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Abstract

Estimating structural models is often viewed as computationally difficult, an im-
pression partly due to a focus on the nested fixed-point (NFXP) approach. We propose
a new constrained optimization approach for structural estimation. We show that our
approach and the NFXP algorithm solve the same estimation problem, and yield the
same estimates. Computationally, our approach can have speed advantages because we
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1 Introduction

Structural estimation of economic models is an important approach to analyzing economic

data. The main advantage of the structural approach is that it allows researchers to conduct

counterfactual policy analysis, which cannot be undertaken using the reduced-form approach.

However, the computational burden of estimating structural models can be a problem. It

is commonly believed that these computational demands make it difficult to implement

the most powerful and efficient statistical methods. For example, Rust (1987) proposed

a computational strategy for the maximum-likelihood estimation of single-agent dynamic

discrete-choice models, an approach referred to as the nested fixed-point (NFXP) algorithm.

The NFXP algorithm is computationally demanding because it repeatedly takes a guess for

structural parameters and then solves for the corresponding endogenous economic variables

with high accuracy at each guess of the parameters.

In the context of estimating games, the computational costs associated with the NFXP

algorithm increase. Games differ from single-agent dynamic models in that multiple equi-

libria can exist. When applying the NFXP algorithm to maximum-likelihood estimation of

games, a researcher must find all of the Nash equilibria for each vector of parameters con-

sidered in order to calculate the corresponding likelihood value. Finding all of the equilibria

in a game is a daunting computational task.1 Even if one can solve for all the equilibria

for every guess of structural parameters, then the resulting likelihood function can be non-

smooth, even discontinuous in the parameter space, which makes the optimization problem

extremely difficult to solve.

Thus, the potential computational burden of implementing the NFXP algorithm has led

to the development of computationally light estimators, such as the two-step estimator of

Hotz and Miller (1993) for estimating singe-agent dynamic discrete-choice models as well as

the two-step estimators of Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry

(2007); and Pesendorfer and Schmidt-Dengler (2008) for estimating dynamic games. Many

of these two-step estimators are not asymptotically efficient.2 Also, in finite samples, two-

step estimators can perform poorly if the first-step estimates are imprecise, or if researchers

do not choose suitable criterion functions in the second step. For example, Pakes, Ostrovsky,

1See the discussions in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) as well as Judd, Renner,
and Schmedders (2010).

2The two-step estimator where the second step is one Newton-Raphson step towards the maximum-
likelihood estimator is efficient; see, e.g., Newey and McFadden (1994) and Aguirregabiria and Mira (2007).
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and Berry (2007) have found that maximizing the pseudo logarithm of the likelihood func-

tion in a two-step estimator can lead to bias in finite samples. Recognizing these limitations,

Aguirregabiria and Mira (2002, 2007) propose the nested pseudo-likelihood (NPL) estima-

tor, a recursive two-step pseudo-likelihood estimator, to improve the asymptotic properties

and finite-sample performance of two-step estimators for estimating dynamic discrete-choice

models.

We propose a new constrained optimization strategy to estimate structural economet-

ric models, referred to as the mathematical program with equilibrium constraints (MPEC)

approach; see Luo, Pang, and Ralph (1996). The idea behind the MPEC approach is sim-

ple: choose the structural parameters and endogenous economic variables so as to maximize

the likelihood (or minimize the moment conditions) of the data subject to the constraints

that endogenous economic variables are consistent with an equilibrium for the structural

parameters. By formulating the estimation problem as a constrained optimization problem,

researchers can simply write down expressions that define the likelihood or the moments as

the objective function and the equilibrium equations as constraints and use existing con-

strained optimization solvers to calculate the estimates.

Computationally, our approach has the following advantage: we do not repeatedly solve

for an equilibrium at each guess of structural parameters. Most existing constrained op-

timization algorithms do not enforce constraints to be satisfied until the final iteration in

the search process.3 Consequently, the only equilibrium that needs to be solved exactly is

the one associated with the final estimate of structural parameters. This feature reduces the

computational burden of estimating structural models and makes it possible for our approach

to be faster than the NFXP algorithm.

The MPEC approach also builds on methods that have been developed in the statis-

tics and econometrics literature. In particular, the examples that we shall examine below

are constrained estimation problems of the kind described by Aitchison and Silvey (1958),

Gallant and Holly (1980), Wolak (1987, 1989), as well as Gallant and Tauchen (1989).4

We first provide a general formulation of the MPEC approach to estimating structural

models. We prove that MPEC and NFXP solve the same estimation problem and yield the

same estimates. Thus, MPEC can be viewed as an alternative computational algorithm to

3Optimization solvers that incorporate this feature include FILTER (Fletcher and Leyffer (2002)), IPOPT
(Wächter and Biegler (2006)), KNITRO (Byrd, Nocedal, and Waltz (2006)), SNOPT (Gill, Murray, and
Saunders (2005)).

4We thank A. Ronald Gallant for pointing us to the constrained estimation literature.
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NFXP for implementing the same statistical estimator.

We use the single-agent dynamic discrete-choice model studied by Rust (1987) as an

illustrating example and derive the MPEC formulation for estimating this model. In the

Monte Carlo experiments, we vary the discount factor in the dynamic programming model

and investigate the corresponding performance of NFXP and MPEC. Monte Carlo results

confirm that MPEC is significantly faster than NFXP, particularly when the discount factor

is close to one. We also note that the computational time for MPEC did not change much

across different discount factors, while the computational time for NFXP increased almost

fivefold when the discounted factor increased from 0.975 to 0.995.

One natural concern is the computational feasibility of the MPEC approach; that is, the

limitations concerning the size of problems that modern constrained optimization solvers can

solve. If the constraint Jacobian and the Hessian of the Lagrangian are sparse, and first-order

and second-order analytical derivatives and the corresponding sparsity patterns are supplied,

then we believe that 100,000 variables and 100,000 constraints are reasonable size limitations

for optimization problems to be solved using state-of-the-art constrained optimization solvers

on a workstation. In fact, we have successfully solved a structural estimation problem with

100,052 variables and 100,042 constraints in an hour on a Macintosh workstation, MacPro,

with 12 GB RAM. We expect that with the technological progress in computing hardware

and software, the size of computationally tractable problems will grow accordingly, doubling

perhaps every few years as has been the case for decades.

Dubé, Fox, and Su (2011) have illustrated the importance of supplying to optimization

solvers the first-order and second-order analytical derivatives and sparsity patterns in the Ja-

cobian and the Hessian. They applied MPEC to the GMM estimation of random-coefficients

logit demand models. By deriving a constrained optimization formulation that allows op-

timization solvers to exploit the sparsity structure in the Jacobian and the Hessian, they

demonstrated that MPEC can estimate random-coefficients demand models with thousands

or tens of thousands of variables and constraints.

The remainder of the paper is organized as follows: in Section 2, we provide a general

formulation of the MPEC approach to estimate structural models. We demonstrate the

equivalence in solution between NFXP and MPEC. In Section 3, we consider the standard

single-agent dynamic discrete-choice models in Rust (1987) and derive the corresponding

formulation for MPEC. In Section 4, we present Monte Carlo experiments to investigate the

computational performance of NFXP and MPEC. We summarize our results in Section 5.
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2 MPEC Approach to Estimation

In this section, we provide a general formulation of the MPEC approach to estimate struc-

tural models. We prove the equivalence in formulation between NFXP and MPEC.

Suppose that an economic model is described by the parameter vector θ, a state vector

x, and a vector of endogenous variables σ. The data are X = {xi, di}Mi=1, where xi is the

observed state, di is the observed equilibrium outcome of the underlying decision model

and M is the number of data points. One example is a dynamic programming problem

where θ contains the parameters for costs, profits, the laws of motion, and the stochastic

shocks, while σ is the policy function of a decision maker in an environment described by the

structural parameter vector θ. In general, σ will depend on θ through a set of equilibrium

conditions such as the first-order conditions, Bellman equations, market balance conditions,

and so forth. We express these conditions as a system of equations

h (θ, σ) = 0. (1)

For a given θ, let Σ (θ) denote the set of all σ such that h (θ, σ) = 0; that is,

Σ(θ) := {σ : h(θ, σ) = 0}.

We let σ̂(θ) denote an element in Σ(θ). For some applications, such as single-agent dynamic

discrete-choice models, σ̂(θ), which represents the expected value function, is uniquely deter-

mined, and the set Σ(θ) is a singleton for any given θ. In other applications, such as games,

there can be multiple equilibria; hence, the set Σ(θ) can be multivalued for some θ.

We denote by L (θ, σ̂(θ);X) the logarithm of the likelihood function of observing the

data X, conditional on the parameter vector θ. If σ̂(θ) is unique for every θ, then the

maximum-likelihood estimator is defined as

θ̂ = argmax
θ

1

M
L (θ, σ̂(θ);X) . (2)

If there are multiple solutions in the set Σ(θ), then we assume that the data obtain from

a single equilibrium, so that one can write down the likelihood function.5 The maximum-

5Moment inequality methods do not require this assumption; see Ciliberto and Tamer (2009), and Pakes,
Porter, Ho, and Ishii (2011).
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likelihood estimator is then defined as

θ̂ = argmax
θ

1

M

{
max

σ̂(θ)∈Σ(θ)
L (θ, σ̂(θ);X)

}
. (3)

Notice that the consistency requirement between θ and σ described in condition (1) is im-

plicitly taken into account by σ̂(θ) in the likelihood function.

In this formulation, the dependence of L on σ is implicit. In many applications, σ is

more directly related to the likelihood than to some components of θ. In a life-cycle problem,

the likelihood of an observation depends on the consumption and labor decisions, not on, for

example, the elasticity of labor supply, which could be a component of θ. Elasticities affect

likelihood only indirectly through their impact on decision rules.

Applying the NFXP algorithm to compute the maximum-likelihood estimator (3) re-

quires the following: in an outer loop, search over the structural parameter vector θ to

maximize the likelihood function; in an inner loop, for a given θ, find all the solutions

σ̂(θ) ∈ Σ(θ) and choose the solution that returns the highest likelihood value.

By simply replacing the equilibrium solution σ̂(θ) in the likelihood function by any σ, we

construct an augmented likelihood function, denoted by L (θ, σ;X).6 This function explicitly

expresses the dependence of the likelihood on σ and makes no requirement that θ and σ be

consistent with the equilibrium conditions of the economic model. For example, in a life-

cycle model, the policy function σ together with the components of θ related to exogenous

shock processes defines a stochastic process for the observables. A stochastic process is well

defined even when σ and θ are inconsistent with an equilibrium. An augmented likelihood

function allows us to treat σ and θ independently when we compute the likelihood.

When we estimate the structural parameter vector θ, we need σ to be consistent with θ.

We achieve this by imposing the equilibrium condition (1). Therefore, we can formulate the

maximum-likelihood estimation problem as a constrained optimization problem

max
(θ,σ)

1

M
L (θ, σ;X)

subject to h (θ, σ) = 0.

(4)

6We thank Peter Rossi for suggesting this term.
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The following proposition states the equivalence of the two formulations (3) and (4).7

Proposition 1. Let θ̂ be the maximum likelihood estimator defined in (3) and (θ̄, σ̄) be

a solution of the constrained optimization problem (4). Define σ̂∗(θ) = argmax
σ̂(θ)

L(θ, σ̂(θ)).

Then L(θ̂, σ̂∗(θ̂)) = L(θ̄, σ̄). If the model is identified, then we have θ̂ = θ̄.

Proof. Since (θ̄, σ̄) satisfies equation (1), we have σ̄ ∈ Σ(θ̄) and hence, L(θ̂, σ̂∗(θ̂)) ≥ L(θ̄, σ̄).

Conversely, since σ̂∗(θ̂) ∈ Σ(θ̂), the pair (θ̂, σ̂∗(θ̂)) is a feasible solution for (4). It follows

that L(θ̄, σ̄) ≥ L(θ̂, σ̂∗(θ̂)).

If the model is identified, then the solution is unique, so θ̂ = θ̄.

The MPEC approach described above is not limited to maximum-likelihood estimation.

It can be applied to any loss (or gain) function, such as least squares, weighted GMM, or

simulated maximum likelihood, as the objective; see, for example, Dubé, Fox, and Su (2011).

3 Single-Agent Dynamic Discrete Choice Models

We consider the single-agent dynamic discrete-choice model in Rust (1987). We chose the

Rust model because it has become the standard framework for modeling dynamic discrete-

choice problems. It is also often used to evaluate the performance of alternative estimators.

We first describe the NFXP algorithm proposed by Rust. We then derive the MPEC formu-

lation for estimating this model.

3.1 Model of Bus-Engine Replacement Problem

In the bus-engine replacement problem of Rust (1987), the dynamic decisions faced by the

manager, Harold Zurcher, are considered. In each period, a bus arrives in state x, the

accumulated mileage since the last engine replacement. Given the observed mileage state x

and other unobserved state variables ε, Zurcher must decide whether to perform extensive

repairs on a bus or to implement less costly activities. Formally, the discrete decision in time

7The equivalence of (2) and (4) when σ̂(θ) is unique for every θ is simply a special case of Proposition 1.
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t is defined as follows:

dt =

{
1, replacing the engine;

0, performing regular maintenance.

If Zurcher chooses to replace the engine, then the mileage state x after the replacement is

reset to zero, and the bus then goes out to travel for another period.

Let c (x; θ1) denote the expected operating costs per period at mileage x, where θ1 is

a vector of parameters to be estimated. Let RC denote the expected replacement cost to

install a new engine, net of any scrap value of the old engine. Given the state (x, ε) and the

action d, the utility per period is

u(x, d, ε; θ1, RC) = ν(x, d; θ1, RC) + ε(d)

where

ν(x, d; θ1, RC) =

 −c(x; θ1), if d = 0

−RC − c(0; θ1), if d = 1

and ε = [ε(0), ε(1)] represents utility shocks.

The state variables (xt, εt) evolve after a decision dt has been made, so their evolution

is described by the transition probability p(xt+1, εt+1|xt, εt, dt; θ2, θ3), where θ2 and θ3 are

parameter vectors to be estimated. Note that the transition probability p is Markovian: it

depends only on current state (xt, εt). Let β ∈ (0, 1) denote the discount factor. Given the

current state (xt, εt), the agent chooses a sequence of decision to maximize the following

total expected discounted utility over an infinite horizon:

max
{dt,dt+1,dt+2,...}

IE

[
∞∑
τ=t

βτ−tu(xτ , dτ , ετ ; θ1, RC)

]
(5)

where the expectation is taken over the stochastic evolution of future states.

Define the value function V by

V (xt, εt) = max
{dt,dt+1,dt+2,...}

IE

[
∞∑
τ=t

βτ−tu(xτ , dτ , ετ ; θ1, RC)

]
. (6)

Since the transition probability is Markovian, the optimal decision rule for the infinite-
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horizon decision problem is time invariant, and we can drop the time index t. The infinite-

horizon optimal decision problem (5) is then formulated as a solution to the Bellman equation

V (x, ε) = max
d

{
ν(x, d; θ1, RC) + ε(d) + β

∫
x′

∫
ε′
V (x′, ε′)p(x′, ε′|x, ε, d; θ2, θ3)dx′dε′

}
(7)

where (x′, ε′) denote the next-period state variables.

Rust (1987) discussed the computational difficulties in estimating the model specified

above and introduced the conditional independence assumption on the transition probability

p to simplify the estimation problem.

Assumption: Conditional Independence. The Markov transition probability of state

variables (x, ε) can be decomposed as p(x′, ε′|x, ε, d; θ2, θ3) = p2(ε′|x′; θ2)p3(x′|x, d; θ3).

Under the CI assumption, one can define the expected value function

EV (x) =

∫
ε

V (x, ε)p2(ε|x; θ2)dε

and the choice-specific value function

EV (x, d) = ν(x, d; θ1, RC) + ε(d) + β

∫
x′
EV (x′)p3(x′|x, d; θ3)dx′.

Taking the expectation with respect to ε on both side of the Bellman equation (7) and using

EV (x) and EV (x, d) defined above, one can obtain the integrated Bellman equation

EV (x) =

∫
ε′

max
d
{EV (x, d)} p2(ε′|x; θ2)dε′. (8)

Let θ = (RC, θ1, θ3) denote the vector of parameters to be estimated. Assuming ε is a

multivariate extreme-value distribution with θ2 being the Euler’s constant, Rust derived the

following multinomial logit formula to characterize conditional choice probability :

P (d|x; θ) =
exp [ν(x, d; θ1, RC) + βEV (x, d)]∑

d′∈{0,1}

exp [ν(x, d′; θ1, RC) + βEV (x, d′)]
(9)

where P (d|x; θ) is the probability of choosing decision d given the mileage state x and

parameter vector θ. Furthermore, the choice-specific value function EV (x, d) in equation (9)

9



is the unique fixed-point solution to the contraction mapping

EV (x, d) =

∫ ∞
x′=0

log

 ∑
d′∈{0,1}

exp [ν(x′, d′; θ1, RC) + βEV (x′, d′)]

 p3(dx′|x, d, θ3). (10)

Since the mileage state space x is continuous, EV (x, d) is a functional equation. Follow-

ing Rust (1987), we discretize the mileage state space x into K grid points x̂ = {x̂1, . . . , x̂K}
with x̂1 = 0. We require the fixed-point equation (10) to be satisfied at those grid points.

Given the current state x̂k, we assume that the mileage state in the next period x′ can move

up at most J grid points, and we specify the Markov transition probabilities as

p3(x′|xk, d, θ3) =

 Pr{x′ = x̂k+j|θ3}, if d = 0

Pr{x′ = x̂1+j|θ3}, if d = 1
(11)

for j = 0, 1, . . . , J . We can then rewrite the fixed-point equation (10) as

EV (x̂k, d) =
J∑
j=0

log

 ∑
d′∈{0,1}

exp [ν(x′, d′; θ1, RC) + βEV (x′, d′)]

 p3(x′|x̂k, d, θ3). (12)

With a slight abuse of notation, we now denote

EV = [EV (x̂1, 0), . . . , EV (x̂K , 0), EV (x̂1, 1), . . . , EV (x̂K , 1)]

as a vector of expected value functions. We also denote the fixed-point equation (12) by

EV = T (EV, θ). (13)

The above characterization allows us to calculate the conditional choice probability

P (d|x; θ) for a given vector of structural parameters θ by first solving the fixed-point equa-

tion (12) for EV (x, d′) for all d′. We refer readers to Rust (1987, 1994) for detailed derivation

and discussions.8

8With the Markov transition probabilities p3(x′|xk, d, θ3) defined in equation (11), we have EV (x̂k, 1) =
EV (x̂1, 0) for all k = 1, . . . ,K. Consequently, one can define EV = [EV (x̂1, 0), . . . , EV (x̂K , 0]; see Rust
(2000, p. 14).
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3.2 Maximum-Likelihood Estimation

The econometrician observes the mileage state and the corresponding decision in each period

and for each bus in the data. Let X i = (xit, d
i
t)
T
t=1 be the time-series data for bus i = 1, . . . ,M ;

xit is the mileage state of bus i examined in period t and dit is the replacement decision made

for that bus. For simplicity, we assume xit stays on the grid x̂ = {x̂1, . . . , x̂K}.9 The full data

set including all buses is denoted by X = (X i)Mi=1.

Rust (1987) proposed to estimate the structural parameter vector θ by the method of

maximum likelihood. The likelihood of observing data X i for bus i is

`i(X
i; θ) =

T∏
t=2

P (dit|xit; θ)p3(xit|xit−1, d
i
t−1; θ3),

where P (d|x, θ) is given by (9). The likelihood function of the full data set X = (X i)Mi=1 is

`(θ) =
M∏
i=1

`i(X
i; θ) =

M∏
i=1

T∏
t=2

P (dit|xit; θ)p3(xit|xit−1, d
i
t−1; θ3), (14)

and the logarithm of the likelihood function is denoted by

L(θ) = log `(θ) =
M∑
i=1

T∑
t=2

log
[
P (dit|xit; θ)

]
+

M∑
i=1

T∑
t=2

log
[
p3(xit|xit−1, d

i
t−1; θ3)

]
. (15)

We calculate the estimates of unknown parameter vector θ = (RC, θ1, θ3) by maximizing the

sample-averaged logarithm of the likelihood function

max
θ

1

M
L(θ). (16)

To evaluate the logarithm of the likelihood function L(θ) for a given θ, one needs to know

the value of P (d|x; θ), which in turn requires the value of EV , a solution of the fixed-point

equation (12). This fact motivates the NFXP algorithm proposed in Rust (1987). NFXP

consists of an outer loop and an inner loop. In the outer loop, an optimization procedure is

used to maximize
1

M
L(θ) by changing the structural parameters θ; in the inner loop, for a

given θ, one solves the fixed-point equation (12) for EV to calculate the conditional choice

probabilities P (dit|xit; θ), and to evaluate L(θ). Rust (1988) proved that L(θ) is a smooth

9If xit is not on the grid x̂, then we round xit up or down to the nearest grid point.
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function of θ, an attractive property that makes Newton’s method a valid computational

approach for solving this maximization problem. Rust derived formulae for calculating the

first-order derivatives of L(θ) using implicit function theorem. Supplying the analytical first-

order derivatives in the implementation of Newton’s method makes NFXP faster and more

robust than when finite-difference derivatives are used.

NFXP requires the fixed-point equation (12) to be solved accurately for every vector of

parameters θ considered in the maximization procedure.10 Aguirregabiria and Mira (2002)

have noted that repeatedly solving the fixed-point equation is not computationally efficient

because it is unnecessary to enforce the fixed-point equation to be satisfied during the search

process in the NFXP outer loop. They proposed a nested pseudo-likelihood estimator to

avoid repeated solution of the fixed-point equation. With the same motivation in mind, we

propose the MPEC approach for maximum-likelihood estimation of Rust’s bus model.

For MPEC, the augmented log-likelihood function is the following function of both struc-

tural parameter vector θ and expected value functions EV :

L(θ, EV ) =
M∑
i=1

T∑
t=2

log
[
P (dit|xit; θ)

]
+

M∑
i=1

T∑
t=2

log
[
p3(xit|xit−1, d

i
t−1; θ3)

]

=
M∑
i=1

T∑
t=2

log

 exp [ν(xit, d
i
t, θ) + βEV (xit, d

i
t)]∑

d′∈{0,1}

exp
[
ν(xit, d

′, θ) + βEV (xit, d
′)
]


+
M∑
i=1

T∑
t=2

log
[
p3(xit|xit−1, d

i
t−1; θ3)

]
.

(17)

Note that, in defining the augmented log-likelihood function (17), we have substituted the

conditional-choice probability P (d|x; θ) into L(θ) in equation (15) by the multinomial logit

formula given in equation (9). The function L(θ, EV ) is a well-defined smooth function of θ

and EV , and its first-order and second-order derivatives with respect to θ and EV exist.

To ensure that EV and θ are consistent in the structural equation, we impose the inte-

grated Bellman equations defined by equation (13) as constraints. Combining the sample-

averaged augmented log-likelihood function as the objective function and the integrated

10Rust (1987) started with contraction mapping (at a tolerance level of 10−13) and then switched to
Newton’s method to solve the fixed-point equation with very high accuracy; see also Rust (2000).
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Bellman equations as constraints yields the following constrained optimization problem:

max
(θ,EV )

1

M
L(θ, EV )

subject to EV = T (EV, θ).

(18)

It follows from Proposition 1 that the maximum-likelihood estimation problem defined

by (16) and the constrained optimization problem (18) are mathematically equivalent. Con-

sequently, NFXP and MPEC yield the same parameter estimates. Dubé, Fox, and Su (2011)

proved the equivalence in solutions to the first-order conditions of NFXP and MPEC in the

context of random-coefficients demand estimation. Their results and proof can be applied

directly to the single-agent dynamic models considered here as well.

We now discuss several computational aspects of implementing NFXP and MPEC. First,

for each θ considered under NFXP, there are two steps: (i) solving the dynamic programming

problem with high accuracy; and (ii) evaluating the likelihood function. Value function

iteration requires evaluating the Bellman equations many times under NFXP each time

a dynamic program is solved. In contrast, for each θ considered in MPEC, the Bellman

equation is evaluated once, but not solved. This feature reduces the computational burden

and makes it possible for MPEC to be much faster than NFXP.

Second, NFXP and MPEC require about the same amount of memory. The constraint

Jacobian and the Hessian of the Lagrangian are highly sparse in the bus-engine replacement

model. Let dim(z) denote the dimension of a vector z. The total number of elements in the

Jacobian and the Hessian are (dim(θ) + dim(EV )) × dim(EV ) and (dim(θ) + dim(EV ))2.

One can verify that the number of nonzero elements in the Jacobian is around (dim(θ) +

dim(θ3)+1)×dim(EV ). The Hessian is even more sparse than the Jacobian: the number of

nonzero elements in the Hessian is around (2×(1+dim(θ1))+dim(θ3))×(dim(θ)+dim(EV )).

In most dynamic discrete-choice models, dim(θ) is much smaller than dim(EV ). Thus, the

memory required for the constrained optimization approach on Zurcher’s model is on the

order of dim(θ) + dim(EV ), the number of variables in the MPEC approach.
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4 Monte Carlo Experiments

We investigated a specific example of Rust’s bus-engine replacement model, following the

specifications used to report the estimates in Table X in Rust (1987, p. 1022). In particular,

we chose the fixed-point dimension to be 175 (i.e., we discretized the mileage state space into

175 grid points) and the maintenance cost function to be c(x, θ1) = 0.001θ11x. The Markov

transition probabilities in the mileage state were defined as θ3j = Pr (xt+1 = xt + j|xt, it = 0),

for j = 0, 1, . . . , 4. Hence, θ3j is the probability that the mileage state will move up j grid

points in the next period. The unknown structural parameters to be estimated are replace-

ment cost RC, maintenance cost function parameter θ11, and mileage transition probabilities

θ3 = (θ3j)
4
j=0. We did not estimate the discount factor β. Instead, we examined five cases

with β ranging from 0.975 to 0.995 in an interval of 0.005.11

We used the parameter values reported for bus groups 1, 2, and 3 in Table X in Rust

(1987) as the true values of the data generating process:

RC0 = 11.7257,

θ0
11 = 2.4569,

θ0
3 = (0.0937, 0.4475, 0.4459, 0.0127, 0.0002).

We simulated time-series data for T = 120 time periods (10 years of monthly data) and

M = 50 buses. To simulate data for each of the five cases and the corresponding β, we fixed

the structural parameters at θ0 = (RC0, θ0
11, θ

0
3) and solved the integrated Bellman equation

(12) for EV 0. We then used θ0 and EV 0 to compute the conditional choice probabilities

P (d|x, θ) and to simulate mileage transitions and decisions for 250 data sets for each β in

our Monte Carlo study.

We conducted three implementations of algorithms. In the first, we coded the MPEC ap-

proach in AMPL, an algebraic modeling language; see Fourer, Gay, and Kernighan (2003).12

AMPL has two advantages: first, it will compute the exact first-order and second-order

analytic derivatives using automatic differentiation (see Griewank and Walther (2008));

second, it will analyze the sparsity structure of the constraint Jacobian and the Hessian,

and provide that information to optimization solvers.13 We denote this implementation as

11Rust (1997) chose β = 0.9999.
12We cannot implement NFXP in AMPL because AMPL does not allow nested function calls.
13For this example, the number of nonzeros in Jacobian is 2255 (≈ (7 + 5 + 1)× 175) and the number of

nonzeros in Hessian is 1584 (≈ (2× (1 + 1) + 5)× 182).

14



MPEC/AMPL.

We also coded both MPEC and NFXP in Matlab. For MPEC, we provided the hand-

coded first-order analytical derivatives of the objective function and constraints and the

sparsity pattern of the constraint Jacobian. For NFXP, we provided the first-order analytical

derivatives of objective function; we used only contraction mapping iterations to solve the

integrated Bellman equation (12) with an inner-loop tolerance 10−10.14 We denote these two

implementations as MPEC/Matlab and NFXP/Matlab, respectively.

Rust (1987) estimated the transition-probability parameters θ3 from the mileage tran-

sition data in the first stage and then estimated the remaining parameters (RC, θ11) in the

second stage. For both MPEC and NFXP, we estimated the parameters (RC, θ11, θ3) jointly

by solving the full likelihood function (15). For all three implementations, we solved the

estimation problem using the optimization solver, KNITRO; see Byrd, Nocedal, and Waltz

(2006). For each of the 1,250 replications (250 replications for each of the five βs) , we used

five different starting values to do a better job at finding a global solution. For a fair com-

parison, all three implementations used the same starting values in the structural parameter

vector θ.

In Table 1, we report the Monte Carlo results. These three implementations produced

almost identical means and standard deviations of estimates in each of the five scenarios

when we varied the discount factor β. We believe the differences arise because different local

maximizers were found in these three implementations. The estimation results demonstrate

that the maximum-likelihood estimator works extremely well on this model, particularly in

recovering the transition probabilities. For β = 0.99 and 0.995, all mean parameter estimates

except for θ30 are within two standard errors of the true values.

We report the computational performance of these three implementations in Table 2. One

can see that the MPEC/Matlab implementation is the most robust in terms of number

of runs converged. In terms of timing, MPEC/AMPL is the fastest, requiring only around

0.15 seconds for each run and considerably fewer iterations and function evaluations than

either MPEC/Matlab or NFXP/Matlab. The reason is that AMPL supplies both first-

order and second-order analytical derivatives to the solver KNITRO, whereas for the other

14NFXP will need more computational time if researchers use tighter inner-loop tolerance level such as
10−13 or follow Rust’s suggestion to switch to Newton’s method after the contraction mapping iteration
converges; see footnote 9. Since we provided hand-coded first-order derivatives in our implementation, we
found that NFXP using contraction mapping iteration only with an inner loop tolerance 10−10 is quite
robust.
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two implementations we supplied only first-order analytical derivatives. This observation

confirms that an optimization solver runs most efficiently and needs the fewest iterations and

function evaluations when both first-order and second-order derivatives are supplied. When

we remove the effect of supplying second-order derivatives and compare the performance of

MPEC/Matlab and NFXP/Matlab, MPEC still dominates NFXP in all categories. As

one can see, the number of major iterations and function evaluations for NFXP and MPEC

do not increase when we increase the discount factor from 0.975 to 0.995; however, the

computing time for NFXP increases steadily, while the computing time for MPEC/Matlab

(and MPEC/AMPL) requires the same. The reason for the increase in computing time for

NFXP is that when the discount factor β increases, the number of contraction mapping

iterations needed in solving the inner loop Bellman equations also increases.

Instead of calculating the asymptotic standard errors, one can use the bootstrap to

construct confidence interval or test hypothesis. The feasibility of conducting bootstrap in-

ference relies on having a computationally efficient method to perform parameter estimation

of the underlying structural model since the bootstrap requires estimating parameters for

each of the simulated samples. As we illustrated above, MPEC provides a computationally

efficient method to estimate dynamic discrete-choice models and makes bootstrap inference

possible. Indeed, the data sampling procedure that we describe above is a parametric boot-

strap procedure to generate simulated samples and our Monte Carlo study demonstrates the

uses of parametric bootstrap to compute standard errors on structural parameters.

5 Conclusion

In this paper, we have proposed a new constrained optimization approach, MPEC, for esti-

mating structural econometrics models. We have illustrated that the MPEC approach can be

applied directly to maximum-likelihood estimation of single-agent dynamic discrete-choice

models. Our approach can be easily implemented using existing standard constrained op-

timization software. Monte Carlo results confirmed that MPEC is significantly faster than

NFXP, particularly when the discount factor in the dynamic-programming model is close to

one.

As shown by Dubé, Fox, and Su (2011), MPEC can also be applied to estimate random-

coefficients logit demand models. We believe that our approach will be useful for estimating

structural models in various contexts and applications. For future research, we plan to
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investigate the applicability of the MPEC approach to estimate dynamic discrete-choice

games studied in Aguirregabiria and Mira (2007); Bajari, Benkard, and Levin (2007); Pakes,

Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008); and Arcidiacono and

Miller (2011).
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Table 1: Monte Carlo Results for Various Discount Factors β
β Implementation Parameters MSE

RC θ11 θ30 θ31 θ32 θ33

True values 11.726 2.457 0.0937 0.4475 0.4459 0.0127

0.975 MPEC/AMPL Mean 12.212 2.607 0.0943 0.4473 0.4454 0.0127 3.111

Std. dev. (1.613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.212 2.607 0.0943 0.4473 0.4454 0.0127 3.111

Std. dev. (1.613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.213 2.606 0.0943 0.4473 0.4445 0.0127 3.123

Std. dev. (1.617) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

0.980 MPEC/AMPL Mean 12.134 2.578 0.0943 0.4473 0.4455 0.0127 2.857

Std. dev. (1.570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.134 2.578 0.0943 0.4473 0.4455 0.0127 2.857

Std. dev. (1.570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.139 2.579 0.0943 0.4473 0.4455 0.0127 2.866

Std. dev. (1.571) (0.459) (0.0037) (0.0057) (0.0060) (0.0015) –

0.985 MPEC/AMPL Mean 12.013 2.541 0.0943 0.4473 0.4455 0.0127 2.140

Std. dev. (1.371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.013 2.541 0.0943 0.4473 0.4455 0.0127 2.140

Std. dev. (1.371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.021 2.544 0.0943 0.4473 0.4455 0.0127 2.136

Std. dev. (1.368) (0.411) (0.0037) (0.0057) (0.0060) (0.0015) –

0.990 MPEC/AMPL Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

0.995 MPEC/AMPL Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

For each β, there are 250 replications. Standard deviations are reported in parentheses. MSE is calculated

by summing over all structural parameters.
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Table 2: Numerical Performance of NFXP and MPEC in the Monte Carlo Experiments
β Implementation Runs Converged CPU Time # of Major # of Func. # of Contraction

(out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0.13 12.8 17.6 –

MPEC/Matlab 1247 7.90 53.0 62.0 –

NFXP 998 24.60 55.9 189.4 134,748

0.980 MPEC/AMPL 1236 0.15 14.5 21.8 –

MPEC/Matlab 1241 8.10 57.4 70.6 –

NFXP 1000 27.90 55.0 183.8 162,505

0.985 MPEC/AMPL 1235 0.13 13.2 19.7 –

MPEC/Matlab 1250 7.50 55.0 62.3 –

NFXP 952 43.20 61.7 227.3 265,827

0.990 MPEC/AMPL 1161 0.19 18.3 42.2 –

MPEC/Matlab 1248 7.50 56.5 65.8 –

NFXP 935 70.10 66.9 253.8 452,347

0.995 MPEC/AMPL 965 0.14 13.4 21.3 –

MPEC/Matlab 1246 7.90 59.6 70.7 –

NFXP 950 111.60 58.8 214.7 748,487

For each β, we use five starting points for each of the 250 replications. CPU time, number of major iterations,

number of function evaluations and number of contraction mapping iterations are the averages for each run.

21


