, b, c) = (20, 10, 10).

We have already noticed that such an allocation is not Bayesian incentive com-

patible (see Example 6.2), but it is maximin CIC (see Remark 6.5). �

6.3 The Maximin REE is maximin incentive compatible

Proposition 6.9 Any maximin REE is maximin coalitional incentive compatible.

Proof: Let (p, x) be a maximin REE. Since agents take into account the information

generated by the equilibrium price p, the private information of each individual i

is given by Gi = Fi ∨ σ(p). Thus, for each agent i ∈ I, Πi = Gi and uΠi
i = uGii .

Assume on the contrary that (p, x) is not maximin CIC. This means that there exist

a coalition S and two states a, b ∈ Ω such that

(i) EGi(a) = EGi(b) for all i /∈ S,
(ii) ui(a, ·) = ui(b, ·) for all i /∈ S,
(iii) ei(a) + xi(b)− ei(b) ∈ IR`

+ for all i ∈ S, and

(iv) uREEi (a, yi) > uREEi (a, xi) for all i ∈ S,
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where for all i ∈ S,

yi(ω) =

{
ei(a) + xi(b)− ei(b) if ω = a

xi(ω) otherwise.

Notice that since (p, x) is a maximin REE, it follows from (iv) that for all i ∈ S
there exists a state ωi ∈ EGi(a) such that

p(ωi) · yi(ωi) > p(ωi) · ei(ωi) ≥ p(ωi) · xi(ωi).

By the definition of yi, it follows that for all i ∈ S, ωi = a, that is p(a) · yi(a) >

p(a) · ei(a), and hence p(a) · [xi(b)− ei(b)] > 0. Furthermore15, condition (i) implies

that p(a) = p(b) and hence p(b) · xi(b) > p(b) · ei(b). This contradicts the fact that

(p, x) is a maximin REE and therefore xi(b) ∈ Bi(b, p(b)). �

Corollary 6.10 Any maximin REE is maximin individual incentive compatible.

Remark 6.11 It should be noted that the maximin REE in Example 3.4 is coali-

tional incentive compatible. Indeed if state ω1 occurs and agent 1 announces ω2,

then

u1(ω1, e
1
1(ω1)+x1(ω2)−e1

1(ω2), e2
1(ω1)+y1(ω2)−e2

1(ω2)) = log2+1 < 2 = u1(ω1, x1(ω1), y1(ω1)).

On the other hand, if state ω2 occurs and agent 1 announces ω1, then

u1(ω2, e
1
1(ω2)+x1(ω1)−e1

1(ω1), e2
1(ω2)+y1(ω1)−e2

1(ω1)) = 2 < 2log2+1 = u1(ω2, x1(ω2), y1(ω2)).

Therefore, the unique maximin REE in Example 3.4 is maximin CIC.

7 Related literature

To the best of our knowledge no universal existence and incentive compatible re-

sults have been obtained for the maximin rational expectations equilibrium. It is

well known by now that the Bayesian REE as formulated by Radner (1979) and

15Notice that for all i, σ(p) ⊆ Gi = Fi ∨ σ(p). Thus, for all i, p(·) is Gi-measurable. Therefore,

condition (i) implies that p(a) = p(b).
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Allen (1981) it only exists generically and it may not be incentive compatible or

efficient.

Condie and Ganguli (2010a, 2010b) obtained results on the generic existence

of fully and partially revealing REE. In particular, Condie and Ganguli consider

a financial market economy with asymmetric information, where some investors

behave as Bayesian expected utility maximizers and some others as MEU maxi-

mizers. In modeling the asymmetric information, they do not adapt the partition

approach of Radner and Allen and also they consider one good. Their REE notion

has interesting features, i.e., allows simultaneously maximin expected utility and

Bayesian expected utility decision making. However, on the Bayesian side of the

decision making their notion of REE is not consistent with that of Radner (1979)

and Allen (1981) as their allocations need not to be measurable with respect to the

private information of each individual as well as the information that the equilib-

rium prices generate. Nonetheless, by allowing for mixed behavior (Bayesian and

maximin) they are able to obtain generic non revealing and fully revealing rational

expectations equilibrium. Although, our results are similar in spirit with the ones

in Condie and Ganguli (2010a, 2010b), they are not directly related to theirs for

several reasons. We follow the Radner and Allen partition approach to model the

asymmetric information and we focus on the universal (not generic) existence of a

maximin REE. Obviously, our notion is different than theirs as we do not allow for

any Bayesian behavior. Furthermore, we examine the incentive compatibility and

efficiency of our new maximin rational expectations equilibrium notion. It should be

noted that with one good per state the Fi-measurability of allocations is necessary

and sufficient for the incentive compatibility (see for example Krasa-Yannelis (1994)

and Glycopantis-Muir-Yannelis (2005)). In view of this result, one can conclude

that the Condie-Ganguli’s REE notion need not be incentive compatible, as the

allocations in the Bayesian decision making of their model need not be measurable

with respect to the private information of each individual investor.

Correia da Silva and Hervès Beloso (2009) provide an existence theorem for a

Walrasian equilibrium for an economy with asymmetric information, where agents’

preferences are represented by maximin expected utility functions. Their MEU for-

mulation is in the ex-ante sense. This seems to be the first application of the MEU to
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the general equilibrium existence problem with asymmetric information. However,

they do not consider the issue of incentive compatibility or the REE notion. Since,

they work with the ex-ante maximin expected utility formulation, their results have

no bearing on ours.

The recent work by Epstein and Schneider (2010) studies the usefulness of ambi-

guity aversion models in financial markets. Learning models under ambiguity have

been studied by Epstein-Schneider (2007) and Kim-Pesce-Yannelis (2010). Welfare

proprieties of ambiguity aversion are studied by Dana (2004). The above works are

in the spirit of maximin expected utility decision making, but they are not directly

related to ours.

8 Concluding remarks and open questions

We introduced a new rational expectations equilibrium notion which abandons the

Bayesian (subjective expected utility) formulation. Our new rational expectations

equilibrium notion is formulated in terms of the maximin expected utility. In partic-

ular, in our framework agents maximize maximin expected utility instead of Bayesian

expected utility. Furthermore, the resulting equilibrium allocations need not to be

measurable with respect to the private information and the information the equilib-

rium prices have generated as in the case of the Bayesian REE. Our new notion ex-

ists universally (and not generically), it is Pareto efficient and incentive compatible.

These results are false for the Bayesian REE (see Kreps (1977) and Glycopantis-

Yannelis (2005)). It seems to us that the adoption of the maximin expected utility

solves the basic problems that the Bayesian REE notion faces as an equilibrium

notion, i.e., universal existence, efficiency and incentive compatibility.

If the intent of the REE is to capture the idea of “good” contracts under asym-

metric information, then clearly the results of this paper suggests that the maximin

REE has appealing properties, i.e., it exists universally under the standard continu-

ity and concavity assumptions, it is efficient and incentive compatible. But why the

Bayesian doesn’t have the same properties? Why the Bayesian REE doesn’t exist

in the Kreps example and the maximin does? The MEU seems to provide superior
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outcomes for two main reasons.

First, as it is argued in de Castro-Yannelis (2008) the Bayesian expected utility

(EU) preference representation is incomplete, but the MEU is complete. This is

obvious in the Ellsberg experiment where the EU makes the choices of the individ-

uals contradictory, but the MEU forces people to make the right choices. There is

a fundamental incompleteness in the EU which doesn’t allow agents to make the

correct choices. This incompleteness is not part of the MEU decision making and

as a consequence the MEU allows agents to reach Pareto superior outcomes.

Second, in the MEU decision making incentive compatibility is in a way inher-

ent in the definition because we take into account the worse possible state that can

occur. In that sense agents cannot be cheated because the decision to take into

account the worse possible state, has already prevented any potential cheating.

In a general equilibrium model with asymmetric information, we think that the

MEU choice does not reflect pessimistic behavior, but rather incentive compatible

behavior. If an agent plays against the nature (e.g., Milnor game), since, nature

is not strategic, it makes sense to view the MEU decision making as reflecting

pessimistic behavior. However, when you negotiate the terms of a contract under

asymmetric information and the other agents have an incentive to misreport the

state of nature and benefit, then the MEU provides a mechanism to prevent others

from cheating you. This in not pessimism, but incentive compatibility. It is exactly

for this reason that the MEU solves the conflict between efficiency and incentive

compatibility (see for example de Castro-Yannelis (2008)). This conflict seems to

be inherent in the Bayesian analysis (see Example 6.2 in Section 6).

We hope that our new formulation of the REE will find useful applications in

many areas and especially in macroeconomic general equilibrium models.

We conclude this paper with some open questions:

Throughout we have used the assumption that there is a finite number of states.

It is an open question if the main existence theorem can be extended to infinitely
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many states of nature of the world and even to an infinite dimensional commodity

space. This is also the case for the theorems on incentive compatibility and efficiency.

In Glycopantis-Muir-Yannelis (2005) it was shown that the REE is not imple-

mentable as a perfect Bayesian equilibrium of an extensive form game. We conjec-

ture that a new definition of perfect maximin equilibrium can be introduced, which

will be compatible with the implementation of the maximin REE. What reinforces

this conjecture is the fact that incentive compatible equilibrium notions, i.e., pri-

vate core (Yannelis (1991)) and private value allocations (Krasa-Yannelis (1994))

are implementable as a perfect Bayesian equilibrium. Since, the maximin REE is

also maximin incentive compatible, we believe that such a conjecture should be true.

It is also of interest to know if the results of this paper could be extended to a

continuum of agents.

Based on the Bayesian expected utility formulation, Sun, Wu and Yannelis (2010)

show that with a continuum of agents, whose private signals are independent con-

ditioned on the macro states of nature, a REE universally exists, it is incentive

compatible and efficient. These results are been obtained by means of the law large

numbers. It is of interest to know if the theorems of this paper can be extended in

such a framework which makes the law of large numbers applicable.

Furthermore, it is of interest to know under what conditions the core-value-

Walras equivalence theorems hold for the maximin expected utility framework.
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A Appendix: Proof of the Auxilary Theorem

A.1 Mathematical preliminaries

A correspondence ϕ : X → 2Y is a function from X to the family of all subsets

of Y . A correspondence ϕ : X → 2Y is compact-valued (nonempty-valued, convex-

valued) if ϕ(x) is a compact (nonempty, convex) subset of Y for every x ∈ X. Let

X and Y be sets. The graph GΦ of a correspondence Φ : X → 2Y is the set

GrΦ = {(x, y) ∈ X × Y : y ∈ Φ(x)}.
If X and Y are topological spaces, φ : X → 2Y is said to be lower semi

continuous (l.s.c.) if the set {x ∈ X : φ(x) ∩ V 6= ∅} is open in X for every

open subset V of Y . The correspondence φ : X → 2Y is said to be upper semi

continuous (u.s.c.) if the set {x ∈ X : φ(x) ⊂ V } is open in X for every

open subset V of Y . It is known that a closed-valued correspondence with compact

Hausdorff range space has a closed graph if and only if it is upper hemi continuous.

If (X,α) and (Y, β) are measurable spaces, Φ is said to have a measurable

graph if GrΦ belongs to the product σ-algebra α⊗β. We are often interested in the

situation where (X,α) is a measurable space, Y is a topological space and β = β(Y )

is the Borel σ-algebra of Y . A correspondence φ : X → 2Y from a measurable

space (X,α) into a topological space Y is said to be lower measurable if {x ∈ X :

φ(x)∩V 6= ∅} ∈ α for every V open in Y . It is known that if the correspondence φ is

lower measurable and closed valued, then it has a measurable graph. Furthermore, if

the measure space (X,α, µ) is complete and the correspondence φ from (X,α, µ) to

2Y has a measurable graph, then it is lower measurable ( see for example Castaing-

Valadier (1977)).

Let (Ω,F , µ) be a measurable space and Y be a separable metric space. From

Kuratowski and Ryll-Nardzewski Measurable Selection Theorem it follows

that if φ : Ω → 2Y is a lower measurable, closed and nonempty-valued correspon-

dence, then there exists a measurable function f : Ω → Y such that f(ω) ∈ φ(ω)

for all ω ∈ Ω.

A.2 Proof of the auxiliary theorem

For all i ∈ I, let Bi : Ω×4 → 2IR
`
+ be the random budget set of agent i, defined by
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Bi(ω, q) = {xi(ω) ∈ Xi(ω) : q · xi(ω) ≤ q · ei(ω)}.

Let Di : Ω×4 → 2IR
`
+ be the maximin random demand set of agent i, defined

by

Di(ω, q) = {xi(ω) ∈ Bi(ω, q) : ui(ω, xi(ω)) = max
yi∈Bi(ω,q)

ui(ω, yi)}.

Lemma A.1 For each i, Di(·, ·) has a jointly measurable graph, that is

GrDi(·,·) ∈ F ⊗ B(4)⊗ B(IR`
+).

Proof: Since for all i ∈ I and ω ∈ Ω, ei(ω) is an interior point of Xi(ω), it

follows that Bi(ω, ·) is lower hemi continuous. Moreover, it is easy to verify that

Bi(ω, ·) has closed graph, with a compact range space, therefore it is upper hemi

continuous. Consequently, for all i ∈ I and ω ∈ Ω, Bi(ω, ·) is continuous. From

Berge’s maximum theorem, it follows that for each ω ∈ Ω, Di(ω, ·) is upper semi

continuous with non empty and compact values. Consequently, Di(ω, ·) has closed

graph and since Ω is finite, it follows that it has a jointly measurable graph. That

is, for all i ∈ I,

GrDi(·,·) =
{

(ω, q, xi) ∈ Ω×4× IR`
+ : ω ∈ Ω and (q, xi) ∈ GrDi(ω,·)

}
=

⋃
ω∈Ω

[
{ω} ×GrDi(ω,·)

]
.

Since {ω} and GrDi(ω,·) are closed, it follow that GrDi(·,·) ∈ F ⊗ B(4)⊗ B(IR`
+). �

Define the aggregate maximin random excess demand for the economy E by

Z(ω, q) =
n∑
i=1

Di(ω, q)−
n∑
i=1

ei(ω).

Finally letW : Ω→ 24 be the (free-disposal) equilibrium correspondence defined

by16

W(ω) = {q ∈ 4 : Z(ω, q) ∩ IR`
− 6= ∅}.

16IR`
− denotes the negative cone of IR`.
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Since each Di(·, ·) has jointly measurable graph and Ω is finite17, from Castaing-

Valadier (1977, p.80), it follows that Di(·, ·) is jointly lower measurable, and so is

Z(·, ·). Therefore the set B = {(ω, q) ∈ Ω × 4 : Z(q, ω) ∩ IR`
− 6= ∅} belongs to

F ⊗ B(4). Notice that the set B coincides with the graph of the correspondence

W , i.e.,

B = GW = {(ω, q) ∈ Ω×4 : q ∈ W(ω)}.

Hence, GW belongs to F ⊗ B(4), i.e., W(·) has a measurable graph, and since Ω

is complete, it follows from Castaing-Valadier (1977, p.80) that W(·) is also lower

measurable.

Since for each fixed ω ∈ Ω, Di(ω, ·) is upper semi continuous, convex, nonempty

and compact valued, so is Z(ω, ·). Furthermore, for any fixed ω ∈ Ω, Z(ω, ·) satisfies

Walras law, i.e., for all q ∈ 4 and for every z ∈ Z(ω, q), q · z ≤ 0.

It follows from the Gale-Nikaido-Debreu lemma that, for each fixed ω ∈ Ω, W(ω)

is nonempty, i.e., W(·) is a nonempty valued correspondence.

Since for each fixed ω ∈ Ω, Z(ω, ·) is upper semi continuous, it follows that the

set {q ∈ 4 : Z(ω, q) ∩ V 6= ∅} is closed for all V closed subset of IR`. Hence for all

ω ∈ Ω the set {q ∈ 4 : Z(ω, q) ∩ IR`
− 6= ∅} = W(ω) is closed.

Consequently,W(·) satisfies the conditions of the Kuratowski and Ryll-Nardzewski

Measurable Selection Theorem and hence it admits a measurable selection. This

means that there exists a F -measurable function p∗ : Ω → 4 such that p∗(ω) ∈
W(ω) for all ω ∈ Ω, i.e.,

Z(ω, p∗(ω)) ∩ IR`
− 6= ∅ for all ω ∈ Ω.

Notice that this means that:

(1′) for all i and ω, x∗i (ω) maximizes ui(ω, ·) subject to p∗(ω) · x∗i (ω) ≤ p∗(ω) · ei(ω)

(2′)
∑
i∈I

x∗i (ω) ≤
∑
i∈I

ei(ω) for all ω ∈ Ω.

17Since Ω is finite, it follows that (Ω,F , πi) is complete for each i ∈ I.
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Consider for all i ∈ I, Gi = Fi ∨ σ(p∗). To complete the proof we must show

that (p∗, x∗) is a free disposal maximin REE. Clearly, condition (2′) above holds and

for each i ∈ I and ω ∈ Ω, x∗i (ω) ∈ Bi(ω, p
∗(ω)). Therefore, all it remains to be

shown is that condition (ii) in Definition 3.3 is satisfied. Assume to the contrary

that condition (ii) in Definition 3.3 does not hold, then there exist an agent i ∈ I,

a state ω̄ ∈ Ω and an allocation y ∈ LXi
such that y ∈ B∗i (ω̄, p∗) and

uREEi (ω̄, y) > uREEi (ω̄, x∗i ).

Since Ω is finite, there exists a state ω ∈ EGi(ω̄) such that ui(ω, x
∗
i (ω)) =

uREEi (ω̄, x∗i ). This implies that

ui(ω, y(ω)) ≥ uREEi (ω̄, y) > uREEi (ω̄, x∗i ) = ui(ω, x
∗
i (ω)),

which contradicts condition (1′). Hence, (p∗, x∗) is a free disposal maximin REE.

�
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