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Abstract

This paper derives the limiting distributions of alternative jackknife IV (JIV') estimators and
gives formulae for accompanying consistent standard errors in the presence of heteroskedasticity
and many instruments. The asymptotic framework includes the many instrument sequence of
Bekker (1994) and the many weak instrument sequence of Chao and Swanson (2005). We show
that JIV estimators are asymptotically normal; and that standard errors are consistent provided
that 3@ — 0, as n — oo, where K, and r, denote, respectively, the number of instruments and
the rate of growth of the concentration parameter. This is in contrast to the asymptotic behavior
of such classical IV estimators as LIML, B2SLS, and 25LS, all of which are inconsistent in the
presence of heteroskedasticity, unless %’l — 0. We also show that the rate of convergence and the
form of the asymptotic covariance matrix of the JI'V estimators will in general depend on strength

of the instruments as measured by the relative orders of magnitude of r, and K,,.



1 Introduction

It has long been known that the two-stage least squares (25LS) estimator is biased with many
instruments (see e.g. Sawa (1969), Phillips (1983), and the references cited therein). Due in large
part to this problem, various approaches have been proposed in the literature for reducing the bias
of the 25 LS estimator. In recent years there has been interest in developing procedures based on
using “delete-one” fitted values in lieu of the usual first-stage OLS fitted values, as the instruments
employed in second stage estimation. A number of different versions of these estimators, referred to
as jackknife instrumental variables (JIV') estimators, have been proposed and analyzed by Phillips
and Hale (1977), Angrist, Imbens, and Krueger (1999), Blomquist and Dahlberg (1999), Ackerberg
and Deveraux (2003), Davidson and MacKinnon (2006), and Hausman, Newey, Woutersen, Chao,
and Swanson (2007).

The JIV estimators are consistent with many instruments and heteroskedasticity of unknown
form, while other estimators, including limited information maximum likelihood (LIML) and bias
corrected 2SLS (B2SLS) estimators are not (see e.g. Bekker and van der Ploeg (2005), Ackerberg
and Deveraux (2003), Chao and Swanson (2006), and Hasuman et al. (2007)). The main objective
of this paper is to develop asymptotic theory for the JIV estimators in a setting that includes the
many instrument sequence of Kunitomo (1980) and Bekker (1994) and the many weak instrument
sequence of Chao and Swanson (2005). To be precise we show that JIV estimators are consistent
and asymptotically normal when 3% — 0, as n — oo, where K,, and r, denote, the number
of instruments and the rate of growth of the so-called concentration parameter, respectively. In
contrast, consistency of LIML and B2SLS generally requires that Ir{—: — 0, as n — 00, meaning
that the number of instruments is small relative to identification strength. We show that both the
rate of convergence of the JIV estimator and the form of its asymptotic covariance matrix depends
on how weak the available instruments are, as measured by the relative order of magnitude of
ry, vis-a-vis K,. We also show consistency of standard errors under heteroskedasticity and many
instruments.

Hausman et. al. (2007) also consider a jackknife form of LIML that is slightly more difficult
to compute but is asymptotically efficient relative to JIV under many weak instruments and ho-
moskedasticity. Hausman et. al. (2007) also propose a jackknife version of the Fuller (1977) that

has fewer outliers. With heteroskedasticity any of the estimators may outperform the others, as



shown in Monte Carlo examples in Hausman et. al. (2007).

In the process of showing the asymptotic normality of JIV, this paper gives a central limit
theorem for quadratic (and, more generally, bilinear) forms associated with an idempotent matrix.
This theorem can be used to study estimators other than JIV. For example, it has been used in
Hausman et al. (2007) to derive the asymptotic properties of the jackknife versions of LIM L and
Fuller (1977) estimators.

This paper is a substantially altered and revised version of Chao and Swanson (2004), in which
we now allow for the many instrument sequence of Kunitomo (1980), Morimune (1983) and Bekker
(1994); and in which we give a refined version of the central limit theorem from the earlier paper.

The rest of the paper is organized as follows. Section 2 sets up the model and describes the
estimators and standard errors. Section 3 lays out the framework for the asymptotic theory and
presents the main results of our paper. Section 4 comments on the implications of these results.

and concludes. All proofs are gathered in an appendix.

2 The Model and Estimators

The model we consider is given by

= X 4
DT gt TS
X = Y+,

where n is the number of observations, G is the number of right-hand side variables, T is a matrix
of observations on the reduced form, and U is the matrix of disturbance observations. For the
asymptotic approximations, the elements of T will be implicitly allowed to depend on n, although
we suppress dependence of T on n, for notational convenience. Estimation of §y will be based on
an n x K matrix, Z, of instrumental variable observations with rank(Z) = K. Let Z2 = (Y, Z2),
and assume that Ee|Z] =0 and E[U|Z] = 0.

This model allows for T to be a linear combination of Z (i.e. Y = Zm, for some K x G
matrix 7). The model also allows for Z to approximate the reduced form. Furthermore, some
columns of X may be exogenous, with the corresponding column of U being zero. For example,
let X!, Y%, and Z! denote the i*" row (observation) for X, T, and Z, respectively. We could let

T; = fo(w;) be a vector of unknown functions of a vector w; of underlying instruments and let



Zi = (p1x(w;), ..., prk (w;))’, for approximating functions py (w), such as power series or splines.
In this case, linear combinations of Z; may approximate the unknown reduced form (e.g. as in
Newey (1990)).

To describe the estimators, let P = Z(Z'Z)~1Z’ and P,; denote the 4, j element of P. Addition-
ally, let I_; = (2'Z — Z; Z!) Y (Z' X — Z; X!) be the reduced form coefficients obtained by regressing
X on Z using all observations except the i*. The JIV estimator of Phillips and Hale (1977) is
obtained as

0=0_"T,zXx) "> T Zy.
i=1 i=1
Using standard results on recursive residuals, it follows that
2= (X'2(Z'2)"" Zi — PuX.) /(1 = Py) = > Py X;/(1— Py).
i
Then, we have that
6=H'Y XiPj(1—Py) 'y H="7 X;iPy(1 - Py) "X,
i#] i#j
The JIV estimator proposed by Angrist and Imbens (1999), their JIVE2, has a similar form, except
that I1_; = (2'2)"Y(Z'X — Z;X!) is used in place II_;. It is given by
5 = H! ZXiPijyj7H = ZXZPUXJ/
i#] i#j

To explain why JIV is a consistent estimator it is helpful to consider JIV as a minimizer of an
objective function. As usual, the limit of the minimizer with be the minimizer of the limit under
appropriate regularity conditions. We will focus on § to simplify the discussion. The estimator 5
satisfies 0 = arg ming Q(0), where
Q(8) = (i — X{6)Pij(y; — X9).

i#j
Note that the difference of the 2SLS objective function (y—X'8) P(y—X'8) and Q(8) is 37, Pii(yi—
X!8)2. This is a weighted least squares object that is a source of bias in 25LS because its expectation
is not minmized at §o when X; and ¢; are correlated. This does not vanish asymptotically relative
to Q(8) under many (or many weak) instruments, leading to ionconsistency of 2SLS. When obser-
vations are mutually independent all of the inconsistency is caused by this term, so that removing

it to form Q(8) makes § consistent.



To explain further, consider the JIV objective function Q(d). Note that for U(6) = &;—U!(6—do)

QW) = Qu(d)+ Qa(6) + Q3(8),Q1(8) =Y (8 — 6o) TiPy Y5(5 — bo),

7]
Q2(0) = —2> Ti(6)Py (5 — d0), Q3(8) = > Ui(6) Py U5 (6
i#j 1#]
Then by E[U;(6)]2] = 0 and independence of observations we have E[Q(0)|Z] = Q1(d). Under the

regularity conditions below, Z# ; TPy T’ ; is positive definite asymptotically, so @1(0) is minimized
at do. Thus, the expectation Q1(d) of Q(é) is minimized at the true parameter dg, so that, in the
terminology of Han and Phillips (2006), the many instrument ”"noise” term in the expected objective
function is identically zero.

For consistency of 4 it is also necessary that the stochastic components of Q(é) do not dominate
asymptotically. The size of Ql((S) (for 6 # dp) is proportional to the concentration parameter, that
we denote by 7,. It turns out that Qo(6) has size smaller than Q1(6) asymptotically but Qs(8) is
0,(VE,) (the proof of Lemma A1 shows that the variance of Q3(J) is proportional to K,). Thus,
to ensure that the expectation of Q(é) dominates the stochastic part of Q((S) it suffices to impose
the restriction /K, /r, — 0, which we do throughout the asymptotic theory. This condition was
formulated in Chao and Swanson (2005).

The estimators ¢ and  are consistent and asymptotically normal with heteroskedasticity, under
the regularity conditions we impose, including /K, /r,, — 0. In contrast, consistency of LIML and
Fuller (1977) requires K,,/r, — 0, when P; is asymptotically correlated with E[X;e;|Z]/E[e?| 2],
as discussed in Chao and Swanson (2004) and Hausman et al. (2007); as does consistency of the
bias corrected 2SLS estimator of Donald and Newey (2001), when P;; is asymptotically correlated
with F[X;e;|Z], as discussed in Ackerberg and Deveraux (2003). Thus, JIV estimators are robust
to heteroskedasticity and many instruments (when K, grows as fast as r,), while LIML, Fuller
(1977), or bias corrected 2SLS estimators are not.

Hausman et. al. (2007) also consider a JIV form of LIML, obtained by minimizing Q(8)/[(y —
X0) (y — X6)]. The sum of squared residuals in the denominator makes computation somewhat
more complicated though, like LIML, it has an explicit form in terms of the smallest eigenvalue of
a matrix. This JIV form of LIML is asymptotically efficient relative to 6 and ¢ under many weak
instruments and homoskedasticity. With heteroskedasticity 5 and & may perform better than this

estimator, as shown by in Monte Carlo examples in Hausman et. al. (2007). Hausman et. al.



(2007) also propose a jackknife version of the Fuller (1977) estimator that has fewer outliers.
To motivate the form of the variance estimator for 6 and 5, note that for § = (1 — Pi-)*lai,
substituting y; = X/dy + €; in the equation for é gives
0=0do+H ' XiPyg;. (1)
i#]
After appropriate normalization, the matrix H~! will converge and a central limit theorem will
apply to Zi# X;P;;&;. This will lead to a sandwich form for the asymptotic variance. Here H!
can be used to estimate the outside terms in the sandwich. The inside term, which is the variance
of Z# y X;P;;&;, can be estimated by dropping terms that are zero from the variance, removing the
expectation, and replacing &; by an estimate, fNZ =(1- Pii)_l (yi — X{S) Using the independence
of the observations, F[e;|Z] = 0, and the exclusion of the ¢ = j terms in the double sums, it follows
that
EY XiPy&(Y XiPy&) 12 = E)Y | Y PuPuXiXj&h + Y PIXi&X g 2],
i#] i#] 4 k¢{ij} i#]
By removing the expectation and replacing &; by §~Z we obtain that
S=3" Y PuPuXiXjG+ Y PIX&XE.
i k¢{ij} i#]
The estimator of the asymptotic variance of é is then given by

V=H'SA
This estimator is robust to heteroskedasticity, as it allows Var(&|Z) to vary over ¢ and E[X;&;|Z]
to vary over 1.
An asymptotic variance estimator for § can be formed in an analogous way. Let &, = y; — XZ’S
and
S=Y" > PuPpXiXjE+ > PhXiéiXjE.
0 k¢{ig} i#]

The variance estimator for ¢ is then given by

Here H is symmetric because P is symmetric, so that a transpose is not needed for the third matrix

~

inV.



3 Many Instrument Asymptotics

The asymptotic theory we give combines the many instrument asymptotics of Kunitomo (1980),
Mormune (1983), and Bekker (1994) with the many weak instrument asymptotics of Chao and
Swanson (2005). All of our regularity conditions are conditional on Z = (Y, 7). To state the

regularity conditions, let Z/,&;, U/, and Y’ denote the i*" row of Z,e,U, and Y, respectively.

Assumption 1: K = K,, — o0, Z includes among its columns a vector of ones, and there is
a positive constant C' < 1, such that for all n large enough with probability one, rank(Z) = K and
Pii S C, (Z = 1, ,n)

In this paper, C' is the generic notation for a positive constant that may be bigger or less than
one. . Hence, although in Assumption 1, C is taken to be less than 1, in other parts of the
paper, it might not be.The restriction that rank(Z) = K is a normalization that requires excluding
redundant columns from Z. It can be verified in particular cases. For instance, when w; is a
continuously distributed scalar, Z; = p (w;), and prx(w) = w*~!, it can be shown that Z'Z is
nonsingular with probability one for K < n. The condition P;; < C' < 1 implies that K/n < C,
because K/n =31 | P;/n <C.

Let Amin (A) denote the smallest eignevalue of a symmetric matrrix A.

Assumption 2: Y; = S,z /\/n where S, = S diag (fi1n, .., ien) and S is nonsingular. Also,

for each j either pj, = /n or pjn/v/n — 0, p, = 1I<n'i<nG’ujn — 00, and VK, /u2 — 0. Also,
<<

there is C' > 0 such that with probability one ||Y 7", zizl/n|| < C and Amin (314 2izl/n) > C, for

n sufficiently large.

The S, matrix in Assumption 2 determines the convergence rate of the estimators. We will
show that S/,(8 — ) and S’ (6 — &) are asymptotically normal under conditions given here. The S,
matrix has a complicated form that seems necessary to cover important cases, as discussed below.
However, one need not even know the form of S, to perform inference. Under the conditions given
here the standard errors we have provided can be used to do large sample inference in the usual
way without knowing the form of S, as shown in Theorem 5 below.

Assumption 2 and the S, matrix are designed to accomodate a linear model where included

instruments (e.g. a constant) have fixed reduced form coefficients and excluded instruments have



coefficients that can shrink as the sample size grows. Such a model has a linear structural equation
of the form

yi = 2100 + X0 + i

where Z} is a G x 1 vector of included instruments (e.g. a constant) and X? is a Ga x 1 vector of
endogenous variables with G; + G2 = G. Let the reduced form be partitioned conformably with 4,
Y = (YY,Y?) and U; = (UY,U?)". The corresponding reduced form for the included instruments
is Z} = Y} with U} = 0. Suppose that the reduced form for X? is

X = T2+ ULYE = w2} + (/) 22

where 21-2 are instruments that are excluded from the structural equation and p, < /n. Here any

2

2 are subsumed in 22. Let z; = (Z},2?)" and impose Assumption

reduced form coefficients in z . 2

2, so that the second moment matrix of z; is bounded and bounded away from zero. This is a
normalization that makes the strength of identification of 42 be determined by j,. Indeed, 1/u,
will be the convergence rate for estimators of 62. Assumption 2 also allows for a diagnonal matrix
in place of (u,/v/n)I, which would correspond to different convergence rates for estimators of
different components of 62. In this example we maintain the scalar matrix form of the cofficients of
22 for simplicity.

For this model T; = S,,z; with

8, = H Hn;)\/ﬁ}\/ﬁ— [ ! ?}diag(\/ﬁ,...,\/ﬁ,un,...,un).

This S, has the form given in Assumption 2 with

= I 0 . .
S:[ﬂ.l I]Hujn:\/ﬁalgjgGl,Mjn:[Ln,Gl—{—lSjSG,

This complicated form of .S, is needed to accomodate fixed reduced form coefficients for included
instruments and coefficients for excluded instruments that depend on n. We have been unable to
simplify .S, while maintaining the generality needed for these important cases.

In this example j,, — oo must hold for Assumption 2 to be satisfied. This implies that §2
is asymptotically identfied. If u,, were bounded we would be in a weak instrument setting similar
Staiger and Stock (1997), where §2 is not asymptotically identified and limiting distributions of

estimators are different than those given here.



The excluded instruments z? may be an unknown linear combination of the instrumental
variables Z; = (Zl’ Zi2’ ), so that zZQ can implicitly depend on n. For example, we could have
zf = z i 1 2Z2 / VK, — G, where ij have variances that are bounded uniformly in K, and
1/v/K,, — G is included to normalize the variance of z? to be bounded. The many weak instrument
example of Chao and Swanson (2005) is then included by taking ju, = /K, — G1, in which case

the reduced form for Xz? is

T _lel+ Z 222

The excluded instrument zzz may also be an unknown function that is being approximated by
a linear combination of Z;. For instance, suppose that z2 = fo(w;) for an unknown function fo(w;)
of variables w;. In this case we could let the instrumental variables include a vector px (w;) def
(pir(wi), ..., pK—Gy, K (w;))' of approximating functions, such as polynomials or splines. Here the
vector of instrumental variables would be Z; = (Z},p® (w;)")". For u, = y/n this example is like
Newey (1990) where Z; includes approximating functions for the reduced form but the number of
instruments can grow as fast as the sample size. Alternatively, if pu,/\/n — 0, it is a modified
version where 62 is weakly identified.

In Assumption 2, p2 can be interpeted as being proportional to the concentration parameter
rn. For rp, = n, we have asymptotic theory as in Kunitomo (1980), Morimune (1984), and Bekker
(1994), where the number of instruments K, can grow as fast as the sample size. For r, growing
slower than n we have the many weak instrument asymptotics of Chao and Swanson (2005).

The fundamental rate condition /K, /r, — 0 given in Assumption 2 was explained earlier as

being needed to ensure that the stochastic part of the objective function for the estimator does not

dominate the identifying part.

Assumption 3: There is a constant, C, such that conditional on Z = (Y, Z), the observa-
tions (e1,U1), ..., (€n, Up) are independent, with Ele;|Z] = 0, E[U;|Z] = 0, sup; E[e?|Z] < C, and
sup; E[||U;]?| 2] < C, almost surely.

This assumption requires second conditional moments of disturbances to be bounded; and also

requires uniform nonsingularity of the variance of the reduced form disturbances.

Assumption 4: There is a 7, such that with probability one, 327" ||2; — 7xnZi||* /n — 0.



This condition allows an unknown reduced form that is approximated by a linear combination

of the instrumental variables. The previous conditions are sufficient for consistency.

THEOREM 1: Suppose that Assumptions 1-4 are satisfied. Then, ,u,,le;l(S —dp) 2,0, 2 4,
LS (6 — 60) =2 0, and & = &.

The following additional condition is useful for establishing asymptotic normality and the con-

sistency of the asymptotic variance.

Assumption 5: There is a constant, C' > 0, such that with probability one, > 7" | |zt /n? —
0, sup; E[e}| 2] < C, and sup; E[||U;]|*| 2] < C.

To give asymptotic normality results, we need to describe the asymptotic variances. We will
outline results that do not depend on convergence of various moment matrices; and so we will write
the asymptotic variances as a function of n (rather than as a limit). Let 0? = E [512|Z], where, for

notational simplicity, we have suppressed the possible dependence of 012 on Z. Moreover, let

FIn = Zzl z/n Qn—zzz 12/77'7

\Tjn = Z UU/‘Z] ( ij)_2 —i—E[UiEZ”Z](l — Pm) [EJU/’Z](l _ jj) )Sgll
i#j
H, = Z(l — Pyi)zizi/n, Qn = Z(l— ) 2207 /n
i=1
v, = S,'> P (E[UU]|2lo} + EUiei| 2)Ele;Uj|2]) S, V.
i#]

When K /r, is bounded, the conditional asymptotic variance given Z of S (§ — &) is
Vn:Hn_l(Q @)7 1;

and the conditional asymptotic variance of S’ (6 — dg) is
Vo = Hy ' (Q + ) H,

To state our asymptotic normality results, let A2 denote a square root matrix for a positive

semi-definite matrix A, satisfying AY2A4/% = A. Also, for A nonsingular let A=1/2 = (A1/2)~1

10



THEOREM 2: Suppose that Assumptions 1-5 are satisfied, 01-2 > C > 0 with probability one, and

K /ry, is bounded. Then, with probability one, Vy, and V,, are nonsingular for large enough n, and

V2805 = 60) = N(0, ), Vi V28,8 = do) = N(0, L),

The convergence rate of the estimator is related to the size of S,,. In the simple case where 9 is a
scalar, we can take S,, = p, = /. In this case, the convergence rate of the estimator will simply
be 1//r, when K/r, is bounded. This rate, the inverse square root of the rate of divergence of
the concentration parameter, is the usual one for estimation using instrumental variables. This
rate changes when K grows faster than r,.

The rate of convergence in Theorem 2 corresponds to the rate found by Stock and Yogo (2005b)
for LIML, Fuller’s modified LIML, and B2SLS, when r,, grows at the same rate as K and slower
than n, under homoskedasticity.

The term V¥, in the asymptotic variance of 5, and the term V,, in the asymptotic variance of
5, account for the presence of many instruments. The order of these terms is K/r,, so that if
K/r, — 0, these terms can be dropped without affecting the asymptotic variance. When K/r,
is bounded, but does not go to zero, these terms have the same order as other terms and it is
important to account for their presence in standard errors. If K/r, — oo, then these terms will
dominate, and will slow down the convergence rate of the estimators. When K/r,, — oo, the

conditional asymptotic variance given Z of \/r,/KS/, (6 — &) is

V= H, (r,/K)V, H,*

n n

and the conditional asymptotic variance of +/r,, /K S/, (6 — o) is

Vi =H, (r,/K)¥V,H," .

n

When K /r, — oo, the (conditional) asymptotic variance matrices, V,* and V;*, may be singu-
lar, especially when some components of X; are exogenous, or when different identification strengths
are present. In order to allow for this singularity, our asymptotic normality results are stated in
terms of a linear combination of the estimator. Let L, be a sequence of ¢ x G matrices and let

Amin(A) denote the smallest eigenvalue of a symmetric matrix A. .

11



THEOREM 3: Suppose that Assumptions 1-5 are satisfied and K/r, — oo. If Ly, is bounded,

and with probability one there is a C > 0 such that Amin (LnV,fL;L) > C, then
(LaVii L) ™ L /raf K845 — 00) =5 N(0, 11).
Also, if with probability one there is a C > 0 such that Amin (LnV, L!,) > C, then

(LoVi L) 2 Lun/Tn K S4(6 — 60) —5 N(0,Iy).

Here, the convergence rate is related to the size of (W )Sn. In the simple case where ¢ is
a scalar, we can take S, = /7, giving a convergence rate of VK /Tn. In this case, the theorem
states that (rn VK ) (5 — &) is asymptotically normal. Tt is interesting that K /r, — 0 is a
condition for consistency in this setting, as well as in the context of Theorem 1 above.

From Theorems 2 and 3, it is clear that the rates of convergence of both JIV estimators depend in
general on the strength of the available instruments, as reflected in the relative orders of magnitude
of r, vis-a-vis K. Note also that, whenever r, grows at a slower rate than n, the rate of convergence
is slower than the conventional y/n rate of convergence, since in this case the available instruments
are weaker than that assumed in the conventional strongly identified case, where the concentration
parameter is taken to grow at the rate n.

When Py; = Z!{(Z'Z)~Z; goes to zero uniformly in i, the asymptotic variances of the two JIV
estimators will get close in large samples. Since Y ;" | P; = tr(P) = K, P;; going to zero will occur
when K grows more slowly than n, though precise conditions for this depend on the nature of Z;.
As a practical matter, P;; will generally be very close to zero in applications where K is very small
relative to n, making the jackknife estimators very close to each other.

Under homoskedasticity, we can compare the asymptotic variances of the two JIV estimators.
With homoskedasticity the asymptotic variance of § is
Vo = Va4 V2V =0H,' V2 =S, 0*E[UU]|2] ) P}/(1— Py)2S,*

i#j
+8, ElUies| Z1E[U]ei] 21,1 > PA(1— Pu) ™ (1= Py) "
1#]

12



Also, the asymptotic variance of §is

Vi = Vigvivli=¢®H1

> - Pii)Zziz;-/n] H'

i=1
V2 = S, (PE[UU]|Z] + E[Uiei| 2| E[Uj=i] 2]) S,V Y P

i#]
By the fact that (1 — P;)~! > 1, we have that V,2 > V.2 in the positive semi-definite sense. Also,
note that V! is the variance of an IV estimator with instruments z;(1— P;), while V,! is the variance
of the corresponding least squares estimator, so that V,> < V,!. Thus, it appears that in general we
cannot rank the asymptotic variances of the two estimators.

Next, we turn to results pertaining to the consistency of the asymptotic variance estimators, and
to the use of these estimators in hypothesis testing. To proceed, first let z;; denote the ¢'" element
of z;, and let e;,, be the i column of an n x n identity matrix. Further, define Z.g = (Z1g) -rs zng)'.
Also, define z;; = ZZ-(Z’Z)_lZ’z.g = egyan.g, so that Z;, is the ith element of the projection of Z.g
on the column space of Z. Finally, define b,, = min {\/ﬁ/ fign, /1) K } We impose the following

additional condition.

Assumption 6: There exists a positive constant C, and a positive integer N, such that for

g=1,..G;
1 max | . | ’ 1 max ’V- ‘ ’ <C
bg,n 1<i<n “ig \/_Il1< i<n “ig -

In addition, there exists a my, such that maxi<y, ||z;i — mpZ;i|| — 0.

§C7 sup EZ
n>N

sup Fz
n>N

The next result shows that the estimators of the asymptotic variance we have given are consistent

after normalization.

THEOREM 4: Suppose that Assumptions 1-6 are satisfied. If K/r, is bounded, then S;LVSH —
V., 25 0 and S,’LVSn —V, & 0. Also, if K/r, — oo, then rnS;Lf/Sn/K -V L,0 and
S VS, /K -V 250,

A primary use of asymptotic variance estimators is in conducting approximate inference con-

cerning coefficients.

THEOREM 5: Suppose that Assumptions 1-6 are satisfied and that a(d) is an £ x 1 vector of

functions such that: i) a(d) is continuously differentiable in a neighborhood of dy; ii) there is a

13



square matriz, By, such that for A = 0a(8)/0d', B,AS; Y is bounded; and iii) for any &y L5 8,
(k=1,..,0) and A = [9a1(3)/3, ..., Day(5)/Dd), we have that By(A — A)S;Y 25 0. If K/ry is
bounded and Amin (B AS, YV, S, YA'BL) > C, or if K/rp, — 00 and Amin(BrAS, YV S 1A'Bl) >
C, then for A = da(4)/d5,

(AVA")~1/2 [a(S) - a(do)} . N0, D).

If K/ry, is bounded and Amin (B AS; V'V, S YA'BL) > C, orif K /1y — o0 and Amin(Bn AS, VV*S1A'B!) >
C, then for A = 8a(4)/86,

(AV ANy~1/2 [a(é) . a(éo)} 4. N (0, 1).

Perhaps the most important special case of this result is the case of a single linear combination.
This case will lead to t-statistics based on the consistent variance estimator having the usual

standard normal limiting distribution. The following result considers such a case.

COROLLARY 6: Suppose that Assumptions 1-6 are satisfied, and that ¢ and b, are such that
b,d'S;Y is bounded. If K/ry, is bounded and b2 S;YV,S-lc > C, or if K/r, — oo and

b2 S VVES e > O, then
, N —_—
d(é ~50) N
VVe
Also, if K/ry, is bounded and ¢ S;Y'V,,S1c/b2 > C, or if K/r,, — o0 and ¢'S; YV S 1c/b2 > C,
then

N(0,1).

O—%) a, N(0,1).

~

dVe

4 Concluding Remarks

In this paper we have derived limiting distribution results for two alternative JIV estimators.
These estimators are both seen to be consistent and asymptotically normal in the presence of many
instruments, under heteroskedasticity of unkown form. In the same setup, LIML, 2SLS, and B2SLS

are inconsistent.

14



5 Appendix A - Proofs of Theorems

We will define a number of notation and abbreviations which will be used not only in this appendix but also
in Appendix B. Let C' denote a generic positive constant that may be different in different uses and let M, CS,
and T denote the Markov inequality, the Cauchy-Schwartz inequality, and the Triangle inequality respectively.
Also, for random variables W, Y;, and n; and for Z = (Y, %), let w; = E[W;|Z], WZ = W, — w;,
i = EYi|2],Yi =Yi — gi, i = Bl 2, 5 = 0i — i, § = (15 Un) > © = (01, 00, W)

T — ol v — il o — S5 — :
pw = fggglwzl, fiy g@lyzl, fin ggggllml, Oy = max Var WilZ],
2 = maxVarl[Yi|Z], 6g:maxVar[m]Z];

i <n i <n

where, in order to simplify notation, we have suppressed the dependence on Z of the various quantities (W,
Wi, Ui, f’i,ﬁi, Tis bW s [1Y 5 [y, 5124/, 6%/, and 5,27) defined above. Furthermore, for random variable X, define
1X1l,, - = VEXZIZ]

We first give four lemmas that are useful in the proof of consistency, asymptotic normality, and consis-
tency of the asymptotic variance estimator. We group them together here for ease of reference, because they
are also used in Hausman et. al. (2007).

Lemma Al: If, conditional on Z = (Y, Z), (W;,Y;), (i = 1, ...,n) are independent with probability one
and if W; and Y are scalars, and P is symmetric, idempotent of rank K then for w = E [(W71, ..., W,,)'| Z],
§ = E[(Y1,...Y,)|Z2], 6w, = maxi<, Var (Wi|2)Y2, 5y, = max;<, Var (Y;|2)/2, there exists a
positive constant C' such that

2

ZPZJWlYJ - ZPz‘j’@i@j <CD, a.s. Pz
i#j i#j o2

where D, = Koy, 5. + 04y, §'§ + 0y, @',
Proof: Let w; = W; — w; and 3; = Y; — ¥;. Note that
> PyWiY; =Y Pywig; = Piybgy + > Piybigly + Y Pyhiy.
i) i#j i#j i#j 7]

Let Dy, = 6‘%1,"5)2%. Note that for ¢ # j and k # {, E [W0;§;Wy7e| Z] is zero unless ¢ = k and j = £ or

15



it=~Fand j =k. ThenbyCSandZ J:Pii,
[(Z R]wlyj> !Z} = > PyPuE [yl Z]
i#j k;;ée
= Y P (E[@?|Z]EF|2] + Bl 2] Elw;5;] 2])
i#]
< 2Dy, Y PE<2D1, Y Py =2Dy,K.

i#j i
Also, for w = (W1, ..., wy)", we have Zi;ﬁj Pijw;y; = wPy — ZZ P;;y;w;. By independence across 1

conditional on Z, we have E [ww'|Z] < 73, I a.s. Pz, so that
E((yPw)*|Z] = y§PE[wd|2)Py <&y, 5 Py < iy, 77,
E [(ZZ H‘z‘?jz’@z‘)Q \Z] = Z E[@}|Z]5; < oy, 77
Then by T we have

< Coyy, 7'y as. Pz.

- 12 112 12
Hz#j PijwiyjHLzz < H?J/PWHL2,Z + sz Pyigiw; s

)

Interchanging the roles of Y; and W; gives

> ijing;Z < €52 W' a.s. Ps. The conclusion
then follows by T. Q.E.D.
Lemma A2: Suppose that conditional on Z, the following conditions hold almost surely under the induced
measure Pz: i) P is a symmetric, idempotent matrix with rank(P) = K, P;; < C < 1;ii) (Wip, U1, €1),
s Wi, Un, €4) are independent and D,, = Y7 E [Wy,, W/, |Z] is bounded for n sufficiently large; i)
E[W! |Z] = 0, E[U;]2] = 0, E[g;]Z] = 0 and there exists a constant C' such that E[|U;]|*|2] < C,
ElE2] < € iv) S0, E [meu‘lyz} . 0. Suppose further that K — 00 as n — 00; then for
£, ¥y, P ( VU 2] E[e2|2] + E[Uiei\Z]E[ajUJ’-]ZD /K and any bounded sequences c1,, and

Can, of conformable vectors with Z,, = ¢},, Dpc1n, + C’Qninc% > (), it follows that

:E_1/2 chn ln+62nZUPZ]€J/\/_)—>N(O 1)
i#]

Proof: The proof of Lemma A2 is long and is deferred to Appendix B.

The next two results are helpful in proving consistency of the variance estimator. They use the same

notation as Lemma Al.
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Lemma A3: If, conditional on Z, (W;,Y;), (i = 1,...,n) are independent, and if W; and Y; are scalars;

then there exists a positive constant C' such that

HZi;ﬁj PjWY; — B [Zz PiW:Y; |ZH

where B, = K {3,6% + 05y [i3 + 10 } -

<CB, a.s. Pz
L2,2

Proof: Using the notation of the proof of Lemma A1, we have

Y PEWiY; =Y Py =Y Piwi; + Y  Piwig; + Y Pyiig.
i#] i#] i#] ] ]
As before, for ¢ # j and k # £, E [W;§;W,Y¢| Z] is zero unless i = k and j = £ or ¢ = £ and j = k. Then

by CS, Py < P}, and Y, P;j = P,

[<Z w%y’) |Z] = ZZ > P E Wi 0 je| Z]

1#£] k;éé
= Y _ B (E[@?|2] E [5|2] + E [wigi| 2] B [0;4;] 2])
i#]
< 2030y ¥ P <2Kaopy6y a.s. P
i

Also, Zz# P SWiY; =W Py > “yﬂDi where ]Sij = PZ% By independence across ¢ conditional on Z,

we have E[wd'|Z] < 63, I, so that

E[(y Pw)?]
R ~ ~1 D+ —2
= y PE[WW|PY < oy, 7 'P%j = iy, Zyl kPk]y]
1,5,k
< A PR =i Y (z P) S
1,3,k k i J

k

B| (X, i) 12] - S P21t < Kofy (2)7(2) s o

2
2: 2- = _2 9
Then by T we haVe L27 + H P“/ylwl L27Z S CKO-WHY a.s. PZ.

Zz‘;éj Pz?jwigj‘

Interchanging the roles of Y; and W; gives

< Hw’ﬁ*‘
Ly, Z y

Zi# P2 waJH = C’Kﬂ%,&% a.s. Pz. The conclusion
then follows by T. Q.E.D.
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As a notational convention we let Zi#ﬁék denote ), Zﬁéi Zkg{{i i}
Lemma A4: Suppose that conditional on Z; (W1,Y1,m1),...., (Wh, Yy, nn) are independent, and suppose

that KEz [5,% ﬂ%vﬂ%/] — 0 as n — 00 and there exists a positive constant C' such that, for n sufficiently
large, Fz [ﬁ%] < C, Ez [53] < C, K’Ez [[L%V] < C, K’Ez [/Zé] < C. Suppose further that with
probability one for n large enough, > . w; < C, >, 4; < C.Var(W;|2) < C/ry, and Var(Y;| Z) < C/ry,

and that there exists 7, such that max;<y, |a; — Z/m,| — 0 a.s. Pz, and vV K /r,, — 0; then

An=E | Y WiPyunPiYilZ| = 0p(1), Y WiPumPejYj — An = 0.
i#i#k i#j#k
Proof: Given in Appendix B.

Lemma A5: If Assumptions 1-3 are satisfied; then,

S, tHS Y = Zzipij(l_P) /”+0p IZXP” Pjj)” 15j/ﬂni>07
i#] i#]

Stas;l = Zzzﬂjzj/n+op 1ZXHJ€]/un—>O
i#£] i#]j

Proof: Apply Lemma Al with Y; = ekS lX, = zzk/\/——i— ek SIU; and W; = 655' 1X1( Pii)fl for
some k and ¢. Note that since HS,;IH < C/\frn,

ElYi|Z] = zu/vn,Var(Yi|Z) < C/r, a.s.Pz, EIW;|Z] = zi/v/n(1 — Py),
Var(Wi|Z2) < C/ry a.s.Pz.

Note that with probabiliy one

IN

\/E@'Wné'yn C\/E/Tn—>0,
/

w T < Cr P> 22 n— 0,

Gy, V' Crnl/Q\/Z 2 (1= Py)~2/n < Cr'? N " 22 /n — 0.
4 4

Since ekS 1HS 1'6@ = ek —1 ZZ#J X; P”X’S 1,65/(1 ij) Ei;&j W;P;;Y; and Pjjw;y; = Pijzikzjg/n(l—

AN

IN

Pjj), applying Lemma A1l and the conditional version of M, we deduce that for any v > 0

P

Moreover, note that, clearly, for some € > 0

el ST THS Ve, — Zi# erpziPij(1 — ij)_lz;-eg/n‘ > | Z> —0 a.s. Pz.

- 1+e€
s%pE [‘P ( el ST HS, Ve, — Zi# epziPij(1 — Pjj) lzéeg/n’ > | Z)’ } < 00,
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(take, for example, € = 1). Hence, by a version of the dominated convergence theorem, as given by Theorem

25.12 of Billingsley (1986), it follows that as n — o0,

P ( el ST THS Ve, — Zi# erpziPij(1 — ij)_lzé-eg/n’ >wv )

- e

— 0.

e STITHS Ve, — Zi# epziPij(1 — ij)_lz;eg/n‘ > | Z)}

The above argument establishes the first conclusion for the (k, £) element. Now, doing this for every element
completes the proof for the first conclusion.

For the second conclusion, apply Lemma Al with Y; = €},.S,, 1 X; as before and W; = &;//Tn(1 — Py;)
and follow the same argument as that used to establish the first conclusion above.

For the third conclusion, apply Lemma Al with W; = e;gSgIXi as before and Y; = eZSgIXi, so that

with probability one

\/f(_fw,ﬁyn < C’\/?/rn—>O,5Wn\/gj’y§C’r;l/Zy/ZziQk/n—>0,
gy, Vio'n — 0.

The fourth conclusion follows similarly. Q.E.D.
Let Hy, = >, z2l/n and H, = > .(1 — Py)zizl/n.

Lemma A6: If Assumptions 1-4 are satisfied; then,
STYHSY = H, + 0,(1), S, P HSY = Hy, 4 0,(1).

Proof: Let z; = Z?:l Pjjz; be the it" element of Pz and note that

Z lzi = Zill* /= (I = P)z||* Jn = tr(Z'(I = P)z/n) = tr[(z — Zn,) (I = P)(2 = Znlg,) /]

VAN

tr(z — Zmhe, ) (z — Z7he,) /0] = anz—m{nz 12 /n—0 a.s. Pz.
=1

It follows that with probability one

IN

Y Gi—z)(1-Py) e/

7

Zuzz—zzu (1= Pa) 2| /n
VZ 7l "\/ S0 - Pt o — 0.

IN
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Then

Zziﬂj(l—ij)_lzg/n = Zzl Z] 1— JJ /n—zzz 13 1_ m z/n
i#]
- sz : /n—z% (L= Pa) i/
= +Z —Zz Pzz)_ zi/n: Hn+0a.s(1)-

The first conclusion then follows from Lemma A5 and the triangle inequality. Also, as in the last equation

we have

2Pz /n = zZP”z /n — P“ZZ 2l /n = Zizl/n — Pyizizl/n
j j ' '
(2 (2

i#]
= H, +Z Z/n—H + 04.5(1),

so the second conclusion follows similarly to the first. Q.E.D.

Proof of Theorem 1: First, note that by Amin (SnS),/7n) > Amin (5’5") > C we have

n(g - 60)/ﬂn

> Anin(Sn Sy /rn) 1/ Ha . 50H >C Ha - 50H .

Therefore, S{l(g —00)/ pin L5 0 will imply & -2 8. Note that by Assumption 2, H,, is bounded and
Amin(-ﬁn) > C for large enough n, with probability one. For H from Section 2, it follows from Lemma A6

and Assumption 2 that with probability approaching one Amin(S;, 1H Sy 1’) > (' as the sample size grows.
~ -1
Hence (S;]‘HS;”) = Op(1). By eq. (1),
S0 = do) = (STHSL)TISTE Y | XiPié/im = Op(1)0y(1) = 0.
i#]
All of the previous statements are conditional on Z = (Y, Z) for a given sample size n, so that for the

random variable R,, = 1, *S" (0 — 0g) we have shown that for any costant v > 0, with probability one
Pr(||R,|| > v|T,Z) — 0.
Then by the dominated convergence theorem,
Pr(|| Ry = v) = E[Pr(||Rp|| = 0|7, Z)] — 0.

Therefore, since v is arbitrary, it follows that R, = 1S/, (6 — 8y) —= 0.
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Next note that P;; < C' < 1, so in the positive semi-definite sense in large enough samples with
probability one,
H, = Z(l — Py)zizl/n > (1 - C) Hy,
Thus, H,, is bounded and bounded away from singularity for large enough n with probability one. Then the

rest of the conclusion follow analogously with ) replacing § and H,, replacing H,. Q.E.D.

We now turn to the asymptotic normality results. In what follows let £ = €; when considering the JTV2

estimator and let & = ¢;/(1 — Pj;) when considering JIV1.

Proof of Theorem 2: Note that £ [53[2’] < C a.s. Pz, so that

E [HZ?_I (2 — zi)&-/ﬁHg !Z} = Y - alPE[E2]
< Y lm—zl?/n—0 as Ps.

Note further that

S MY O XiPyts =Y w1 = P&/ — St Y UiPy& =Y (2 — %) &/ v,
i#] i i#j =1
so that by a conditional version of M, we deduce that for any v > 0
P <‘ S Zi;éj XiPy€j = 3,21 = Pu)&/ V=S, Zi;éj UiPijfjH zv| Z>
= P (szlzl (Zi - 51') fz/\/ﬁH >v | Z) — 0 a.s. Pz.

Moreover, note that there exists € > 0 such that

s [P (50, (- e 201 2)[] <

(take, for example, € = 1). Hence, by a version of the dominated convergence theorem, as given by Theorem

25.12 of Billingsley (1986), it follows that as n — 00,

St XiPyt =Y ai(l = Pa)&i/vn— S Y UiPsE = (2 — 7) &/ Vi 0.

i#j i i#] =1
Let Wy, = Zi(l - PM)&/\/E and
I, = Var ZWm + ZSEIUZPU@ ’Z
i=1 i£

= Y zz(1— Pi)EE|2]/n+ 8,1 > PL(B[UU|Z]E[E}|2] + E[U&| 21 E[Uj|2]) S,
i=1 i#j
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Note that unS is bounded by Assumption 2 and that ZZ £ sz /K <1, so by the almost sure boundedness

of Z %2 !/n, Assumption 3, and the boundedness of K/ un, it follows that I';, is bounded with probability
7

one for n sufficiently large. Also, E[flz\Z] > C > 0, so that

Z 51 /n>C’Zzz 25 /n,

so by Assumption 2 Amin(I'y) > C > 0 with probability one for all n large enough. Tt follows that I';!
exists and is bounded in n with probability one for n large enough.

Let a be a G X 1 nonzero vector. Now apply Lemma A2 with U; there equal to U; here, &; there equal
to &; here, Wiy, = z;(1 — Py)&/v/n, c1n = F;l/za, and cop, = \/Fsgll—’;lﬂa. Note that condition i) of
Lemma A2 is satisfied. Also, by the boundedness of ZZ zizl/n and E [§?|Z] with probability one, condition
i) of Lemma A2 is satsifed and condition iii) is satisfied by Assumptions 3 and 5. Also, by (1 — P;)~! < C

and Assumption 5,
n n
Y E [meu‘* |z} <CY ||zl /n? — 0 as. Ps.
=1 1=1

so condition iv) is satisfied. Finally, condition v) is satsfied by hypothesis. Note also that with probability
one Cip, = F;Ll/Zoz and cg, = (\/ /,un> pn Sy 1Ty 172, are bounded by the boundedness of v K /iy,
1nS,, 1 and r, 1 Moreover, =, = o/ by construction and, thus, =, is also bounded and Z,, > C > 0.

Then by the conclusion of Lemma A2,
1/2 1/2 =
(a)” / o/'T;1/28-1 ZXiPijgj = (da)” / o'T;4? ZVVm + ZS;lUipz‘jﬁj +0p(1)
i#] i=1 i#]

= £, 1/2 chn m—i_CQnZUPUSJ/\/_)%N(O 1)

i#]

It follow that alfﬁl/zsgl > iz XiPij&j 4N (0,d’a), so by the Cramer-Wold device,

_ _ d
L2810 " XiPyg = N (0,1a) .
i#]

Consider now the JIV1 estimator, where & = ¢;/(1 — Py;) and 'y, = Q,, + ¥, so that

(Qu+0) 250 XiPy(1 - Piy) ey -5 N (0, 1)
i#j
Note that B,, = 1/2 1F1/ is an orthogonal matrix, since B,B], = Vn—1/2‘—/n‘—/n—1/2/ = 1. Also,

anl/z is bounded by )\min(vn) > C > 0, and F,ll/2 is also bounded by I',, bounded. By Lemma A6,
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(S;YHS; V)~ = H; ' + 0,(1). Therefore, we have
VRS S )T = VR 4 0p(1)T
= B, +o0,(1).

Note also that if Y}, AN (0, I) then for any orthogonal matrix By, B,Y, AN (0,1g). Then by the
Slutzky lemma and § = & + H 1 Z#j X P& for & = (1 — ij)_lej we have

V2S00 —-00) = Vi VPS HTYY D XiPy =V, (ST HTIS ) TS Y D XG P
i#j i#]
anl/Z(Sglﬂsgl/)fll—w%/2r;1/2sgl Z Xszgfj
i#]
= anfll/QSgl ZXszfj + Op(l) N N(0,1¢).
i#]
The conclusion for JIV2 follows by a similar argument for §; = ¢;. Q.E.D.

Proof of Theorem 3: Under the hypotheses of Theorem 3, r,,/K —— 0. Similarly to the proof of

Theorem 2 we have,

Vi /KS;UY XiPyg = \/rn/KZzz — Pi)&i/Vn+ Syt Y UiPi& VK + 0p(1

1#] i#]
= Sy Z UiPi&j VK + 0y(1).
1#]
Here let

I, = Var (unSglz, .Uz’Pz‘jfj/\/E|Z>

= w5,y PL(EUU]|Z1E[E| 2] + E[U&|Z21E[U¢| 2]) 5,1 /K.
1#]

Note that with probability one, I', is bounded given that 1,S; ' is bounded, E[|U;||*|Z] < C, and
E [§j2|Z] < C a.s. Pz. Let L, be any sequence of bounded matrices with Amin (LT L) > C and let

> = oFy-l/2 7 _

Yo = (LalnLl) ™2 Lan/raf KS; 0 Y UiPyjé;.

7]

Now let « be a nonzero vector and apply Lemma A2 with W, = 0, ¢, = &, c1n, = 0, and ¢, =
o (l_}nfnl_}/) 1/2 Lypn S, L We have ey, Var (Z#j Ui P& /v K) con = o&’a > 0 by construction.
Then by the conclusion of Lemma A2 it follows that 'Y, LN N(0,a’@). Then by the Cramer-Wold device

we have

Y, -4 N(0, I).
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Consider now the JIV1 estimator, where & = ¢;/(1 — Py;) and 'y, = (Tn/K)\T/n, so that
] Fr\—1/2 7 _ _ = d
(LalwLl) ™2 Lo /ra K S, S XiPij(1 = Pi) lej = Yo + 0p(1) -5 N (0, 1) .
i#£]
Let L, be as specified in the statement of the result such that Apin (anﬁ L;l) > C > 0 with probability
one and let L,, = Lnﬁgl, so that LnVTz‘L% = I_/nFnI_/;L Note that, (I_}nfnl_};l)_lp

and F%/ 2 yre bounded

with probability one. By Lemma A6, (S, 'HS;")~' = H; ' + 0,(1). Therefore, we have

T2 L(E 4 0p(1) = (EaTnLl) 2 L 4 0p(1),

(LT L) 2 Lo (S; HS )™ = (LT L))

Note also that /7, /K S, ! Doz Xibij(1 — Pj;)7le; = Op(1). Then we have

(Lo 10, ;1) 2 1,80 (5 — 60)
= (LaTnLl) 2 Lo(S MBS, )P J K S > XiPy(1— Pyt
i#£]
= [(Enfnﬂl)_m L+ Op(l)} Vrn/KS; 1Y XiPy(1— Pyj) e,
i#£]
= (LaluLl) Y2 Lon/raJKS; ST XiPy(1 - Py Yej + 0, (1)

i#]

= Yoto,(1) -5 N(0,1).

The conclusion for JIV2 follows by a similar argument for & = ¢;. Q.E.D.
Next, we turn to the proof of Theorem 4. Let §~Z = (y; — X{g)/(l — Py;) and & = ¢; /(1 — Py;) for JIV1
and éz =y — XZ/S and & = g; for JIV2. Also, let
X; = S,'X;,% = Z Xi P& Prj X, 50 = ZP% <X1X{§JQ + Xzézéﬂ%’) )
i#j#k i#]

1= Y XiPa&iPyX) % =) P} (XiX{éJZ * Xiéing}) '
i#j#k #J

Lemma AT7: If Assumptions 1-6 are satisfied then 31 — 1 = 0,(1) and g — 33 = 0, (K /7).
Proof: To show the first conclusion, we need to verify the conditions of Lemma A4. To proceed, note

first that for § = 0 and XF = X;/(1 — Py) for JIV1 and 5 =46 and XFP = X; for JIV2, 5 25 5 and
~ . . 2
& - = 26X - 00) + X6 - 20)]

Let 1; be any element —2£iXZ-P’ or of XiPXZ-P'. Also, let Spq be the (k,g)th clement of S, and let

Tip = Zngl §kg,ugnzig / v/n and u; j denote the k" element of Y; and U;, respectively. Note that if
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1 = _2£iXZ'P/ek; then

FE il k Z
Emlz) - eitixlZ] ,
L{JIV1} (1 - Py)® + (1 — 1{JIV1})
T2kE [ 2]2] +2707,  E [5 U; k|Z] + Var (giui k] Z)
Var [771|Z] )

L{JIV1} (1 — Py)* + (1 = 1{JIV1})
where 1 {JIV'1} is an indicator function which takes on the value of 1 for the case of JIV'1 and 0 for the
case of JIV2. On the other hand, if 7; = €}, X X["ey, then

Tk Yo+ E[u; pu; | Z]
L{JIV1} (1 - Py)*> + (1 — 1{JIV1})’
Var[n|2] = [1 {(JIV1} (1= Pt + (11 {JIVl})} B

E [ni|Z]

X {TikE [uiéyz] + 20 1k Vi o E [wi gui 0| 2] + TZ?’ZE [uﬁk\z]

+2TU€E [ui,ku?’AZ] + QTZ"gE [u?’kui’AZ] +Var (u@kui’g]Z)} .

Now, since S is finite by Assumption 2, we have that
>,s
g_

Moreover, with probability one sup; j, £ [uf“Z} < C < oo, sup; E [e}|2] < C <00, and P <C <1,

max |T; ;| = max

<C E Mmax |Zig]
1<i<n 1<i<n

TL 1<i<n

so that whether 7; = —2§iXZ-P 'ey, or e%XiP XZP 'ep, we can obtain overall upper bounds for the conditional

mean and variance of the form:

_ Hagn
— . < gn .
i (2) = g B02) < CY (2 max [a]) + 0
g=1
G " 2 G 1
52 — < zgn ‘ 2gn .
7(2) = maxVorb2l <€) (7 max el ) + 02 (7 leul )+
g=1 g=1

It follows in this case that

Next, take W; = e;ch' and Y; = €2Xj and let u; j, = e;chlUi, and note that in this case

_ 1 _ 1
w; %|zik|> yi:%|zi£|
N 1
Aw (Z) = max || = —= max |zi|, fiy (£) = max [f;| = —= max |z,

1<i<n Vni1<i<n 1<i<n \/_1< <n
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so that, by Assumption 2, we have that for n sufficiently large, we have that with probability one

n 1 n n . n
ZU_&' = gzsz <G, Z@i = EZZE@ <C.
=1 i=1 i=1 i=1

Moreover, for n sufficiently large,

4 4
1/ K 2 —4 | K
e ( Elrg%xn ’ZZk’> < C’ K Lz [IU’Y (Z)] <Ez ( Ellél%xn ’Zi€|) < C’7

Var (Wil2) = E[u4|2] £ C/rn as. Pz, Var (Yj|2) = E [u|Z] < C/ry a.s. Pz,

K*Ez [y (2)]

IN

and
KEz [0, (2) iy (2) iy (2)]
G 2 1/3 2 1/3 2
1 Hgn K K
< LAl -
- C;EZ K1/3 <\/’I’_ll<z<n‘zzg’> ( Vn 1258 !sz!> ( Vn 1220 ’Z’EO
G 2 2
1 [ign K1/3 K1/3
+CX;EZ K1/3 <\/ﬁl<z<n‘zzg|> (ergag( 17k /1% [2i
g:
2 2
K1/4 K1/4
+CEz (ergfgx !Zml) ( T e el
G 2 273
< o) E ) IR | CLSATN) I § CSP
- — 3K1/3 \/ﬁ1<< g 3 \/ﬁl<<n @ T3 \/771<<n !
2 273
K1/3 1 K1/3
+CZ 3K1/3 <\/_1<z<n|ZZg|> <\/_ 1@&}%'%“) <\/_ 1I£l?<}§z|zi£|
4 4
K1/4 K1/4
oz (K s ) -+ 0m (5
G r 6] 6 6
1 gn 1 K 1
< rgn _ _
= CZl PV <\/ﬁllggxnlzg!> +CEz (\/ 1121?<}§l|zzk|) +C05 Bz ( - ggxn!zzd)
9= |

%ﬁ

4
nax. \m\)

where the second inequality above follows from the arithmetic-geometric mean inequality and the third in-

1 Lan 3 1 T 4 ,
— zgn , 1 K | 1
+;K1/3E (ﬁ&%‘%o +Cgkz (\/ n fg%ﬁ%ﬂ) +C0Ez (

- 0 (K—1/3) = 0(1),

equality follows from Loeve’s ¢, inequality. Applying Lemma A4, we deduce that Zi# itk e;cX i ik Prj X j’ ey =
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Op(l). Doing this for every element, we then get Z#j#k Xipikznkpij]I‘ = Op(l). Next, let An denote a
sequence of random variables converging to zero in probability, and it follows that
A Z Xz‘PiknkijXg/‘ = 0p(1)0p(1) 0.
i#jFk

From the above expression for 522—512 we see that 21—21 is a sum of terms of the form A Z#j#k XiPikUkijXj/w
so by the triangle inequality il — 21 2.0.

et di = 3 pgnmasisizn |7l /v + el + 0, A = (U4 [8]) for arvi, 4 = 1+ 3]
ol
A =0,(1) and B > 0. Also, by P;; bounded away from 1, (1 — P;;)~* < C, so for both JIV1 and JIV2,

for JIV2, B — Hé — 50) for JIV1, and B —

for JIV2. By the conclusion of Theorem 1 we have

G
1< T ey3 (42 22, + o <C; (2 o ol ) + 1031 <
Xl < 0P |G- &) < C"Xf(g—%)’ < Cd;B,
& = c|xio- )| +lal < caid,
‘gg_gg < (ygi ) 3 _gi < Cd;(1+ A)d;B < Cd2AB,
X (&-&)| = cntra, < O PaA || X | < o2
Also note that
a 4
pErld?) = pr (3 (12 a0l + Il + 10 |1 2
< C EG: (ﬂi max |z; |>4 + max E [|g;|*|2] + max E [||U-||4 |Z]
- = \Vnisisn w9 1<i<n U 1<i<n ’ ’
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and, thus, we have

> Phdidir!

i#j
< CEz |Y PIE[d}|Z]r,' +) PLE[d}|Z]r,’
| i#d i#]
4 2 —1
< CEz 1rgfu<an [d |Z]ZP” T,
- 17‘7
_ 4 —1
= (CEFEz 112?<)§1E d \Z ZPMT
K 4
4
< ( ) ZE {(711382( yzi,g|) }+ Ez{maxEnm rZ}}+Ez{maxE[uUu |Z]}
< CK/ry,

where the third inequality above follows from Assumptions . Hence, we deduce by the Markov inequality

that Zi# P2d2d%r,t = Op(K/ry). Tt then follows that

zgzgn

> p (5 (@ -€))

i#j

LV

2.
; ‘5]2 - gf‘ < Cr, Y PRBA2AB = 0, (K /ry).
i#]

We also have

DR (K66 - Xae )| < 3RS (] 15 (6 - o)+ [ (6 -«
i#j i#]
< 'Y PARdAB = o, <§) |

7]
The second conclusion then follows by the triangle inequality. Q.E.D.

Lemma A8: If Assumptions 1-6 are satisfied then

1= Y #PxE [GIZ] Py2j/n+ op(1),
i#jFk
Yy = Z 224 [E2]2] /n
i#]
+8,13 P (E [UU]|12) E [|12] + E[Uiti| 2 E [£U}12]) Sy + Op(Ven),
i#j

28



where €, = max {K/r2,1/K}.
Proof: To prove the first conclusion apply Lemma A4 with W; equal to an element of XZ-, Y; equal to an
element of Xj, and 7, = fg

Next, note that V(M“(ﬁz-?]Z) < C a.s. Pz and 1, < Cn, so that for u; j, = e;S;lUi,
E[(XuaXu)’|Z] < CEXj, + Xj|2] < C {z/n® + E[uly| 2] + 2i/n” + E[u; | 2]}

< oL |Zik| 4+ = |zid| 4+ 2
— ; — max |z;
- \/ﬁlgﬁg}; “ik \/ﬁlgiagn zit "n

a.s. Pz,

El(Xa€)?|2] < CE[(:2&/n+i2,62) 2]
4
<o \/ (n272 e ol ) \/El€f 2]+ Bl 214 el
i 4
< C \/<n—1/21ri1ia<>%|zik|> +rt a.s. Pz.

Also, we have, for §2; (Z) = E[U;U}| Z],
B[ X,X|2] = zizi/n+ 57104 (2) ;Y. B | X6l 2] = 87" B [Ugil2].
Next let W; be e;gXiX;eg for some k and £, and note that

E[Wi|2] = €., E [UU]|12] S, Ve + zinzie/n,

so that
/ ’ / ’
: < ~1/2 , ~1/2 , -1 s Pa.
1%1%§|E[WZ|ZH <C [(n 1121?<>%|zzk|> + (n 112%xn]zlg| +7, a.s. Pz
Moreover,
max Var (Wil2) = max [Var { (@ + 2/l 2) (@i + zie/ V) |2}]

= max {n 12 E [ﬂ?’AZ] + 20 22 B [t 105 0| 2] + 0 2L E [ﬂfk]ZH

2022 B [ 407 | 2] + 20722 [ 4107 4| 2] + Var (ai,kai,AZ)}

2 2
C rt (012 max |z +r (Y2 max |z 432 (Y2 max |z
n 1§i§n| ’Lk’ n 1§i§n’ lf| n 1§i§n| ’Lk’

IN

+r32 (n7Y2 max |zi| ) + 72| a.s. Pz
1<i<n
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Also let YV; = §Z2 Then, applying Lemma A3 for this W; and Y; gives that with probability one in Pz
2
Z Phep XiXjed = Pf (zinzie/n+ S, ' (2) S, V) B [£2]
Z¢] L27Z

< COK(afy,0%, + iy, iy, + fiv,0%,)

4 4 2
e (Vo s e )+ (5 el )+t (5 s e
K 1055, ik K 12, ) T 12025 ¥k
2
)t \/Kmax |z \/? \/Kmax |Zik \/? \/Kmax |Zie 5
" i<i<n '’ 2/2 i<i<n '’ 2/2 i<i<n '’ r%

Taking expectation with respect to the distribution of Z and theorem 16.1 of Billingsley (1986), we get

IN

2

Z PlejXiXlei] — > P (zinzie/n + €4S, ' (2) Sy Vee) E 3| Z]
i#]
2

= Ez Zi#j Plej X Xled? — ; P (zinzie/n+ 5,104 (2) 5,V) E [£7|2]
2,2

4 4 2
1 K 1 K K
< — V= , — = -1 \/ =
< C KEZ ( - 11;1%)%|zm|) + KEZ ( - 1max \z@) +r, Ez ( lmza<)§n|zzk|)
2

K \/K K VK K
-1 - ) - . -
+r, Bz (\/ - 1Igi8u<xn!zze|> 3/2Ez (\/ - 1rgia<>§1lzzkl> TZ/QEZ (\/ Joax !ml) 2

= O(en) =0(1),
where €, = max { K/rZ,1/K}. It follows by M that
! 2 /-1 -1 2
> PlepXiXiew] = P (zinzie/n + €5, (2) S, Ver) E[&F12] + Op(ven).
i#] i#]
Do this for every element of XZX Z' then yields the representation
Y PIXiX[E =) Pl (uz/n+ 8, (2) S, V) E 2] + Op(Ven).
i#] i#]

Now, by a similar argument using Lemma A3 and taking W; and Y; to be elements of XZ&, we can show

that

> PiXigit; X5 = 5,1 > PIEU&|Z]E [&U|2] 8,V + Op(Ven).
i#] i£]
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The second conclusion then follows by T. Q.E.D.
Proof of Theorem 4: Note that X; = Z?:l P;; X, so that

n

Z(Xin — XiPyX| — X P X))&
=1
n . n . n .
= ) PPy XX — ) PuPyXiXi& — > PP XX
i,j,k=1 ij=1 ij=1

n n
= > PuPyXiXj =Y PaPyXiXjE = PP XiXjE -2 PAXiX(E
1

i,5,k=1 i#j i#£j i=
= Y. PuPyXiXj§ - ) PIXiXiE

4.5,k ¢{3.5} =1
= Y PuPyXiXjG+ Y PEXiX[E - Y PIXX(E.

i#j#k i#j =1

Also, for Z! and Z! equal to the ith row of Z and Z = Z(Z'Z)~" we have

!

K K n n
Z Z (Z Zz‘kZz‘éXiéi> Z Zin 250X
k= i=1 j=1

1/=1
n K K ~ ~ n K ~
= > ( z’ijkZz‘erz) Xl X5 = > O ZnZp)* Xi&i&; X}
1,7=1 \k=1/¢=1 1,7=1 k=1
n 5 n
= Z(Zgzj)2Xi£i£jX‘; = Z P2X&6 X
i,j=1 i,j=1
Adding this equation to the previous one then gives
A, ~, n A, n A A
S o= > PuPyXoXiG 4+ PIXXIE - PIXXIE+ Y PEXEGX]
i#j#k i#] i=1 i,j=1
= Y PuPyXiXjG 4 PUXX|E + Xi&id; X)),
i#j#k i#]

giving the equality in Section 2.
Let 67 = E [¢2|Z] and z; = > Pijzj = €;Pz. Then
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Z ziPikd,%ijz;-/n = ZZ Z ziPikd,%ijzé-/n

i#j#k i g ki)

) ! ) / -2 !
= Z Z (Z zz-Pikaijzj - ZlezzUZ Pz-jzj — Zz'PZ‘ijleij) /n

i j#

= g zkakzk g kzzz ak g 2 ma +§ zZPma sz
— . 3 !
- E :szijij +>2P;63 P2 /n
j i

= de (5121’ — P2zl — Puzizl + P2zZ /n — Z P2 2i2;
' i#]
Also, as shown above, Assumption 4 implies that 3, ||z — Zi[|* /n < 2/(I — P)z/n — 0 with probability

one. Then by c)’lz and P;; bounded a.s. Pz, we have with probability one

‘ P (72 — ziz)/n ‘ < Dotz llz -zl + Nz - zl%) /n
< CQ il /m) 2 Mz = 2zl* /)2 + C Y llei — 2l* /o — 0,
i iz )/n| < ZG4P2Ilzi\lz/n)1/2(2||2i—iiIIQ/n)W—>0-
7

It follows that

Z 2i P Py Zj/n = Za — Py)’zizl/n — ZPZ%zZz;af/n + 04.5.(1).

i#j#k i#]
It then follows by Lemmas A7 and A8 and the triangle inequality that

ilﬁ—ig = Z Zi kUkPk:] J/n—i-ZPQzZ
i#jF#k i#]
+8, 1> P2 (E[UU}|2]67 + E[Ui&I| Z1E[&U}12]) S, + 0p(1) + Op(Ven) + 0p (K /)
i#]

= ZO‘ P;) 222 Z/n
+S;1 Y P} (BIUU]| 2167 + E[UGI Z1E[ US| 2]) S5 + 0p(1) + 0p (K /1)
i#]
since €, — 0. Then for JIV1, where & = €;/(1 — P;;) and ('712 = 022/(1 — P;)?, we have

143 = Q + U, 4+ 0p(1) + 0p(K /7).
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For JIV2, where &; = &; and ('fiz = (722, we have

143 = Q4 U, +0p(1) + 0p(K /).

Consider the case where K /1y, is bounded, implying o, (K /ry) = 0,(1). Then, since HL Q)+ 0,
H 1 and Q, + ¥, are all bounded a.s. Pz for n sufficiently large, we have, making use of Lemma A6,

S;LVSn _ (57711{[5;1/)_1 (il 4 i2> <57:1[:I/S;1/>—1

= (H;'+0p(1) (Qn + Ty + 0p(1)) (Hy' + 0,(1)) = Vi, + 0p(1).
SIVS, = Viu+op(1),
giving the first conclusion.

Next, consider the case where K/r, — 00. Then for JIV1, where & = &;/(1 — P;) and 62 =

02 /(1 — Py;)?, the almost sure boundedness of ), for n sufficiently large implies that we have
(ra/K) (S1452) = (ra/K)Qu + (/)W + (10/ K)p(1) + 0,(1)
= (rn/K)Vn +0p(1).
For JIV2, where §; = &; and é? = 0?, we have
(ra/K) (S1+52) = (00/K)Qn + (/)W + (ra/ K)op(1) + 0p(1)
= (ra/K)¥n + 0p(1).

Then by the fact that H, !, (r/K,)W¥,, H; !, and (r/K,)¥, are all bouneded with probability one for n

sufficiently large and by Lemma A6,
SIVS, = (5;11515,;1')_1 (31+%) (S;lﬁf’S;l')_l
= (Hy'+0p(1) (rn¥n /Ky + 0p(1)) (Hy ' +0p(1)) = Vi + 0p(1).
SIVS, = Vi+o,(1),

giving the second conclusion. Q.E.D.

Proof of Theorem 5: An expansion gives

a(d) — a(dy) = A(5 — &)
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for A = 0a(0)/A5 where 0 lies on the line joining 6 and 8y and actually differs from element to element of
a(0). Tt follows by 5 -5 8 that § - 09, so that by condition iii), BnAS,;l' = B,AS; Y + 0p(1). Then

multiplying by B, and using the conclusion of Theorem 4 we have

(Av4) e [a(8) — a (50)]
- (BnASgl’S;VSnS;lA’B;)_” * B AS Vs (5 - 50)
= [(BaAS; + 0p(1)) (Vi + 0p(1)) (S ABL + 0,(1))] *
x (BuAS;Y + 0,(1)) S, (8 - 50)
B,AS; W, S YA'B,) " B,AS; VS, (8 - 50> +0p(1)

—1/2

(
= (BuAS, ', S, VA'B)) " B,AS, VAU 12 (8 - 50) + 0,(1)
(

—1/2 >
FuF) 2 B+ 0p(1)
for F,, = B, AS;* V2 and ¥, = VY 25’% (6 — d0), and note that the third equality above follows from
the Slutzky Theorem given the continuity of the square root matrix. By Theorem 2, Y, 4N (0,1g).

Then since L,, = (FnF,,'Z)_l/QFn satisfies L, L), = I, it follows from the Slutzky Theorem and standard

convergence in distribution results that
.\ —1/2 . _ d
(AVA) [a(é) - a(ao)} = LoY, + 0,(1) % N(0, 1),

giving the conclusion. Q.E.D.
Proof of Corollary 6: Let a(d) = ¢/d, so that A = A = ¢/. Note that condition i) of Theorem 5 is

satisfied. Let By, = by,. Then B,AS, v bnd'S,, 17 is bounded by hypothesis so condition ii) of Theorem
5 is satisfied. Also, By (A — A)S; Y = 0 so condition iii) of Theorem 5 is satisfied. If K/r, is bounded
then by hypothesis, )\min(BnASg”VnSglA'B;l) = b,?lc'Sgllf/nSglc > C orif K/r, — o0 then
Amm(BnASgl’V;S;lA’B;) = b%c’S;l'V,nglc > C, giving the first conclusion. The second conclusion

follows similarly. Q.E.D.

6 Appendix B - Proofs of Lemmas A2 and A4

We first give a series of Lemmas that will be useful for the proofs of Lemmas A2 and A4.

Lemma B1: For any subset I3 of the set {(iaj)ijl} and any subset I3 of {(2, 7, k:)?j k:l}v (a) > Pé < K;
) 1_2

(b) Iz Pfj Pj2k: < Kjand (c) Y P%Pikpjk‘ < K, with probability one for n sufficiently large.
3

I3

34



Proof: By Assumption 2, Z'Z is nonsingular with probability one for n sufficiently large. Also, by P
n

idempotent, rank(P) = tr(P) = K,0 < P; <1, and ) Pfj = P;;. Therefore, with probability one for
=1

J
n large enough,

T =1

ij=1 ij=1
2 p2 2 p2 2 2
Y PP < ) PiPR=) (Z%) (Zij)
I3 i,5,k=1 j=1 \i=1 k=1
= D Ph<) P=K
j=1 j=1
D IPSPaP| < YO PSY |PkPil < PS> PR Y PR
13 ] k %, k k
< Do PiVPaPi <) P =K. QED.
i i
For the next result let .S, = > (Pik.ijPz‘l.le + Py Py Py Py + PijPz'klePkl) .
i <j<k<l

Lemma B2: If Assumption 2 is satisfied then with probability one for n sufficiently large, a) tr [(P — D)4] <

CK;b)

Y. PiPjpPyPj| < CK, andc) |S,| < CK, where D = diag(Pi1, ..., Pun)-
i<j<k<l
Proof: To show part (a), note that

(P-D)* = (P-—PD—-DP+D*»?=P—PD—-PDP+PD?—- PDP+ PDPD + PD*P — PD?

—DP+ DPD + DPDP — DPD*+ D*P — D*PD — D*P + D*.
Note that tr(A’) = tr(A) and tr(AB) = tr(BA) for any square matrices A and B. Then,
tr [(P — D)*] = tr(P) — 4tr(PD) + 4tr(PD?) + 2tr(PDPD) — 4tr(PD?) + tr(D*).

By 0 < P; < 1 we have D/ < T for any integer and tr(PD?) = tr(PD'P) < tr(P) = K with
probability one for n sufficiently large. Also, with probability one for n sufficiently large, tr(PDPD) =
tr(PDPDP) < tr(PD?*P) < tr(P) = K and tr(D*) =Y, P4 < K. Therefore, by T we have

|tr [(P — D)*]| < 16K,

giving conclusion a).

35



Next, let L be the lower triangular matrix with L;; = P;;1(¢ > j). Then P =L+ L'+ D so

(P-D)*

(L+ LY = (L*+ LL + L'L + L'*)?
L+ L°LL + [P L+ L2L?+ L) I? + L)L + LI'L'L + LL"

+LLI?+ILLL + I'LLL + L'LL? + L?1? + L?LL + L?L'L + L'*

Note that for an integer 5; [(L')]’ = L7. Then using tr(AB) = tr(BA) and tr(A4’) = tr(A),

tr(P— D)) = 2tr(L*) + 8tr(L3L)) 4 4tr(L2L?)

+2tr(L'LL'L)

Next, compute each of the terms. Note that

tr(L3L) =

tr (L2L?) =

Y= Pyl(i > §)Ppl(j > k) Peel(k > 0) Pl (¢ > i) = 0.
2,5,k,0

> Pyl(i > j)Prl(j > k)Puel(k > O)Pyl(i> ) = > PijPjPuPy

i,7,k,¢ i>j>k>0
Y PiPpPuPi= Y PuPuyFiPe= Y PjPixPuPu

t<k<j<i i<j<k<t i<j<k<t

Z Pij1(i > j)Pjr1(j > k) Prel(€ > k) Pyl (i > () = Z Py Py Py Py
Y i>j>ki>0>k

> PyPppPuPu+ Y PyPipPuPu+ > PyPiPuPy
i>j=l>k i>j>0>k i>0>5>k

Z P Py, Py Pj; + Z (P PriPij Pjo + Py Pji Pt Pro)
i>j>k i<j<k<t

Z Pfk +2 Z Py Pro Pyj Pj;
i<j<k i<j<k<t

> Pyl(i > §) Pk > §)Prel(k > )Pyl (i > €)

i7j7k:?e

ZRiijiRiiji+ Z Pij P Pr; Pji + Z Pij Py Pr; Pji + Z Py Pji Pig Py;

j<i j<k<i j<i<k j<b<i
+ Y PyPiPuPu+ | Y. + >, + > + Y. | PiPixPuPu
(<j<i t<j<k<i  j<t<k<i e<j<i<k  j<t<i<k
4 2 2 p
Y PLi+2 > (PIPL+PLPYL)+4 > PwPyPiPu
i<j 1<j<k <j<k</t

36



Summing up gives the result
tr(P— D)) =2> Pj+4 Y (P}P} + PiPj + P}Pj) + 85,
1<J 1<j<k

Then by the triangle inequality and Lemma B1 we have

Sul < (1/4) Y Py +1/2 Y (PiPj + PLPj + PiPL) + (1/8) tr((P — D)) < CK,
i<j i<j<k
with probability one for n sufficiently large, thus, giving part c). That is, S, = Og.s.(K).
To show part (b), take {€;} to be a sequence of i.i.d. random variables with mean 0 and variance 1 and

where €; and Z are independent for all ¢ and n. Define the random quantities

A = Z [Py Piejer + PijPjreicr + P Pjreigj]
i<j<k

Ny = Z [P;j Pikejer + PijPjreick) , Az = Z P Pjrese;.
i<j<k i<j<k

Note that by Lemma A1,

2 —
B[a312] = B|Y., . PaPusie;y., . PuPugienlZ]
= Y PuPuPuPi= > (Pi)’(Pp)*+2 > PiPiPuPj
i<j<{k,l} i<j<k i<j<k<t
= Ous(EK)+2 Y PyPjPuPj.
i<j<k<t

Also, note that

E[AyAs|2] = E[Z oo PiPacion + PyPiseici) Y, PrqPgeicm|Z

= Y PyPwPiPu+ Y, PyPuPuPu,
i< j<k<t i<j<k<t
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and

E[AY2] = E [(ZKM Py Pyeje, + Pijf)jk&‘&k) x (Z v<mcq PosPasmes +Pngmq€g€q> |Z}

= Z P Py Prj Py, + Z Py Pjg Py Pk
{il}<j<k i<{jm}<k

+ > PyPyPmPuc+ Y PyPiPuPu
i<j<m<k 1<i<j<k

= Z PP; + Z PP5 +2 Z Py P, Py Py, + 2 Z Py Pjj, Py P
i<j<k i<j<k i<t<j<k i<j<m<k

+ Y PyPuPuPu+ Y PipPuPijPy
i<j<k<t i<j<k<t

= Z HQJPEI«"_ Z PQP]k—FZSn:Oa.S.(K)'

i<j<k i<j<k

Since A1 = Ag + Ag, it follows that
E[A}|Z] = E [A3|Z] + E [A3|Z] + 2E[A2A3]2] = O (K) + 25, = Oq.s.(K).

Therefore, by T, the expression for F/ [Ag] given above, and Ag = A1 — Ao,

> PuPppPyPy| < E[A3|2] + Ous(K) < E[(Ar = A2)*|2] + O (K)
1<j<k<l

< 2E [A}Z] 4+ 2E [A3|Z] + O (K) < O4s.(K). Q.E.D.

Lemma B3: Let L be the lower triangular matrix with L;; = P;;1(¢ > j). Then, under Assumption 2,
1
||ILL'|| < Cv K with probability one for n sufficiently large, where ||A|| = [Tr (A’A)|2

Proof: From the proof of Lemma B2 and by Lemma B1 and Lemma B2 b) we have for n sufficiently large

ILL|* = w(LLLL) =Y Ph+2 Y (PEPL+PLPR)+4 Y. PuPiPiPu
1<j 1<j<k 1<j<k<t

< C(K+| Y PyPyPyPu|) <CK a.s. Pz.
1<j<k</l

Taking square roots gives the answer. Q.E.D.

Lemma B4: Let A and B be n X n matrices, and let K, (n X n ) denote a commutation matrix so that
K, vec(A) =vec(A’) Then,
tr{(A® B)K,,,} =tr{AB}.
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Proof: To proceed, first note that, K ,,, has the explicit form

’
K,, = (In ® 61,nsln ® 627,13 s In & 6n,n>

where €; 5, is the ith column of an n X n identity matrix. Now, by direct calculation, we have that

tr{(A® B) K,,,,}
= tr{K,, (A® B)}
AR® e'lmB
A®ey,B
= tr .
A®e,,B
n n n
- Z Ael n el,nBei,n) + Z (e;,nAeZn) (eIZ,nBei,n) +ot Z (e;,nAemn) (e;z,nBei,n)
i=1 i=1 i=1
n n
= ¢,B (Z eivneg,n> Aen1 + €5, B (Z eme;’n> Aegp+- -+, B (Z eivneg,n> Aepp,
i=1 i=1 i=1

= e’LnBAel,n + eé,nBAegyn + e —i—e;’nBAen,n
= tr{BA}=tr{AB}. Q.E.D.

For Lemma A5 below, let ¢; (£) (i = 1, ...,n) denote some sequence of measurable functions. In application
of this lemma, we will take ¢; (£) to be either conditional variances or conditional covariances given Z.

Lemma B5: Suppose that 7) P is a symmetric, idempotent matrix with rank(P) = K and Py; < C < 1;
i1) (u1,€1) ..., (Un,€p) are independent conditional on Z; i) there exists a constant C' such that, with
probability one, sup; E (uf|Z) < C, sup; E (¢}|Z) < C, and sup; |¢;| = sup; |¢; (Z)| < C. Then, with

probability one,

» B <% Zl§i<k§npl§i¢k (uigi _%‘))Z\Z] — 0;

2
b) & <% ZK i<j<k<n Pyi Prj b, (wiej + ujgi)> | Z} 0
- i . 2
o B (% Z1< i<i<k< nPkiijd)k;&i&j) |Z] ~0;
- 2
Proof: To set some notation, let 02 = E[e?| 2], w? = w2, (2) = Elu2|Z), and v = 7in (£) = Bluie;|Z),

m

where in order to simplify notation, we suppress the dependence of 01-2 on Z and of w? and ~; on Z and n.
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Now, to show part (a), note that

1 2
<? Zl< i<k<n Piadi (uisi - 71)) | 2

Y B B (E) )

+% Zlg i<k<l< PPiokin {E (uicf|2) — 7}

% Dicichen it {\/E (uf|2) E (}12) + E (u}|2) E (e§|z)}

+% DU &7l 1 {\/E (uf|2) E (e}2) +E(ug|g)E(5g|Z)}
= C{%ZKZ‘<k<nP’§i+%Zl<i<k<z<npgipﬁ}_>O a.s. Pz,

where the first inequality is the result of applying T and a conditional version of CS, the second inequality

E

IN

follows by hypothesis, and the convergence to zero almost surely follows from applying Lemma B1 parts (a)
and (b).

To show part (b), first let L be a lower triangular matrix with (4,7)" element L;; = P;;1(i > 7) as
in Lemma B3 above, and define D., = diag (71, ...,¥n), Dy = diag (¢1, ..., on), u = (u1,...,u,)" , and
e=(e1,..., 8n)/. It then follows by direct multiplication that
€'L'DyLu—tr {L'DyLDy} = > Phow(wei —v)+ > Pyi Pejor (wicj + ujes)

1I<i<k<n 1I<i<j<k<n
so that by making use of Loeve’s ¢, inequality, we have that

1 2
7| (Toc oy e PoPhats s i) 1 2]

Q%E (W L'DyLe — tr {1'DyLD, })* |Z]

IN

2
It has already been shown in the proof of part (a) that (1/K?) E [(Z P2.oy (uze; — %)) ]Z} —

0 a.s. Pz, so what remains to be shown is that (1/K?) E [(u'L’Dd,Ls —tr {L'D¢LD7})2 ]Z] — 0 a.s.

1I<i<k<n
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Pz. To show the latter, first note that

W'L'DyLe —tr {L'DyLD, })* | Z|

1

b (
= E[ uLD L€ | Z} - [t"’ {L/D¢LDW}]2

_ —E W'L' DyLe @ u'L'DyLe | Z] — K1,2 [tr {L'DyLD,}]?

[
[

1
/! / / !/
= —E tr{(v @u') (L'DyL ® L'DyL) (e ®e)}| Z] — e [tr {L'DyLD,}]?
1 / / / !/ 1
= =t {(L'DyL ® L'D4L) E [ev/ @ e/ |Z] } — 7z [tr {L'DyLD,}]*. (3)
Next, note that, by straightforward calculation, we have
E [ev @ eu'|Z]
olwiere] ofwiere -+ ojwgere, Vere]  Myze2e; o Y men€)
_ | odwiet odwierdy o dhwiesn | | wmerch eyt 92incnd)
o2wieney o2wieney - olwienel, Yny1e1€h  Anyeeel, - iepel
Yiere] 0 0 7 ® D,y 0 0
nxn nxn nxn nxn
+ nxn nxn + nxn nxn
nxn nxXn nxn nxn

= (D, ® I,) vec (L) vee () (Dy ® I,) + (Dy ® I,) Ky, (D ® I,) + E'DyE + (Dy @ D) (4)

2

where K, is an n? X n? commutation matrix such that for any n x n matrix A, K, vec(A) = vec (A).

(See Magnus and Neudecker, 1988, pages 46-48 for more on commutation matrices.) Also, here, D,y =

diag (Y1, ...sy Yn), Do = diag (O’%, ....,U,%), D, = diag (w%, ....,w%), Dy = diag (¥4, ..., 0y,) with ¢; =
/

E [efuﬂZ] — o*?wiz - 271-2 fori=1,.....,n, and £ = (61 Reiea @egt- ey ® en> . and e; is the it
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column of an n X n identity matrix . It follows from (3) and (4) that

KQE ((/L'DsLe — tr {L'DsLD,})* | 2]

= —tr {(E'DyL@ DL B[l @ eu/|2]} — o [ir { /Dy LD, )]

1
— Ftr {(L'DyL @ L' D4L) (Dy @ I,) vec (I) vec (In) (Dy @ 1) }

+%tr {(I'DyL ® I'DyL) (Dy ® L) Ky (D @ L)}
+%tr {(L'DyL ® L'DyL) E'DyE} + %tr {(L'DyL ® L'DyL) (D, ® D)}
1
—7g [t {L'D4LD,}]?
1

1
= zmvec(n )" (DuL' Dy LDy @ L' DyL) vec (I,) + 2t {(DyL'DyLD, ® L'DyL) K, }

tytr {(I'DyL ® I'DyL) E'DyE} + —gtr { (/D LD, @ I'DyLD,) }

1
5 [t {'DyLD, )]’
= itr {L/Dy LD, Dy LDy} + 1z5tr { (DyL'Dy LDy @ L'DyL) K, §
+%tr {(L'DyL ® L' DyL) E’DﬁE} + % [tr {L'DyLD,}]* — K2 [tr {L'DyLD,}]’
= itr {L'Dy LD, L' Dy LDy} + —z5tr { (DyL'Dy LDy ® L'DyL) K, §
1
+2tr {(L'DyL ® L'DyL) E’Dﬂﬁ} (5)
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Focusing first on the first term of (5), we get

itr {L'DyLD,L'DyLDg}

1
\/ 3t {L/D¢LD3L/D¢L}\/ —str {L'DyLD2L/DyL}

IN

< 3 L'D,LL'DyL
< il a0l g t’"{ oLL'DyL}

1
< \/ max w! \/ max o \/ —tr D¢LL’D2LL’D¢}\/ —tr{LL/LL}

1<i<n 1<i<n

1<i<n 1<i<n 1<i<n

1
< 2, [+ { 12 /} L 'T T
< 113%1% 1121%10 \/Krnlai(n(b str LL D¢LL K2tr{LL LL'}
2
< mauxwgL maxaf( max ¢; > —tr {L LL L}

< [max E (u 4]2)\/maxE( £42) ( max ¢2> %tr{L'LL’L}

1<i<n

< Ot (UL} = g5 LU as. Pz, ©)

where the first and third inequalities follow from CS; the second and fourth inequalities follows from the fact

that let A be an n X n matrix and A = diag (A1, ..., Ay) such that A; > 0 for all 7, then,

tr {A'AA} < A ) tr (A'A); 7
) < s ) o (40 g
the sixth inequality follows from the conditional version of the Jensen’s inequality and the last inequality
follows in light of the assumptions of this lemma.
Turning our attention now to the second term of (5), we see that by Lemma B4
1
ﬁt’r {(DA,L/DgsLDA, ® L'D¢L) Knn}
1 1
= ﬁtr {D,YL'DquD,yL'Dqu} = ﬁtr {L’Dd,LDWL’Dd,LDW} .

It follows by calculations similar to that used to obtain (6), we obtain

tr {(Dy /Dy LD, ® Dy 1) K., )
< (1121&)%’%) <1< max qﬁZ) —tr {L'LL'L} < C’—tr {U'LL'L} = HLL'H a.s. Pz.(8)
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Finally, to analyze the third term of (5), we note that
/ / /
e |t7‘ {(L DyL ® L D¢L) E Dgﬂ}}

n n
% > Wiltr {e;L'DyLe;L' Dy Leie;} = % S 10: (4L Dy Les)?

<
i=1 i=1
1 & 2
< = Z 03] (€' D3 Le;) (€}L'Le;) < <1<mza§nqﬁl> e ; 19;] (€L Le;)
< WE HzlyE 2]+ (masot) (maset) 2 (masot) )
1
X (szaé(n@) 7@ ; (eiL Lei)
1 n n
< Cﬁ' (e;[/[,eZ <C—Z ePPez :C’ ‘ (ePel) —CK2Z
=1 z:l =1
< K2ZPM: (1/K) a.s. Pz, (9)

where the first inequality above follows from T, the second inequality follows from CS, the third inequality
makes use of (7), the fourth inequality uses CS and T, the fifth inequality follows as a consequence of the
assumptions of this lemma, and the last inequality holds since P;; < 1.

In light of (5), it follows from (6), (8), (9), and Lemma B3 that
K2E [(u’L’D¢L5 —tr {I/DyLD,})* | z] <20 (1/K?) |LL||* + C (1/K) < C/K a.s. Ps;

which shows part (b).
It is easily seen that parts (c) and (d) can be proved in essentially the same way as part (b) (by taking
u; = €;); hence, to avoid redundancy, we do not give detailed arguments for these parts. Q.E.D.

Proof of Lemma A2: Let by,, = clnE,fl/ and by, = CQnEnil/ , and note that these are bounded in n

since Z,, is bounded away from zero by hypothesis. Let w;y, = b}, Wi, and u; = b, U;, where we suppress

the n subscript on u; for notational convenience. Then

n
Yn = Win + Zym» Yin = Win + Yin, Yin = Z(u]‘Png’L + UzP’ngj)/\/E
=2 7<t

Also, E [lenu‘*\z} <S.E [meu‘*\z} <CY.E [Hmnuﬂz} ~ 0 a.s. Pz: so that, by a condi-

tional version of M, we deduce that for any v > 0
P(lwin| >v | 2Z) =0 a.s. Pz.
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Moreover, note that sup,, E || P (jwi,| > v | Z)[*| < co. It follows that, by Theorem 25.12 of Billingsley
(1986)

P(lwip| >v)=FE[P(Jluip| >v | Z)] = 0 as n — oo;

that is, wiy, 250 unconditionally. Hence,

Y, = Zyin + 0p(1).

=2

Now, we will show that Y}, 4N (0,1) by first showing that, conditional on Z,

n d
Zi:Z Yin — N <07 1) )

with probability one. To proceed, let X; = (W ,U!.&;) for i = 1,...,n. Define the o-fields F;, =
o (X1,...., &) for i = 1,....,n. Note that, by construction, F;_1, C Fj . Moreover, it is straightforward
to verify that, conditional on Z, {ym, Fin,1 <t <mn,n > 2} is a martingale difference array, and we can
apply the martingale central limit theorem. Moreover, as before, let UZ-Q =F [812]2], wz-z = wizn (2) =

E[u?|Z], and ; = vin (£) = E[uigi| Z], where in order to simplify notation, we suppress the dependence

of 012 on Z and of w? and ; on Z and n. Now, note that E[wmﬂjn\Z] =0, for all ¢ and j and that

E [(ﬂm)Q IZ} > > El(ujPyjei + uiPije;) (urParei + uiPier) | 2] / K

7<t k<i
= Y P} |wio? +wio] + 2y /K.
7<t
Thus,
n 2 n
2@ = B|(X,m) 12| =S (E i) + B[72)
=2

/

= 0},Dn (Z) b1y — w1n|Z ZP2 w o? +w? o; +2%'y]] /K
i#]
= V},,Dn (2)bip + 65,50 (Z2) bap + 04.5.(1) =14+ 045 (1) — 1 a.s.

Thus, 52 (Z) is bounded and bounded away from zero with probability one. Also,

> [uhl2] <OZE[||Wm|| }wZE [7h12]

=2
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By conditioniv), Y i o F |:||W'mH4 |Z} — 0. Let g5, = >, ujPijei//nand gy, = 37, uiPjej [VE.
By |P;j| < 1land ) j PZ% = P;;, we have that with probability one

i B ()" 2]

C n
e Z Z Py Py Py P E [} 2;] E [ujugtiptin,| Z]
=2 j kLm<i

IN

< %Z > Pi+ > PP <CK/K*—0.

n
=2 \ j<t 7,k<t

Similarly, > i o F [(gyn)‘* \Z} — 0 with probability one, so that

S Bz <0y {E|@" 2] + B @)t 12|} —0 as. Ps
1=2 i=2

Then by T we have

n

ZE [yfn]Z] — 0 a.s.
=2

Conditional on Z, to apply the martingale central limit theorem, it suffices to show that for any € > 0
n
P (‘ZZ:QE [ygn‘?(b...,?(@'q,z] — 52 (Z)’ >e | Z) 0 a.s. Ps. (10)

Now, note that E [win¥in|Z] = 0 a.s.and, thus, we can write

N Byl |X, . Xy, 2] - s (2)
=2

= Z (E[w?ﬂ)ﬁ, ey i1, Z] — E[wfn]Z]) + ZE [wmgm|X1, ey X1, Z]
=2 =2
n
+ 3 (B2, . X1, 2] - Bl 2)) (11)
=2

We will show that each term on the right-hand side of (11) converges to zero with probability one. To

proceed, note first that by independence of W1y, ..., Wy, conditional on Z,
E[wi?n‘Xla'"yXi—lyz] = E[U),LG|Z] a.s. Pz.
Next, note that

FE [wmgm|X1, cens Xi—la Z] = E[wmul]Z] Z PZ‘]‘EJ‘/\/E + E[win5i|z] ZHJU]/\/E
7<t 1<t
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Let §; = Ewinu;|Z] and consider the first term, ¢; Zj<i Pijaj/\/?. Let P be the upper triangular matrix
with Pij = P;j for j > i and Pl-j =0,j <4, andlet 6 = (d1,...,0p). Then, Y i o Zj<i 51-P¢j5j/\/f =
§'P'e/VK. By CS 86 = S0 (E [winui| 2])* < S0, E[w?,|Z]E[u?|Z;] < C with probability one.
By Lemma B3, HP' P H < VK with probability one, which in turn implies that Apax (P' ) < VK with
probability one. It then follows given F {uj\Zj] < C a.s. that
E[(6'P'e/VEK)? 2] < C8'P'PS/K < C||8|]> /VK < C/VK — 0 a.s. Pz,
so that by M we have that, for any € > 0,
P (‘5(2)’13’5/\/?‘ >€Z) 0 as Pz

Similarly, we have Z?:Z E [winu;| Z] Zj<i Pijej/VK — 0 a.s. Pz. Therefore, it follows by T that,
for any € > 0,

P[>, B lwnginl¥, o X1, 2] 2 €|2) =0 a.s. P

To finish showing that eq. (10) is satisfied it only remains to show that, for any € > 0,

P ()Z; (E [ X0, . Xioy, 2] — B[R ]Z)) > e|Z> -0 as. Ps. (12)

Now, write

n

Z( (52,0, .., Xic1, 2] — E[57,12))

— Zw2P2 e —03) /K+2 > wlP;Puejer/K

Jj<i j<k<i
+> 0P (uf —wi) /K +2 ) 07 PyPyujup/K
Jj<i j<k<i
+> WP (uge; — ) /K +2 ) viPyPa(ujer + upej) /K.
7<i J<k<i
By applying part (a) of Lemma B5 with ¢; = y;, w?, and then 02 in succession; we obtain, with probability
one, that
2 -
E (Y viPilue—vl/E| 2] — 0
7<i ]
2 —
E[(Y wiPi[&-a}] /K| |Z] — O
i<t ]
2 -
E 202]32 u; —w?] /K| | Z| — 0.
7<t
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Moreover, applying part (b) of Lemma B5 with ¢; = -y;, we obtain
2

E Z YiPij P [ujer +upei] /K | | 2| — 0 a.s. Pg.

j<k<i
Similarly, conditional on Z, all of the remaining terms in eq. (13) converge in mean square to zero with
probability one by parts (c¢) and (d) of Lemma B5.

The above argument shows that as n — 0o
PYo<yl|Z2)—®(y) as. Pz,

for every real number y, where ® (y) denotes the cdf of a standard normal distribution. Moreover, it is clear
that, for some € > 0,
supE []P(Yn <y | 2)" < oo,
n

(take, for example, € = 1). Hence, by a version of the dominated convergence theorem, as given by Theorem

25.12 of Billingsley (1986), we deduce that
PYn<y)=EPYn<yl|Z)] - E[®y)]=2()),

which gives the desired conclusion. Q.E.D.

Proof of Lemma A4: Let w;, Wi, Ui, fﬁ;,ﬁi, iy oW, [y s fly, 512/‘,7 632/7 and 5727 are as defined at the beginning
of Appendix A; and note that, in order to simplify notation, we have suppressed the dependence of these

quantities on Z. Also, let
Ji = Pygj, Wi =Y Py,
J J
be predicted values from projecting § = (71, ..., Jn) and @ = (w1, ..., Wy,)" on the column space of Z.

Now, define eg,, to be the k" column of an n X n identity matrix, and we can write Wy = e% ,, P and

Yk = €}, Py. Note that

S0 = JP'Y ewnch, Py=yPPy=yPy<yy=> 3, (13)
% k P

P = @'PY epn ey, Po=0'PPo=0'Po<o0=>) . (14)
% k p

By independent observations conditional on Z, we have

A, = Z Z W; P Prj Uy = Z Zwipz‘kﬁkpkjgj — Zwipiiﬁipijgj - Zwipijﬁjpjjgj
i#] k¢{ij} ik i i%

= > WMk — Y WiGiPiTe — Y WiPilii — Y Wi Pl + 2> Wil P
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To show that A,, = Op(l), it suffices to show that there exists a positive constant C' such that E [| A, |] <

C < oo for n sufficiently large. To proceed, note first that

Ez

k

> ki

< Ez ||)_ 0 Peyp €, Py

k

IN

IN

Ez [\/Zk w'Peyy, €}, Pw\/zk 72y Pey €l ng] <Ez [1211?;1 7| V' Pwo/¥ Py

2 |m, 3ot (07| < 582 ) + 382 | Lt L <.

where the first inequality follows from CS, the third inequality follows from (13) and (14), the fourth inequal-

ity follows from inequality 2E | XY | < E (X 2) + FE (YQ), and the last inequality follows by hypothesis. In

a similar manner, we have that

Ez

< FEz

zwz || < 2 (|3, 025, 8 Peva P

1 1
g el (S 02, [0 | < Bz () + 5Bz | S0t o5 | <C
i i B ~ 5

and Fz [|ZZ szzﬁzng is bounded in the same way as well. Moreover, using Lemma B1 and the inequality

2E|XY| < E(X?)+ E (Y?), we obtain

Bz ||>_w@iPiik|| < Bz | Y |wiGiPim|| < Ez |pwiivig » P

= KEz[uwpyfiy) = Ez [ﬂn\/E ﬂw\/f ﬂY}

1 1 1 1
< 5Bz (] + 5Bz [Kiy Kpiy] < LB [72] + < KB [iy] + ~K2Ez [i] < C.

-2 4 4

Also, by similar argument, Ez w;; P21;|] < C. Thus, Ez [|A,|] < C holds by T, from which it then
(2 ZZT] —
follows by M that A, = Op(1).

Next, note that

Wi Pigni P Y

Wi Pk Prj Y + @i Pk Pij Y

Wi Pk Prj Y -+ Wi Pl Pij Y + i Parii Prj Y5 + i Py Pej Y
W; Pigii Pr; Y + Wi Pigii Prj i + Wi Pk P Y5 + Wi P Pij U

+wz‘Pikﬁkij?j + w; Py Prj Y5 + wipikﬁkpkj?j + W; Py g Prej Y-
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Summing and subtracting the last term gives

Z Wi Py P Y — Ap = Zwm

i#£j#k
wherer
1&1 - Z WaknkPkJY Z Wf)zknkpk]yja'(/)?)— Z WPlknk}Pk]Yj,
i#j#k i#jF#k i#j#k
Ve = ) WiPaiPey s = ) iPaiePei¥y 06 = ) @iPuiinFrsls,
i#j#k i#j#k i#j#k

and 17 = Z#j#k wiPikﬁkij?;. By T the second conclusion will follow from &T 2,0, (r=1,..,7).
Also, note that 1&7 is the same as 1&4 and 1&5 is the same as 1;2 with the random variables W and Y
interchanged. Since the conditions on W and Y are symmetric it suffices to show that &T 2, 0, r €
{1,2,3,4,6}.

Consider now 1&1. Note that for ¢ # j # k and r # s # t we have E[WiPikﬁkij?jWTPrsﬁsPstﬁ] =0
except when the each of the three indices 1, 7, k is equal to one of the three indices 7, s, t. There are six ways

this can happen leading to six terms in

6
Z Z W sznkPkJY aTPTST/sPst}/t Z 7A_

iFjFk r#s#L
Note that by hypothesis,
KEz [o3y000%| < C (K/rl) Ez [02] < C (K/r}) — 0.
By Lemma B1, we have
Al = Y E(WiPwinbPy¥i)? = Ez | Y EIW2|Z]PLE[R| 2L EVE| 2]
i£j#k 1£j#k

< KEz[oyy6007] < C(K/r}) — 0.

Similarly, by CS,

73] = | Y E[(WiPifiPi;Y5) (W Pt PriYi)]
i#j#k

IN

Bz | Y |EWiYiIz]| |EOW;Y;|2]| B2 PLPE
ij#k
< KEz [oyy020y] < C(K/r2) — 0.
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Next, by Lemma B1 and CS

%2l = | Y E[(WiPuiiPi;Y;)(WiPijil; P Ys)]
ik

< Bz | 3 EIWA2)|ElYil2)| BT 2] | PPy Ph
i#j7#k
< KEz [oyy070y] < C (K/r}) — 0.

Similarly,

74l = | Y E[(WiPuiPe;Y;) (Wi Pjifi P Yy)]
i#j#k

= |Bz | X |EWailz)| |EW,Y 2]| |EGT 2]| [P Py P
i#jFk
< KEz [oyy0507] < C(K/r)) — 0,

75l = | Y E[(WiPiiPrjV;) (Wi Prifii Py ;)]
i#j#k

= Bz | > ’E[Wiﬁi‘z]’E[?jﬂZ] ’E[Wkﬁk‘z]’ | P Pej P
ik
< KEz[oyyoi0y] < C(K/r}) — 0,

76| = Z E[(W; Pk P Y;) (Wi Pyjitj PjiY3)]
ik

= |Bz | Y |BOVYiIZ]| |0 21| | B0V 2]| | P2P Pal
ik
< KEz[oyy6007] < C(K/r}) — 0.

The triangle inequality then gives F [1&%] — 0, so zﬁ% 2, 0 holds by M.
Consider now 152. Note that for ¢ # j # k and r # s # t we have E[Wipikﬁkpkjg]jWrPrsﬁsPStyt] =0
except when i = 7 and j = s or i = s and j = 7. Then by (A + B + C)? < 3(42% + B2 + C?) and for
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fixed k, Zi;ﬁk Pfk < Py, Zi;ﬁk Pﬁg < Py, it follows that

2
Ez

2
2 i
Zi;ﬁk Pit <Zj¢{i,k} Pk]y]) ]
2
o8z ([, Ph (i + Pt + Piid)] )

08z (3, Puc (7 +277)) <98z (3, 7 +2Y ) <s1Bz [(Zk y,%ﬂ <c

It follows by |AB| < (A2 + BQ) /2, CS, and Py, = Py, that

IA

IN

2
B - E {Z#,CE[WEIZJPI-%E[%!Z] (30000 P

Vi 2 BEW.7 ' e
+ ; E[Wiii| 2P E[Wyik 2] (Zj . Pm%) (Zj . Pmyj)

2
=2 =2 E 2 E m
c > 5 e
—4 2 7. —_
S Tn EZ [0'7]] EZ ik Plk < ]Q{Z,k} Pk]yj) ] S Tn 0

Then 15 —2 0 holds by M.
Consider &3. Note that for i #£ j # k and r # s # t we have E[mpikﬁkpkj?jWTPmﬁSPstﬁ] =0

except when ¢ =7 and j =t or ¢ =t and j5 = r. Thus,

2
> (E[Wg| Z|B[V2 2] + E[Wimzmmfjma) (Z Pikﬁkij>

2
_92 _92 _
W12 s (Zkgé{i,j} P )

E[W? = E
[¥3] z ki)

IN

2Ez

Note that

> PP =Y PiPujiie — Py Punls — Pij P
ke{i,j} k
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Note also that

2
Eg Z(ZszﬁkPm) = Bz | PRPimi

i \ & X
< Bz |2y PiPi| =Bz |2y P} < KBz [i2],
i,k 0 i
) -
bz Z (Z Pik”kpkj) = bz Z Pt Pjk Pietie Pje
i\ k R

= F»z Zﬁkﬁe (Z Pz‘kpie) Zijij
Kl i j

= Bz |Y mikPy| < Bz |m Y Fi| = KEz ;).
k0 k.l

It therefore follows that

Ez |> (Z Pikﬁkpkj>2

i#j \ k

2 2
= Ez Y, (Z Pikﬁk—ﬂcj) —Ez |> (Z Pikﬁkpki> <2KEz [ji] .

| id \ K k

(2

Also, by Lemma B1, Ez [Z#j P%Pfjﬁ?] < E [ﬁg iy, P2

: U} < KEz [ji2 (Z)], so that

n

2

Ez 1> | > Pumwby

i#j \k¢{ig}
n 2
< ame |0 (Somn,) o+ saei s rppsag | < e 52
i#] k=1

From the previous expression for E[@ZA)%] we then have
2

. C % K
E[w§] < T_QEZ Z Z Py Py <C (E) Ez [ﬁ%}] <C <_> 0.

2
n i#j \k¢{ij} "

Then b3 —— 0 by M.
Next, consider @[;4. Note that for ¢ # j # k and r # s # t we have E[WiﬂkﬁkpkjgjjWTPTSﬁSPSt"gt] =0
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except when ¢ = 7. Thus,

Eli = Ez ZE W22 D" Y PPy
J7i k¢{i,j}

2 D D PumkPeyy;

i \iA kel

< S Y PunPiyy

i \Jj# k¢{ig}

IN
&
N

2

IA
|

t

N

Note that for i # j,
> PuiiPii¥j = > Pkl Prjll — Puhi Py — P Py
k¢{i.j} k
Therefore, for fixed 1,

SN PamePrt; = > (Z PieniPrjyj — PutliPijy; — Pz‘jﬁjﬂ‘y’ﬂj)

J# k¢{i.g} J#

= ZPMkyk Pyniiji — > Pijni Pt — ZPmnkyﬁr?Pm@yz
J

Note that by P idempotent we have

Ez ZZ 571535 Tk

< PBz anyj <Ez |y Ui| <Ez|m> 77| <CEz[p] <C,
J J

where the second to last inequality holds for n sufficiently large since by hypothesis j 3332- <(C a.s. Pz

for large enough n. Then, it follows that

2 {pnna)

Ez ZZZR‘jﬁj?Jg‘Pz’kﬁkﬂk
R
= FEz ZZﬁjﬂjﬁk?kZPijPik
Tk i

= Ez ZZijﬁjgjﬁkﬂk <C.
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Also, using similar reasoning,

Ez |Y (Pamiti)’| < E=z
A J
2_
Ez |Y | D PyniPiv < Pz
i J
2
£l z(gizpﬁc@ < 5
) k
Ez |> Pimy;| < Ez
A

> 0
L ¢

2
L 2

DBy
k0

i

7 Py

iy P
L i

—2 4-2
Koy E P;iy;
L i

<FEz < FEz

iy 7
7

5 Zy?] < CEz ;] <C,

SEZ SEZ ch

> 0t
i

iy v
7

PiPY |l el | < Bz |a2Y 52> PiP}
i k¢

< Ez < CEz [i;] < C,

iy U
7
iy U
3

< Ez <CEz ] <C.

Then using the fact that (22:1 A)?2 <5 Z;rf:l A2 it follows that E[¢)2] < C/r, — 0, so that 14 —— 0

by M.

Next, consider @@6. Note that for ¢ £ k,

Z W; Py, Py = 0; Py, — 0; PA.7i — Wi P PGk

J¢{i.k}

Then for fixed k,

E Z w; Py, Py

ik jE{i,k}

i

)
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Then using the fact that (275:1 A2 <5 275:1 A2 we have
B[]

= Bz |y E[ifl2] | X Y. @iPuPys;

k i#h j¢{ik}

2

IN

5Ez |62 Y S Wil + > iy Piigin;
k i3

+5Ez

9 L2p2 2 952 22 | 2pd 2
52> {wiPLu; + D PR + Dbl )
%

IN

_o 0292 | 2 2 2 p2

SEz |0y Zwkyk: + y y Z P P
k ia.j’k
o1 (u%Zwk + Iy Y Uk + u%ZP&yﬁ)]
k k k

_9_9 o
O-nIJ’Y Zwk]

i

+5KEz o203 iy ] + 15CEz [o20% ]

+5Ez

IN

bEz |62 Y Wi | + 5K Ez (62 fiiyfiy] + 15Ez
k
2

_92 o 2
5Bz |0y <1I<nl?§Xn’wk|> Zk:yk

(1 S| 2

-2 v _ _ _92
5Ez |G, {5 (121,?<Xn | — wk|> t3 (1131?<Xn |wk|> }zk:yk
+15C/Ez [o1]/ Bz (1]

2
CEz 5‘72] ( max ”lf)k — U_}k’>
1<k<n

4
C\/Ez [5%] Ez <1I<I11?<Xn |y, — U/k|>

4
<1r<n,3§n |k — wk|>

VAN

IN

+ +5KEz (571 iy ]

IN

+ CEz +0(1)

(2 s o <z>|)4

2
_92 _
T <f£;?§n \wﬂ)

+C\/Ez [5}]\| Bz

IN

IN

C,|Ez +0o(1)

+o(1)

Now let 7, be such that A,, = max;|a; — Z{Wn| — 0 a.s.Pz, let o, = m,/y/n and note that

max;<n \ﬁ)z- — Z{an| = An/\/ﬁ a.s. Pz. Let w = (71)1, ...,H_Jn)/. Then,
max |w; — w;| = max |w; — Z;(Z’Z)_lZ'u_J‘ = max |W; — Zjom, — ZNZ'Z) 7 (o — Zow)|
(2 (2 (2

21\1/2 = _ ol 2\1/2 ~
Ay /v + (mzaX;Pm) (; max (w; — Zjan|)? < CAp — 0 a.sPz.

IN
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Moreover, note that by Assumption 6, there exists a positive integer N and a real number € > 0 such that

4+€
sup Fz | max |wy — W] < C
n>N 1<k<n

4+-€ 4+-€
sup Ez | max |wg] + sup Fz | max |wy]|
n>N 1<k<n n>N 1<k<n

< C
It, thus, follows by dominated convergence that

Ez < CEz [A}] —0,

4
< max |wy — wﬂ)
1<k<n

so that we have E/ [77;623] — 0; and the desired result follows by T. Q.E.D.
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