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Abstract

Often, perfect Bayesian equilibrium is loosely defined by stating that players should be

sequentially rational given some beliefs in which Bayes rule is applied “whenever possible”.

We argue that there are situations in which it is not clear what “whenever possible”

means. Then, we provide an elementary definition of perfect Bayesian equilibrium for

general extensive games that refines both weak perfect Bayesian equilibrium and subgame

perfect equilibrium.

JEL classification: C72.
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1 Introduction

Perfect Bayesian equilibrium is profusely used to analyze the game theoretical models that
are derived from a wide variety of economic situations. The common understanding is that
a perfect Bayesian equilibrium must be sequentially rational given the beliefs of the players,
which have to be computed using Bayes rule “whenever possible”. However, the literature lacks
a formal and tractable definition of this equilibrium concept that applies to general extensive
games and, hence, it is typically the case that perfect Bayesian equilibrium is used without
providing a definition beyond the above common understanding.

The main goal of this paper is to make a concise conceptual and pedagogic contribution to
the theory of equilibrium refinements. We first argue that there are games (indeed very simple
ones) in which it is not clear what “whenever possible” is supposed to mean. Then, we introduce
an elementary definition of perfect Bayesian equilibrium that works for all extensive games
and that refines both subgame perfect equilibrium and weak perfect Bayesian equilibrium.
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We call this equilibrium concept simple perfect Bayesian equilibrium. The main idea is to
refine weak perfect Bayesian equilibrium in the same spirit in which subgame perfection refines
Nash equilibrium, but to do so in such a way that it has bite also for imperfect information
games. From our point of view, this new equilibrium concept provides a minimal requirement
that should be imposed on equilibrium concepts that are based on Bayesian rationality. In
addition, further requirements might be imposed depending on the specific characteristics of
the games being analyzed. Finally, building up on the approach of Aumann (1964), we present
a general model for games in which the players may have a continuum of actions and in which
the number of information sets may be countably infinite. In this context, we extend the notion
of Bayesian updating to what we call conditional updating, which is needed to explicitly work
with beliefs in this general setting and, thus, to extend the notion of simple perfect Bayesian
equilibrium.

When game theory started to analyze models with imperfect information, there was a need
to refine the classic concepts of Nash equilibrium and subgame perfect equilibrium. Weak
perfect Bayesian equilibrium can be regarded as the first step in this direction (though it does
not even refine subgame perfection). This equilibrium concept was introduced by Myerson
(1991) when preparing the ground for the definition of sequential equilibrium.1 Also, Mas-
Colell et al. (1995) follow this approach and introduce weak perfect Bayesian equilibrium as
a bridge between the classic equilibrium concepts and the belief-based ones. Informally, a
strategy profile is a weak perfect Bayesian equilibrium when it is sequentially rational given a
system of beliefs that is consistent with Bayes rule on the path of the strategy (no restriction is
imposed on the beliefs at information sets that are off-path). Though pedagogically useful, weak
perfect Bayesian equilibrium has many shortcomings as an equilibrium concept; remarkably, it
does not even imply subgame perfection. Thus, this equilibrium concept also has to be refined.

Sequential equilibrium is probably the most widely used equilibrium concept for games with
imperfect information and, yet, there are classes of games where less demanding equilibrium
concepts that are easier to handle select reasonable strategy profiles. Even setting aside the fact
that it is often hard to deal with sequential equilibrium, there are natural economic settings in
which it cannot even be defined. The notion of consistent beliefs cannot be (trivially) extended
to games in which the players have a continuum of strategies; the models of auctions being the
most outstanding example of the latter type of games.

Despite the common practice of using perfect Bayesian equilibrium without providing a
formal definition, there have also been some exceptions. To the best of our knowledge, the
first paper introducing a formal definition is Harris and Townsend (1981), in the context of
mechanism design.2 A more elaborate approach is taken in Fudenberg and Tirole (1991) for
multistage games with observed actions. They impose some restrictions on how off-path beliefs
can be formed and present a definition of perfect Bayesian equilibrium that is natural within
the class of games to which their analysis is confined and, moreover, it is easier to study
than sequential equilibrium. Yet, these definitions of perfect Bayesian equilibrium cannot be
easily extended to general extensive games. Finally, Battigalli (1996) analyzes some natural
restrictions on how off-path beliefs should be computed in general extensive games and derives
several refinements of subgame perfection which, as he says, may be generically called perfect
Bayesian equilibria. The main idea underlying these refinements is what Battigalli called
strategic independence: when forming beliefs, the strategic choices of different players should

1Originally, Myerson called this equilibrium concept weak sequential equilibrium.
2In their setting, all the uncertainty a player faces during the game is about the types of the other players.

Once a player knows his type, he forms a prior over the types of the other players and this prior is updated
using Bayes rule as the game unfolds. If Bayes rule cannot be applied, i.e., after a history that is inconsistent
with the type of the player and the equilibrium strategies, the beliefs of the player are set to coincide with his
prior.
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be regarded as independent events. Although this approach has been conceptually insightful, it
is relatively hard to use in practice, since it requires the use of conditional probability systems
on the set of strategy profiles.

Possibly because of the technical complications associated with a formal definition of perfect
Bayesian equilibrium, there are many papers in the literature that carry out their analysis
for equilibrium concepts that lie in between weak perfect Bayesian equilibrium and sequential
equilibrium. They are generically referred to as perfect Bayesian equilibrium and, as mentioned
above, they are typically defined as a strategy profile that is sequentially rational given a system
of beliefs that is obtained using Bayes rule “whenever possible” (as opposed to do it only on
the path as in weak perfect Bayesian equilibrium).

This paper is structured as follows. As we said above, we start by noting in Section 2 that
one has to be careful when using the words “whenever possible” to refer to the way in which
Bayes rule is applied. In Section 3 we present an elementary but general definition of perfect
Bayesian equilibrium. Then, in Section 4 we extend the definition of simple perfect Bayesian
equilibrium to a broader context in which players may have a continuum of actions. Finally,
we conclude in Section 5.

2 The meaning of “whenever possible”

Since our contribution is primarily conceptual, we introduce as few notations as possible. We
think of extensive games as modeled in Selten (1975) and Kreps and Wilson (1982) and refer
the reader to those papers for the definitions of the concepts we discuss here.3 An assessment

is defined as a pair (b, µ) where b is a (behavior) strategy profile and µ is a system of beliefs.
As discussed in the introduction, it is quite common to see papers in which perfect Bayesian

equilibrium is defined as a sequentially rational assessment (b, µ) in which the beliefs are com-
puted using Bayes rule “whenever possible”. Although this definition is clear for some classes
of games, it is not precise enough for general extensive games. The reason, as illustrated in
Example 1 below, is that it is not clear what “whenever possible” is supposed to mean in
rigorous mathematical terms.

Example 1. Consider a game whose initial part corresponds with the one depicted in Figure 1.
The strategy profile b stands for anyone in which player 1 plays D and player 2 plays d at his
two decision nodes. The only nontrivial issue about beliefs has to do with the information set

b = (D, d, d, . . .)

w1

w2,1

w2,2

w3

x1

x2

x3

. . .

. . .

. . .

. . .

U

u

u
D

d

d

Figure 1: “Whenever possible” is imprecise.

3Nonetheless, unlike the definition of sequential equilibrium, our approach can be naturally extended to
more general settings, such as games in which players have a continuum of actions (see Section 4).
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w3.
4 As far as weak perfect Bayesian is concerned, since w3 is not on the path of strategy b,

there is no restriction for the beliefs at the nodes in w3, namely x1, x2, and x3. Yet, should we
impose any restriction on the beliefs in w3 if Bayes rule is to be applied “whenever possible”?
On the one hand, it can be argued that Bayes rule cannot be applied at w3 since, given b, w3 is
reached with probability 0 and we cannot condition on probability 0 events. On the other hand,
given b and conditional on either x1 or x2 being reached, i.e., conditional on player 1 having
played U , any belief consistent with Bayes rule should put probability 0 at x1, since player 2 is
playing d at w2,1. Note that, even in the latter case, Bayes rule imposes no restriction on the
relative probabilities of x2 and x3. Hence, what approach should we take? We consider that
the natural interpretation of “whenever possible” goes in the lines of the second reasoning.
In any case, this illustrates that providing a formal definition of what is meant by “whenever
possible” that can be applied to any extensive game is by no means a trivial exercise. Moreover,
any such definition would probably be difficult to work with and, since any such equilibrium
concept would always be refined by sequential equilibrium, its applicability would probably be
very limited.5 3

3 Simple Perfect Bayesian Equilibrium

Even after giving up on the objective of finding a compelling and useful definition of “whenever
possible”, there is still some room for a definition that pushes Bayesian requirements further
than weak perfect Bayesian equilibrium and that does it in a clean and practical way. On
the other hand, one cannot expect the simple definition of perfect Bayesian equilibrium that
we present below to imply (or coincide with) the perfect Bayesian equilibrium introduced in
Fudenberg and Tirole (1991). The reason is that, in order to decide what restrictions on
beliefs are reasonable, they use the specific structure of the games in the class to which they
have restricted. Somehow, by formally disentangling the meaning of “whenever possible” in
multistage games with observed actions and independent types, they get to something that is
very close to sequential equilibrium. Since we want a definition that is valid for every extensive
game and that is easy to deal with, we abstract from the implicit implications of Bayes rule
such as the one presented in Example 1.

Let G be an extensive game and Γ its game tree. Given a node x, we denote by w(x) the
information set that contains x. We say that a node y comes after a node x if x is on the
path from the root to y; equivalently, we say that y is a successor of x. In particular, a node
comes after itself. Similarly, a node comes after an information set if it comes after one of the
nodes in the information set. The definitions below generalize the definitions of subtree and
regular subtree in Selten (1975). Given an information set w, the quasi-subtree that begins at
w, Γw, consists of all the nodes that come after w in Γ and all edges connecting them. The
quasi-subtree Γw is regular if every information set of Γ that contains one node of Γw does
not contain nodes outside Γw, i.e., if an information set v has a node that comes after w, then
all the nodes in v come after w. Note that, in the special case in which w is a singleton, the
quasi-subtree Γw is indeed a subtree and, if Γw is regular, there is a well defined subgame of G
that begins at w. If Γw is a regular quasi-subtree we say that w is itself a regular information
set. Given an assessment (b, µ) and a regular information set w, we can associate a game with
Γw in a very natural way. More specifically, let Gw(µ) be the game defined as follows. First,
Nature moves and selects each node x in the information set w with probability µ(x). Second,

4We denote by wi,k the k-th information set of player i. For simplicity, if a player i has only one information
set, we denote it by wi.

5This example is similar to the example used in Battigalli (1996) to illustrate the notion of strategic inde-

pendence.
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the game unfolds in Γw and all remaining elements of the game are the restrictions of the
corresponding ones in G.6

For the sake of completeness we present now the definition of weak perfect Bayesian equi-
librium.

Definition 1. Let G be an extensive game. An assessment (b, µ) is a weak perfect Bayesian

equilibrium if it is sequentially rational and, on the path of b, µ is derived from b by Bayes rule.

As we have already argued above, the main drawback of weak perfect Bayesian equilibrium
is that it does not impose any restriction on the beliefs at off-path information sets and, hence,
although it is an equilibrium concept stronger than Nash equilibrium, a weak perfect Bayesian
equilibrium does not even need to be subgame perfect. Below we define a version of perfect
Bayesian equilibrium that imposes some simple restrictions on the off-path beliefs in a natural
way.

Definition 2. Let G be an extensive game. An assessment (b, µ) is a simple perfect Bayesian

equilibrium if, for each regular information set w, the restriction of (b, µ) to Gw(µ) is sequen-
tially rational and, on the path of b, the beliefs are derived from b by Bayes rule, i.e., the
restriction of (b, µ) to Gw(µ) is a weak perfect Bayesian equilibrium.

To some extent, simple perfect Bayesian equilibrium is to weak perfect Bayesian equilibrium
in imperfect information games what subgame perfection is to Nash equilibrium in perfect
information games. We present now a series of straightforward results and examples to illustrate
the properties of this new equilibrium concept and its relationships with other equilibrium
concepts.

Proposition 1. (i) Every sequential equilibrium is a simple perfect Bayesian equilibrium.

(ii) Every simple perfect Bayesian equilibrium is a weak perfect Bayesian equilibrium.

(iii) Every simple perfect Bayesian equilibrium is subgame perfect.

(iv) Every extensive game with perfect recall has, at least, one simple perfect Bayesian equi-

librium.

Proof. (i) A sequential equilibrium is defined as a sequentially rational and consistent assess-
ment. Consistency in the sense of Kreps and Wilson (1982) requires that the beliefs µ are the
limit of the beliefs associated with a sequence of completely mixed behavior strategies con-
verging to b. Clearly, this implies that Bayes rule must be applied on the path of all games
associated with regular information sets. Hence, sequential equilibrium implies simple perfect
Bayesian equilibrium.

(ii) The root node, r, is a regular information set. Then, since (b, µ) is a simple perfect
Bayesian equilibrium, we have that the restriction of (b, µ) to Gr(µ) is sequentially rational
and, on the path of b, the beliefs are derived from b by Bayes rule. Since Gr(µ) = G and the
restriction of (b, µ) to G is (b, µ), we have just stated the definition of weak perfect Bayesian
equilibrium.

(iii) There is a one to one correspondence between subgames and games defined from regular
information sets that are singletons. In each of these subgames, subgame perfect equilibrium
requires that a Nash equilibrium is played, whereas simple perfect Bayesian equilibrium is more

6Note that if Γw is not a regular quasi-subtree, then it is not so clear how the game Gw(µ) should be
defined. For instance, in the game in Figure 1, Γw2,1 is not a regular quasi-subtree, since it does not contain
x3. Nonetheless, what happens after x3 might be important to define the game Gw2,1 (µ) since, conditional on
w3 being reached, player 3 might put positive probability at x3 (µ(x3) > 0).
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demanding, asking for a weak perfect Bayesian equilibrium. Hence, simple perfect Bayesian
equilibrium implies subgame perfect equilibrium.

(iv) Every extensive game with perfect recall has, at least, one sequential equilibrium.
Hence, the result follows from (i).

Consider the game in Figure 2. The strategy b = ((D, d), D) is part of a weak perfect
Bayesian equilibrium; it suffices to take the beliefs such that µ(x) = 1; but it is not part of
any simple perfect Bayesian equilibrium since it is not a weak perfect Bayesian equilibrium in
the subgame that begins at w1,2. Moreover, the unique simple perfect Bayesian equilibrium is
((U, d), U), which leads to the outcome (2, 1). Take now the game in Figure 3. The strategy
b = (D,D) is a subgame perfect equilibrium but, since choiceD of player 2 is strictly dominated
in the information set Γw2

, it is not a simple perfect Bayesian equilibrium. Now, the unique
simple perfect Bayesian equilibrium is (U,U), which leads again to the outcome (2, 1).

b = ((D, d), D)

w1,1

w1,2 w2

x

y

(0, 0)

(0, 1)

(2, 1)

(1, 0)

(1, 2)

U

u

D

d

D

D

U

U

Figure 2: A weak perfect Bayesian equilib-

rium that is not a simple perfect Bayesian

equilibrium.

b = (D,D)

w1 w2

x

y

(2, 1)

(0, 0)

(1, 1)

(0, 0)

(1, 2)

U

C

D

D

D

U

U

Figure 3: A subgame perfect equilibrium

that is not a simple perfect Bayesian equi-

librium.

3.1 An Illustrating example

In section we present an example to illustrate the notion of simple perfect Bayesian equilib-
rium (SPBE) and its connections with sequential equilibrium (SE) and weak perfect Bayesian
equilibrium (WPBE). Consider the three-player multistage game with incomplete information
presented Figure 4. Only player 3 has a non-degenerate type space. In particular, with proba-
bility p ∈ (0, 1), player 3 has type I and, with probability 1− p, player 3 has type II. Once the
type of player 3 is realized, but without knowing it, player 1 chooses whether to continue the
game (C) or to stop (S). If C is played, player 2 chooses between U and D, knowing player 1’s
action but not knowing player 3’s type. Then, player 3 is called to move if he has type I, being
only uninformed about player 2’s action.

We start by looking at SE. Clearly, for any completely mixed behavior strategy of player 1,
conditional on information set w2 being reached, x3 would be reached with probability p and
x4 with probability 1− p. Therefore, for each behavior strategy b, the consistency requirement
on assessments imposes a unique possible system of beliefs, µb, where µb(x1) = µb(x3) = p and
the beliefs at w3 are pin down by the probabilities with which player 2 chooses U and D. We
now move to SPBE. The admissible system of beliefs is not necessarily unique. If b prescribes
player 1 to play C, then the system of beliefs is necessarily given by µb (all the information sets
are on the path of b). On the contrary, if b prescribes player 1 to play S, then SPBE does not
impose any restriction on the beliefs at w2, so the set of admissible beliefs is larger. In any case,
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0 w1 w2

w3
x1

x2

x3

x4

x5

x6

p

1− p

S

C

C

S

U

D

U

D

u

d

u

d

(1, 0, 0)

(1, 0, 0)

(p+ 0.5, 0, 0)

(1, 1, 1)

(p+ 0.5, 2, 1)

(0, 2, 0)

(0, 0, 0)

(2, 0, 2)

Figure 4: An example illustrating the relations between simple perfect Bayesian equilibrium
and the classic belief based equilibrium concepts.

since w2 is a regular information set, SPBE still requires that the beliefs at w3 are obtained
by applying Bayes rule from w2, given b.7 Finally, in the case of WPBE, the set of admissible
beliefs is even larger. If b prescribes player 1 to play C, as in the case of SE and SPBE, then
the admissible system of beliefs is necessarily µb. However, if b prescribes player 1 to play C,
then WPBE neither imposes no restriction on the beliefs at w2 and w3. This is consistent with
the inclusion relations in Proposition 1: the more demanding equilibrium concepts are those
that are less permissive with beliefs.

We now characterize the pure strategy equilibrium profiles according to SE, SPBE, and
WPBE. First of all, regardless of the value of p, (S,D, d) will never be a Nash equilibrium,
since player 1 always gains by deviating to C. Further, in any strategy profile in which player 1
plays C, all the information sets are on the path and, hence, beliefs are uniquely pin down by
Bayes rule. Therefore, for those strategy profiles in which player 1 plays C, the requirements
of SE, SPBE, and WPBE coincide. Also, note that both SE and SPBE impose that player 3
plays u whenever player 2 plays U and that he plays d whenever player 2 plays D (regardless
of player 1’s action). As we show below, this is not the case for WPBE. Then, under SE and

SPBE, the only equilibrium candidates are b̄ = (S,U, u), b̃ = (C,U, u), b̂ = (C,D, d).

SE: Recall that in every sequential equilibrium (b, µ), we have µ(x3) = p and µ(x4) = 1 − p.
If p > 1/2, the unique SE is b̃; if p ∈ (1/3, 1/2), the unique SE is b̄; and, if p < 1/3, the

unique SE is b̂ (if p = 1/2, both b̃ and b̄ are sequential equilibria and if p = 1/3, both b̄

and b̂ are sequential equilibria).

SPBE: Now, there is no restriction on the beliefs at w2 when S is played. Then, for all
p ∈ (0, 1/2], b̄ is a SPBE supported by any beliefs such that µ(x3) ≥ 1/3 (Bayes rule on
the “subgame” starting at w2 imposes that µ(x5) = 1); in some sense, under a SPBE

7An equilibrium concept in the spirit of perfect Bayesian equilibrium (Fudenberg and Tirole, 1991) would
also pin down the beliefs µb. The reason is that, on top of the requirements of SPBE, it imposes, among others,
a “no signaling what you do not know” condition for the formation of beliefs. When applied to information set
w2, this condition just says that player 2 cannot infer anything about the type of player 3 from the fact that
player 1 has played C (since player 1 does not have extra information about this type). Thus, this equilibrium
concept would coincide with SE in this example.

7
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player 2 is allowed to think that there is some correlation between the realized type of
player 3 and the action of player 1, whereas SE does not allow for it. When p ≥ 1/2, the

SE b̃ is also a SPBE. When p ≤ 1/3, the SE b̂ is also a SPBE. It can be easily verified
that there are no other SPBE.

WPBE: When player 1 plays S, there is complete freedom on the beliefs at w2 and w3.
Then, for all p ∈ (0, 1), the set of pure WPBE is constituted by the SPBE plus two
additional equilibria: b∗ = (S,U, d) and b∗∗ = (S,D, u). The equilibrium b∗ is supported
by µ(x3) ≥ 1/3 and µ(x5) ≤ 2/3, whereas the equilibrium b∗∗ is supported by µ(x3) ≤ 1/3
and µ(x5) ≥ 2/3. However, it is clear that the beliefs at w3 in these two equilibria are
quite unreasonable.

Therefore, we see that SE strictly refines SPBE when p < 1/3 and that the two equilibrium
concepts select the same strategy profiles when p ≥ 1/3. On the other hand, regardless of the
probability p, SPBE strictly refines WPBE. More importantly, SPBE removes precisely the
most unnatural WPBE, i.e., those in which player 3 is not even best replying at what player 2
is doing at w2.

3.2 Connection with extended subgame perfect equilibrium

When discussing the properties of sequential equilibrium, Kreps and Wilson (1982) define
what they call extended subgame perfect equilibrium and show that sequential equilibrium is
a refinement of it. Interestingly, extended subgame perfect equilibrium and simple perfect
Bayesian equilibrium build upon the same idea, but the former goes one step further and is
a refinement of the latter. This is because extended subgame perfection imposes restrictions
also at information sets that are not regular. The role played by regular information sets in
our definition is played by subforms in the definition of extended subgame perfect equilibrium.
Roughly speaking, a subform is a collection of information sets that is closed under succession;
in particular, given a regular information set w, Γw is a subform. Then, similarly to what we
did for regular information sets, one can associate a game to each subform. Yet, since a subform
can have multiple “initial” information sets, one has to specify the relative probabilities with
which they are chosen. Hence, to check that a given strategy profile is an extended subgame
perfect equilibrium, it does not suffice to provide a system of beliefs, but probability measures
over the “initial” information sets of the different subforms have to be specified as well.

To illustrate the above discussion, suppose that we have the three-player game described
in Figure 5 (since payoffs are irrelevant for the discussion, we omit them). The game only has
two regular quasi-subtrees: Γw1

and Γw3
. Hence, to check whether a strategy b is a simple

perfect Bayesian equilibrium, it suffices to find a system of beliefs µ such that the restrictions
of (b, µ) to Gw1

(µ) and Gw3
(µ) are sequentially rational and, on the path of b, µ is derived

from b by Bayes rule. On the contrary, the game has four subforms as defined by Kreps and
Wilson (1982). Specifically, in addition to Γw1

and Γw3
, there are two subforms with multiple

initial information sets: a subform initiated in information sets w2,1 and w2,2, and a subform
initiated in information sets w2,1 and w3. Now, checking that a strategy profile is an extended
subgame perfect equilibrium also requires to check sequential rationality in the corresponding
“subgames”. In order to do this, it is necessary to know the relative probabilities of the
different information sets, so that we know how Nature moves at the start of the different
“subgames”. Clearly, this goes beyond the scope of an assessment (b, µ), since a system of
beliefs just pins down the probabilities of the different nodes in each information set, but
contains no information about the relative likelihood of the different information sets. Further,
these relative probabilities must be derived from b by Bayes rule on the path of the restriction
of b to each “subgame”.

8
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w1

w2,1

w2,2

w3

U

C

D

U

D

U

D

u

d

U

D

U

D

x1

x2 x3

x4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5: Comparing simple perfect Bayesian and extended subgame perfect equilibria.

4 Simple Perfect Bayesian Equilibrium in General Games

In this section we show that it is not hard to extend simple perfect Bayesian equilibrium to
games in which the players may have a continuum of actions at some (possibly all) of their
information sets and in which the number of information sets may be countably infinite. As
we will see, the main difficulty lies on the definition of the game itself, not on the extension of
our equilibrium concept.

4.1 General extensive games

To define general extensive games we build upon the approach in Aumann (1964). Aumann’s
approach delivers one of the most general settings under which Kuhn’s theorem has been proved
and, therefore, it seems a natural starting point.8 We now present a concise description of the
ingredients needed to define a general extensive game; the reader is referred to Aumann (1964)
for a much more complete exposition.

Let I be the unit interval endowed with Borel’s σ-algebra. The main assumption in Au-
mann’s approach is to restrict attention to what he calls standard m-spaces. This reduces to
consider only the following measurable sets:

• Sets that are finite or countable and endowed with the discrete structure (all subsets are
measurable).

• Sets that are are isomorphic with I.9

This restriction seems quite natural and, at the same time, should be enough to model most
real-life applications. In words of Aumann, “most measurable spaces that one ‘encounters in
practice’ are standard; for example, any Borel subset of any Euclidean space or of Hilbert

8Alós-Ferrer and Ritzberger (2008) allow for more general games and characterize the class of game trees for
which all pure strategy combinations induce unique outcomes. In their own words, “the paper addresses the
question of what it takes to obtain a well-defined extensive form game”. In particular, the main complication
there is to allow not only for continuous strategy sets, but also for continuous time. In Alós-Ferrer and Ritzberger
(2007) the same authors aim to characterize the game trees under which a version of Kuhn’s theorem holds.

9An isomorphism is a one-one correspondence that is measurable in both directions.
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space is standard”. Let Ω be the the m-space I endowed with the Lebesgue measure, λ. The
randomizations of the players and Nature are defined as random variables from the fixed sample
space Ω to the action sets. For the sake of exposition, we assume that Nature moves once and
for all at the beginning of the game; the information functions defined below will be the ones
controlling what and when do the players learn about Nature’s moves. We are ready to define
general extensive games.10

Definition 3. A general extensive game GG with set of players N = {1, . . . , n} consists of:

(i) A (finite or infinite) sequence A1, A2, . . . of standard m-spaces called action spaces.

(ii) Another sequence of the same cardinality P1, P2, . . . where each Pk ∈ N indicates the
player who has to choose an action from Ak.

(iii) Another sequence of the same cardinality W1,W2, . . . of standard m-spaces called infor-

mation spaces and whose elements are referred to as information sets.

(iv) The set Nature’s moves, given by the standard m-space A0, and a measurable function
n0 : Ω → A0 (which induces a distribution of probability over Nature’s moves).

(v) A sequence of functions

gk : A0 ×A1 ×A2 × . . .×Ak−1 → Wk,

called information functions which, for each choice in A0, are measurable functions from
A1 ×A2 × . . . , Ak−1 into Wk.

(vi) A function h : A0 ×A1 ×A2 × . . . → R
n called the payoff function which, for each choice

in A0, is a measurable function from A1 ×A2 × . . . into R
n.

Informally, a general extensive game unfolds as follows. First, an element of the sample
space w ∈ Ω is realized, which leads to a move by Nature: n0(w) = a0. Then, player P1

gets information g1(a0) ∈ W1 and makes a choice a1 ∈ A1. Next, player P2 gets information
g1(a0, a1) ∈ W2 and makes a choice a2 ∈ A2 and so on. The payoff will then be obtained as a
function of the sequence a0, a1, a2, . . . We have to impose some conditions to ensure that the
game has perfect recall.

Definition 4. A general extensive GG game has perfect recall if, for each k < l such that
Pk = Pl, there are two measurable functions

αl
k : Wl → Ak and βl

k : Wl → Wk such that

αl
k(gl(a0, a1, a2, . . . , al−1)) = ak and

βl
k(gl(a0, a1, a2, . . . , al−1)) = gk(a0, a1, a2, . . . , ak−1).

Intuitively, a player can remember what he has previously done via the α functions and
what he has previously known via the β functions. Since Aumann (1964) showed that Kuhn’s
theorem holds for general extensive games with perfect recall, it is justified to focus on behavior
strategies.

10Despite following the same idea, our definition looks fairly different from the one in Aumann (1964).
Aumann presented his definition from “an individual player’s viewpoint”, in the sense that the game is retained
in extensive form for one player and normalized for the other players, “projecting” their strategy sets into a
single set. This representation was sufficient (and very convenient) to prove Kuhn’s theorem in his general
setting. In our case, we leave explicit the extensive form for all players.

10



Ju
ly

 1
9,

 2
01

1

Pe
fe

ct
 b

ay
es

ia
n

4.2 Behavior strategies and assessments in general extensive games

Definition 5. Let GG be a general extensive game.

• A mixed strategy profile in GG is a sequence m = (m1,m2 . . .) of measurable functions
mk : Ω × Wk → Ak, where Ω is the (fixed) sample space. For each k and each in-
formation set wk ∈ Wk, the random variables mk(·, wk) and n0 are independent. Also,
randomizations made by different players have to be independent, i.e., for k 6= l such that
Pl 6= Pk, mk(·, wk) and ml(·, wl) are mutually independent random variables (wk ∈ Wk

and wl ∈ Wl being arbitrary).

• A behavior strategy profile in GG is a mixed strategy profile b in which also the random-
izations made by a player in his different information sets are independent from each
other, i.e., for k 6= l, bk(·, wk) and bl(·, wl) are mutually independent random variables
(wk ∈ Wk and wl ∈ Wl being arbitrary).

Definition 6. A system of beliefs in a general extensive game GG is given by a sequence
µ = (µ1, µ2, . . .) such that, for each k and each wk ∈ Wk, µk is a distribution of probability
over Ω.

Then, an assessment will be a pair (b,µ). Note that, combined with b, µk induces a
distribution of probability over A0, . . . , Ak−1, i.e., a distribution of probability about what
may have happened previously in the game. As in the simple case of finite extensive games, we
want the system of beliefs µ to be obtained via “Bayes rule” along the “path” of b. However,
in general extensive games, it may be possible that some (possibly all) information sets of
a given information space are reached with probability zero. Hence, Bayes rule will not be
an appropriate way to update beliefs.11 Instead, one has to use conditional probabilities.
Conditional probabilities were already extensively used in Aumann (1964) and its need in
connection with the use of Bayes rule for updating beliefs is discussed in Jung (2010).

Since each behavior strategy b jointly with an element of the sample space ω ∈ Ω uniquely
pins down the realized actions a0, a1, . . . we can abuse notation and use gb,k(ω) to represent
gk(a0, . . . ak−1). Recall that λ represents the Lebesgue measure.

Definition 7. Given an assessment (b,µ), we say that µ is obtained by conditional updating

from b if, for each k, each B ⊂ Wk, and each Λ ⊂ Ω,

∫

B

µk

(

Λ |gb,k(ω)=wk

)

dλ
(

g−1
b,k(wk)

)

= λ
(

g−1
b,k(B) ∩ Λ

)

.

The above definition is simply saying that µk(· |gb,k(ω)=wk
) has to be a version of the con-

ditional probability condλ(· |gb,k(ω)=wk
).12 Therefore, if two systems of beliefs µ and µ′ are

obtained by conditional updating from b, they must agree on the information sets that are on
the path of b (even if the probability of reaching them is zero). When restricting attention
to finite games, conditional updating is equivalent to the use of Bayes rule on the equilibrium
path.

11To illustrate, just think of a situation in which player 1 has to pick x ∈ [−1, 1]. Player 2 is then informed
about |x|. Suppose player 1 strategy is to pick a number uniformly from [0, 1] with probability 2/3 and from
[−1, 0] with probability 1/3. Then, if player 2 receives information 0.7, he should deduce that x = 0.7 with
probability 2/3 and x = −0.7 with probability 1/3. However, since the probability of |x| = 0.7 is zero, the above
deduction cannot be made via Bayes rule: P (x = 0.7 ||x|=0.7) = P (x = 0.7 ∩ |x| = 0.7)/P (|x| = 0.7) = 0/0.

12The fact that any such conditional probability is a well defined probability measure crucially relies on the
use of standard spaces.
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4.3 Extending simple perfect Bayesian equilibrium

So far we have defined the ingredients we need to even think about defining a belief based
equilibrium concept for general extensive games. The definition of sequential rationality of an
assessment would now be straightforward: a player must be best replying at each informa-
tion set given his beliefs. Now we can easily extend the definition of weak perfect Bayesian
equilibrium to general extensive games.

Definition 8. Let GG be a general extensive game. An assessment (b,µ) is a weak perfect

Bayesian equilibrium if it is sequentially rational and µ is obtained by conditional updating

from b.

In order to present the extension of simple perfect Bayesian equilibrium we first need to
extend the notion of regular information set. Recall the idea of regular information set in finite
extensive games: if an information set v has a node that comes after a regular information
set u, then all the nodes in v come after u. Despite the fact that our definition of general
extensive game hides the tree structure, the notion of regularity of an information set is very
easy to generalize. First, given k < l, we say that an information set wl ∈ Wl comes after
wk ∈ Wk if there is a realization of actions a0, a1, . . . such that gk(a0, a1, . . . , ak−1) = wk and
gl(a0, a1, . . . , al−1) = wl, i.e., according to the realized actions, the information wl is given to
player Pl after information wk is given to player Pk.

Definition 9. Let GG be a general extensive game. An information set wk ∈ Wk is regular if,
for each information set wl such that wl comes after wk, then, for every realization a0, a1 . . .
such that gl(a0, a1, . . . , al−1) = wl, we have gk(a0, a1, . . . , ak−1) = wk, i.e., we cannot reach
information set wl without reaching first information set wk.

Now, as we did for finite games, given a general extensive game GG, an assessment (b,µ)
and a regular information set wk we can easily define a general extensive game GGwk

(b,µ) as
follows:

(i) The sequence Ak, Ak+1, . . ..

(ii) The sequence Pk, Pk+1, . . ..

(iii) The sequence Wk,Wk+1, . . ..

(iv) Nature’s moves are given by Awk

0 = A0 × . . .× Ak−1. The corresponding distribution of
probability is the one induced by b and µk.

(v) The information functions remain unchanged: gl : A
wk

0 ×Ak ×Ak+1 × . . .×Al−1 → Wl.

(vi) The payoff function also remains unchanged: h : Awk

0 ×Ak ×Ak+1 . . . → R
n.

Definition 10. Let GG be a general extensive game. An assessment (b,µ) is a simple per-

fect Bayesian equilibrium if, for each regular information set wk, the restriction of (b,µ) to
GGwk

(b,µ) is sequentially rational and µ is obtained by conditional updating from b, i.e., the
restriction of (b,µ) to GGwk

(b,µ) is a weak perfect Bayesian equilibrium.

As we have seen, despite of the complexity of the general setting under consideration, the
notion of simple perfect Bayesian equilibrium can be easily extended. Although at this stage
it would be desirable to provide some existence result for simple perfect Bayesian equilibrium
of general extensive games, this is a far from trivial issue. Indeed, the literature has already
struggled to find existence results for the weaker notion of subgame perfect equilibrium in
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games with a continuum of actions,13 even after imposing more structure than the one we have
here (such as perfect and almost perfect information, for instance). We refer the reader to
Harris (1985), Harris et al. (1995, 2005), and Luttmer and Mariotti (2003) for references on
the topic.

5 Conclusions

It is easy to find extensive games in which simple perfect Bayesian equilibria selects unrea-
sonable strategy profiles. One such example might be constructed from Figure 1. For an
assessment (b, µ) to be a simple perfect Bayesian equilibrium of a game starting with the game
tree in Figure 1, conditional on w3 being reached, there is complete freedom in the beliefs, i.e.,
it is not necessary that µ(x1) = 0. Nonetheless, we consider that this equilibrium concept can
be good enough in different situations and, because of its simplicity, it is much easier to deal
with than sequential equilibrium. Indeed, also weak perfect Bayesian equilibrium is sometimes
good enough and, because of this, it is often used in the literature.

Concerning the way in which equilibrium concepts are presented in most specialized books,
there is a positive feature of simple perfect Bayesian equilibrium. Namely, it allows to restore
the inclusion relation for the equilibrium concepts. Most books start by defining Nash equilib-
rium and subgame perfection comes immediately afterwards. Then, since subgame perfection
does not perform well in imperfect information games, they introduce the systems of beliefs
and, with them, weak perfect Bayesian equilibrium as a first step towards sequential equilib-
rium. Yet, we consider that it would be more pedagogic to use the concept of simple perfect
Bayesian equilibrium instead of weak perfect Bayesian equilibrium.
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