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Abstract

In recent years, numerous volatility-based derivative products have been
engineered. This has led to interest in constructing conditional predictive den-
sities and confidence intervals for integrated volatility. In this paper, we propose
nonparametric estimators of the aforementioned quantities, based on model free
volatility estimators. We establish consistency and asymptotic normality for
the feasible estimators and study their finite sample properties through a Monte
Carlo experiment. Finally, using data from the New York Stock Exchange, we
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1 Introduction

It has long been argued that, in order to accurately assess and manage market risk, it

is important to construct (and consequently evaluate) predictive conditional densities

of asset prices, based on actual and historical market information (see, e.g., Diebold,

Gunther and Tay, 1998). In many respects, such an approach offers various clear ad-

vantages over the often used approach of focusing on conditional second moments, as

is customarily done when constructing synthetic measures of risk (see, e.g., Andersen,

Bollerslev, Christoffersen and Diebold, 2006). One interesting asset class for which

predictive conditional densities are relevant is volatility. Indeed, since shortly after

its inception in 1993, when the VIX, an index of implied volatility, was created for the

Chicago Board Options Exchange, a plethora of volatility-based derivative products

has been engineered (see, e.g., Carr and Lee, 2003).

Given the development of this new class of financial instruments, it is of interest to

construct conditional (predictive) volatility densities, rather than just point forecasts

thereof. In this paper, we develop a method for constructing nonparametric con-

ditional densities and confidence intervals for daily volatility, given observed market

information. We show that the proposed estimators are consistent and asymptotically

normally distributed, under mild assumptions on the underlying diffusion process.

The intuition for the approach taken in the paper is the following. Since integrated

volatility is unobservable, we replace it with an estimator constructed using intra day

returns. Our density estimators are therefore based on a variable which is subject to

measurement error. We provide sufficient conditions under which conditional density

(and confidence interval) estimators based on (the unobservable) integrated volatility

and ones based on realized measures are asymptotically equivalent, so that measure-

ment error is asymptotically negligible.

The first estimator of integrated volatility is realized volatility, concurrently devel-
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oped by Andersen, Bollerslev, Diebold and Labys (2001), and Barndorff-Nielsen and

Shephard (2002). Several variants of realized volatility have subsequently been pro-

posed, motivated by the need of taking into account the presence of jumps or market

microstructure noise. Examples include multipower variation (Barndorff-Nielsen and

Shephard, 2004), different estimators that are robust to the presence of microstructure

noise (see, e.g., Zhang, 2006, Aı̈t-Sahalia, Mykland and Zhang, 2005,2006, Zhang,

Mykland and Aı̈t-Sahalia, 2005, Barndorff-Nielsen, Hansen, Lunde, and Shephard,

2006, 2008 and Xiu, 2010) and estimators that are robust to both jumps and noise

(Fan and Wang, 2007, Podolskij and Vetter, 2009). Since all of the estimators dis-

cussed above are designed to measure the ex post variation of asset prices, in the re-

mainder of the paper we will call them realized volatility measures. The idea of using

a realized measure as a basis for predicting integrated volatility has been also adopted

in other papers. Andersen, Bollerslev, Diebold and Labys (2001, 2003), Barndorff-

Nielsen and Shephard (2002), Andersen, Bollerslev and Meddahi (2004, 2005) deal

with the problem of pointwise prediction of integrated volatility, using ARMA models

based on realized volatility. Andersen, Bollerslev and Meddahi (2006), Aı̈t-Sahalia

and Mancini (2008), and Ghysels and Sinko (2006) address the issue of forecasting

volatility in the presence of microstructure effects.

The papers cited above deal with pointwise prediction of integrated volatility. To

the best of our knowledge, Corradi, Distaso and Swanson (2009) was the first paper to

focus on estimation of the conditional density of integrated volatility, by establishing

uniform rates of convergence for kernel estimators based on realized measures. How-

ever, with regard to notions such as hedging derivatives based on volatility, the crucial

question becomes how to assess the interval within which future daily volatility will

fall, with a given level of confidence. In this respect, the uniform convergence result

of Corradi, Distaso and Swanson (2009) is not sufficient. This paper provides an
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answer to this sort of questions by establishing asymptotic normality for estimators

of conditional confidence intervals. This is a substantially more challenging task, as

the realized measures and hence the measurement error are arguments of the uniform

kernel, which is non-differentiable, and thus standard mean value expansion tools are

no longer usable. Moreover, the current paper deals with the general class of cadlag

(right continuous with left limit) volatility processes. This makes the computation of

the moment structure of the measurement error much more complicated.

In order to assess the finite sample behavior of our statistics, we carry out a Monte

Carlo experiment in which pseudo true predictive intervals are used in conjunction

with intervals based on various realized measures. An empirical application to volatil-

ity directional predictability, based on New York Stock Exchange data, highlights the

potential of our method and reveals the informational content of different volatility

estimators.

The rest of the paper is organized as follows. Section 2 defines and establishes the

asymptotic properties of the conditional density and confidence interval estimators.

Section 3 studies the applicability of the established asymptotic results to various

well known realized measures. In Section 4, the results of a Monte-Carlo experiment

designed to assess the finite sample accuracy of our asymptotic results are discussed.

Section 5 contains an empirical illustration based upon data from the New York Stock

Exchange. All proofs are contained in the Appendix.

2 Setup and main results

Denote the log-price of a financial asset at a continuous time t as Yt, and let

dYt = µtdt + σtdWt + dJt, (1)

where the drift µt is a predictable process, the diffusion term σt is a cadlag process,

Wt is a standard Brownian motion and Jt denotes a finite activity jump process. This
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specification is very general, and (for example) allows for jump activity in volatility,

stochastic volatility and leverage effects. We introduce market frictions by assuming

that the observed log-price process is given by X = Y + ε. Finally, we assume that

there are a total of MT observations from the process X, consisting of M intradaily

observations for T days, viz:

Xt+j/M = Yt+j/M + εt+j/M , t = 0, . . . , T and j = 1, . . . ,M. (2)

Daily integrated volatility is defined as IVt =
∫ t

t−1
σ2

sds, t = 1, . . . , T . Since IVt is

not observable, different realized measures, based on the sample Xt+j/M , are used as

proxies for IVt. Each realized measure, RMt,M , will have an associated estimation

error Nt,M , i.e.:

RMt,M = IVt + Nt,M . (3)

Our objective is to construct a nonparametric estimator of the density and confidence

intervals of integrated volatility at time T +1, conditional on actual information. We

analyze the properties of both kernel based and local polynomial estimators. We start

from Nadaraya-Watson estimators for conditional confidence intervals:

ĈIT,M(u1, u2|RMT,M) = F̂RMT+1,M |RMT,M
(u2|RMT,M)− F̂RMT+1,M |RMT,M

(u1|RMT,M)

=

1
Tξ

∑T−1
t=0 1{u1≤RMt+1,M≤u2}K

(
RMt,M−RMT,M

ξ

)

1
Tξ

∑T−1
t=0 K

(
RMt,M−RMT,M

ξ

) ; (4)

and for conditional densities:

f̂T,M(x|RMT,M) = f̂RMT+1,M |RMT,M
(x|RMT,M) =

1
Tξ1ξ2

∑T−1
t=0 K

(
RMt,M−RMT,M

ξ1

)
K

(
RMt+1,M−x

ξ2

)

1
Tξ1

∑T−1
t=0 K

(
RMt,M−RMT,M

ξ1

) .

Here, K is a kernel function, and ξ, ξ1 and ξ2 are bandwidth parameters.

We need the following assumptions.

Assumption A1: IVt is a strictly stationary α−mixing process with mixing coeffi-

cients satisfying
∑∞

j=1 jλα
1−2/δ
j < ∞, with λ > 1− 2/δ and δ > 2 .
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Assumption A2: (i) The kernel K is a symmetric, nonnegative, continuous function

with bounded support [−∆, ∆], at least twice differentiable on the interior of its

support, satisfying
∫

K(s)ds = 1,
∫

sK(s)ds = 0. (ii) Let K(j) be the j−th derivative

of the kernel. Then, K(j)(−∆) = K(j)(∆) = 0, for j = 1, . . . , J, J ≥ 1.

Assumption A3: (i) f(·) and, for any fixed x, f(x|·) are absolutely continuous with

respect to the Lebesgue measure in R+, and at least twice continuously differentiable.

(ii) For any fixed x, u and z, f(z) > 0, f(x|z) > 0, and 0 < F (u|z) < 1.

Assumption A4: There exists a sequence bM , with bM →∞, as M →∞, such that

E
(
|Nt,M |k

)
= O

(
b
−k/2
M

)
, for some k ≥ 2.

Assumption A1 requires the daily volatility process to be strong mixing. Of note

is that the mixing coefficients of the integrated and of the instantaneous volatility

process are of the same order of magnitude. Assumption A1 is, for example, satisfied

when the volatility process is generated by a diffusion:

dσ2
t = b1

(
σ2

t

)
dt + b2

(
σ2

t

)
dWt, (5)

provided the drift condition in Meyn and Tweedie (1993, p.536) is satisfied:

2σ2b1(σ
2) + b2

2

(
σ2

) ≤ −c1

(
σ2

)2
+ c2,

where c1, c2 are positive constants. The drift condition is met when drift and variance

terms in (5) grow at most at a linear rate, and if there is mean reversion. Assump-

tion A1 is also satisfied when a jump component is added to the diffusion in (5),

see e.g. Masuda (2007). A2 and A3 are standard assumptions in the literature on

nonparametric density estimation. Assumption A4 requires that the k−th moment

of the measurement error decays to zero at a fast enough rate, in order to ensure

that the feasible density estimators (based on realized estimators) are asymptotically

equivalent to the infeasible ones (based on the latent volatility). In Section 3 we shall
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provide primitive conditions under which A4 is satisfied by the most commonly used

realized measures. For conditional confidence intervals, we have the following result.

Theorem 1. Let A1-A4 hold. Then:

(i)

√
Tξ

(
ĈIT,M(u1, u2|RMT,M)− CI(u1, u2|RMT,M)

)

=
√

V (u1, u2)Z +
√

Tξ5
1

2
C2(K)b(u1, u2) + Op

(
ξ−1b

−1/2
M + b

−1/4
M T

3
4k + T

3+k
2k ξ1/2b

−1/2
M

)
,

where Z is a standard normal, C2(K) =
∫

u2K(u)du,

V (u1, u2) =

∫
K2(u)du

f(RMT,M)
(CI(u1, u2|RMT,M) (1− CI(u1, u2|RMT,M))) ,

b(u1, u2) =
∂2 (F (u2|z)− F (u1|z))

∂z2

∣∣∣∣
z=RMT,M

+2
f (1)(RMT,M)

f(RMT,M)

∂ (F (u2|z)− F (u1|z))

∂z

∣∣∣∣
z=RMT,M

.

(ii) If either (a) Tξ3 → ∞, T ξ5 → 0 and max
{

b
−1/2
M T

3
2k , T

3+k
k ξb−1

M

}
→ 0 or (b)

Tξ →∞, T ξ5 → 0 and max
{

b
−1/2
M T

3
2k , T

3+k
k ξb−1

M , b−1
M ξ−2

}
→ 0, then

√
Tξ

(
ĈIT,M(u1, u2|RMT,M)− CI(u1, u2|RMT,M)

)
d−→ N (0, V (u1, u2)) .

The relative orders of magnitude of M,T, ξ are discussed in Remark 6 below. The

key point in the proof of this theorem is to show the asymptotic equivalence between

the estimator based on realized measures and that based on integrated volatility, that

is to show that:

1
Tξ

T−1∑
t=0

(
1{u1≤RMt+1,M≤u2}K

(
RMt,M −RMT,M

ξ

)
− 1{u1≤IVt+1≤u2}K

(
IVt −RMT,M

ξ

))
= op

(
1√
Tξ

)
.

One difficulty arises because the measurement error enters in the indicator function,

so that standard mean value expansions do not apply. As shown in detail in the

Appendix, we proceed by conditioning on a subset on which supt |Nt,M | approaches

zero at an appropriate rate, and show that the probability measure of this subset

approaches one at rate
√

Tξ. We now turn to our predictive density estimator.
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Theorem 2. Let A1-A4 hold. Then:

(i)

√
Tξ1ξ2

(
f̂T,M(x|RMT,M)− f(x|RMT,M)

)

=

(√
f(x|RMT,M)

f(RMT,M)

∫
K2(u)du

)
Z +

1

2

√
Tξ5

1ξ2C2(K)
∂2f(x|RMT,M)

∂x2

+
1

2

√
Tξ1ξ5

2C2(K)


 ∂2f(x|z)

∂z2

∣∣∣∣
z=RMT,M

+ 2

∂f(x|z)
∂z

∣∣∣
z=RMT,M

∂f(z)
∂z

∣∣∣
z=RMT,M

f(RMT,M)




+Op

(√
Tξ1ξ2b

−1/2
M + ξ−1

1 b
−1/2
M + ξ−1

2 b
−1/2
M

)
.

(ii) If either (a) Tξ3
1ξ2 →∞, T ξ1ξ

3
2 →∞, T ξ5

1ξ2 → 0, T ξ1ξ
5
2 → 0, Tξ1ξ2b

−1
M → 0, or

(b) Tξ1ξ2 →∞, T ξ5
1ξ2 → 0, T ξ1ξ

5
2 → 0, max

{
Tξ1ξ2b

−1
M , b−1

M ξ−2
1 , b−1

M ξ−2
2

} → 0, then

√
Tξ1ξ2

(
f̂T,M(x|RMT,M)− f(x|RMT,M)

)
d−→ N

(
0,

f(x|RMT,M)

f(RMT,M)

(∫
K2(u)du

)2
)

.

A viable alternative to kernel based estimators is to use local linear estimators.

One advantage of such estimators is that they do not suffer from the boundary prob-

lem. Local linear estimator of conditional confidence intervals are obtained from the

following optimization problem:

α̂T,M(u1, u2, RMT,M) = arg min
α

ZT,M(α; u1, u2, RMT,M), where

ZT,M(α; u1, u2, RMT,M)

=
1

Tξ

T∑
t=0

(
1{u1≤RMt+1,M≤u2} − α0 − α1 (RMt,M −RMT,M)

)2

K

(
RMt,M −RMT,M

ξ

)

and α = (α0, α1)
′. The local linear estimator of the conditional confidence interval is

given by α̂0,T,M(u1, u2, RMT,M). These estimators for conditional distributions have

been recently used by Aı̈t-Sahalia, Fan and Peng (2009) for testing the correct speci-

fication of diffusion models. Similarly, local linear conditional density estimation (see

Fan, Yao and Tong, 1996), are derived from:

β̂T,M(x,RMT,M) = arg min
β

ST,M(β; x,RMT,M), where
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ST,M(β; x,RMT,M)

=
1

Tξ1ξ2

T∑
t=0

(
K

(
RMt+1,M − x

ξ2

)
− β0 − β1 (RMt,M −RMT,M)

)2

K

(
RMt,M −RMT,M

ξ1

)
,

and β = (β0, β1)
′. The conditional density is given by the estimator of the constant in

the least square minimization above, β̂0,T,M(x,RMT,M). We have the following result.

Theorem 3. Let A1-A4 hold. (i) Then:

√
Tξ (α̂0,T,M(u1, u2, RMT,M)− CI(u1, u2|RMT,M))

=
√

V (u1, u2)Z +
√

Tξ5
1

2
C2(K)

∂2 (F (u2|z)− F (u1|z))

∂z2

∣∣∣∣
z=RMT,M

+Op

(
ξ−1b

−1/2
M + b

−1/4
M T

3
4k + T

3+k
2k ξ1/2b

−1/2
M

)
,

and if either (a) Tξ3 → ∞, T ξ5 → 0 and max
{

b
−1/2
M T

3
2k , T

3+k
k ξb−1

M

}
→ 0 or (b)

Tξ →∞, T ξ5 → 0 and max
{

b
−1/2
M T

3
2k , T

3+k
k ξb−1

M , b−1
M ξ−2

}
→ 0, then

√
Tξ (α̂0,T,M(u1, u2, RMT,M)− CI(u1, u2|RMT,M))

d−→ N (0, V (u1, u2)) .

(ii)

√
Tξ1ξ2

(
β̂0,T,M(x,RMT,M)− f(x|RMT,M)

)

=

(√
f(x|RMT,M)

f(RMT,M)

∫
K2(u)du

)
Z +

1

2

√
Tξ5

1ξ2C2(K)
∂2f(x|RMT,M)

∂x2

+
1

2

√
Tξ1ξ5

2C2(K)
∂2f(x|z)

∂z2

∣∣∣∣
z=RMT,M

+ Op

(√
Tξ1ξ2b

−1/2
M + ξ−1

1 b
−1/2
M + ξ−1

2 b
−1/2
M

)
,

and, if either (a) Tξ3
1ξ2 →∞, T ξ1ξ

3
2 →∞, T ξ5

1ξ2 → 0, T ξ1ξ
5
2 → 0, Tξ1ξ2b

−1
M → 0, or

(b) Tξ1ξ2 →∞, T ξ5
1ξ2 → 0, T ξ1ξ

5
2 → 0, max

{
Tξ1ξ2b

−1
M , b−1

M ξ−2
1 , b−1

M ξ−2
1

} → 0, then

√
Tξ1ξ2

(
β̂0,T,M(x,RMT,M)− f(x|RMT,M)

)
d−→ N

(
0,

f(x|RMT,M)

f(RMT,M)

(∫
K2(u)du

)2
)

.

The theorem shows that kernel and local linear estimators are asymptotically

equivalent.
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3 Applications to specific volatility estimators

We now provide primitive conditions on the moments of the drift, variance and

noise, which ensure that Assumption A4 is satisfied by some commonly used real-

ized measures, namely Two Scale Realized Volatility (R̂V t,l,M , Zhang, Mykland and

Aı̈t-Sahalia, 2005):

R̂V t,l,M =
1

B

B∑

b=1

l−1∑
j=1

(
Xt+ jB+b

M
−X

t+
(j−1)B+b

M

)2

− l

M

M−1∑
j=1

(
Xt+ j

M
−X t+ j−1

M

)2

,

with M = lB. Multi Scale Realized Volatility (R̃V t,τ,M , Zhang, 2006):

R̃V t,τ,M =
τ∑

i=1

ai

i

(
M−i∑
j=1

(
Xt+ j+i

M
−X t+ j

M

)2
)

+

∑M−1
j=1

(
Xt+ j

M
−X t+ j−1

M

)2

M
,

with ai = 12i/τ 2 (i/τ − 1/2− 1/(2τ)) / (1− 1/τ 2) ,
∑τ

i=1 ai = 1 and
∑τ

i=1 ai/i = 0.

Realized kernels (RKt,H,M , Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008):

RKt,H,M =
H∑

h=1

κ

(
h− 1

h

) (
γX

h + γX
−h

)
,

where γX
h =

∑M−H−1
j=H

(
Xt+(j+1)/M −Xt+j/M

) (
Xt+(j+1−h)/M −Xt+(j−h)/M

)
and κ is a

kernel function defined in Lemma 1.

Lemma 1. Let Yt follow (1) and ε be defined by (2). If Jt ≡ 0 for all t, E
(
(σ2

t )
2(k+δ)

)
<

∞ and E
(
(µt)

2(k+δ)
)

< ∞, with δ > 2, then there is a sequence bM , where bM →∞
as M →∞, such that:

(i) If εt ∼ i .i .d . (0, σ2
ε ) , E

(
ε2k
t

)
< ∞, E (εtYt) = 0, and l/M1/3 = O(1), then

E

(∣∣∣R̂V t,l,M − IVt

∣∣∣
k
)

= O(b
−k/2
M ), with bM = M1/3.

(ii) If εt ∼ i .i .d . (0, σ2
ε ) , E

(
ε2k
t

)
< ∞, E (εtYt) = 0, and τ/M1/2 = O(1), then

E

(∣∣∣R̃V t,τ,M − IVt

∣∣∣
k
)

= O(b
−k/2
M ), with bM = M1/2.
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(iii) If E
(
ε2k
t

)
< ∞, E (εtYt) = 0, κ(0) = 1, κ(1) = κ(1)(0) = κ(1)(1) = 0, and

H/M1/2 = O(1), then E
(
|RKt,H,M − IVt|k

)
= O(b

−k/2
M ), with bM = M1/2. If

in addition κ(2)(0) = 0 and E
(
ε4k
t

)
< ∞, the same statement holds for εt+j/M

geometrically mixing, in the sense that, for any j, there exists a constant |ρ| < 1

such that E
(
εt+j/M

∣∣ εt+(j−s)/M , . . .
) ≈ ρsεt+(j−s)/M .

Note that (A.11) implies that Lemma 1 holds for realized volatility and bM = M .

It can be shown that it also holds for power variation measures with bM = M . Part

(iii) of the Lemma allows for some serial dependence in the microstructure noise,

requiring an additional condition on the kernel function, i.e. κ(2)(0) = 0. Such

a condition is satisfied, for example, by fifth or higher order kernels. Some form of

correlation between noise and price can be allowed, following the approach of Kalnina

and Linton (2008) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).

Remark 1. From a practical point of view, the asymptotic normality results stated

in the Theorems are useful, as they facilitate the construction of confidence bands

around estimated conditional densities and confidence intervals. The sort of empirical

problem for which these results may be useful is the following. Suppose that we want

to predict the probability that integrated volatility will take a value between u1 and u2,

say, given actual information. Then, asymptotically, Pr ((u1 ≤ IVT+1 ≤ u2)|IVT = RMT,M)

will fall in the interval (F̂T,M(u2|RMT,M)−F̂T,M(u1|RMT,M))± V̂ 1/2(u1, u2)zα/2/
√

Tξ,

with probability 1−α, where V̂ (u1, u2) is an estimator of V̂ (u1, u2), as defined in The-

orem 1, and zα/2 denotes the α/2 quantile of a standard normal.

Remark 2. In empirical work, volatility is often modelled and predicted with ARMA

models that are constructed using logs of realized volatility. For example, Andersen,

Bollerslev, Diebold and Labys (2001, 2003) use the log of realized volatility for mod-

elling and predicting stock returns and exchange rate volatility. According to these

authors, one reason for using logs is that while the distribution of realized volatility is
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highly skewed to the right, the distribution of logged realized volatility is much closer

to normal. It is immediate to see that a Taylor expansion of log(RMt,M) around IVt

ensures that E
(
|log(RMt,M)− log(IVt)|k

)
= O(b

−k/2
M ). Therefore, the statements in

the theorems above hold in the case where we are interested in predictive densities

and confidence intervals for the log of integrated volatility.

Remark 3. Meddahi (2003) has shown that integrated volatility is not Markovian.

Hence, by including a conditioning set containing also past information, we may im-

prove the accuracy of the predictive densities. For RM
(d)
t,M = (RMt,M , . . . , RMt−(d−1),M),

our conditional confidence interval estimators would be given by:

ĈIT,M(u1, u2|RM
(d)
T,M) =

1
Tξd

∑T−1
t=d 1{u1≤RMt+1,M≤u2}K

(
RM

(d)
t,M−RM

(d)
T,M

ξ

)

1
Tξd

∑T−1
t=d K

(
RM

(d)
t,M−RM

(d)
T,M

ξ

) ,

where K is a d−dimensional kernel function. Extension of the results of the theorems

to cover this general case is straightforward (and available upon request), but is not

reported for notational simplicity. To alleviate the curse of dimensionality, one may

use (weighted) averages of past realized measures. This is the route followed in the

empirical section.

Remark 4. So far we have assumed that IVt is a stationary process. This allows

prediction via a state domain smoothing approach. However, if volatility is also time

inhomogeneous, then a time-domain approach, or a combination of a state and time

domain approach becomes necessary. Nonparametric estimation of time inhomoge-

neous volatility over a finite time span has been considered by Florens-Zmirou (1989).

Estimation of time varying diffusions over an increasing time span is a more challeng-

ing task, as one has to control for the degree of nonstationarity, ensuring that the

law of large numbers and central limit theorem still apply. Fan, Jiang, Zhang and

Zhou (2003) estimate diffusions with time-varying coefficients, under the assumption

that they are locally constant. Koo and Linton (2009) established asymptotic nor-
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mality of nonparametric estimators of the drift and variance of a diffusion, under the

assumption of local stationarity. They consider diffusion processes like:

Xt,T =

∫ t

0

µ(s/T,Xs,T )ds +

∫ t

0

σ(s/T, Xs,T )dWs.

Xt,T is locally stationary if, for t/T in a neighborhood of v, it can be well approximated

by a diffusion:

Xv,t =

∫ t

0

µ(v, Xv,s)ds +

∫ t

0

σ(v, Xv,s)dWs,

which, for any point v ∈ [0, 1], is stationary and, under usual conditions on µ and σ,

α−mixing. The corresponding integrated volatility IVt,T =
∫ t

t−1
σ2(s/T,Xs,T )ds can

be accurately approximated, for t/T in a neighborhood of v, by IVv,t =
∫ t

t−1
σ2(v, Xv,s)ds.

Then, Pr (IVt+1,T ≤ u|IVt,T = x, t/T = v) can be estimated by:

F̂T (u|x, v) =

1
T

∑T−1
t=1 1{IVt+1,T≤u}K

(
IVt,T−x

ξ

)
K

(
t/T−v

h

)

1
T

∑T−1
t=1 K

(
IVt,T−x

ξ

)
K

(
t/T−v

h

) . (6)

A feasible version of (6) can be implemented by replacing IVt+1,T with its realized

counterpart, RMt,M . Provided the measurement error satisfies Assumption A4, the

statement in Theorem 1 follows, by simply modifying the rate of convergence, in order

to take into account the double domain and time smoothing. If we are interested in

out of sample prediction, then we need to evaluate t/T around v = 1. This poses a

clear boundary issue, which can be overcome by using a local polynomial estimator,

with both time and domain smoothing, i.e. by computing:

α̂T,M(u,RMT,M , v)

= arg min
α

1

Tξh

T−1∑
t=1

(
1{RMt+1,M≤u} − α0 − α1 (RMt,M −RMT,M)− α2 (t/T − v)

)2

K

(
RMt,M −RMT,M

ξ

)
K

(
t/T − v

h

)
,

where α = (α0, α1, α2)
′ and α̂0,T,M(u, x, v) defines the local polynomial estimator.
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Remark 5. There is a well developed statistical literature on kernel estimation of

densities and regression functions in the presence of measurement error. For example,

in the case of i.i.d. observations, Stefanski (1990) and Fan (1991, 1992) derive rates

of convergence for kernel marginal density estimators, and Fan and Truong (1993) for

Nadaraya-Watson regression function estimators, with a one-dimensional covariate.

Extension to dependent observations and to the multivariate case have been provided

by Masry (1991) for joint density estimation and by Fan and Masry (1992) for regres-

sion functions. Recently, Delaigle, Fan and Carroll (2009) have derived asymptotic

normality results for local polynomial estimators. This is a more challenging task, as

the variable measured with error enters not only in the kernel function but also in the

polynomial approximation. The common assumptions in the papers above are that

the error is independent of the “true” latent variable, and that its density is known

in closed form. Alternatively, the density of the error can be estimated, provided

we have repeated measurements on the contaminated series, and provided the errors

across different measurements are independent (see, e.g., Li and Vuong, 1998 and

Schennach, 2004).

Nonparametric estimation in the presence of measurement error hinges on the

idea of replacing standard kernels with deconvolution kernels, whose construction

requires the knowledge, or a proper estimate, of the characteristic function of the

error. Most of the papers cited above consider the case of a non-vanishing error.

While deconvolution estimators ensure that the bias is of the same order as in the

error-free case, the order of magnitude of the variance, hence the rate of convergence,

depends on the smoothness of the error density. For smooth densities, such as the

normal density, the convergence rate is logarithmic, thus making the deconvolution

approach not really useful in practice. An important exception is Fan (1992, Theorem

4), who shows that, if the variance of the error approaches zero at least as fast as the
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bandwidth parameter, then the error-free nonparametric optimal rate still applies.

We now explicitly compare the asymptotic properties of standard and deconvolu-

tion kernel estimators. For simplicity, we focus on the joint density. Let ξ1 = ξ2 = ξ

and Nt,M = b
−1/2
M vt. Also, assume (i) E (vt) = 0, (ii) var (vt) = σ2

v and (iii)

E (vtIVt) = 0. Note that (i) always holds when the drift term in (1) is zero, (ii)

follows from Assumption A4 for k = 2, and (iii) holds when there is no leverage (see,

e.g., Corollary 2.1 in Meddahi, 2002). Finally, assume that characteristic function of

(vt, vt+1) is known and let var (vt, vt+1) = Σ. Then, for st = (RMt,M −RMT,M)/ξ and

st+1 = (RMt+1,M − x)/ξ the deconvolution kernel estimator writes as:

f̂
(c)
T,M (x,RMT,M) =

1

Tξ2

T−1∑
t=1

K(c) (st) K(c) (st+1) ,

where:

K(c) (st) K(c) (st+1) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp (−i (τ1st + τ2st+1))

φK (τ1) φK (τ2)

φv

(
Σ1/2τ

b
−1/2
M

ξ

)dτ1dτ2,

τ = (τ1, τ2)
′ , φK (τ1) and φK (τ2) denote, respectively, the Fourier transforms of

K(c) (st) and K(c) (st+1), and φv

(
Σ1/2τ b

−1/2
M /ξ

)
denotes the characteristic function of

b
−1/2
M (vt, vt+1). When φv

(
Σ1/2τ b

−1/2
M /ξ

)
= 1, the deconvolution estimator coincides

with the usual kernel estimator. If b
−1/2
M = O (ξ) , then it follows from Theorem 4

in Fan (1992) that the (integrated) mean square error is of the same order as in the

error free case. In particular, the squared bias is the same as in the error free case,

and the variance is given by:

1

(2π)2
f(x,RMT,M)

∫ ∞

−∞

∫ ∞

−∞

|φK (τ1) φK (τ2)|2∣∣∣∣φv

(
Σ1/2τ

b
−1/2
M

ξ

)∣∣∣∣
2 dτ1dτ2 + o(1).

Hence, if b−1
M ξ−2 −→ 0, φv

(
Σ1/2τ b

−1/2
M /ξ

)
−→ 1, and the asymptotic variance is the

same as in the error-free case. In Theorem 2, we require max
{
Tξ2b−1

M , b−1
M ξ−2

} → 0,
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which clearly implies b−1
M ξ−2 → 0. Therefore, using deconvolution methods, for any

given T, we may achieve the same degree of precision with a smaller number of

intraday observations, M . However, in empirical applications the use of deconvolution

kernels is not practical. In addition to the fact that (i) and (iii) require zero drift

and no leverage, the main obstacle is that we do not know the functional form of the

density of the measurement error. Indeed, we have several measurements, as we can

use different realized volatility measures. However, the measurement errors across

different realized measures are highly correlated, and this makes the estimation of

the error characteristic function not viable.

Remark 6. As stated in Lemma 1, k depends on the number of finite moments of

the instantaneous drift and volatility function. For k large, T
3
4k b

−1/4
M → 0, regardless

of the rate at which M diverges, and T
3+k

k ξb−1
M ' Tξb−1

M .

If we express the bandwidth as a function of the number of daily observations, i.e.

ξ = cTα, α ∈ (−1/5,−1/3) , then we require bM to grow at least at rate T 1−α. Hence,

if we ignore the measurement error, and choose the bandwidth optimally (ξ = cT−1/5),

we require bM grow at least a rate T 4/5. If instead we allow for a certain degree of

undersmoothing, e.g. ξ = cT−1/3, it suffices that bM grows at least as fast as T 2/3.

Alternatively, if we express the bandwidth in terms of the number of intradaily

observations, i.e. ξ = cb−γ
M , γ < 1/2, then we need that Tb

−(1+γ)
M → 0 and bM must

diverge at least at rate T 2/3. Hence, the optimal convergence rate T 2/5 is achievable

for bM diverging faster than T 4/5. If instead bM grows at rate T 2/3, we need to set

ξ = O(T−1/3), and can achieve only a convergence rate of T 1/3. Finally, if bM grows at

a rate slower than T 2/3, the feasible estimator is not asymptotically equivalent to the

infeasible one. As established in Lemma 1, bM differs according to the specific chosen

volatility estimator. In practice, the choice of volatility estimator is an empirical

question and depends on data availability, and market liquidity/activity. When T is
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much larger than bM it may be preferable to allow for some undersmoothing and set

ξ = cT−1/3.

Remark 7. Bandwidth selection in our context is not a trivial issue. First, usual

automated procedures for Nadaraya-Watson estimators (such as cross-validation) and

for local polynomial estimators (e.g., the residual square criterion of Fan and Gijbels,

1995), do not necessarily lead to the choice of the same bandwidth parameter as in

the case of no measurement error. In fact, given the rate conditions in Theorems

1-3, the contribution of measurement error may be negligible for some values of the

bandwidth parameter and non negligible for others. As a consequence, the bandwidth

minimizing a given criterion may depend on both M and T. Second, in order to

ensure asymptotic equivalence between the feasible and infeasible estimators, it may

be necessary to select a bandwidth approaching zero at a rate faster than the optimal

one. A possible solution is a two-step procedure, in the spirit of Bandi, Corradi and

Moloche (2009). Consider the case of Nadaraya-Watson estimation of the conditional

distribution. In the first step, we can select a bandwidth via cross-validation, i.e.:

ξ̂T,M = arg min
ξ

∫

U

1

T

T−1∑
t=1

(
1{RMt+1,M≤u} − F̂T,M,ξ,−t(u|RMt,M)

)2

du,

where F̂T,M,ξ,−t(u|RMt,M) is the feasible estimator of F (u|RMt,M) constructed using

bandwidth ξ, and leaving out the t−th observation.

Under Assumption A1, for all M and for all ξ → 0, 1/ξ
∑T−1

s6=t K ((RMs,M −RMt,M)/ξ) =

Oa.s.(T ). We can therefore use the randomized procedure of Bandi, Corradi and

Moloche (2009) to check whether ξ̂T,M satisfies the rate conditions in Theorem 1.

Assuming a sufficiently large k, the additional rate condition due to measurement er-

ror reduces to Tξ3 →∞ and Tb−1
M ξ → 0. Hence, we can check whether ξ̂T,M is large

enough to ensure that ξ̂2
T,M

∑T−1
t=1 K

(
(RMt,M − x)/ξ̂T,M

)
a.s.−→ ∞, and small enough

to ensure that max
{

ξ̂4
T,M

∑T−1
t=1 K

(
(RMt,M − x)/ξ̂T,M

)
, b−1

M

∑T−1
t=1 K

(
(RMt,M − x)/ξ̂T,M

)}
a.s.−→
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0. The outcome of the second step tells us whether we can keep ξ̂T,M or whether we

should search for a smaller (larger) bandwidth.

4 Monte Carlo Results

In this section, we evaluate the finite sample properties of:

GT,M(u1, u2) = V̂ −1/2(u1, u2)
√

Tξ
(
ĈIT,M(u1, u2|RMT,M)− CI(u1, u2|RMT,M)

)
.

We consider the following data generating process (DGP):

dYt = (m− σ2
t /2)dt + dzt + σtdW1,t,

dσ2
t = ψ (υ − σ2

t ) dt + ησtdW2,t,
(7)

where W1,t and W2,t are two correlated Brownian motions, with corr(W1,t,W2,t) = ρ.

Following Aı̈t-Sahalia and Mancini (2008), we set m = 0.05, ψ = 5, υ = 0.04, η = 0.5,

and ρ = −0.5. Because we do not have a closed form expression for the distribution

of integrated volatility implied by the DGP in (7), we need to rely on a simulation

based approach. We begin by simulating S paths of length 2 (given stationarity) from

(7), using a Milstein scheme with a discrete interval 1/N , keeping the conditioning

value at period 1 fixed across simulations. We then construct confidence intervals

from the empirical distribution of the simulated integrated variance. By setting S

and N sufficiently large (3000 and 2880, respectively), the effects of both simulation

and discretization error are negligible. This gives us a simulation based estimator of

CI(u1, u2|RMT,M).

We then construct time series of length T of realized volatility measures sam-

pling the simulated data at frequency 1/M . For the first day, we use, across all

replications, the same draws used for the construction of the (simulation based) es-

timator of the confidence interval described above. In order to avoid boundary bias

problems, we form GT,M(u1, u2) using Gaussian kernels on a logarithmic transfor-

mation of our daily series. In our base case (denoted by Case I), we simply set
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Xt+j/M = Yt+j/M . In Case II, daily data are generated by adding microstructure

noise. Namely, we generate Xt+j/M = Yt+j/M + εt+j/M , where εt+j/M ∼ i.i.d. N(0, σ2
ε ),

and σ2
ε = {(0.0052), (0.0072), (0.0142)}. A standard deviation of 0.007 corresponds to

the case where the standard deviation of the noise is approximately 0.1% of the value

of the asset price (this is the same percentage as that used in Aı̈t-Sahalia and Mancini,

2008). Finally, in Case III, jumps are added by including an i.i.d. N(0, 0.64ajumpµ̂IV )

shock to the process for Yt+j/M , where ajump is set equal to {3, 2, 1}, and µ̂IV is the

average of (the log of) IVt over S. In this case, it is assumed that jumps arrive ran-

domly with equal probability at any point in time, once every 5 days when ajump = 3,

once every 2 days ajump = 2, and every day when ajump = 1, on average. We consider

the interval [u1, u2] = [µ̂IV − βσ̂IV , µ̂IV + βσ̂IV ], where σ̂IV is the standard deviation

of (the log of) IVt over S, and β = {0.125, 0.250}, for different values of T and M,

i.e. T = {100, 300, 500} and M = {72, 144, 288, 576}. Results are based upon 10,000

Monte Carlo iterations. For brevity, we report our findings only for T = 100.

Tables 1, 3-4 report rejection frequencies using two-sided 5% and 10% nominal

level critical values. In these tables, results are based on choosing the bandwidth

parameter according to Silverman’s (1986) rule. The six columns of entries contain

results for realized volatility (RVt,M), bi (BVt,M) and tripower variation (TPVt,M),

RVt,l,M , R̃V t,τ,M , RKt,H,M , respectively. For construction of RKt,H,M , we use the

modified Tukey-Hanning kernel, i.e. κ(x) = 0.5
(
1− cos π (1− x)2), with H chosen

optimally according to Barndorff-Nielsen, Hansen, Lunde and Shephard (2008).

Turning first to Table 1, where there is neither microstructure noise nor jumps,

note that RVt,M , BVt,M , and TPVt,M perform approximately equally well for large

values of M , although RVt,M performs marginally better than the other estimators

in a number of instances, as might be expected. In particular, use of these estima-

tors yields empirical sizes close to the nominal 5% and 10% levels in various cases,
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and there is a substantial improvement as M increases. Overall, RVt,M , BVt,M and

TPVt,M yield more accurate confidence intervals than the other three (robust) mea-

sures, although improvements associated with using these three estimators drops off

sharply for the largest two values of M . In particular, note that rejection frequencies

at the nominal 10% level for R̂V t,l,M , R̃V t,τ,M , and RKt,H,M are often 0.20-0.70 when

M = 72 and 144, whereas rates for RVt,M , BVt,M , and TPVt,M are generally rather

closer to 0.10. Indeed, empirical performance of R̂V t,l,M , R̃V t,τ,M , and RKt,H,M is

quite poor for very small values of M , but improves quite quickly as M increases.

Additionally, RKt,H,M and R̃V t,τ,M perform substantially better than R̂V t,l,M in vir-

tually all cases, although the relative difference in performance shrinks as M increases.

Finally, RKt,H,M and R̃V t,τ,M perform approximately equally well for all values of M

and T . Overall, there is clearly a need for reasonably large values of M when imple-

menting the microstructure robust realized measures. This is not surprising, given

the slower rate of convergence of these estimators.

We now turn to Table 3, where microstructure noise is added to the frictionless

price. It is immediate to see that R̂V t,l,M , R̃V t,τ,M and RKt,H,M are superior to

the non robust realized measures, for large values of M , as expected. For example,

consider Panel B. The rejection frequencies at the nominal 10% level for RVt,M range

from 0.16 up to 1.0, when M = 288, depending upon the magnitude of the noise

volatility. On the other hand, comparable rejection frequencies for R̂V t,l,M , R̃V t,τ,M

and RKt,H,M range from 0.13-0.22, which indicates a marked improvement when using

robust measures, as long as M is large. Of course, for M too small, there is nothing to

gain by using the robust measures. Indeed, for M = 72, RVt,M rejection frequencies

are much closer to the nominal level than R̂V t,l,M , R̃V t,τ,M and RKt,H,M rejection

frequencies. This is hardly surprising, given that, from Lemma 1, bM grows at a rate

slower than M in the case of microstructure noise robust realized measures. It follows
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that for empirical implementation, one may select either a relatively small value of

M , for which the microstructure noise effect is not too distorting, together with a

non microstructure robust realized measure, or select a very large value of M and

a microstructure robust realized measure. Interestingly, we see in our experiments

that there is little to choose between the best performing of our robust measures (i.e.

R̃V t,τ,M and RKt,H,M), and that these two measures outperform RVt,M in many cases

for values of M as small as 144, which suggests that the relative gains associated with

using robust measures are achieved very quickly as M increases. Finally, consider

Table 4, where jumps are added to the price. BVt,M and TPVt,M yield similar results,

both outperform all “noise-robust measures”, and their relative performance improves

with the jump frequency.

In order to check how sensitive our results are with respect to the bandwidth

parameter, we have performed a Monte Carlo exercise, and results are reported in

Table 2. In the table, we let the bandwidth parameter vary as a proportion of the

one chose according to Silverman’s (1986) rule. Hence, the case where the band-

width proportion equals one corresponds to the entries reported in Tables 1 and

3. In the no microstructure case results seem to be fairly robust with respect to

the bandwidth parameter and Silverman’s bandwidth is often the best performing

one. When microstructure noise is included, results become substantially worse when

undersmoothing is severe and non robust measures are used. The best performing

bandwidth is Silverman’s for realized volatility and power variation based measures,

whereas a bit of undersmoothing is beneficial for noise-robust measures.

5 Volatility Predictive Intervals for Intel

In this section we construct and examine predictions of the conditional distribution

of daily integrated volatility for Intel. Data are taken from the Trade and Quotation
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database at the New York Stock Exchange. Our sample size covers 150 trading days

starting from January 2 2002. From the original data set, we extracted 10 second

and 5 minute interval data, using bid-ask midpoints and the last tick method (see

Wasserfallen and Zimmermann, 1985). Provided that there is sufficient liquidity in

the market, the 5 minute frequency seems to offer a reasonable compromise between

minimizing the effect of microstructure noise and reaching a good approximation to

integrated volatility (see Andersen, Bollerslev, Diebold and Labys, 2001 and Ander-

sen, Bollerslev and Lang, 1999). Hence, our choice of the two frequencies allows us

to evaluate the effect of microstructure noise on the estimated predictive densities. A

full trading day consists of 2340 (resp. 78) intraday returns calculated over an interval

of ten seconds (resp. five minutes). Once the different realized volatility estimators

have been obtained, we have calculated predictive intervals using logs. This has the

advantage of avoiding boundary bias problems. We have used a Gaussian kernel with

the bandwidth chosen optimally as in Silverman (1986). Results are reported for the

kernel based estimators. Local linear based results are very similar and are omitted

for space reasons.

Our goal was to calculate the probability that volatility at time T + 1 is larger

than volatility at time T . We have done so based on a sample of T = 100 obser-

vations. Then we compared the prediction of the model with the actual realiza-

tion at time T + 1. Given that our sample covers 150 days, we have a total of 50

out-of-sample comparisons. Results are reported in Table 5 for the volatility mea-

sures computed using 10 seconds returns and in Table 6 for those computed using

5 minutes returns. Since volatility has to be estimated (and is therefore subject

to estimation error), for robustness purposes we have reported two out-of-sample

checks: those based on the same realized measure as the one used in computing pre-

dictive intervals (column 3) and those based using a benchmark volatility measure
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(RV using 5 minutes returns, column 4). Also, we have used two different condi-

tioning values (the level of volatility at time T and the average level of volatility

over the last 5 days) and a different conditioning variable, namely realized semi-

variance (RS−t,M =
∑M−1

i=0

(
Xt+(i+1)/M −Xt+i/M

)2
1{Xt+(i+1)/M−Xt+i/M≤0}), proposed

by Barndorff-Nielsen, Kinnebrock and Shephard (2009). This was motivated by their

empirical results highlighting the high informational content of such a measure of

downside risk. Under mild regularity conditions, RS−t,M = 1/2RVt,M + op(M
−1/2),

hence it behaves as realized volatility.

Several interesting conclusions emerge from analyzing the Tables. First, as ex-

pected, RV and TPV have better results when returns are computed every 5 minutes.

Increasing the sampling frequency implies a higher noise to signal ratio and therefore

non robust volatility estimators see a drop in forecasting directional changes. Con-

versely, robust volatility estimators have a better performance at the higher sampling

frequency. Again, this is not surprising, given that these estimators explicitly account

for market microstructure noise and then it makes sense to use as many observations

as possible. Generally, conditioning on the average of volatility during the previous

5 days yields slightly better results than conditioning on the value at time T .

Finally, results seem to confirm the high informational content of realized semi-

variance. Using this measure of downside risk as a conditioning variable substantially

increases directional predictability, with percentages of correct predictions as high

as 0.763 (for R̂V and RK at 10 seconds), or 0.702 (using a benchmark volatility

estimator for the out-of-sample check).
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Appendix
For notational simplicity, hereafter let u1 = 0 and u2 = u. Also, we use ' to indicate “of the same
order of magnitude”.

Proof of Theorem 1:
Part (i). From Remark 6 in Hall, Wolff and Yao (1999), it follows that:

F̂T (u|RMT,M )− F (u|RMT,M ) =
1√
Tξ

√
V (u)Z + ξ2 1

2
C2(K)b(u),

where V (u) and b(u) are defined as in the statement of the theorem and we (henceforth) use the
notation F̂T (u|RMT,M ) to denote the infeasible estimator, based on the latent integrated volatility.

We therefore need to show that
√

Tξ
(
F̂T,M (u|RMT,M )− F̂T (u|RMT,M )

)
= op(1).

√
Tξ

(
F̂T,M (u|RMT,M )− F̂T (u|RMT,M )

)

=
1√
Tξ

∑T−1
t=0

(
1{RMt+1,M≤u}K

(
RMt,M−RMT,M

ξ

)
− 1{IVt+1≤u}K

(
IVt−RMT,M

ξ

))

f̂T (RMT,M )

=
1√
Tξ

∑T−1
t=0

(
1{RMt+1,M≤u}K

(
RMt,M−RMT,M

ξ

)
− 1{IVt+1≤u}K

(
IVt−RMT,M

ξ

))

f(RMT,M )
(1 + op(1)) ,

given that, by Theorem 2.22 in Fan and Yao (2005), f̂T (RMT,M ) = f(RMT,M ) + op(1). Because,
by A3, f(RMt,M ) > 0, it suffices to show that:

1√
Tξ

T−1∑
t=0

(
1{RMt+1,M≤u}K

(
RMt,M −RMT,M

ξ

)
− 1{IVt+1≤u}K

(
IVt −RMT,M

ξ

))
= op(1).

(A.1)
We can expand the left hand side above:

1√
Tξ

T−1∑
t=0

1{IVt+1≤u}

(
K

(
RMt,M −RMT,M

ξ

)
−K

(
IVt −RMT,M

ξ

))
(A.2)

− 1√
Tξ

T−1∑
t=0

(
1{IVt+1≤u} − 1{RMt+1,M≤u}

)
K

(
IVt −RMT,M

ξ

)
(A.3)

− 1√
Tξ

T−1∑
t=0

( (
1{IVt+1≤u} − 1{RMt+1,M≤u}

)

×
(

K

(
RMt,M −RMT,M

ξ

)
−K

(
IVt −RMT,M

ξ

)))
. (A.4)

After a first order Taylor expansion of the kernel around IVt, the term in (A.2) can be written as:

√
Tξ

Tξ2

T−1∑
t=0

1{IVt+1≤u}K(1)

(
IVt −RMT,M

ξ

)
Nt,M

+ Op

(∣∣∣∣∣
√

Tξ

Tξ2

T−1∑
t=0

1{IVt+1≤u}K(1)

(
IVt −RMT,M

ξ

)
Nt,M

∣∣∣∣∣

)
Op

(
sup
t≤T

|Nt,M |
)

.
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Let Rt,ξ = ξ−21{IVt+1≤u}K(1) ((IVt −RMT,M )/ξ), Rt,ξ = Rt,ξ − E (Rt,ξ) , and N t,M = Nt,M −
E (Nt,M ). Then:
∣∣∣∣∣
1
T

T−1∑
t=0

Rt,ξNt,M

∣∣∣∣∣ ≤
∣∣∣∣∣
1
T

T−1∑
t=0

Rt,ξN t,M

∣∣∣∣∣
︸ ︷︷ ︸

AT,M,ξ

+

∣∣∣∣∣
1
T

T−1∑
t=0

Rt,ξE (Nt,M )

∣∣∣∣∣
︸ ︷︷ ︸

BT,M,ξ

+

∣∣∣∣∣
1
T

T−1∑
t=0

E (Rt,ξ)N t,M

∣∣∣∣∣
︸ ︷︷ ︸

CT,M,ξ

+E(Rt,ξ) E (Nt,M )︸ ︷︷ ︸
DT,M,ξ

.

Given Assumption A4, and given that E (Rt,ξ) = O(1), DT,M,ξ = O
(
b
−1/2
M

)
, and CT,M,ξ =

Op

(
T−1/2b

−1/2
M

)
. By the central limit theorem 1

T

∑T−1
t=0 Rt,ξ = Op

(
T−1/2ξ−3/2

)
, implying that

BT,M,ξ = Op

(
b
−1/2
M T−1/2ξ−3/2

)
. Finally:

AT,M,ξ =

∣∣∣∣∣
1
T

T−1∑
t=0

(
Rt,ξN t,M − E

(
Rt,ξN t,M

))
∣∣∣∣∣ +

∣∣E (
Rt,ξN t,M

)∣∣ .

To simplify notation, let y0 = IVt, x = RMT,M , z = IVt+1, v = b
−1/2
M Nt,M , y = (y0 − x)/ξ. Given

Assumptions A2 and A4, by a change of variable, Fubini theorem and integration by parts, we have
that:

E
(
Rt,ξN t,M

)

= E (Rt,ξNt,M ) + O(b−1/2
M )

=
1

b
1/2
M

∫

V

∫

Z

∫

Y0

1
ξ2

1{z≤u}K(1)

(
y0 − x

ξ

)
vf(y0, v, z)dy0dzdv + O(b−1/2

M )

=
1

b
1/2
M

∫

V

∫

Z

(∫

Y

1
ξ
1{z≤u}K(1) (y) vf(x + yξ, v, z)dy

)
dzdv + O(b−1/2

M )

=
1

b
1/2
M

∫

V

∫

Z

(([
K(y)

ξ
1{z≤u}vf(x + yξ, v, z)

]

Y

−
∫

Y

K(y)1{z≤u}vf (1)
y (x + yξ, z, v)

)
dy

)
dzdv + O(b−1/2

M )

=
1

b
1/2
M

∫

V

∫

Z

(
−

∫

Y

K(y)1{z≤u}vf (1)
y (x + yξ, z, v) dy

)
dzdv + O(b−1/2

M )

=
1

b
1/2
M

∫

V

∫

Z

−1{z≤u}vf (1)
y (x, z, v) dzdv (1 + O(ξ)) + O(b−1/2

M ) = O(b−1/2
M ).

Finally, given Assumptions A1 and A4, var
(

1
T

∑T−1
t=0

(
Rt,ξN t,M − E

(
Rt,ξN t,M

)))
= b−1

M T−1ξ−3,

and the term in (A.2) is Op

(
T 1/2ξ1/2b

−1/2
M + ξ−1b

−1/2
M

)
.

We now turn to (A.3), and note that it is of a smaller order of probability than:

1
Tξ

T−1∑
t=0

(
1{u−supt≤T |Nt+1,M |≤IVt+1≤u+supt≤T |Nt+1,M |}

)
K

(
IVt −RMT,M

ξ

)
. (A.5)

Let ΩT,M be the complement of ΩT,M = {ω : T
−3
2k b

1/2
M supt |Nt,M | ≤ c}, and note that, given

assumption A4, for a positive c, we have:

√
Tξ Pr

(
ΩT,M

)
=

√
Tξ Pr

(
T
−3
2k b

1/2
M sup

t
|Nt,M | > c

)
≤

√
Tξ

T−1∑
t=0

Pr
(
T−

3
2k b

1/2
M |Nt,M | > c

)

≤ T 3/2
√

ξT−
3k
2k c−kb

k/2
M E

(
|Nt,M |k

)
= o(1).

Consequently, we can proceed by conditioning on ΩT,M . For all ω ∈ ΩT,M :

1
Tξ

T−1∑
t=0

(
1{u−supt≤T |Nt+1,M |≤IVt+1≤u+supt≤T |Nt+1,M |}

)
K

(
IVt −RMT,M

ξ

)
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≤ 1
Tξ

T−1∑
t=0

(
1{u−cb

−1/2
M T 3/2k≤IVt+1≤u+cb

−1/2
M T 3/2k}

)
K

(
IVt −RMT,M

ξ

)
. (A.6)

To simplify notation, let dT,M = cb
−1/2
M T

3
2k . Then, using (A.5) and (A.6), for all ω ∈ ΩT,M :

∣∣∣∣∣
1

Tξ

T−1∑
t=0

(
1{IVt+1≤u} − 1{RMt+1,M≤u}

)
K

(
IVt −RMT,M

ξ

)∣∣∣∣∣

≤ 1
Tξ

T−1∑
t=0

1{u−dT,M≤IVt+1≤u+dT,M}K
(

IVt −RMT,M

ξ

)

=
1
T

T−1∑
t=0

E
(

1{u−dT,M≤IVt+1≤u+dT,M}
1
ξ
K

(
IVt −RMT,M

ξ

))
(A.7)

+
1
T

T−1∑
t=0

((
1{u−dT,M≤IVt+1≤u+dT,M}

) 1
ξ
K

(
IVt −RMT,M

ξ

)
(A.8)

−E
((

1{u−dT,M≤IVt+1≤u+dT,M}
1
ξ
K

(
IVt −RMT,M

ξ

))))
.

We start from (A.7). Given stationarity, we have that:

1
ξ
E

((
1{u−dT,M≤IVt+1≤u+dT,M}

)
K

(
IVt −RMT,M

ξ

))
(A.9)

=
1
ξ

∫

Y0

∫ u+dT,M

u−dT,M

K

(
y0 − x

ξ

)
f (y0, z) dy0dz =

∫

Y

∫ u+dT,M

u−dT,M

K (y) f (x + ξy, z) dydz

=
∫

Y

K (y) dy

∫ u+dT,M

u−dT,M

f (x, z) dz(1 + O(ξ)) = O(dT,M )(1 + ξ).

It follows that (A.7) is O(dT,M ). Moving to (A.8), its variance is given by:

E

(
1

Tξ

T−1∑
t=0

(
1{u−dT,M≤IVt+1≤u+dT,M}

)
K

(
IVt −RMT,M

ξ

))2

+ O(d2
T,M )

and the expectation above can be treated similarly to (A.9), yielding:

E

(
1

Tξ

T−1∑
t=0

(
1{u−dT,M≤IVt+1≤u+dT,M}

)
K

(
IVt −RMT,M

ξ

))2

= O
(
T−1ξ−1dT,M

)
+ O(d2

T,M ).

The sum of the terms in (A.7) and (A.8) is therefore O (dT,M )+O
(
T−1/2ξ−1/2d

1/2
T,M

)
, and the term

in (A.3) is Op(T
3+k
2k ξ1/2b

−1/2
M +b

−1/4
M T

3
4k ). Because (A.4) is of a smaller probability order than (A.2)

and (A.3), it follows that (A.1) is Op(T
3+k

k ξb−1
M +b

−1/2
M T

3
2k +b−1

M ξ−2). The statement in the theorem
follows.
Part (ii). Because b−1

M ξ−2 = (Tb−1
M ξ−1)/(Tξ3), if Tξ3 → ∞, then b−1

M ξ−2 → 0 for Tb−1
M ξ−1 → 0,

but the latter condition is implied by T
3+k

k ξb−1
M . The statement then follows from the proof of part

(i). ¥

Proof of Theorem 2:
Part (i). From, e.g., Hansen (2004):

f̂T (x|RMT,M )− f(x|RMT,M ) =
1√

Tξ1ξ2

(√
f(x|RMT,M )
f(RMT,M )

∫
K2(u)du

)
Z +

1
2
ξ2
1C2(K)

∂2f(x|RMT,M )
∂x2
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+
1
2
ξ2
2C2(K)


 ∂2f(x|z)

∂z2

∣∣∣∣
z=RMT,M

+ 2

∂f(x|z)
∂z

∣∣∣
z=RMT,M

∂f(z)
∂z

∣∣∣
z=RMT,M

f(RMT,M )


 .

To prove the theorem, we need to show that
√

Tξ1ξ2

(
f̂T,M (x|RMT,M )− f̂T (x|RMT,M )

)
= op(1).

√
Tξ1ξ2

(
f̂T,M (x|RMT,M )− f̂T (x|RMT,M )

)
(A.10)

=

√
Tξ1ξ2

(
1

Tξ1ξ2

∑T−1
t=0

(
K

(
RMt,M−RMT,M

ξ1

)
K

(
RMt+1,M−x

ξ2

)
−K

(
IVt−RMT,M

ξ1

)
K

(
IVt+1−x

ξ2

)))

f̂T (x|RMT,M )

+

(
1

f̂T,M (RMT,M )
− 1

f̂T (RMT,M )

)

×
(

1√
Tξ1ξ2

T−1∑
t=0

(
K

(
RMt,M −RMT,M

ξ1

)
K

(
RMt+1,M − x

ξ2

)
−K

(
IVt −RMT,M

ξ1

)
K

(
IVt+1 − x

ξ2

)))
.

The second term on the right hand side (rhs) of (A.10) is of smaller probability order than the first,
which can be treated similarly to the term in (A.2) in the proof of Theorem 1, and therefore is
Op

(
Tb−1

M ξ1ξ2 + bMξ−2
1 + bMξ−2

2

)
. The statement in the theorem follows.

Part (ii). Similar to part (ii) in the proof of Theorem 1. ¥

Proof of Theorem 3:
Part (i). From Remark 4, in Hall, Wolff and Yao (1999):

α̂0,T,M (u,RMT,M )− F (u|RMT,M ) =
1√
Tξ

√
V (u)Z + ξ2 1

2
C2(K)

∂2F (u|z)
∂z2

∣∣∣∣
z=RMT,M

.

The theorem is proved, given that
√

Tξ (α̂0,T (u, IVT )− α̂0,T,M (u,RMT,M )) = op(1) follows straight-
forwardly using the same argument as in the proof of Theorem 1.
Part (ii). From Fan, Yao and Tong (1996, p.196):

β̂0,T (x,RMT,M )− f(x|RMT,M )

=
1√

Tξ1ξ2

(√
f(x|RMT,M )
f(RMT,M )

∫
K2(u)du

)
Z +

1
2
ξ2
1C2(K)

∂2f(x|RMT,M )
∂x2

+
1
2
ξ2
2C2(K)

∂2f(x|z)
∂z2

∣∣∣∣
z=RMT,M

,

and the theorem is proved, because
√

Tξ1ξ2

(
β̂0,T,M (x,RMT,M )− β̂0,T (x, IVT )

)
= op(1), by the

same argument as that used in Theorem 1. ¥

Proof of Lemma 1:
Before moving to the proof of (i)-(iii), it is useful to show that:

E




M−1∑

j=1

(
Yt+(j+1)/M − Yt+j/M

)2 − IVt




k

= O
(
M−k/2

)
. (A.11)

We start with the case of zero drift. From Proposition 2.1 in Meddahi (2002):

Nt,M =2
√

M

M−1∑

i=0

(
σ2

t+i/M

∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M

dWu

)
dWs

)

︸ ︷︷ ︸
N

(1)
t,M
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+ 2
√

M

M−1∑

i=0

(
σt+i/M

∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M

(
σu − σt+i/M

)
dWu

)
dWs

)

︸ ︷︷ ︸
N

(2)
t,M

+ 2
√

M

M−1∑

i=0

(∫ t+(i+1)/M

t+i/M

(
σu − σt+i/M

)
(∫ s

t+i/M

dWu

)
σt+i/MdWs

)

︸ ︷︷ ︸
N

(3)
t,M

+ 2
√

M

M−1∑

i=0

(∫ t+(i+1)/M

t+i/M

(∫ s

t+i/M

(
σu − σt+i/M

)
dWu

)
(
σs − σt+i/M

)
dWs

)

︸ ︷︷ ︸
N

(4)
t,M

.

We consider the case of k = 4 (k > 4 can be treated in an analogous manner). Because of the

Hölder continuity of a diffusion, E
((√

MN
(1)
t,M

)4
)

is the term of largest order. To ease notation,

let
∑

ji
=

∑M−1
ji=0 unless otherwise specified. Then:

E
((√

MN
(1)
t,M

)4
)

= M2
∑

j1

∑

j2

∑

j3

∑

j4

E

[
σ2

t+j1/Mσ2
t+j2/Mσ2

t+j3/Mσ2
t+j4/M

×
(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M

dWu

)
dWs

)(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

)

×
(∫ t+(j3+1)/M

t+j3/M

(∫ s

t+j3/M

dWu

)
dWs

)(∫ t+(j4+1)/M

t+j4/M

(∫ s

t+j4/M

dWu

)
dWs

)]
.

For all ji > 0, i = 1, . . . , 4,
∫ t+(ji+1)/M

t+ji/M

(∫ s

t+ji/M
dWu

)
dWs is a martingale difference sequence with

respect to Ft+ji/M = σ (Ws, s ≤ t + ji/M) . By the law of iterated expectation, it follows that, when
j1 6= j2 6= j3 6= j4, E((

√
MN

(1)
t+1,M )4) = 0. Analogously, in the case j3 = j4, and j3 6= j2 6= j1, if j3 <

j1 and/or j3 < j2, then E((
√

MN
(1)
t+1,M )4) = 0. Next, consider the case of j3 > j1, j2 and let Et+j/M

denote the expectation conditional on Ft+j/M . Because Et+j3/M

((∫ t+(j3+1)/M

t+j3/M

(∫ s

t+j3/M
dWu

)
dWs

)2
)

=

O(M−2), then by McLeish mixing inequalities it follows that:

E
((√

MN
(1)
t,M

)4
)

= M2
∑

j1

∑

j2

∑

j3

E

[
σ2

t+j1/Mσ2
t+j2/Mσ4

t+j3/M

×
(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M

dWu

)
dWs

)(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

)

× Et+j3/M




(∫ t+(j3+1)/M

t+j3/M

(∫ s

t+j3/M

dWu

)
dWs

)2






'
∑

j1

∑

j2

E

[
σ2

t+j1/Mσ2
t+j2/M

(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M

dWu

)
dWs

)

×
(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

) ∑

j3

Et+max{j1,j2}/M

(∣∣∣σ4
t+j3/M − E

(
σ4

t+j3/M

)∣∣∣
)


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≤
∑

j1

∑

j2


E


σ4

t+j1/Mσ4
t+j2/M

(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M

dWu

)
dWs

)2

×
(∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

)2






1/2

E
(
σ4

t+j3/M − E
(
σ4

t+j3/M

))1/2δ ∑

j3

α
1/2−1/2δ
|j3−max{j1,j2}| = O(1),

given that E
(
σ

(2+δ)k
t

)
< ∞,

∑
j3

α
1/2−1/2δ
|j3−max{j1,j2}| < ∞ and δ is defined in Lemma 1.

Next, suppose that j1 = j3 and j2 = j4, j3 6= j4. Then, by the Cauchy-Schwartz inequality:

E
((√

MN
(1)
t,M

)4
)

≤ M2
∑

j1

∑

j2

[ (
E

(
σ8

t+j1/Mσ8
t+j2/M

))1/2

×

E




(∫ t+(j1+1)/M

t+j1/M

(∫ s

t+j1/M

dWu

)
dWs

)4 (∫ t+(j2+1)/M

t+j2/M

(∫ s

t+j2/M

dWu

)
dWs

)4






1/2

 = O(1).

The fourth moment in the case above is of larger order than in the case j1 = j2 = j3 = j4. Finally,

for j2 = j3 = j4, it follows trivially that E
((√

MN
(1)
t,M

)4
)

= 0.

We now analyze the case with drift. From Proposition 2.1 in Meddahi (2002), the contribution
of the drift term to the measurement error is given by:

√
M

M−1∑

j=0

(∫ t+(j+1)/M

t+j/M

µsds

)2

+ 2
√

M

M−1∑

j=0

(∫ t+(j+1)/M

t+j/M

µsds

)(∫ t+(j+1)/M

t+j/M

σsdWs

)
,

and its moments are of a smaller order than those of
√

M
∑M−1

j=0

(∫ t+(j+1)/M

t+j/M

(∫ s

t+j/M
σudWu

)
σsdWs

)
,

given that E
(
(µt)

2(k+δ)
)

< ∞.

Part (i). Note that:

E
((

R̂V t,l,M − IVt

)k
)

' E





 1

B

B∑

b=1

l−1∑

j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − IVt




k

 (A.12)

+ E





 1

B

B∑

b=1

l−1∑

j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

) (
εt+(jB+b)/M − εt+((j−1)B+b)/M

)



k

 (A.13)

+ E





 1

B

B∑

b=1

l−1∑

j=1

(
εt+(jB+b)/M − εt+((j−1)B+b)/M

)2 − l

M

M∑

j=1

(
εt+j/M − εt+(j−1)/M

)2




k

 .

(A.14)

Because E(ε2k
t+j/M ) < ∞, the term in (A.14) is O(lk/2/Bk/2) = O(b−k/2

M ) for bM = M1/3. Given the
independence between the noise and the price, (A.13) is of order O(B−k/2). We are left with (A.12):

E





 1

B

B∑

b=1

l−1∑

j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 − IVt




k


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' E





 1

B

B∑

b=1

l−1∑

j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 −
M∑

j=1

(
Yt+j/M − Yt+(j−1)/M

)2




k

 (A.15)

+ E







M∑

j=1

(
Yt+j/M − Yt+(j−1)/M

)2 − IVt




k

 . (A.16)

From (A.11), it follows that the term in (A.16) is O(M−k/2). With regard to (A.15), from the proof
of Theorem 2 in Zhang, Mykland and Aı̈t-Sahalia (2005):

1
B

B∑

b=1

l−1∑

j=1

(
Yt+(jB+b)/M − Yt+((j−1)B+b)/M

)2 −
M∑

j=1

(
Yt+j/M − Yt+(j−1)/M

)2

= 2
M−1∑

j=1

(
Yt+(j+1)/M − Yt+j/M

) B∧j∑

i=1

(
1− j

B

) (
Yt+(j−i+1)/M − Yt+(j−i)/M

)
+ O(B/M)

and:

E


l2




M−1∑

j=B+1

(
Yt+(j+1)/M − Yt+j/M

) B∧j∑

i=1

(
1− j

B

) (
Yt+(j−i+1)/M − Yt+(j−i)/M

)



k

 = O(lk/2),

by the same argument as that used to show (A.11). The statement then follows.
Part (ii). The case of k = 2 is analyzed in Aı̈t-Sahalia, Mykland and Zhang (2006). Exploiting∑τ

i=1
ai

i = 0 and
∑τ

i=1 ai = 1, we have that:

E
((

R̃V t,τ,M − IVt

)k
)

(A.17)

= E







τ∑

i=1

ai


1

i

M−i∑

j=1

(
Yt+(j+i)/M − Yt+j/M

)2 − IVt


− 2

τ∑

i=1

ai

i

M−i∑

j=1

εt+(j+i)/M εt+j/M

+ 2
τ∑

i=1

ai




M−i∑

j=1

1
i

(
Yt+(j+i)/M − Yt+j/M

) (
εt+(j+i)/M − εt+j/M

)

−




τ∑

i=1

ai

i

M∑

j=M−i

(
ε2t+j/M − σ2

ε

)



+ 2
(
σ̂2

ε − σ2
ε

)
)k]

.

It’s enough to consider the k-th powers of the single elements of the rhs of (A.17) since, by Hölder
inequality, the cross terms are of a smaller order. E

((
σ̂2

ε − σ2
ε

)k
)

= O(M−k/2). Furthermore,

because ai ' i2/τ3:

E







τ∑

i=1

ai

i

i∑

j=1

(
ε2t+j/M − σ2

ε

)



k

 ' E





1

τ

τ∑

j=1

(
ε2t+j/M − σ2

ε

)



k

 = O(τ−k/2),

so that the k-th moments of the fourth and fifth terms of the rhs of (A.17) are O(τ−k/2). Because
of (A.11), the k−th moments of the first term in (A.17) is O

(
(τ/M)k/2

)
= O(τ−k/2). Given

E (εtYt) = 0, the third term of the rhs of (A.17) is also O(τ−k/2) because of (A.11). Finally, the
k−th moment of the second term of the rhs of (A.17) can be treated as the second term of the rhs
of the last equality in (A.18) (in part (iii) of the Lemma below), and is therefore O(τ−k/2). Because
τ = O(M1/2), the statement follows for bM = M1/2.
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Part (iii). The case of k = 2 has been established in Theorem 2 by Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008). We begin with the case of εt independently distributed. Note that:

E
(
(RKt,H,M − IVt)

k
)

= E

[(
(
γY

t,0 − IVt

)
+

H∑

h=1

κ

(
h− 1

H

) (
γY

t,h + γY
t,−h

)

+ γY,ε
t,0 +

H∑

h=1

κ

(
h− 1

H

) (
γY,ε

t,h + γY,ε
t,−h

)
+ γε,Y

t,0 +
H∑

h=1

κ

(
h− 1

H

) (
γε,Y

t,h + γε,Y
t,−h

)

+γε
t,0 +

H∑

h=1

κ

(
h− 1

H

) (
γε

t,h + γε
t,−h

)
)k


 ,

where γY,ε
t,h =

∑M
j=1

(
Yt+j/M − Yt+(j−1)/M

) (
εt+(j−h)/M − εt+(j−1−h)/M

)
and the other terms are de-

fined in a similar fashion. We only need to show that E
((

γε
t,0 +

∑H
h=1 κ

(
h−1
H

) (
γε

t,h + γε
t,−h

))k
)

=

O
(
H− 3k

2 Mk/2
)

= O(M−1/2) for H = M1/2, since the other terms can be treated as in part (ii).

Let γε =
(
γε

t,0, γ
ε
t,1 + γε

t,−1, . . . , γ
ε
t,h + γε

t,−h

)′
, where for notational simplicity we have dropped

the subscript t. Following the proof of Theorem 1 in Barndorff-Nielsen, Hansen, Lunde and Shephard
(2008), we have that γε = γε

V + γε
W + γε

Z , where:

γε
V = 2 (V0 − V1,−V0 + 2V1 − V2, . . . ,−VH−1 + 2VH − VH+1)

′
,

Vh =
M−h−1∑

j=1

εj/M ε(j+h)/M ,

γε
W = (0,−W2, . . . ,−WH−1 + 2WH −WH+1)

′
,

Wh =
h−1∑

j=1

εj/M ε(j−h)/M +
M∑

j=M−h+1

εj/M ε(j+h)/M ,

γε
Z = (Z0 − 2Z1, Z−1 − Z0 + 3Z1 − 2Z2, . . . , Z−H − Z−H+1 − ZH−1 + 3ZH − 2ZH+1)′,

Zh = ε1/M εh/M + ε1ε(M−h)/M .

By Hölder inequality, all cross moments are of a smaller order. Hence, we only need to prove that, for
w =

(
1, 1, κ

(
1
H

)
, . . . , κ

(
H−1

H

))′
, E (w′γε

V )k, E (w′γε
W )k and E (w′γε

Z)k are O
(
H−k/2

)
. We begin

with w′γε
V and, after some algebra, get:

1
2
w′γε

V = (V0 − V1) +
H∑

h=1

κ

(
h− 1

H

)
(−Vh−1 + 2Vh − Vh+1)

=
(

1− κ

(
1
H

))
V1 +

H−2∑

h=1

(
κ

(
h− 1

H

)
− 2κ

(
h

H

)
+ κ

(
h + 1

H

))
Vh+1

+
(

2κ

(
H − 1

H

)
− κ

(
H − 2

H

))
VH − κ

(
H − 1

H

)
VH+1. (A.18)

Because ε is i.i.d., E
(
V k

h

)
= O(Mk/2), and E

(∑H
h=1 Vh

)k

= O
(
Hk/2Mk/2

)
. Therefore:

1
2k

E
(
(w′γε

V )k
)

(A.19)

'
(

1− κ

(
1
H

))k

E
(
V k

1

)
(A.20)

+
H∑

h1=1

H∑

h2=1

. . .

H∑

hk/2=1

((
κ

(
h1 − 1

H

)
− 2κ

(
h1

H

)
+ κ

(
h1 + 1

H

))2

. . . (A.21)
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. . .

(
κ

(
hk/2 − 1

H

)
− 2κ

(
hk/2

H

)
+ κ

(
hk/2 + 1

H

))2
)

E
(
V 2

h1+1

)
. . . E

(
V 2

hk/2+1

)

+
(

2κ

(
H − 1

H

)
− κ

(
H − 2

H

))k

E
(
V k

H

)
(A.22)

+ κ

(
H − 1

H

)k

E
(
V k

H+1

)
. (A.23)

Exploiting the properties of the kernel κ, and applying standard Taylor expansions, it follows that
(A.20), (A.22) and (A.23) are O

(
Mk/2H−2k

)
= O(H−1), while (A.21) is O

(
H− 3k

2 Mk/2
)

. Hence,

(A.19) is O
(
H− 3k

2 Mk/2
)

. By a similar argument, E
(
(w′γε

W )k
)

and E
(
(w′γε

Z)k
)

are O
(
H−k/2

)
.

Then, for H = M1/2 and bM = M1/2 the statement follows.
We now turn to the case of dependent noise. Contrary to the i.i.d. case, E (Vh) 6= 0 and

E (VhVh′) 6= 0 for h 6= h′. Without loss of generality, let εj/M = ρε(j−1)/M + uj/M , with uj/M ∼
i.i.d.(0, σ2

u), where, because of stationarity, we have suppressed the subscript t. After a Taylor
expansion of the first two terms of the rhs of (A.18) around zero and of the last two terms around
one, we obtain:

1
2
w′γε

V =
κ(3)(0)

H3
V1 +

κ(3)(0)
H3

H−2∑

h=1

hVh+1 +
2κ(2)(1)

H2
VH +

κ(2)(1)
2H2

VH+1. (A.24)

We only consider the second term of the rhs of (A.24), given that the others are of a smaller order.
We have that:

E




(
κ(3)(0)

H3

H∑

h=1

hVh

)4

 =

(
κ(3)(0)

)4

H12

H∑

h1=1

h1

H∑

h2=1

h2

H∑

h3=1

h3

H∑

h4=1

h4

×
M∑

j1=1

M∑

j2=1

M∑

j3=1

M∑

j4=1

E
(
εj1/M ε(j1+h1)/M εj2/M ε(j2+h2)/M εj3/M ε(j3+h3)/M εj4/M ε(j4+h4)/M

)
.

Clearly, the leading term of the sum is when h1 6= h2 6= h3 6= h4. First, consider the case of j1 = j2
and j3 = j4, with j1 6= j3. It’s easy to see that:

1
H12

H∑

h1=1

h1

H∑

h2>h1

h2

H∑

h3>h2

h3

H∑

h4>h3

h4

M∑

j1=1

M∑

j3>j1

× E
(
ε2j1/M ε2j3/M ε(j1+h1)/M ε(j1+h2)/M ε(j3+h3)/M ε(j3+h4)/M

)
= O(H−2).

Next, we consider the case of j1 6= j2 6= j3 6= j4 (the case of j1 = j2 = j3 6= j4 follows by a similar
argument). After a sequential application of the law of the iterated expectation, we have:

E




(
κ(3)(0)

H3

H∑

h=1

hVh

)4



=

(
κ(3)(0)

)4

H12

H∑

h1=1

h1

H∑

h2>h1

h2

H∑

h3>h2

h3

H∑

h4>h3

h4

×
M∑

j1=1

M∑

j2=1

M∑

j3=1

M∑

j4=1

(
E

(
εj1/MEj1/M

(
ε(j1+h1)/M

)
E(j1+h1)/M

(
εj2/M

)
Ej2/M

(
ε(j2+h2)/M

)

E(j2+h2)/M

(
εj3/M

)
Ej3/M

(
ε(j3+h3)/M

)
E(j3+h3)/M

(
εj4/M

)
Ej4/M

(
ε(j4+h4)/M

)))
. (A.25)

The conditional expectations in (A.25) are easily computed. For example:

E(j3+h3)/M

(
ε2j4/M

)
= ρ2(j4−j3−h3)ε2(j3+h3)/M + O(1).
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The other conditional expectations can be calculated similarly. Plugging the expressions back in
(A.25), after some algebra, we have:

E




(
κ(3)(0)

H3

H∑

h=1

hVh

)4

 = O(H−4).

The statement in the Lemma then follows. ¥
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Table 1: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case I: No Microstructure Noise or Jumps in DGPa

M RVt,M BVt,M TPVt,M R̂V t,l,M R̃V t,τ,M RKt,H,M

Interval = µ̂IV + 0.125σ̂IV
Nominal Size = 5%
72 0.095 0.105 0.122 0.455 0.203 0.200
144 0.090 0.089 0.094 0.257 0.142 0.126
288 0.082 0.084 0.082 0.156 0.106 0.098
576 0.078 0.083 0.080 0.103 0.088 0.089
Nominal Size = 10%
72 0.141 0.151 0.168 0.531 0.255 0.260
144 0.137 0.138 0.142 0.321 0.191 0.172
288 0.130 0.129 0.128 0.213 0.154 0.144
576 0.126 0.133 0.128 0.152 0.133 0.134

Interval = µ̂IV + 0.250σ̂IV
Nominal Size = 5%
72 0.076 0.084 0.098 0.609 0.182 0.212
144 0.076 0.074 0.077 0.313 0.112 0.107
288 0.075 0.078 0.075 0.150 0.080 0.079
576 0.081 0.079 0.075 0.083 0.074 0.075
Nominal Size = 10%
72 0.123 0.132 0.146 0.690 0.247 0.275
144 0.131 0.123 0.122 0.394 0.162 0.158
288 0.127 0.128 0.125 0.211 0.128 0.125
576 0.136 0.132 0.129 0.128 0.126 0.123
a

Notes: Entries denote rejection frequencies based on comparing GT,M (u1, u2)
to 5% and 10% critical values of the standard normal distribution. We use
“pseudo true” IV values for GT,M (u1, u2), as discussed in Section 4. The
interval [u1, u2] is [µ̂IV − βσ̂IV ,µ̂IV + βσ̂IV ], where µ̂IV and σ̂IV are the
mean and standard error of the pseudo true data, and β = {0.125, 0.250}.
All experiments are based on several values of M , T = 100 and 10,000 Monte
Carlo iterations. See Section 4 for further details.
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Table 2: Conditional Confidence Interval Accuracy Assessment: Bandwidth Sensitivity

Bandwidtha RVt,M BVt,M TPVt,M R̂V t,l,M R̃V t,τ,M RKt,H,M

No Noise
Nominal Size = 5%

1/3 0.098 0.102 0.105 0.160 0.126 0.117
1/2 0.085 0.091 0.090 0.152 0.117 0.107
2/3 0.080 0.082 0.082 0.149 0.112 0.099
3/4 0.080 0.082 0.081 0.150 0.111 0.099
1 0.082 0.084 0.082 0.156 0.106 0.098

3/2 0.091 0.089 0.090 0.167 0.119 0.104
Nominal Size = 10%

1/3 0.138 0.139 0.140 0.203 0.170 0.156
1/2 0.127 0.131 0.130 0.198 0.161 0.146
2/3 0.124 0.126 0.129 0.199 0.159 0.147
3/4 0.125 0.125 0.129 0.199 0.159 0.144
1 0.130 0.129 0.128 0.213 0.154 0.144

3/2 0.141 0.138 0.139 0.219 0.169 0.156
Noise has N(0, 0.0052) distribution

Nominal Size = 5%
1/3 0.354 0.374 0.351 0.148 0.122 0.122
1/2 0.243 0.265 0.245 0.143 0.113 0.111
2/3 0.187 0.204 0.189 0.138 0.109 0.103
3/4 0.170 0.186 0.172 0.138 0.107 0.103
1 0.152 0.163 0.152 0.159 0.114 0.103

3/2 0.163 0.177 0.164 0.161 0.115 0.106
Nominal Size = 10%

1/3 0.383 0.398 0.377 0.194 0.159 0.160
1/2 0.274 0.297 0.275 0.185 0.153 0.153
2/3 0.221 0.239 0.227 0.188 0.149 0.147
3/4 0.206 0.224 0.211 0.189 0.150 0.145
1 0.196 0.210 0.197 0.210 0.158 0.149

3/2 0.217 0.229 0.213 0.209 0.163 0.156
a

Notes: See notes to Table 1. The bandwidth column reports the ratio between the
used bandwidth and the one calculated using Silverman’s (1986) rule. The interval
[u1, u2] is [µ̂IV − .125σ̂IV , µ̂IV + .125σ̂IV ]. All experiments are based on T = 100,
M = 288 and 10,000 Monte Carlo iterations.
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Table 3: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case II: Microstructure Noise in DGPa

M RVt,M BVt,M TPVt,M R̂V t,l,M R̃V t,τ,M RKt,H,M

Panel A: Interval = µ̂IV + 0.125σ̂IV

Noise has N(0, 0.0052) distribution
Nominal Size = 5%
72 0.075 0.083 0.085 0.457 0.203 0.199
144 0.073 0.075 0.072 0.260 0.140 0.125
288 0.152 0.163 0.152 0.159 0.114 0.103
576 0.980 0.995 0.991 0.102 0.089 0.087
Nominal Size = 10%
72 0.121 0.129 0.127 0.530 0.258 0.256
144 0.118 0.123 0.120 0.323 0.190 0.173
288 0.196 0.210 0.197 0.210 0.158 0.149
576 0.983 0.996 0.992 0.150 0.138 0.130

Noise has N(0, 0.0072) distribution
Nominal Size = 5%
72 0.076 0.084 0.082 0.456 0.209 0.206
144 0.130 0.133 0.121 0.262 0.137 0.130
288 0.940 0.967 0.949 0.162 0.115 0.102
576 1.000 1.000 1.000 0.102 0.090 0.087
Nominal Size = 10%
72 0.123 0.127 0.129 0.532 0.269 0.262
144 0.167 0.175 0.163 0.326 0.190 0.179
288 0.948 0.971 0.955 0.214 0.160 0.148
576 1.000 1.000 1.000 0.146 0.137 0.135

Noise has N(0, 0.0142) distribution
Nominal Size = 5%
72 0.727 0.727 0.650 0.471 0.221 0.223
144 1.000 1.000 1.000 0.275 0.154 0.157
288 1.000 1.000 1.000 0.172 0.113 0.115
576 1.000 1.000 1.000 0.119 0.099 0.101
Nominal Size = 10%
72 0.759 0.759 0.688 0.543 0.274 0.284
144 1.000 1.000 1.000 0.341 0.197 0.210
288 1.000 1.000 1.000 0.224 0.156 0.158
576 1.000 1.000 1.000 0.164 0.148 0.142

Panel B: Interval = µ̂IV + 0.250σ̂IV

Noise has N(0, 0.0052) distribution
Nominal Size = 5%
72 0.069 0.069 0.070 0.616 0.229 0.217
144 0.076 0.078 0.079 0.316 0.129 0.110
288 0.114 0.133 0.123 0.153 0.088 0.077
576 0.970 0.988 0.981 0.085 0.075 0.073
Nominal Size = 10%
72 0.116 0.117 0.114 0.698 0.295 0.285
144 0.133 0.133 0.133 0.393 0.185 0.160
288 0.162 0.187 0.169 0.212 0.135 0.126
576 0.977 0.990 0.985 0.137 0.123 0.120

Noise has N(0, 0.0072) distribution
Nominal Size = 5%
72 0.073 0.070 0.066 0.617 0.230 0.220
144 0.100 0.105 0.089 0.316 0.131 0.114
288 0.934 0.956 0.939 0.148 0.089 0.086
576 1.000 1.000 1.000 0.087 0.074 0.076
Nominal Size = 10%
72 0.123 0.124 0.114 0.702 0.300 0.290
144 0.142 0.152 0.134 0.392 0.185 0.167
288 0.949 0.964 0.951 0.207 0.136 0.130
576 1.000 1.000 1.000 0.132 0.121 0.121

Noise has N(0, 0.0142) distribution
Nominal Size = 5%
72 0.789 0.787 0.725 0.638 0.244 0.255
144 1.000 1.000 1.000 0.336 0.135 0.146
288 1.000 1.000 1.000 0.164 0.093 0.101
576 1.000 1.000 1.000 0.093 0.072 0.075
Nominal Size = 10%
72 0.834 0.834 0.784 0.719 0.312 0.323
144 1.000 1.000 1.000 0.415 0.194 0.199
288 1.000 1.000 1.000 0.224 0.142 0.151
576 1.000 1.000 1.000 0.142 0.125 0.127
a

Notes: See notes to Table 1. All experiments are based on samples of 100
daily observations and 10,000 Monte Carlo iterations.



Table 4: Conditional Confidence Interval Accuracy Assessment: Level Experiments

Case III: Jumps in DGPa

M RVt,M BVt,M TPVt,M R̂V t,l,M R̃V t,τ,M RKt,H,M

Panel A: Interval = µ̂IV + 0.125σ̂IV
One i.i.d. N(0, 3 ∗ 0.64 ∗ µ̂IV ) Jump Every 5 Days

Nominal Size = 5%
72 0.239 0.197 0.194 0.622 0.401 0.396
144 0.213 0.161 0.153 0.438 0.318 0.293
288 0.196 0.136 0.131 0.317 0.261 0.242
576 0.189 0.126 0.122 0.243 0.237 0.211
Nominal Size = 10%
72 0.301 0.259 0.253 0.695 0.476 0.468
144 0.273 0.212 0.204 0.509 0.385 0.363
288 0.254 0.186 0.183 0.390 0.323 0.305
576 0.245 0.175 0.170 0.304 0.300 0.270

One i.i.d. N(0, 2 ∗ 0.64 ∗ µ̂IV ) Jump Every 2 Days
Nominal Size = 5%
72 0.361 0.215 0.207 0.661 0.516 0.508
144 0.341 0.169 0.161 0.518 0.436 0.415
288 0.318 0.138 0.133 0.412 0.384 0.362
576 0.313 0.124 0.119 0.338 0.360 0.339
Nominal Size = 10%
72 0.434 0.276 0.269 0.730 0.588 0.583
144 0.411 0.224 0.214 0.599 0.512 0.489
288 0.386 0.193 0.185 0.489 0.457 0.435
576 0.382 0.170 0.164 0.411 0.433 0.411

One i.i.d. N(0, 0.64 ∗ µ̂IV ) Jump Every Day
Nominal Size = 5%
72 0.471 0.224 0.206 0.645 0.563 0.565
144 0.445 0.172 0.163 0.532 0.514 0.514
288 0.446 0.145 0.134 0.463 0.485 0.464
576 0.440 0.128 0.131 0.413 0.465 0.449
Nominal Size = 10%
72 0.540 0.279 0.265 0.712 0.635 0.641
144 0.517 0.224 0.217 0.611 0.592 0.588
288 0.519 0.197 0.183 0.540 0.558 0.541
576 0.515 0.179 0.182 0.485 0.543 0.529

Panel B: Interval = µ̂IV + 0.250σ̂IV
One i.i.d. N(0, 3 ∗ 0.64 ∗ µ̂IV ) Jump Every 5 Days

Nominal Size = 5%
72 0.324 0.240 0.246 0.846 0.599 0.582
144 0.273 0.173 0.171 0.648 0.460 0.417
288 0.247 0.140 0.134 0.465 0.361 0.330
576 0.240 0.125 0.121 0.327 0.315 0.276
Nominal Size = 10%
72 0.401 0.310 0.318 0.894 0.677 0.666
144 0.354 0.236 0.236 0.727 0.550 0.503
288 0.321 0.201 0.193 0.552 0.449 0.407
576 0.312 0.181 0.177 0.408 0.390 0.351

One i.i.d. N(0, 2 ∗ 0.64 ∗ µ̂IV ) Jump Every 2 Days
Nominal Size = 5%
72 0.474 0.241 0.225 0.857 0.688 0.687
144 0.438 0.166 0.153 0.704 0.586 0.560
288 0.413 0.131 0.121 0.557 0.508 0.479
576 0.392 0.107 0.101 0.449 0.465 0.436
Nominal Size = 10%
72 0.562 0.316 0.296 0.902 0.764 0.760
144 0.527 0.227 0.212 0.772 0.671 0.645
288 0.500 0.185 0.175 0.642 0.599 0.561
576 0.482 0.160 0.155 0.532 0.556 0.520

One i.i.d. N(0, 0.64 ∗ µ̂IV ) Jump Every Day
Nominal Size = 5%
72 0.673 0.273 0.244 0.858 0.781 0.788
144 0.641 0.188 0.171 0.749 0.722 0.718
288 0.633 0.151 0.135 0.651 0.678 0.659
576 0.623 0.125 0.118 0.590 0.657 0.643
Nominal Size = 10%
72 0.746 0.351 0.317 0.903 0.841 0.843
144 0.717 0.251 0.235 0.813 0.793 0.791
288 0.713 0.208 0.192 0.731 0.751 0.738
576 0.703 0.182 0.172 0.671 0.732 0.723
a

Notes: See notes to Table 1. All experiments are based on samples of 100
daily observations and 10,000 Monte Carlo iterations.



Table 5: Directional predictions results: M = 2340.

Realized
Measure

Conditioning
Variable

Percentage of correct predictions us-
ing the same Realized Measure

Percentage of correct predictions us-
ing a benchmark Measurea

RV

RVT 0.521 0.440
RV T 0.578 0.426
RS−T 0.543 0.461

RS
−
T 0.582 0.426

TPV

TPVT 0.501 0.318
TPV T 0.562 0.378
RS−T 0.539 0.360

RS
−
T 0.562 0.378

R̂V

R̂V T 0.503 0.476

R̂V T 0.602 0.544
RS−T 0.763 0.702

RS
−
T 0.659 0.602

R̃V

R̃V T 0.522 0.502

R̃V T 0.618 0.563
RS−T 0.744 0.682

RS
−
T 0.659 0.603

RK

RKT 0.522 0.461
RKT 0.577 0.522
RS−T 0.757 0.701

RS
−
T 0.674 0.604

a
Notes: this Table reports the percentage of correct directional volatility predictions for different con-
ditioning variables and different volatility estimators constructed using 10 seconds returns. In Column
2, the use of an overline denotes the fact that the conditioning value is taken an average over the
previous 5 days (T − 4 to T ). Column 3 reports results obtained using the same volatility measure
for both predictive probabilities and out-of-sample checks. Column 4 reports results obtained using a
benchmark measure (RV at 5 minutes frequency) for the out-of-sample checks.

Table 6: Directional predictions results: M = 78.

Realized
Measure

Conditioning
Variable

Percentage of correct predictions us-
ing the same Realized Measure

Percentage of correct predictions us-
ing a benchmark Measurea

RV

RVT 0.503 0.502
RV T 0.578 0.579
RS−T 0.601 0.604

RS
−
T 0.618 0.620

TPV

TPVT 0.683 0.541
TPV T 0.720 0.660
RS−T 0.681 0.578

RS
−
T 0.702 0.601

R̂V

R̂V T 0.541 0.519

R̂V T 0.578 0.579
RS−T 0.620 0.619

RS
−
T 0.661 0.662

R̃V

R̃V T 0.564 0.482

R̃V T 0.639 0.561
RS−T 0.617 0.584

RS
−
T 0.615 0.578

RK

RKT 0.660 0.583
RKT 0.704 0.601
RS−T 0.681 0.655

RS
−
T 0.656 0.658

a
Notes: this Table reports the percentage of correct directional volatility predictions for different con-
ditioning variables and different volatility estimators constructed using 5 minutes returns. In Column
2, the use of an overline denotes the fact that the conditioning value is taken an average over the
previous 5 days (T − 4 to T ). Column 3 reports results obtained using the same volatility measure
for both predictive probabilities and out-of-sample checks. Column 4 reports results obtained using a
benchmark measure (RV at 5 minutes frequency) for the out-of-sample checks.
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