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Auction Design with Fairness Concerns:

Subsidies vs. Set-Asides ∗

Mallesh M. Pai† Rakesh Vohra‡

April 8, 2012

Abstract

Government procurement and allocation programs often use subsidies and set-
asides favoring small businesses and other target groups to address fairness concerns.
These concerns are in addition to standard objectives such as efficiency and revenue.
We study the design of the optimal mechanism for a seller concerned with efficiency,
subject to a constraint to favor a target group. In our model, buyers’ private values
are determined by costly pre-auction investment. If the constraint is distributional,
i.e. to guarantee that the target group wins ‘sufficiently often’, then the constrained
efficient mechanism is a flat subsidy. This is consistent with findings in the empirical
literature. In contrast, if the constraint is to ensure a certain investment level by the
target group, the optimal mechanism is a type dependent subsidy. In this case a set
aside may be better than a flat or percentage subsidy.
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1 Introduction

Government programs, both procurement and allocation, are often required to favor target

groups like small businesses, and businesses run by minorities and veterans.1 To this

end, the procedures used to assign licenses/contracts are ‘distorted’ relative to standard

auctions. Subsidies and set asides are the two distortions regularly observed in practice. In

a subsidy scheme, members of target groups receive a lump sum or percentage discount off

their bid. In a set aside program, a portion of contracts/licenses are reserved exclusively

for members of the target group to bid on.

In this paper, we investigate the design of the constrained efficient mechanism, taking

as given that the seller is committed to favor a target group (i.e. some given subset of the

buyers, e.g. small businesses).2 We consider two possible formulations of what it means to

favor the target group. For each of these formulations, we answer the following questions

questions. i) What is the efficient mechanism? ii) Of the two observed distortions, i.e.

subsidies and set asides, which is superior?

Our model considers a seller of a single unit selling to a population of buyers that

come from two groups, a regular group and a target group. Each buyer’s value is her

private information but her identity (i.e. the group to which she belongs) is publicly

observable. We assume that buyers make costly ex-ante investments that are unobserved

and non-contractible by the seller. This is motivated by the observation that in many

settings, participants can invest in cost reduction or quality enhancements. The choice

of mechanism by the seller will influence the participants’ investment levels.3 Buyers have

access to different investment technologies depending on whether they belong to the regular

or target group. Each buyer’s level of investment stochastically determines her private

value. As a result, the distribution of values of both groups of buyers is endogenously

determined by the seller’s mechanism.4

We investigate two formulations for the seller’s constraint to ‘favor’ the target group.

1Section 15(g)(1) of the Small Business Act in the US requires the government to direct 23% of all
spend each year to small businesses that are owned by minorities, veterans and women. The EU, through
its common agriculture policy, employs such methods to encourage and promote young farmers. Major
construction projects that receive public funding like sports arenas are required to channel a certain amount
of business to minority contractors. In Japan, roughly half of the annual Ministry of Land, Infrastructure
and Transportation’s expenditures made their way to small and medium enterprises.

2For now, we ignore revenue considerations, see discussions about related literature (Section 1.1) and
extensions (Section 5) below.

3This is especially true with government procurement and allocation, since a large fraction of the
participants’ annual revenues and profits result from their business with the government.

4The case where the distribution of buyers’ values in the two groups is fixed and exogenously given is
thus a special case. We fully solve this as we build up to our main results.
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First we consider a distributional requirement, modeled as requiring that the expected

quantity allocated to the target group is at least some given threshold, α.5 We find that

the constrained efficient mechanism for the seller is always a flat subsidy for members

of the target group, independent of their value. While the amount of subsidy depends

on the details of the environment, the structure is independent of any assumptions on

the distributions of buyer values. As a corollary, we show that a set aside can never be

constrained efficient, again independent of distributional assumptions.

Our result follows from an approach similar to contract theory. First, we investigate

the constrained efficient mechanism, given fixed investment levels by the regular and tar-

get groups (i.e. when the two groups have exogenously given distributions). We restrict

attention to settings where the efficient (Vickrey) auction, coupled with buyers’ investment

choices, results in an allocation rule that does not satisfy the distributional constraint. In

this case we show the optimal allocation rule gives buyers from the target group a (appro-

priately chosen) flat subsidy λ. In other words, the highest value buyer from the target

group wins whenever her value is within λ of the highest overall.6

We then study an auxiliary setting where the seller can directly select buyers’ investment

choices. In this setting, we show that the seller will choose to have the target group buyers

invest more than they would have under the Vickrey auction, and couple this with an

appropriately chosen flat subsidy to buyers in the target group. Finally, we show that the

equilibrium choices of buyers faced with this flat subsidy mechanism are the same as what

the seller has chosen. Intuitively, the reason for this is the ‘Vickrey pricing.’ Each buyer gets

to keep her contribution to the social surplus. Therefore, there is no agency problem– her

incentives to invest are (surprisingly) perfectly aligned with those of an efficiency motivated

seller/social-planner.

Our findings agree with those in [?] who consider a similar question in the context of

US timber auctions. They develop and estimate a structural model of entry and bidding

(in first and second price auctions) to assess the efficiency and revenue consequences of

a shift from set asides to an appropriately chosen subsidy. Their counterfactual analysis

shows that subsidies outperform set asides on both revenue and efficiency.

In our second setting, the seller wants the target group to reach a given investment

level. In this setting we find that the constrained efficient mechanism involves a subsidy

that depends on the type of the buyer. We show that the level of subsidy may be non-

5Implicitly, if the seller ran several such auctions in a year, as is the case with say timber auctions, the
distributional goals would be met in aggregate by the law of large numbers.

6As is standard, the winning buyer pays the lowest amount she could have reported as her value and
still won.
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monotonic, ruling out both lump sum and percentage subsidies. In other words, the optimal

subsidy is far from detail free. We exhibit an example where a set aside would be better

than the optimal type-independent subsidy. In effect, faced with a (unmodeled) constraint

to use a ‘simple’ or ‘detail-free’ mechanism, a seller may choose to use a set-aside.

Intuitively, buyers’ incentives to invest given the auction depends on their profit in the

auction as a function of their private value. From the revenue equivalence theorem, we know

that the expected profit of a buyer in an auction depends on the allocation probability of

buyers of lower value. In effect, the winning probability of a low value buyer increases the

surplus of all types above it, and therefore has ‘more impact’ on the incentive to invest,

relative to the winning probability of a high value buyer. This results in a tension with

the efficiency objective- the mechanism needs to trade-off efficiency with incentives for the

buyers to invest at the desired levels. This tension gives rise to a subsidy that is type

dependent, and in general non-monotonic, ruling out both flat and percentage subsidies.

A set aside may do better than a type-independent subsidy.7

Our results may be of independent interest from a technical standpoint. There has

been little work on optimal auction design with ex-ante asymmetric buyers, because these

are hard to handle via standard optimal control techniques.8 We proceed by discretizing

the space of possible valuations, and characterizing the optimal mechanism in this setting.

Subsequently, we show how to pass to the limit by considering the limit of successively fine

discretizations. The technique is not limited to the application considered here.

1.1 Related Literature

In the theoretical literature on auctions, there has been some work on settings where

the buyers can make a pre-auction investment. Tan [?] studies a setting where ex-ante

symmetric buyers can make pre-auction investment, and compares the equilibria in first

and second price auctions. Piccione and Tan [?] characterize the optimal mechanism in

such a setting, and compare it to one where the seller only announces the mechanism after

buyers choose their investment levels. In both papers, the buyers are ex-ante symmetric

and the seller has no additional ‘fairness’ concerns. Azoramena & Cantillion [?] consider

a setting where only one buyer can make an investment (hence buyers are not ex-ante

symmetric), and find that a first price auction may provide higher revenue than a second

price auction. Li, Lovejoy and Gupta [?] consider a procurement setting where the procurer

announces his mechanism after sellers have chosen their private investment levels, and show

7For further discussion and intuition, see Example 2 in Section 4.2.
8We refer the interested reader to the discussion in Appendix A.
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that the equilibrium in investment levels depends on the outside option of the procurer.

There is a small related literature on information acquisition in auctions– i.e. buyers

incur costs to learn their own private information, and the mechanism must incentivize the

buyers to invest in this information acquisition. Bergemann & Välimaki [?] find that the

VCG mechanism is efficient in this setting, while Shi [?] characterizes the expected revenue

maximizing mechanism.

At a conceptual level, there is a large literature studying ‘affirmative action’, i.e. how

to distribute a scarce resource across a population while favoring some target group, under

various formulations of the planner’s objectives. The closest paper to ours is that of Athey,

Coey and Levin [?]. They develop and estimate a structural model of entry and bidding to

compare quantitatively the effect of subsides vs. set asides, using data from timber auctions

conducted by the US Forestry Services. Like our model they assume private values. Entry

is also costly in their model similar to our assumption of costly ex-ante investment, however

the distribution of values in their paper is fixed. They fix the format of the auction and

(sealed bid first price or second price) and under that format they compare the impact

of using a set aside vs. a subsidy, while we take a mechanism design approach. A recent

paper by Hickman [?] studies a similar question to this paper’s, both theoretically and

empiricially, in a matching model in the context of college admissions. Loury and Fryer [?]

study a model where agents have hetereogenous returns to investment in human capital,

and the distribution of this effectiveness is different based on the group to which they

belong. They compare the efficient allocation policy for a social planner when the principal

observes agents’ identity versus when the principal does not. Chung [?] observes that given

any affirmative action policy, multiple equilibria may exist in the induced subgame among

agents (e.g. choice of investment in human capital). He considers the redesign of affirmative

policies to take into account this implementation problem.

2 Model

There is a seller with a single indivisible good for sale whose opportunity cost is 0. He is

faced with potential buyers from two groups. There are n1 > 0 buyers from the ‘regular’

group, and n2 > 0 buyers from the ‘target’ group. Both seller and buyers are risk netural.

The identity of a buyer (i.e. the group to which she belongs) is publicly observable. Each

buyer has a privately known value for the good which we normalize to be between [0, 1].

The seller’s objective is to maximize efficiency, subject to a constraint to favor buyers

from the target group. As stated earlier,we model this constraint in two ways. The first

is that buyers from the target group win the good with an ex-ante probability of at least
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(some exogenously given) α.

Exogenously Given Distribution To develop intuition, consider a simple special

case. Assume that buyers’ values are drawn independently from two commonly known,

exogenously given distributions- F1 is the CDF of the distribution of values buyers in the

‘regular’ group, while F2 is the corresponding CDF of buyers in the target group.

By the revelation principle, we can restrict attention to direct revelation mechanisms.

Each buyer reports his value v. The seller commits to assign a buyer from group g = 1, 2

the good with interim probability ag(v) as a function of her report v, in return for an

interim payment of pg(v).

Since buyers’ values are private information, the seller is faced with the usual incentive

compatility constraint:

∀v ∈ V, g ∈ {1, 2} : vag(v)− pg(v) ≥ vag(v
′)− pg(v

′). (IC)

The usual voluntary participation constraint applies:

∀v ∈ V, g ∈ {1, 2} : vag(v)− pg(v) ≥ 0. (IR)

There must exist a feasible ex-post allocation rule (i.e. sells at most 1 unit at each realized

profile) that corresponds to the interim allocation rule. :

(a1(·), a2(·)) is feasible. (F)

(IC), (IR) and (F) are standard. Regarding the latter— Mierendorff [?] characterizes

exactly the set of feasible rules in this setting. The new constraint is the seller’s equity or

distributional constraint, which can be written as:

n2

∫
V

f2(v)a2(v)dv ≥ α. (E)

In other words, the expected quantity allocated to the target group, or alternately, the

ex-ante probability that the good goes to a buyer in the target group, must be at least α.
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The constrained efficient mechanism is the solution to:

max
(ag(·),pg(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v)dv (Opt-Exogenous)

s.t. (IC), (IR), (E), (F).

Pre-auction Investment We now introduce our full model. Instead of buyers’ values

being drawn from an exogenously given distribution, we suppose each buyer chooses a level

of investment which stochastically determines her value. Each buyer may choose any level

of investment in <+. If a buyer chooses a level of investment t, she realizes a private value

drawn independently from a distribution with CDF F (·, t). Investment is costly- a buyer

in group g pays cg(t) if she chooses investment level t.9

Therefore, a buyer from group g faced with a mechansim with allocation rule ag and

payment rule pg makes an expected profit of∫
V

(vag(v)− pg(v))f(v, t)dv − cg(t), (Profit)

when she chooses investment level t. She will therefore choose t to maximize (Profit).

For tractability we impose standard regularity conditions on c and F . Together, these

assumptions require that the returns to investment are uncertain, and decreasing.

Assumption 1. For g = 1, 2, the cost of investment cg(t), is increasing, convex, and

continuously differentiable in t, i.e c′g(t) exists, is continuous, and c′g(t) ≥ 0, c′′g(t) ≥ 0.

Assumption 2. F (v, t) is a continuously differentiable function of t. Further:

1. Higher investment leads to stochastically better values (in the sense of first order

stochastic dominance), i.e.

t > t′ =⇒ F (v, t) ≤ F (v, t′). (FOSD)

2. Decreasing returns to investment:

∂2F (v, t)

∂t2
≤ 0. (DR)

9In other words, buyers within the same group are homogenous. Similar to Fryer & Lowry, [?], one
could extend this model to consider one where buyers within the same group have different cost functions,
with the distribution of cost functions being different across the two groups. The results would be similar.
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A ‘nice’ F (v, t) that satisfies Assumption 2 from the literature on R& D (see e.g. [?])

is exhibited below.

Example 1. For any distinguished distribution with c.d.f F (v) over V , an investment

technology that gives a buyer a value from the distribution

F (v, t) = F t(v),

satisfies Assumption 2.

Under this technology, there is a distinguished distribution F (v). An investment level

t corresponds to t i.i.d. draws from this distribution, from which the highest is chosen.10

We make one more assumption.

Assumption 3. In (E),

α =
n2

n1 + n2

. (1)

Further, costs are such that:

∀t : c1(t) < c2(t). (2)

This assumption is purely to aid interpretation. Assumption 3 (1) makes clear why we

call it an ‘equity’ constraint: it requires that buyers from the target group have the same

ex-ante probability of winning as buyers from the regular group. If both groups choose

the same level of investment, any symmetric allocation rule (i.e. one which ignores buyers’

group identities) satisfies the equity constraint. Assumption 3 (2) fits the applications we

have in mind, i.e. the target group is disadvantaged relative to the regular group.

Some additional results will consider a simpler setting where the regular group has

values drawn from a fixed distribution.

Definition 1. We say that only the target group invests if the regular group has values

drawn from a fixed distribution F1(·),

F1(v) ≡ F (v, t1).

We are now in a position to describe the seller’s problem. The seller still chooses interim

allocation and pricing rules (ag, pg)g=1,2. In additon the seller ‘prescribes’ an investment

level tg for each group g. This determines the distribution of the values of the buyers,

10Hence the connection to the R& D literature, where this would correspond to t independent R& D
efforts.
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F (·, tg). The interim allocation and pricing rules are with respect to these distribution.

The mechanism must satisfy (E) (IC), (IR), (F) as before. Further, the mechanism must

be such that the a buyer in group g chooses the prescribed investment level tg. From

(Profit), we have:

tg ∈ arg max
t

∫
V

(vag(v)− pg(v))f(v, t)dv − cg(t) (SR)

The constrained efficient mechanism for the seller, therefore, must solve:

max
(tg ,ag(·),pg(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v, tg)dv (Opt-D)

s.t. (IC), (IR), (E), (F), (SR).

2.1 Target Investment Level

An alternate way to model a requirement that the seller ‘favor’ the target group is to choose

a mechanism such that buyers in the target group are incetivized to achieve some given

minimum investment level t.

Under the maintained assumptions, the constraint for the seller can be written as:

t ≤ t? ∈ arg max
t

∫
V

(va2(v)− p2(v))f(v, t)dv − c2(t) (Min Investment)

The constrained efficient mechanism for the seller, therefore, must solve

max
(tg ,ag(·),pg(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v, tg)dv (Opt-TI)

s.t. (IC), (IR), (Min Investment), (F), (SR).

3 Auction Design with Fixed Distributions

To develop intuition, we first work with the simple case when the regular and target group

buyers’ values are drawn from fixed, exogenously given distributions.

Recall that that seller’s problem is to maximize efficiency, subject to (IC), (IR) and (F)

constraints, plus the equity or distributional constraint (E). We begin by recalling some

standard observations about incentive compatibility.
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Lemma 1. Given an allocation rule ag, there exists a pricing rule pg which satisfies (IC) if

and only if ag(v) is nondecreasing in v, i.e.

ag(·) nondecreasing. (M)

Lemma 2. Given non-decreasing allocation rules ag(v), the pricing rule:

pg(v) = vag(v)−
∫ v

0

ag(v
′)dv′, (P)

satisfies both Incentive Compatibility (IC) and Individual Rationality (IR).

The proofs are standard and ommitted. One aside— any pricing rule

pg(v) = vag(v)−
∫ v

0

ag(v
′)dv′ + c,

c ≤ 0 will satisfy (IC) and (IR). Indeed, these are the only pricing rules which satisfy

both (IC) and (IR). Since the seller’s objective is efficiency, the choice of c is irrelevant, we

therefore use c = 0.

By Lemmas 1 and 2, the seller’s problem reduces to:

max
(ag(·),pg(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v)dv

s.t. (M), (E), (F).

Our main result in this section is that the optimal mechanism for the seller involves a

(appropriately chosen) flat subsidy for the target group.

Theorem 1. Suppose the Vickrey auction violates the equity constraint (E). Then, the

optimal mechanism for the seller can be characterized thus:

• Allocation Rule: there exists λ? > 0, such that the optimal mechanism gives the good

to the highest value buyer in the target whenever her value is within λ? of the highest

value overall, and to the highest value regular buyer otherwise.

• Pricing Rule: the winning buyer pays the Vickrey price, i.e. the lowest value she

could have bid and still won the good.

Note that in the absence of the (E) constraint, the Vickrey auction is optimal for the

seller (which corresponds to a subsidy of λ = 0). The interesting case then is when the
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Vickrey auction violates (E). In this case (E) must bind at the optimal solution. The proof

involves a relaxation argument– i.e. relaxing the (E) constraint with the appropriate dual

variable λ. Collecting terms, the result follows.

Corollary 1. The optimal mechanism for the seller is a flat/ lump sum subsidy for buyers

in the target group. It cannot be implemented as a set aside.

This theorem follows from the structure of interim feasible allocation rules. We know

that optimal mechanism for the seller must be a corner point of the feasible region. A set

aside is strictly in the interior of the space of feasible allocation rules, and is thus ruled

out.

4 Pre-Auction Investment

We now consider our ‘full model’ where buyers make costly pre-auction investments. First,

we examine the design of the constrained efficient mechanism when the ‘fairness’ constraint

for the seller takes the form of a distributional constraint. Then, we discuss the constrained

efficient mechanism to achieve a minimum investment level for the target group.

4.1 Distributional Constraint

At a high level, we first consider a ‘relaxed’ problem where we relax the (SR) constraint.

The seller is still faced with private information and the equity constraint. This corresponds

to an environment where the seller chooses the investment level of the buyers directly. We

show that the optimal mechanism in this setting will involve a lower effort choice by the

seller for the target group than the regular group. Further, there is a flat subsidy to buyers

in the target group. We conclude by observing that when faced with a mechanism with

that level of subsidy, the equilibrium effort choices of buyers is the same as the effort choice

by the seller in the relaxed problem. Therefore, a second price auction with a flat subsidy

for buyers in the target group is the constrained efficient mechanism for a seller faced with

a distributional constraint.

In this relaxed setting, a seller concerned with efficiency solves:

max
(tg ,ag(·),pg(·))g=1,2

∑
g=1,2

ng

(∫
V

vag(v)fg(v, tg)dv − cg(tg)

)
(Opt-Aux)

s.t. (IC), (IR), (E), (F).
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We first characterize the level of investment a buyer will choose given an interim allo-

cation rule ag and interim pricing rule pg.

Lemma 3. Given Assumptions 1 and 2; a buyer from group g facing interim allocation rule

ag and pricing rule pg will choose (the unique) level of investment tg which solves:

−
∫

V

ag(v)
∂F (v, t)

∂t
dv − c′g(t) = 0. (FOC)

Proof. Recall a buyer in group g, faced with an interim allocation rule ag and an interim

pricing rule pg, will choose a level of investment t to solve:

max
t

∫
V

(
vag(v)− pg(v)

)
f(v, t)dv − cg(t).

Using the pricing equation (P), the buyer’s problem reduces to:

max
t

∫
V

(∫ v

0

ag(v
′)dv′

)
f(v, t)dv − cg(t).

Reversing the order of integration, we get:

max
t

∫
V

ag(v)(1− F (v, t))dv − cg(t).

Note that under our maintained assumptions first order conditions are necessary and suf-

ficient for optimality, and the result follows.

Next, we study the outcome when the seller uses the efficient (Vickrey) mechanism.

Lemma 4. Suppose the seller uses the efficient (Vickrey) mechanism and lets buyers freely

choose investment levels. Then, there is an equilibrium in which all buyers in group g

choose teg.
11 Further, (ae

g, p
e
g), the interim allocation and pricing rules that result, solve the

auxiliary problem in the absence of equity constraints. Formally:

(teg, a
e
g, p

e
g) ∈ argmax(tg ,ag(·),pg(·))g=1,2

∑
g=1,2

ng

(∫
V

vag(v)fg(v, tg)dv − cg(tg)

)
s.t. (IC), (IR), (F).

11There may be additional equilibria. If we are in a setting where only the target group invests (Definition
1), there is a unique optimal investment level for the target group.
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In other words, in the absence of any equity concerns, running the efficient mechanism

and letting buyers choose their investment levels has an equilibrium which results in the

first best level of investment by the buyers.12

The interesting case is when the efficient mechanism violates the seller’s equity con-

straint.

Observation 1. If we are in a setting where only the target group invests (Definition 1),

and the seller’s equity constraint is violated by the efficient mechanism, then

te2 < t1

The equity constraint causes the solution to (Opt-Aux) to be distorted relative to effi-

ciency. Intuitively, it is ‘too expensive’ to bridge the gap between the regular and target

groups completely. The solution to (Opt-Aux) therefore reduces the investment gap be-

twen the two groups relative to the levels under the efficient mechanism. Additionally, an

appropriately chosen flat subsidy is given to the target group to satisfy (E).

Lemma 5. The solution (tag, a
a
g, p

a
g) to (Opt-Aux) can be characterized thus— the selling

mechanism is a flat subsidy with the standard pricing rule:

1. Allocation Rule: there exists λa > 0, such that the good goes to the highest value buyer

in the target whenever her value is within λa of the highest value overall, and to the

highest value regular buyer otherwise.

2. Pricing Rule: the winning buyer pays the Vickrey price, i.e. the lowest value she

could have bid and still won the good.

Observation 2. If we are in a setting where only the target group invests (Definition 1),

the investment gap between the two groups is less in the solution to (Opt-Aux) than under

the efficient mechanism, i.e.

te2 < ta2.

To relate the solution of this auxiliary problem to the seller’s problem, we need to

reinstate the sequential rationality constraint. Our main result in this section shows that

the solution to this relaxed problem for the seller is feasible for the seller’s original problem,

and therefore optimal.

12Throughout, as is standard, we ignore the implementation problem of selecting the ‘desired’ equilib-
rium. For further details in this context, we refer the reader to [?].

13



Theorem 2. Let (tag, a
a
g, p

a
g) be the solution to (Opt-Aux). This mechanism also satisfies

(SR), so the solution is also optimal in the original seller’s problem (Opt-D).

This implies that the optimal mechanism for the seller when faced with a distributional

constraint is a flat subsidy for buyers in the target group.

4.2 Target Investment Level

We now consider the case when the ‘fairness’ concern of the seller is modeled as a minimum

investment level for the target group: the seller wants to choose a mechanism subject to

target group’s investment choice being above a given threshold t. To make the analysis

interesting, we focus on the case when this threshold is larger than the investment level the

target group would make when faced with the efficient mechanism, i.e. t > te2.

Our analysis uses the characterization of buyer investment levels in Lemma 3.

Theorem 3. The constrained efficient mechanism to implement a level of investment t > te2
will involve a type dependent subsidy s(·) to buyers in the target group— buyers in the target

group have their reported value v adjusted to v + s(v). The good is given to the highest

adjusted reported value over all buyers. The winning buyer pays the lowest bid he could

have made and still won the good. Further, the subsidy takes the functional form:

s(v) =
η

f(v, t)

∂F (v, t)

∂t

∣∣∣
t=t

, (3)

for an appropriately chosen η < 0. If v + s(v) is not non-decreasing in v, then further

ironing is required.

Intuitively, buyers’ incentives to invest depend on their profit in the auction they get as

a function of their private value. Recall that a buyer with value v from group g will make

a profit of
∫ v

0
ag(v

′)dv′. In effect, the winning probability of a low value buyer increases

the surplus of all types above it, and therefore has ‘more impact’ on the incentive to invest

relative to a high value buyer. This results in a tension with the objective- the mechanism

needs to trade-off efficiency with incentives for the buyers to invest at the desired levels

t1, t2. Ironing is necessary if the first best tradeoff leaves the interim allocation probabilities

non-monotone.

In general, s(v) will be non-monotone in v— s(0) = s(1) = 0 because ∂F (v,t)
∂t

vanishes

when evaluated at v = 0, 1. Therefore, a flat subsidy does exactly the ‘wrong’ thing.

High types of the target group are rewarded with a higher probability of winning than in

the efficient mechanism. By contrast, the optimal mechanism increases less the winning

14



probability of high types relative to the efficient mechanism, since s(v) is small for high

types. A set aside may do better than a subsidy in achieving this.

Example 2. In this example, we numerically compare two suboptimal mechanisms that

are seen in practice— ‘percentage’ subsidy and set asides. For simplicity, we will assume

only the target group invests (Definition 1), and there is 1 buyer in each group. Investment

will impact the distribution of buyer values as in Example 1, i.e.

F (v, t) = F t(v),

for F (v) uniform on [0, 1]. Suppose t1 = 9, and the seller’s constraint being such that

t = 9.13 A subsidy is as described above– a buyer from the target group has the subsidy

added to his reported value, and wins if his adjusted value is the highest overall. In a

set aside, with probability p < 1, the efficient mechanism is run, but only with buyers

from the target group competing. With the complementary probability 1− p, the efficient

mechanism is run with all buyers competing.

The optimal set aside achieves an expected efficiency of .913, while a percentage subsidy

achieve .911. The flat subsidy in this case outperforms both at .918. However, in the set

aside, the target effort level can be achieved via less distortion- the target group wins only

86.1% of the time with the set aside, as opposed to 92.7% of the time under the optimal

flat subsidy.14 Relaxing the assumption that only the target group invests, therefore, a set

aside will dominate a flat subsidy (since the regular group will invest less under the flat

subsidy).

5 Extensions and Conclusions

Government procurement and allocation programs often use subsides and set asides to assist

target groups. Our paper suggests when the use of one or the other would be appropriate.

If a goal of the allocation program is to ensure that a target group wins sufficiently often,

our analysis shows that a flat subsidy for the target group would impair efficiency less than

a set aside. If the goal of the allocation program is to ensure a certain investment level

by the target group, then a type dependent subsidy is constrained efficient. Recognizing

that such subsidies may be impractical to implement one might restrict attention to flat

or percentage subsides. In this case, we find that a set aside may be better than a flat or

percentage subsidy.

13This is numerically equivalent to n1, n2 buyers, with t1 = 9/n1 and t = 9/n2.
14These calculations were done using the R package. The code is attached in Appendix C.
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Our analysis assumed an environment where only a single unit was being allocated but

this is not essential. The results hold for the case when an agent’s utility for consump-

tion depends on a one dimensional parameter of private information and an appropriate

increasing differences property.

Our results hold even if the assumption of private values is generalized to interdependent

values under the usual conditions. For example, each buyer receives an independent private

signal of the value of the object for sale. Their value is increasing in both their own signal

and the signal seen by others. An increase in investment increases the value the buyer

would perceive, holding fixed the signals observed by all the buyers.

Finally, one might ask about the case of a seller concerned with revenue instead. Our

techniques still hold. The counterpart to Theorems 1 and 2 would be that the optimal

mechanism is a flat subsidy in the space of virtual valuations. For most distributions, this

will not have a ‘natural’ implementation.

A Proofs from Section 3

First, we state a theorem due to Mierendorff [?] on the structure of feasible interim alloca-

tion rules.

Theorem 4 (Mierendorff [?]). An interim allocation rule (a1, a2) is feasible if and only if

for each V1, V2 ⊆ V :

n1

∫
V1

a1(v)f1(v)dv + n2

∫
V2

a2(v)f2(v)dv ≤ 1−
(

1−
∫

V1

f1(v)dv

)n1
(

1−
∫

V2

f2(v)dv

)n2

If a1, a2 are nondecreasing, then they are feasible if and only if for each v1, v2 ∈ V :

n1

∫ 1

v1

a1(v)f1(v)dv + n2

∫ 1

v2

a2(v)f2(v)dv ≤ 1− (F1(v1))
n1 (F2(v2))

n2

The latter form is easier to work with, and sufficient for our purposes since Lemma 1

guarantees that feasible allocation rules are monotone.
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Proof of Theorem 1. The seller’s problem is:

max
(ag(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v)dv

s.t. a1, a2 non-decreasing in v,∫ 1

0

a2(v)f2(v)dv ≥ α,

∀v1, v2 : n1

∫ 1

v1

a1(v)f1(v)dv + n2

∫ 1

v2

a2(v)f2(v)dv ≤ 1− (F1(v1))
n1 (F2(v2))

n2

The Vickrey auction solves the seller’s problem in the absence of the equity constraint.

Therefore if it is infeasible in the seller’s problem, the equity constraint (E) binds in the

optimal solution.

The main technical issue in characterizing the optimal is that it is hard to write the

seller’s problem in a ‘standard’ form– the (F) is problematic. In the literature on optimal

auctions with ex-ante symmetric buyers (e.g, [?], [?], [?]) the feasibility constraint is:

∀v : n

∫ 1

v

a(v)f(v)dv ≤ 1− F (v)n.

This can be written in standard form by creating a state variable β(v), which evolves as:

β′(v) = (a(v)− F n−1(v))f(v).

The feasibility constraint now requires that β(v) ≥ 0 for all v, with end point condition

β(1) = 0. No such re-writing of (F) is possible, so a different approach is needed.15

We resolve this by discretizing the program seller’s problem. At a high level, our

approach is as follows:

1. Fix a positive integer n, let εn = 1
n
. Consider the partition of the space of possible

valuations [0, 1] into n intervals of length εn, i.e. Pn = {[0, εn), [εn, 2εn), . . . , [(n −
1)εn, 1)}. Consider the seller’s problem with the additional constraint that the allo-

cation rule ag, for each g, be measurable with respect to this partition Pn, i.e. be

15One approach seen in [?] in a different setting is to first characterize the optimal a2 for any given
feasible a1, and then solve for the optimal a1 using an optimal control approach. In both his setting and
ours, the optimal a1 may have jumps, and in this case the optimization problem cannot be written in a
standard form. He resolves this by approximating the optimal allocation rule by taking the limit of the
optimal of a sequence of constrained optimization programs. Each constrained program restricts the seller
to choosing a Lipschitz continuous allocation rule with Lipschitz constant k, and the takes the limit as
k ↑ ∞.
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constant on each interval [kεn, (k + 1)εn).

2. This constrained problem can be written as a standard linear program. We charac-

terize the solution for any n, and show that it has the desired properties.

3. We take the limit of the optimal allocation rule for n as n ↑ ∞ and show that it must

be optimal in the unconstrained problem. The theorem follows.

Step 1: A Discretization Fix n. The constrained problem is:

max
(ag(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v)dv

s.t. a1, a2 non-decreasing in v,

n2

∫ 1

0

a2(v)f2(v)dv ≥ α,

∀v1, v2 : n1

∫ 1

v1

a1(v)f1(v)dv + n2

∫ 1

v2

a2(v)f2(v)dv ≤ 1− (F1(v1))
n1 (F2(v2))

n2

∀k < n, g = 1, 2 : ag(v) constant on

[
k

n
,
k + 1

n

)
.

We can rewrite this as a linear program, considering each interval on which ag is con-

strained to be constant as a ‘type’. Define, for each i = 1, 2, . . . , n:

fn
g (i) =

∫ i
n

i−1
n

fg(v)dv,

F n
g (i) =

∑
j≤i

fn
g (i)

(
= Fg(

i
n
)
)
,

vn
g (i) = Eg[v|v ∈ [ i−1

n
, i

n
)] =

1

fn
g (i)

∫ i
n

i−1
n

vfg(v)dv,

V n
g = {vn

g (1), vn
g (2), . . . , vn

g (n)}.
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With these definitions, the constrained problem can be rewritten as:

max
(an

g (·))g=1,2

∑
g=1,2

ng

n∑
i=1

vn
g an

g (i)fn
g (i) (OPTn)

s.t. an
g (i) non-decreasing in i,

n2

n∑
i=1

an
2 (i)fn

2 (i) ≥ α, (4)

∀i1, i2 ≤ n :
∑

g

ng

∑
i≥ig

an
g (i)fn

g (i) ≤ 1− (F n
1 (i1 − 1))n1 (F2(i2 − 1))n2

We should note that the feasibility constraints for discrete types were first formulated

in [?].

Step 2: A Linear Programming Approach The Vickrey auction solves the seller’s

problem in the absence of the equity constraint. Therefore if it is infeasible in program

(OPTn), the equity constraint (4) binds in the optimal solution. Let λn be the dual variable

corresponding to (4), and λ?
n be the value of the this variable in the optimal dual solution.

The solution to seller’s problem is therefore the solution to the Lagrangean relaxation

of (En), with the optimal dual value of λ?
n. Collecting terms, the seller’s problem can be

written as:

max
(an

g (·))g=1,2

n1

n∑
i=1

vn
1 an

1 (i)fn
1 (i) + n2

n∑
i=1

(vn
2 + λ?

n)an
2 (i)fn

2 (i)

s.t. an
g (i) non-decreasing in i,

∀i1, i2 ≤ n :
∑

g

ng

∑
i≥ig

an
g (i)fn

g (i) ≤ 1− (F n
1 (i1 − 1))n1 (F2(i2 − 1))n2

Comparing with the seller’s problem in the absence of the (E) constraint, it follows that

the solution is a modified Vickrey auction where a buyer from the target group with value

v is treated as if she had value v + λ?. If there are ties, the tie is resolved in favor of group

2 with some probability π such that the (E) constraint binds.16

Therefore, for each n, the solution to the discretized problem is a flat subsidy in favor

of the target group 2. Denote the optimal interim allocation rule as an?
g .

16Since each type has positive probability, ties happen with strictly positive probability if they happen
at all.
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Step 3: Limit as n → ∞ This will involve two subparts. First we show the existence

of a solution to the seller’s original problem. Then we show that the limit of the solutions

constrained problem (OPTn) as n goes to ∞ recovers a solution of the original problem.

Step 3.1: Existence (This step is based on the Proof of Theorem 8 in [?]) Let

E? = sup
(ag(·))g=1,2

∑
g=1,2

ng

∫
V

vag(v)fg(v)dv

s.t. a1, a2 non-decreasing in v,

n2

∫ 1

0

a2(v)f2(v)dv ≥ α,

∀v1, v2 : n1

∫ 1

v1

a1(v)f1(v)dv + n2

∫ 1

v2

a2(v)f2(v)dv ≤ 1− (F1(v1))
n1 (F2(v2))

n2

Let (ak
1(·), ak

2(·)) be a sequence of allocation rules feasible in the seller’s problem such

that ∑
g=1,2

ng

∫
V

vak
g(v)fg(v) → E? as k →∞.

Since these functions are monotone, they are of bounded variation. By Helley’s Theo-

rem, there exists a subsequence, and non-decreasing functions ag such that ak
g → a?

g point-

wise, almost everywhere. By Mierendorff [?] we know that the space of feasible interim

allocation rules is weakly compact considered as elements of L2. Therefore, taking a fur-

ther subsequence ak
g → a?

g weakly. Since n2

∫ 1

0
ak

2(v)f2(v)dv ≥ α for all k, weak convergence

implies that n2

∫ 1

0
a?

2(v)f2(v)dv ≥ α. Weak convergence further implies that

∑
g=1,2

ng

∫
V

va?
g(v)fg(v)dv = E?,

concluding our proof of existence.

Step 3.2: Limit Consider the optimal solution (a?
1, a

?
2) identified above. We define a

‘flattened’ version of this solution:

an
g (i) =

1

fn
g (i)

∫ i
n

i−1
n

a?
g(v)fg(v)dv
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Note that by construction, an
g (i) is non-decreasing in i, feasible, and satisfies (4)— that is,

it is feasible in (OPTn). Therefore,

∑
g=1,2

ng

n∑
i=1

vn
g an?

g (i)fn
g (i) ≥

∑
g=1,2

ng

n∑
i=1

vn
g an

g (i)fn
g (i),

since an?
g is optimal in (OPTn). However, by construction:

∑
g=1,2

ng

n∑
i=1

vn
g an

g (i)fn
g (i) → E? as n →∞,

The solutions to (OPTn) can be viewed as feasible allocation rules in the original

continuum type space as:

an?
g (v) = an?

g (i) for i−1
n
≤ v <

i

n
.

The space of feasible allocation rules is a weakly compact set considered as elements of

L2. Therefore of the sequence of allocation rules an?
g , there must be a weakly convergent

subsequence, an?
g → āg. Recall that:

∑
g=1,2

ng

n∑
i=1

vn
g an?

g (i)fn
g (i) ≥

∑
g=1,2

ng

n∑
i=1

vn
g an

g (i)fn
g (i).

By construction, this implies:

∑
g=1,2

ng

∫
v

van?
g (v)fg(v)dv ≥

∑
g=1,2

ng

n∑
i=1

vn
g an

g (i)fn
g (i).

Taking limits as n →∞, we have by the defintion of weak convergence

=⇒
∑
g=1,2

ng

∫
V

vāg(v)fg(v)dv ≥ E?.

Since āg is feasible in the original problem, it follows that:

∑
g=1,2

ng

∫
V

vāg(v)fg(v)dv ≤ E?.
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Therefore,

∑
g=1,2

ng

∫
V

vāg(v)fg(v)dv = E?.

Next, by Helly’s theorem, an?
g → āg pointwise almost everywhere. It follows that āg can

be implemented by a flat subsidy in favor of the target group.

Proof of Corollary 1. Further, the corner points of this polytope characterized by

the class of hierarchical allocation rules ([?]). Each corner point is a priority rule over

types, such that in any given profile of types, the buyer with the type with the highest

priority wins (ties broken randomly).

Now, any interim allocation rule generated from an auction with a set aside cannot be

a corner point of the polytope- it corresponds to the convex combination of the standard

priority rule (i.e. highest type from either group wins), and the priority rule that places

all types from the target group above the priority rule from the regular group. We know

that the optimal solution to a linear program must be a corner point of the feasible region.

Therefore the optimal mechanism described in Theorem 1 cannot be implemented as a

subsidy.

B Proofs from Section 4

Proof of Lemma 4. We know that the solution to:

max
(ag(·),pg(·))g=1,2

∑
g=1,2

ng

(∫
vag(v)fg(v, tg)dv − cg(tg)

)
s.t. (IC), (IR), (F).

is the Vickrey auction for any given (t1, t2). The resulting interim allocation rule for a given

(t1, t2) is the efficient allocation rule. The resulting interim allocation rules are:

ae
1(v) = F n1−1(v, t1)F

n2(v, t2) (5a)

ae
2(v) = F n1−1(v, t1)F

n2−1(v, t2) (5b)
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Therefore the seller’s problem (Opt-Aux) in the absence of the equity constraint can be

written as:

max
(tg)g=1,2

∑
g=1,2

ng

(∫
V

vae
g(v)fg(v, tg)dv − cg(tg)

)
.

The objective function can be rewritten as:

∑
g=1,2

ng

∫
V

vae
g(v)fg(v, tg)dv − n1c1(t1)− n2c2(t2).

Note the first term is equal to the expectation of a single draw from the distribution

F (v) = F n1(v, t1)F
n2(v, t2).

=⇒ = EF (v)− n1c1(t1)− n2c2(t2),

=

∫
V

(1− F n1(v, t1)F
n2(v, t2))dv − n1c1(t1)− n2c2(t2).

Taking first order conditions, we have that the optimal (te1, t
e
2) jointly solve

−
∫

v

F n1−1(v, t1)F
n2(v, t2)

∂F (v, t1)

∂t1
dv − c′1(t1) = 0, (6a)

−
∫

v

F n1(v, t1)F
n2−1(v, t2)

∂F (v, t2)

∂t2
dv − c′2(t2) = 0. (6b)

But this implies that te1, t
e
2 also satisfy (SR)— (6a),(6b) are identical to (FOC) in Lemma

3, since substituting from the interim allocation alloation (5a), (5b), we have:

−
∫

v

ae
1(v)

∂F (v, t1)

∂t1
dv − c′1(t1) = 0,

−
∫

v

ae
2(v)

∂F (v, t2)

∂t2
dv − c′2(t2) = 0.

Proof of Lemma 5. The auxiliary problem (Opt-Aux) can be trivially rewritten as:

max
(tg)g=1,2

ϕ(t1, t2)− n1c1(t1)− n2c2(t2),
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where

ϕ(t1, t2) = max
(ag(·),pg(·))g=1,2

∑
g=1,2

ng

(∫
V

vag(v)fg(v, tg)dv

)
s.t. (IC), (IR), (E), (F).

By Theorem 1, for any given t1, t2, the solution involves a flat subsidy in favor of the

target group. Therefore, this is also true for the optimal t1, t2. The first of the Lemma

follows.

To see the second part, recall that if the seller used a Vickrey auction (with no subsidy),

the effort choices would be te2 < te1.

Proof of Theorem 2. If E is slack in the solution to the optimal, then the efficient

mechanism solves auxiliary problem (Opt-Aux), and we are done by Lemma 4. So let us

suppose the efficient mechanism is infeasible. In that case, (E) must bind in the solution

to the optimal.

By Lemma 5, the solution will be a flat subsidy in favor of the target group. Let

ϕ(λ, t1, t2) denote the expected value of the winning buyer when a flat subsidy of λ favors

the target group, and the two groups have investment levels t1 and t2 respectively.

ϕ(λ, t1, t2) = n1

∫ 1

λ

vF (v, t1)
n1−1F (v − λ, t2)

n2f(v, t1)dv

+n2

∫ 1−λ

0

vF (v, t2)
n2−1F (v + λ, t1)

n1f(v, t2)dv

+n2

∫ 1

1−λ

vF (v, t2)
n2−1f(v, t2)dv.
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We can therefore rewrite (Opt-Aux) as:

max
t1,t2

ϕ(λ, t1, t2)− n1c1(t1)− n2c2(t2)

s.t. n2

∫ 1

0

a2(v)f(v, t2)dv ≥ α

a2(v) =

{
F (v, t2)

n2−1F (v + λ, t1)
n1 v ∈ [0, 1− λ]

F (v, t2)
n2−1 v ∈ [1− λ, 1].

a1(v) =

{
0 v ∈ [0, λ]

F (v − λ, t2)
n2F (v, t1)

n1 v ∈ [λ, 1].

We can rewrite as an unconstrained problem:

max
t1,t2

ϕ(λ?(t1, t2), t1, t2)− n1c1(t1)− n2c2(t2),

where λ? implicitly solves:

n2

∫ 1

0

a2(v)f(v, t2)dv ≥ α

a2(v) =

{
F (v, t2)

n2−1F (v + λ, t1)
n1 v ∈ [0, 1− λ]

F (v, t2)
n2−1 v ∈ [1− λ, 1].

The first order conditions are:

∂ϕ(λ?(t1, t2), t1, t2)

∂λ

∂λ?(t1, t2)

∂t1
+

∂ϕ(λ?(t1, t2), t1, t2)

∂t1
− n1c

′
1(t1) = 0

∂ϕ(λ?(t1, t2), t1, t2)

∂λ

∂λ?(t1, t2)

∂t2
+

∂ϕ(λ?(t1, t2), t1, t2)

∂t2
− n2c

′
2(t2) = 0

Taking derivatives and collecting terms,

∂ϕ

∂λ
= −λ

∫ 1

λ

∂F n1(v, t1)

∂v

∂F n2(v − λ, t2)

∂v
dv

Recall λ?(t1, t2) solves:

n2

∫ 1−λ

0

F n2−1(v, t2)F
n1(v + λ, t1)f(v, t2)dv + n2

∫ 1

1−λ

F n2−1(v, t2)f(v, t2)dv = α
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Differentiating with respect to t1, we have:

n1n2
∂λ?

∂t1

∫ 1−λ

0

F n2−1(v, t2)F
n1−1(v + λ, t1)f(v, t2)f(v + λ, t1)dv

+ n1n2

∫ 1−λ

0

F n2−1(v, t2)F
n1−1(v + λ, t1)

∂F (v + λ, t1)

∂t1
f(v, t2)dv = 0

Therefore

∂ϕ

∂λ

∂λ?

∂t1
= λ

∫ 1−λ

0

∂F n2(v, t2)

∂v

∂F n1(v + λ, t1)

∂t1
dv.

Recall that

ϕ(λ, t1, t2) = n1

∫ 1

λ

vF (v, t1)
n1−1F (v − λ, t2)

n2f(v, t1)dv

+n2

∫ 1−λ

0

vF (v, t2)
n2−1F (v + λ, t1)

n1f(v, t2)dv

+n2

∫ 1

1−λ

vF (v, t2)
n2−1f(v, t2)dv.

Rewriting,

ϕ(λ, t1, t2) =

∫ 1

λ

v
∂F (v, t1)

n1

∂v
F (v − λ, t2)

n2dv +

∫ 1−λ

0

v
∂F (v, t2)

n2

∂v
F (v + λ, t1)

n1dv

+

∫ 1

1−λ

v
∂F (v, t2)

n2

∂v
dv.

Via a change of variables in the first integrand,

=

∫ 1−λ

0

(v + λ)
∂F (v + λ, t1)

n1

∂v
F (v, t2)

n2dv +

∫ 1−λ

0

v
∂F (v, t2)

n2

∂v
F (v + λ, t1)

n1dv

+

∫ 1

1−λ

v
∂F (v, t2)

n2

∂v
dv.
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Gathering terms:

= λ

∫ 1−λ

0

∂F (v + λ, t1)
n1

∂v
F (v, t2)

n2dv +

∫ 1−λ

0

v
∂F (v, t2)

n2F (v + λ, t1)
n1

∂v
dv

+

∫ 1

1−λ

v
∂F (v, t2)

n2

∂v
dv.

Doing integration by parts on each of the three integrands and gathering terms once again,

= 1 + λ−
∫ 1−λ

0

F n1(v + λ, t1)
∂F (v, t2)

n2

∂v
−

∫ 1−λ

0

F (v, t2)
n2F (v + λ, t1)

n1dv

−
∫ 1

1−λ

F (v, t2)
n2dv

Taking partial derivatives with respect to t1, we have:

∂ϕ

∂t1
= −

∫ 1−λ

0

∂F n1(v + λ, t1)

∂t1

∂F (v, t2)
n2

∂v
−

∫ 1−λ

0

F (v, t2)
n2

∂F (v + λ, t1)
n1

∂t1
dv

Therefore

∂ϕ

∂t1
+

∂ϕ

∂λ

∂λ?

∂t1
= −

∫ 1−λ

0

F (v, t2)
n2

∂F (v + λ, t1)
n1

∂t1
dv

= −
∫ 1

λ

F (vλ, t2)
n2

∂F (v, t1)
n1

∂t1
dv

= −n1

∫ 1

λ

a1(v)
∂F (v, t1)

∂t1
dv

= −n1

∫ 1

0

a1(v)
∂F (v, t1)

∂t1
dv.

Therefore the first order condition with resepct to t1 can be written as:

−
∫ 1

0

a1(v)
∂F (v, t1)

∂t1
dv − c′1(t1) = 0,

which by observation is the sequential rationality constraint for buyers in group 1, (SR) in

the first order form via Lemma 3, (FOC). The argument for the target group/ the FOC

w.r.t t2 is completely symmetric and omitted.

Proof of Theorem 3. Again, the proof follows by a discretization argument analogous
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to the one in the proof of Theorem 1. The details are omitted. Let t be the level of

investment that the seller would like to implement. Since the efficient auction violates the

seller’s problem, this constraint will bind at the optimal solution.

We will continue with our relaxation approach. Let ηg be the dual variable correspond-

ing to (FOC). The ‘adjusted’ value of a buyer in the target group is:

ϕ2(v) = v +
η

f(v, t)

∂F (v, t1)

∂t
,

If ϕ2(v) is non-decreasing in v, then the lemma follows by observation. If ϕ2(v) is not

non-decreasing in v, then (M) is not satisfied ‘for free’, and additional ironing is required.

C Code for Example 2

gamma2 <- 0.008 # this is the cost faced by our target group

b1d <- 9 # the distribution of the regular group is F(v) = v^b1d

vttl <- function (v,t,l) ((v+l)^(b1d)*v^(t)*log(v))

vtl <- function (v,t) (v^(t) *log(v))

term1 <- function (t,l) (integrate(vttl,0,1-l,t,l)$value)

term2 <- function (t,l) (integrate(vtl,1-l,1,t)$value)

evaluate <- function (l,t,g) (term1(t,l)+ term2(t,l) +g) #value of the FOC for target buyer when exerting effort t,

#getting l in subsidy and g is the cost per unit effort.

#we now need to find the level of subsidy that will get us going to a particular target level of effort

targeteff <- 9

reqsubsidy <- uniroot(evaluate, c(0,0.75),targeteff, gamma2)$root #tells us how much subsidy we will have to put in.

#ex-ante probability good goes to buyer 2

t1quant <- function (v,t,l) ((v+l)^b1d*t*v^(t-1))

t2quant <- function (v,t) (t*v^(t-1))

quant <- function (t,l) (integrate(t1quant,0,1-l,t,l)$value + integrate(t2quant, 1-l, 1, t)$value)

subsidydistr <- quant(targeteff,reqsubsidy)

#we now similarly need to find the level of set-aside that will get us to that target level of effort

saincintegrand <- function(v,t,alpha) ((alpha+ (1-alpha)*v^b1d)*v^t*log(v))

b2safoc <- function(alpha,t,g) (integrate(saincintegrand,0,1,t,alpha)$value +g)

reqsetaside <- uniroot(b2safoc,c(0,1), targeteff, gamma2)$root

sadist <- reqsetaside + (1-reqsetaside)*quant(targeteff,0)

b1saeff<- b1d

#finally we need to compare implied efficiency.

saefficiency <- reqsetaside*(targeteff/(targeteff+1)) + (1-reqsetaside)*((b1saeff+targeteff)/(1+b1saeff+targeteff)) #that does it for set-aside

b1contrib <- function(v,t,l) (v^b1d*b1d*(v-l)^t)

efficient1 <- function(t,l) (integrate(b1contrib,l,1,t,l)$value)

b2contrib <- function(v,t,l) ((v+l)^b1d*t*v^(t))

28



b2contribh <- function(v,t,l) (t*v^t)

efficient2<- function(t,l) (integrate(b2contrib,0,1-l,t,l)$value + integrate(b2contribh,1-l,1,t,l)$value )

subefficiency<- efficient1(targeteff,reqsubsidy)+efficient2(targeteff,reqsubsidy)

#####

pvttl <- function (v,t,l) ((v*(1+l))^(b1d)*v^(t)*log(v))

pvtl <- function (v,t) (v^(t) *log(v))

pterm1 <- function (t,l) (integrate(pvttl,0,(1/(1+l)),t,l)$value)

pterm2 <- function (t,l) (integrate(pvtl,(1/(1+l)),1,t)$value)

pevaluate <- function (l,t,g) (pterm1(t,l)+ pterm2(t,l) +g)

preqsubsidy <- uniroot(pevaluate, c(0,0.75),targeteff, gamma2)$root #tells us how much subsidy we will have to put in.

pb1contrib <- function(v,t,l) (v^b1d*b1d*(v/(1+l))^t)

pefficient1 <- function(t,l) (integrate(pb1contrib,0,1,t,l)$value)

pb2contrib <- function(v,t,l) ((v*(1+l))^b1d*t*v^(t))

pb2contribh <- function(v,t,l) (t*v^t)

pefficient2<- function(t,l) (integrate(pb2contrib,0,1/(1+l),t,l)$value + integrate(pb2contribh,1/(1+l),1,t,l)$value )

psubefficiency<- efficient1(targeteff,preqsubsidy)+efficient2(targeteff,preqsubsidy)
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