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1 Introduction

This note questions the behavioral content of second-order acts and their

use in decision theoretic models. Although our argument extends to any

model that uses these acts in its foundation, we focus for concreteness on the

smooth model by Klibanoff, Marinacci, and Mukerji (2005) where they play

a fundamental role. Preferences in this model have the representation:

W(f) =

∫
∆(Ω)

φ

(∫
Ω

u(f(ω)) dP (ω)

)
dν(P ). (1)

Here Ω is a state space, ∆(Ω) is the set of probability measures on this space,

f is an act with values in ∆(C), where C is a finite set of “pure” consequences,

and u and φ are real-valued functions with the appropriate domains.

Second-order acts are used in (1) to separate “risk” from “uncertainty:”

A probability measure P in the inner integral represents the true governing

law, while the probability measure ν reflects the decision maker’s uncertainty

about what this law might be. If the decision maker knew P (ν puts unit

mass on a single measure), then he has expected utility preference with von

Neumann-Morgenstern utility u. A non-degenerate ν reflects the decision

maker’s uncertainty about the true P . A non-linear φ captures a non-neutral

attitude to uncertainty about P , while a linear φ reduces W to standard

expected utility.

A second-order act is a function of the form:

f : ∆(Ω)→ ∆(C)

and represent bets on probability measures. They should be distinguished

from the (usual) “state-based acts,” which are functions of the form f : Ω→
∆(C) and represent bets on events. Klibanoff, Marinacci, and Mukerji (2005)

who use them to derive the representation (1) argue that “second-order acts

are not as strange or unfamiliar as they might first appear. Consider any

parametric setting, i.e., a finite dimensional parameter space Θ [...] Second

order acts would simply be bets on the value of the parameter. [...] Similarly,

in model uncertainty applications, second-order acts are bets about the values

of the relevant parameters in the underlying model.”
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The use of acts and contracts implicitly assumes a mechanism to verify

what the parties should receive. Contracts contingent on probabilities of

events are difficult to interpret as objects of economic or decision theoretic

analysis. So while it makes sense to think of a bet on a football team wining

a game, a contract that stipulates “you receive 1 dollar if this team wins

with probability greater than 0.75 and zero otherwise” seems rather implau-

sible. Klibanoff, Marinacci, and Mukerji’s answer to this difficulty is that

“[v]erification [of probabilities] may also be possible if one has the opportu-

nity to wait and observe a sufficiently long run of data generated by repeated

realizations from the [underlying distribution] that obtains.” (p. 1856)

An appeal to repeated trials is unhelpful in unique situations, such as

a presidential election or a market crash, where repetition is implausible or

impossible. In this note we show that second-order acts remain problematic

even in settings where repeated experiments might make sense.

Section 2 illustrates how second-order acts might be used to separate risk

from uncertainty, relying on the smooth model for context. We use the exam-

ple to informally argue that these acts are difficult to interpret because there

can be no verification mechanism to determine what the decision maker re-

ceives once the state of the world is known. In Section 3 we provide a formal

definition of what parameters mean in a preference model. This definition

closely follows the typical interpretation of the notion of parameters in sta-

tistical inference and its applications in empirical sciences.

In Section 4, we show that there exists no verification mechanisms for

second-order acts in any parametric model. This impossibility result applies

to all verification mechanisms; it is irrelevant how simple or complex they are,

or whether they use finite data or refer to an idealized setting where infinite

data can be observed. This impossibility indicates that the smooth model

is founded on choices whose consequences cannot be determined because

they are contingent on unobservables. The repeatability of the experiment

is irrelevant.

There is a number of models in the literature that have a “double-integral”

representation that appears, superficially at least, similar to W . These in-

clude Neilson((1993), (2009)), Nau (2001), Nau (2006), Ergin and Gul (2009),

Chew and Sagi (2008), Strzalecki (2010), Grant, Polak, and Strzalecki (2009),

2



among others. In Section 4 we show that these models profoundly differ from

the smooth model because they do not appeal to second-order acts and thus

do not suffer from this model’s observability problems. We then discuss Seo

(2009)’s use of lotteries over acts by decision makers who do not reduce objec-

tive compound lotteries. We view his contribution as further illustration of

the problematic nature of second-order acts. Finally, Epstein (2010) pointed

to other paradoxical implications of the smooth model. The points he raises

are orthogonal to ours, so our works are complementary.

2 Interpreting Mixtures

We provide a simple example to illustrate why bets on unobservable proba-

bilities (second-order acts) are needed in the smooth model.

To work with a state space where the notion of “parameter” is not trivial,

we assume that Ω = {H,T}∞, the set of outcomes of infinite coin tosses. As-

sume further that consequences are real numbers and that the decision maker

is risk-neutral. Under these assumptions, the smooth model representation

ranks acts according to:

W(f) =

∫
∆(Ω)

φ

(∫
Ω

f(ω) dP (ω)

)
dν(P ).

Interpret ν as uncertainty about the true probability law P governing the

state ω. The model proposes to separate risk from uncertainty by identifying

a different attitude to ν-uncertainty captured by φ. For simplicity, assume

that φ is strictly concave so the decision maker is ambiguity averse.

Interpret a real number θ ∈ [0, 1] as the probability of Heads in a given

toss and let P θ be the corresponding i.i.d. distribution on Ω with marginal

θ. Given 0 < θ0 < θ1 < 1 and α ∈ (0, 1) define the probability measure

Pα ≡ αP θ0 + (1 − α)P θ1 on Ω. A distribution like Pα has many distinct

representations as a two-stage process. Two polar examples of such repre-

sentations are:

1. Representation 1: In the first stage the parameter θi ∈ {θ0, θ1} is drawn

according to the probability measure να that puts mass α on θ0 and

1− α on θ1. In the second stage, ω is generated according to P θi .
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2. Representation 2: The first stage is trivial, with δPα denoting the dis-

tribution that puts unit mass on Pα. In the second stage ω is chosen

according to αP θ0 + (1− α)P θ1 .

All such representations are equivalent from the perspective of an expected

utility maximizer, yet correspond to different behavior in the smooth model.

To illustrate this, suppose that f is the act that pays $100 if the first coin

turns Heads and $0 if it turns Tails. A decision maker with Representation

1 evaluates f according to:∫
∆(Ω)

φ

(∫
Ω

f dP

)
dνα = αφ (100θ0) + (1− α)φ (100θ1) . (2)

But under Representation 2, he evaluates f according to:∫
∆(Ω)

φ

(∫
Ω

f dP

)
dδPα = φ

(∫
Ω

f dPα

)
= φ

(
100[αθ0 + (1− α)θ1]

)
. (3)

These two expressions are different, unless φ is linear. In (2), the decision

maker has subjective uncertainty whether the ‘true’ parameter is θ0 or θ1.

This is treated as uncertainty by placing the mixture over θ1 and θ2 in the

outer integral in (2). In (3), by contrast, the decision maker is confident

that the true distribution is Pα. The representation treats the mixture over

θ1 and θ2 as objective risk by placing it in the inner integral in (3), and is

therefore treated by φ on equal footing as f .

For the smooth model to be non-vacuous, one needs to find behavioral

implications to identify ν and φ (thus deciding which of (2) or (3) to use).

This is accomplished by the use of the second-order acts, which is the set F

of all functions of the form:

f : ∆(Ω)→ ∆(C).

The smooth model postulates two classes of acts (state-based and second-

order acts, F and F respectively), two preference relations ( < on F and

another preference <̆ on F), and axioms relating the two. Once these in-

gredients are in place, deriving the representation W is straightforward and

follows the argument outlined by Neilson((1993), (2009)): Apply Savage’s
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theorem with state space ∆(Ω) and consequences ∆(C) to identify the prob-

ability measure ν and function φ appearing in W .

Second-order acts are bets on probabilities. Think of them as a contract

that stipulates, for instance, that: “you receive $2 if the probability of rain

is higher than .63, $1 if the probability is between 0.27 and 0.63, and zero

otherwise.” Klibanoff, Marinacci, and Mukerji recognize the problem that

bets on unobserved probabilities raise, but note that “[v]erification [of proba-

bilities] may also be possible if one has the opportunity to wait and observe

a sufficiently long run of data generated by repeated realizations.”

Our point is that repeated trials confound rather than clarify the issues. A

model of choice should point to, at a minimum, a thought experiment where

the decision maker can be presented with the consequences of his choice.

Proposition 4.1 will formally show that the smooth model cannot explain

how bets on probabilities can be implemented, even in repeated trials and

with infinite amount of data.

The intuition is simple: consider the setting with two i.i.d. parameters

θ0, θ1 introduced earlier and the subset of second-order acts of the form f :

[0, 1] → R. Here, f(0) and f(1) denote the consequence obtained if θ0 or θ1

occur, respectively, while f(α) is the consequence if the ‘true’ distribution

consists of first flipping a coin that picks θ0 with probability α, and θ1 with

probability 1−α. One can easily conceive of a mechanism to verify whether

θ0 or θ1 occurred (e.g., by examining the limiting frequencies). Proposition

4.1 formally defines the concept of verification mechanism and shows that

none exists to verify statements of the form “Pα occurred” and to determine

what the decision maker should receive under f.

3 Parameters, Risk, and Uncertainty

Klibanoff, Marinacci, and Mukerji suggest that the problem of observability

and, ultimately, the meaning of the smooth model can be settled by consid-

ering “any parametric setting, i.e., a finite dimensional parameter space Θ

[...] Second order acts would simply be bets on the value of the parameter.”

To evaluate this claim and justify the interpretation of parameters as
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risk, we need a formal notion of what a “parameter” means. In this section,

assume for simplicity a finite set of consequences C and that the decision

maker has a von Neumann-Morgenstern utility u over ∆(C).1

Definition 1 (Parametrizations) Let P ⊂ ∆(Ω) be a compact convex set

of probabilities, with extreme points {P θ}θ∈Θ, where Θ is an index set.2 We

say that Θ is a parametrization if there exists a map ϑ : Ω → Θ and E ⊂ Σ

such that the following is true:

(i) ϑ is measurable with respect to E;

(ii) P θ(ϑ−1(θ)) = 1 for all θ ∈ Θ;

(iii) For every A ∈ Σ and probability measure P ∈ P, P ϑ(ω)(A) is a version

of the conditional probability of A given E.

Every probability measure µ on Θ defines a unique probability on Ω by:

Mµ(A) =

∫
Θ

P θ(A) dµ(θ).

The notion of parametrization above is closely related with the notion of

sufficient statistics as extreme points of sets of measures. (See, for instance,

Dynkin (1978) and Lauritzen (1984)). Al-Najjar and De Castro (2010) derive

sufficient parameterizations from primitive invariance conditions on prefer-

ences and study them in great details.

Parameterizations are linked to a preference through the concept of suf-

ficiency:

Definition 2 (Sufficiency) A parametrization Θ is sufficient for a prefer-

ence < if ϑ is the essentially unique function3 such that for every f, g ∈ F :

f < g ⇐⇒
∫

Ω

f dP ϑ(·) <
∫

Ω

g dP ϑ(·). (4)

1Assume further that Ω is a Polish space with Borel σ-algebra Σ and, therefore, ∆(Ω)
is also Polish.

2Θ can be identified with a subset of ∆(Ω); thus Θ inherits the topology and Borel
structure of ∆(Ω).

3That is, if ϑ′ is another function satisfying (4), the set {ω ∈ Ω : ϑ(ω) 6= ϑ′(ω)} is
<-null.

6



A preference is parametric if it has a sufficient parameterization. A para-

metric preference can be decomposed into:

• An expected utility preference that captures risk conditional on param-

eters: The expression
∫
f dP ϑ(ω) <

∫
g dP ϑ(ω) compares two lotteries

in ∆(C) and so incorporates the decision maker’s risk attitude. If he

evaluated gambles according to expected utility with von Neumann-

Morgenstern utility u, then this comparison reduces to comparing the

“certainty equivalent” of f conditional on each θ,
∫

Ω
u(f) dP θ, with

that of g,
∫

Ω
u(g) dP θ.

• An aggregator that captures how the decision maker deals with param-

eter uncertainty.4

The notion of parameterization provides a formal justification for interpreting

parameters as risk. It is, however, silent on what aggregator the decision

maker uses.

We conclude this section by providing two examples of parameterizations:

1. The i.i.d. parametrization: Θ = [0, 1], P θ is the i.i.d. distribution with

probability of heads equal to θ, E is the set of events that are invariant

with respect to finite permutations, and ϑ is defined by setting ϑ(ω)

equal to the limiting frequency of heads in ω if this limit exists, and

define it arbitrarily otherwise.

This parametrization is the one that appears in de Finetti’s represen-

tation of exchangeable processes as mixtures of i.i.d. distributions.

2. The trivial parametrization: Θ = Ω, P ω = δω is the probability measure

that puts mass 1 on the state ω, E = Σ, and ϑ is the identity. Given

P on Ω, we have:

MP =

∫
δω dP = P.

This parameterization is trivial in that parameters are states, and so

they provide no useful compression of information.

4Formally, the aggregator is the restriction of the preference to parameter-based acts.
See Al-Najjar and De Castro (2010).
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4 Parameters and Observability

Given a parametrization Θ, let FΘ (or just F when the context is clear) denote

the set of second-order acts with respect to Θ, i.e., the set of all functions

of the form f : ∆(Θ) → ∆(C). In the case of the trivial parameterization

Θ = Ω, this is just the set of second-order acts in the smooth model.5 The

next result shows that neither the smooth model nor any model involving

second-order acts can be parametric. To make this formal, define:

Definition 3 Given a parameterization Θ, a collection of events {Eµ}µ∈∆(Θ)

is a verification mechanism for the set of second-order acts F if for every

ν, ν ′ ∈ ∆(Θ), ν 6= ν ′,

Eν ∩ Eν′ = ∅ and Mν(Eν) = 1.

We interpret ω ∈ Eν to mean that “observing ω verifies that ν occurred.”

The first requirement says that if ω verifies ν, then it cannot also verify

ν ′ 6= ν. The second requirement says that if ν is ‘true,’ then it will be

verified with probability 1 under Mν .

Proposition 4.1 Fix any parametrization Θ. Then there exists no verifica-

tion mechanism for its set of second-order acts F.

Proof: Assume, by way of contradiction, that there is such verification mech-

anism {Eν}ν∈∆(Θ). Let ν ∈ ∆(Θ)−Θ be of the form αθ0 +(1−α)θ1 for some

θ0, θ1 ∈ Θ, θ0 6= θ1, and α ∈ (0, 1). Then

Mν(Eν) = αP θ0(Eν) + (1− α)P θ1(Eν) = 1.

This implies that P θ0(Eν) = 1. Since P θ0(E0) = 1, we also have P θ0(E0 ∩
Eν) = 1. But since Eν ∩E0 = ∅, we have P θ0(E0 ∩Eν) = 0, a contradiction.

5The trivial parameterization, where Θ = Ω, is always sufficient for any preference. The
question is whether a preference has an “interesting” parameterization (e.g., exchangeable,
Markovian, . . . etc), not whether some parametrization exists. Al-Najjar and De Castro
(2010) discuss parametrizations in greater details.
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Some bets on probabilities make sense, namely those made on parameters:

any individual parameter θ is associated with a unique event ϑ−1(θ) ⊂ Ω

and thus can, at least in principle, be verified. For instance, one can in

principle verify whether the data is governed by the i.i.d. parameter θ0 or θ1

by inspecting the limiting frequencies. What does not make sense is bets on

mixtures of parameters which no amount of data can verify.

This sheds light on how the smooth model differs from others in the

literature, such as Neilson((1993), (2009)), Nau (2001), Nau (2006), Ergin

and Gul (2009), Chew and Sagi (2008), Strzalecki (2010), Grant, Polak, and

Strzalecki (2009), Klibanoff, Mukerji, and Seo (2010), among others. All

these models use versions of the “double-integral” representation, making it

tempting to lump them together, or to view them as special cases of the

smooth model. Holding the states, consequences, and acts fixed, the smooth

model relates two sets of objects:



Preference < on state-based acts F
+

Preference <̆ on unobservable acts F
+

Axioms on < and <̆


⇐⇒

 Preference
represented by

W

 .

The models cited above fundamentally differ from the smooth model in

that they do not involve bets on unobservable probabilities.6 As an illustra-

tion, consider preferences with second-order expected utility representation:

V(f) =

∫
Θ

φ

(∫
Ω

u(f(ω)) dP θ

)
dµ. (5)

Neilson((1993), (2009)) characterized these preferences in the special case

of the trivial parametrization Θ = Ω. The representation V is covered by

6For example, the Savage and von Neumann-Morgenstern models both use the expected
utility representation, but they are of course very different models because, among other
things, they assume different choice data.
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the framework of Al-Najjar and De Castro (2010) who show that Neilson’s

argument extends to general parametrizations. Although this superficially

appears similar to the functional W , the differences are fundamental. The

behavioral characterization of V is in terms of the set of state-based acts F
only. Second-order acts do not appear in these models and bets on mixtures

of parameters are meaningless.

In contrast with the smooth model, a mixture like αP θ0 + (1−α)P θ1 has

a unique interpretation in V as the decision maker’s subjective uncertainty

about the parameters. This is because the outer integral in V is over Θ so

“

∫
Θ

φ

(∫
Ω

u(f(ω)) dPα

)
dµ ′′

is a meaningless expressions because Pα 6∈ Θ and thus cannot appear as

object of integration. A parametric model separates risk and uncertainty

via behavioral assumptions about the sufficiency of a parametrization. The

smooth model does so by blurring the difference between bets on observable

parameters and bets on unobservable mixtures of parameters.

Along the same lines, the smooth model’s problems with observability

remain even if it so happens that the support of ν contains only observable

parameters. The second-order belief ν and utility φ are obtained as a con-

sequence of the assumption that the decision maker can reveal a preference

<̆ over unobservable second-order acts. Our critique extends to all models

that assume a preference over such acts as their foundation; it is irrelevant

whether or not the derived beliefs happen to be on observables only.

5 Lotteries over Acts

Seo (2009) attempts to provide foundations for the smooth model without

invoking unobservable second-order acts. He does this by expanding the

domain of the preference to ∆(F), the set of mixtures over acts.7 Elements

of ∆(F) are probability measures over F , so ∆(F) is a mixture space with

7The set of state-based acts F is already a mixture space, with convex combinations
defined state-wise: Given any two acts f, g and α ∈ [0, 1], we define αf + (1−α)g to mean
the act that yields the consequence αf(ω) + (1− α)g(ω) at state ω.
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the operation βQ ⊕ (1 − β)W , with Q,W ∈ ∆(F), β ∈ [0, 1], as the convex

combination of two measures Q,W .

As discussed in Kreps (1988), one may formulate subjective expected

utility a la Anscombe and Aumann (1963) by defining the preference over

the domain ∆(F) rather than the usual domain F provided one assumes (in

addition to the other standard assumptions) that for any two acts f, g and

α ∈ [0, 1]:

αδf ⊕ (1− α)δg ∼ αf + (1− α)g. (6)

Kreps (1988) notes that ∆(F) is strictly larger domain than F and that

assuming the Anscombe and Aumann axioms on the larger domain ∆(F)

amounts to “establishing large indifference classes [..making..] the mixture

space axioms much more powerful.” (p. 107)

By dropping (6), Seo obtains the representation:

Y(Q) =

∫
F

[∫
∆(Ω)

φ

(∫
Ω

u(f) dP θ

)
dν

]
dQ(f). (7)

Specialized to degenerate distributions δf and abusing notation, we obtain

the representation:

Y(f) =

∫
∆(Ω)

φ

(∫
Ω

u(f) dP θ

)
dν.

The idea is to derive a representation over F by expanding the domain of

the preference, except that now one considers bets over acts, whereas the

smooth model introduces bets on unobservable probabilities.

While observability is not an issue with this approach, new difficulties

arise with how objective lotteries are treated. As noted by Seo (2009, Corol-

lary 5.2), the preferences he assumes over ∆(F) fail to reduce objective com-

pound lotteries. Formally, let p, q ∈ ∆(C) be two lotteries over consequences.

With our interpretation of lotteries as constant acts, and fixing α ∈ [0, 1], we

can now talk about two objects:

• αp+ (1− α)q ∈ F ;

• αδp ⊕ (1− α)δq ∈ ∆(F).
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The first mixture is an act which, in every state ω, randomizes between

p, q with objective probabilities α, (1 − α). In the second mixture, one first

randomizes α, (1 − α) to select between p and q, then implement the result

of the selection in each state ω. The representation (7) requires that:

αp+ (1− α)q 6∼ αδp ⊕ (1− α)δq

for some choice of p, q, α.

The failure to reduce objective compound lotteries is a common behav-

ioral bias which is shown by Halevy (2007) to be strongly correlated with

ambiguity averse preferences among experimental subjects. Incorporating

such a bias as part of rational choice theory can be unsettling. To appreciate

the striking implications of such behavior, let f, g be two state-contingent

contracts for determining the end-of-year bonus of an agent. Assume that

the agent is risk-neutral (or that the payments are in utils). The agent knows

that: (1) a fair coin is tossed to select one contract from the set {f, g}; (2)

the bonus will be determined as a function of the state ω using the selected

contract. At the end of the year, an impartial referee receives two sealed

envelopes with the following information:

Envelope A: The result of a fair coin toss to select either f or g.

Envelope B: An observation of the realized state ω.

No observability issues arise here: the information contained in the two en-

velopes enables the referee to unambiguously determine what bonus should

be paid. There are, however, at least two ways for the agent to evaluate the

outcome.

• Envelope A then B: The agent believes the referee first opens Envelope

A, resolving uncertainty about the coin toss and determining whether

f or g is used, then Envelope B is opened, resolving uncertainty about

ω and determining whether he receives f(ω) or g(ω). In this case, the

value he attaches to this random contract is 0.5Y(f) + 0.5Y(g).

Y(0.5f + 0.5g) = 0.5

∫
Θ

φ

(∫
Ω

f dP θ

)
dν + 0.5

∫
Θ

φ

(∫
Ω

g dP θ

)
dν.
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• Envelope B then A: The agent believes the referee first opens Enve-

lope B, resolving uncertainty about ω and determining that the agent

receives either f(ω) or g(ω). Then the referee opens Envelope A, re-

solving uncertainty about the coin toss and determining whether f or g

is used. In this case, the value the agent attaches to this random con-

tract is:

Y (δ0.5f+0.50g) =

∫
Θ

φ

[∫
Ω

(0.50f + 0.50g) dP θ

]
dν.

Since the terms Y(0.5f+0.5g) and Y (δ0.5f+0.50g) are, in general, not equal

(unless φ is linear), the agent cares about the order in which the referee opens

the envelopes. If one insists that all objective lotteries should be reduced,

then Seo proves that (7) collapses to subjective expected utility. This makes

Seo’s approach based on lotteries over acts one of behavioral biases rather

than an account of how rational individuals deal with ambiguity.

The second-order expected utility model V (with non-linear φ) is consis-

tent with the reduction of objective compound lotteries: expand the domain

of V to ∆(F) and assume the indifference (6). In this case, compound ob-

jective lotteries always reduce: for any Q ∈ ∆(F) we have∫
F

[∫
Θ

φ

(∫
Ω

u(f) dP θ

)
dµ

]
dQ ∼

∫
Θ

φ

[∫
Ω

u

(∫
F
f dQ

)
dP θ

]
dµ,

which reduces to V , since
∫
F f dQ is just an ordinary act obtained by inte-

grating the consequences state by state using the distribution Q.

To summarize, Seo (2009)’s contribution is to show that second-order

acts’ may be avoided, provided one is willing to accept failures to reduce

compound lotteries. Such failures have disturbing implications for a theory

of rational choice under uncertainty.

6 Concluding Remarks

In discussing the issue of implementing second-order acts, Klibanoff, Mari-

nacci, and Mukerji note that “in Ellsberg urn experiments, all you would

13



need to do is dump the urn and verify the proportion of balls in it. Verifica-

tion may also be possible if one has the opportunity to wait and observe a

sufficiently long run of data.” Both of these fixes is problematic in situations

involving ambiguity. For one-off events, like a U.S. presidential election or

a disruptive technological innovation, there is no urn to dump or balls to

count. For repeated events, we argued in this paper that no matter how long

one waits, we will never “observe a sufficiently long run of data” to make

second-order acts behaviorally meaningful.
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