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Predictive Density Construction and Accuracy Testing with
Multiple Possibly Misspecified Diffusion Models*

Valentina Corradi!, Norman R. Swanson?

University of Warwick and 2Rutgers University

June 2010

Abstract

This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspec-
ified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing
predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment
tests that are in the spirit of Diebold and Mariano (1995) and White (2000). In order to establish the asymp-
totic properties of our tests, we also develop a recursive variant of the nonparametric simulated maximum
likelihood estimator of Fermanian and Salanié (2004). In an empirical illustration, the predictive densities
from several models of the one-month federal funds rates are compared.
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1 Introduction

Correct specification of models describing dynamics of financial assets is crucial for everything from pricing
bonds and derivative assets to designing appropriate hedging strategies. Hence, it is of little surprise that
there has been considerable attention given to the issue of testing for the correct specification of diffusion
models. In this paper, we do not construct specification tests in the usual sense, but instead assume that all
models are (possibly) misspecified and outline a simulation-based methodology for comparing the accuracy
of predictive densities based on alternative models.

To place this paper in the correct historical context, note that a first generation of specification testing
papers, initiated by the work of Ait-Sahalia (1996), compares the marginal densities implied by hypothesized
null models with nonparametric estimates thereof, for the case of one-factor models (see also Pritsker (1998)
and Jiang (1998)). While one-factor models may in some cases provide a reasonable representation for short-
term interest rates, there is a somewhat widespread consensus that stock returns and term structures are
better modeled using multifactor diffusions. To take this into account, Corradi and Swanson (2005a) outline a
test for comparing the cumulative distribution (marginal or joint) implied by a hypothesized null model with
the corresponding empirical distribution. Their test can be used in the context of multidimensional and/or
multifactor models. Needless to say, tests based on the comparison of marginal distributions have no power
against i¢d alternatives with the same marginal, while tests based on the comparison of joint distributions do
not suffer from this problem. Nevertheless, correct specification of the joint distribution is not equivalent to
that of the conditional; and hence focus in the literature now centers on comparing conditional distributions.
When considering conditional distributions, a key difficulty that arises stems from the fact that knowledge of
the drift and variance terms of a diffusion process does not in turn imply knowledge of the transition density,
in general. Indeed, if the functional form of the transition density were known, one could test the hypothesis
of correct specification of a diffusion via the probability integral transform approach of Diebold, Gunther, and
Tay (1998); the cross-spectrum approach of Hong (2001), Hong, Li, and Zhao (2004), and Hong and Li (2005);
the martingalization-type Kolmogorov test of Bai (2003); or via the normality transformation approaches
of Bontemps and Meddahi (2005) and Duan (2003). Furthermore, for the case in which the transition
density is unknown, tests could be constructed by comparing the kernel (conditional) density estimator of
the actual and simulated data, as in Altissimo and Mele (2009) and Thompson (2008); by comparing the
conditional distribution of the simulated and of the historical data, as in Bhardwaj, Corradi, and Swanson
(2008); or by using the approaches of Ait-Sahalia (2002) and Ait-Sahalia, Fan, and Peng (2009), where closed
form approximations of conditional densities under the null are compared with data-driven kernel density
estimates.

All of the papers cited above deal with testing for the correct specification of a given diffusion model.
Nevertheless, and as alluded to above, we believe that all models are probably best viewed as approximations
of reality and, thus, are likely to be misspecified. Therefore, we focus on choosing the “best” model from
amongst (multiple) misspecified alternatives. Moreover, the “best” model is selected by constructing tests
that compare both predictive densities and/or predictive conditional confidence intervals associated with
alternative models.

Our approach is to measure accuracy using a distributional generalization of mean square error, as defined
in Corradi and Swanson (2005b). Namely, let F7 (u|Xy, 9,1) be the distribution of Xy, given Xy, evaluated at



u, implied by diffusion model k, and let F{J (u| X%, ) be the distribution associated with the underlying and
2
unknown “true” model. Now, choose model k over model 1, say, if <(F,€T (u| X4, 9;2) — FJ (u]| X4, 90)) ) <

2
E ((F{(u|Xt,91) - FOT(u|Xt,90)) ) . Our tests can be viewed as distributional generalizations of both
Diebold and Mariano (1995) and White (2000). Note that if we knew Fg(u|Xt,9;g) in closed form, then

we could proceed as in Corradi and Swanson (2006a,b). However, the functional form of the model implied
conditional distribution is unknown in closed form, in general, and hence we rely on a simulation-based
approach to facilitate testing. As is customary in the out-of-sample evaluation literature, the sample of T'
observations is split into two subsamples, such that T'= R + P, where only the last P observations are used
for predictive evaluation. We first simulate P — 7 7—step ahead paths, using Xg, ..., Xpt+p_, as starting
values. Then, a scaled difference between the conditional distribution, estimated with historical as well as
simulated data, is used to construct our test statistic. One complication that arises in this setup is that
for the case of stochastic volatility (SV) models, the initial value of the volatility process is unobserved.
To overcome this problem, it suffices to simulate the process using different random initial values for the
volatility process. Thereafter, one simply constructs the empirical distribution of the asset price process for
any given initial value of the volatility process and takes an average over the latter. This integrates out the
effect of the volatility initial value.

The limiting distributions of the suggested statistics are shown to be (functionals of) Gaussian processes
with covariance kernels that reflect the contribution of recursive parameter estimation error. In order to
provide asymptotically (first-order) valid critical values, we introduce a new bootstrap procedure that mimics
the contribution of parameter estimation error in a recursive setting. This is achieved by establishing
consistency and asymptotic normality of nonparametric simulated quasi maximum likelihood (NPSQML)
estimators of (possibly misspecified) diffusion models, in a recursive setting, and by establishing the first-
order validity of their bootstrap analogs.

Of final note is that we test the same null hypothesis as Corradi and Swanson (2006a), and we estimate
empirical conditional distributions using both historical and simulated data, as in Bhardwaj, Corradi, and
Swanson (2008). However, there are many differences between those papers and this one. Five such differ-
ences are the following. First, we show the asymptotic equivalence of recursive NPSQMLE (Nonparametric
Simulated Quasi Maximum Likelihood Estimators) and recursive QMLE. Second, we show the asymptotic
equivalence of recursively estimated NPSQMLE and recursive QMLE for partially unobservable multidimen-
sional diffusions (e.g. for stochastic volatility models). This extends in a non trivial manner the NPSQMLE
of Fermanian and Salanie (2004). Third, we establish the first order validity of bootstrap critical values for
recursive NPSQMLE, in the case of both observable and partially unobservable diffusions. To the best of
our knowledge, there are no available results on bootstrapping NPSQMLE. Fourth, we allow for jumps in
the return process, and we recursively estimate the intensity and the parameters of the jump size density.
Finally, we develop Diebold-Mariano type Reality Check tests for cases where (a) the CDF is not known in
closed form, and (b) data are generated by partially unobservable jump diffusion processes.

The rest of the paper is organized as follows. In Section 2, we define the setup. Section 3 outlines the
testing procedure for choosing between m > 2 models and establishes the asymptotic properties thereof. In
Section 4, we develop a recursive version of the NPSQML estimator of Fermanian and Salanié (2004) and

outline conditions under which asymptotic equivalence between NPSQML and the corresponding recursive



QMLE obtains. An empirical illustration is provided in Section 5, in which various models of the effective
federal funds rate are compared. All proofs are collected in an appendix. Hereafter, let P* denote the
probability law governing the resampled series, conditional on the (entire) sample, let E* and Var* denote
the mean and variance operators associated with P*. Further, let 0o},(1) Pr —P denote a term converging to
zero in P*—probability, conditional on the sample except a subset of probability measure approaching zero.
Finally, let O%(1) Pr —P denote a term which is bounded in P*—probability, conditional on the sample, and

for all samples except a subset with probability measure approaching zero.

2 Set-Up

First, consider m one factor jump diffusion models. Namely, for k = 1, ...,m consider!:

Tkt

X(t) = /0 be(X(5_), 0])ds — At /Y you(y)dy + /O ak<X<s_>,e,t>dW<s>+;yk,j,

where Jj, 4 is a Poisson process with intensity parameter Ay, Ay finite, and the jump size, yx ;, is itd with
marginal distribution given by ¢,. Both J, ; and y;, ; are assumed to be independent of the driving Brownian
motion, W (t). Also, note that [, yéx(y)dy denotes the mean jump size under model k, hereafter denoted
by fiy.x- The case of no jumps corresponds to J; = 0 for all ¢, and A\, = 0. Note that over a unit time
interval, there are on average A\ jumps; so that over the time span [0, ], there are on average Ait jumps.

The dynamics of X (¢_) is then given by:
X(0) = (LX), ~ M) -+ ou (K00, 60w (0) + [ uplay, ), 1)
Y

where p(dy, dt) is a random Poisson measure giving point mass at y if a jump occurs in the interval dt.
Hereafter, let ¥, = (0k, Ak, tty,k). If model & is correctly specified, then bk(X(t_),G,t) = bo(X(t-),00),
or(X(t2),00) = 00(X(t-),00), A = Ao, and ¢y, = ¢o. Now, let F7 (u|X;,9]) = Phy (Xesr < ulXa) (e,
FT (u|Xt,19;r€) defines the conditional distribution of X;,,, given X;, and evaluated at u, under the proba-
bility law generated by model k). Analogously, define F{ (u|X¢, ) = Pj (Xiyr < ulXy) to be the “true”

conditional distribution. We measure model accuracy in terms of a distributional analog of mean square

error. In particular, model 1 is defined to be more accurate than model k if:
2
B ( (47 wal0,0]) = F7 00 X2,01) = (5 (0l Xe ) = F (X0 00) )
2
< 5 (P10 0]) ~ 10 ) = (5 (X 90) = FF Cnl00))) ).

This measure defines a norm and implies a standard goodness of fit measure (see, for example, Corradi
and Swanson (2005b). Recalling that F (1{u; < Xyi, <wug}|Xy) = FJ(u2|Xt, o) — FJ (u1] Xy, 9o), it is
straightforward to construct a sequence of P — 7 7—step ahead prediction errors under model k as 1{u; <
Xipr < ug} — (Fg(u2|Xt,{9\k7t)N,h) - Fg(u1|Xt,1§k,t,N7h)) ,for t = R,...,R+ P — 7, where 3k)t7N7h is an

IHereafter, X (t—) denotes the cadlag (right continuous with left limit) for ¢ € R+, while X; denotes the discrete skeleton
fort=1,2,...



estimator of 19;2 computed using all observations up to time ¢, P+ R = T, N is the number of simulation
paths used in estimation, and h is the discretization interval. Hence, prediction errors should be constructed
as follows. Simulate P — 7 paths of length 7, using Xg41,..., Xprp—, as starting values and using the
recursively estimated parameters, @m, N t=R,...,R+ P — 7. Then, construct the empirical distribution
of the series simulated under model k. Then, test statistics are constructed relying on the fact that, under

some regularity conditions, as discussed in Bhardwaj, Corradi and Swanson (2008):

N
1 9, pr
AT 1{U1 SX kYt“/Z—VY'h(Xt) SUQ} = F T (U2)7F 1 (ul)v t:R7"'7T77—7 (2)
N ; kyt+T,1 X:,’§+T(Xt) X,f]gﬁ(Xt)
i
where F'_¢ (u) is the marginal distribution of Xi’fT(Xt) implied by k£ model (i.e., by the model used to
X (X+)

k,t+T
simulate the series), conditional on the (simulation) starting value X;. Furthermore, the marginal distribution

i
of X? F.(Xy) is the distribution of X, under model &, conditional on the values observed at time ¢. Thus,

(u) = F7(u|X:,9}). In the above expression, X,f’;frf "(Xy) is generated according to a Milstein

scheme, where

Uk t,N,h Uk, t,N,h
X(q+1)h th

Uk,t,N.h D Uk,t,N.h 7 1 ’ Vk,t,N,h 9 Uk,t,N.h D
= (X, Okt N )R+ o (X s Okt N R )€E(g+1)h — 5%(th Okt,N )0k (X Ore,N,n)h

Tk
1 ] ~ ' ~ NP
+§ak(Xf;§‘t’N‘h,9k,t,N,h)0§€(Xj;f’“N’ha Okt 1) €qyn — My kh+ > yk1{gh <U; < (g+1)h},
=1 (3)

with €gp, i N(0,h), g =1,...,Q; and where o’ is the derivative of o(-) with respect to its first argument.
Additionally, the argument X; in X,f’;frf "(X¢) denotes that the starting value for the simulation is X.
Note that the last term on the right-hand-side (RHS) of (3) is nonzero whenever we have one (or more)
jump realization(s) in the interval [(q — 1)h, gh]. Moreover, as neither the intensity nor the jump size is state
dependent, the jump component can be simulated without any discretization error, as follows. Begin by
making a draw from a Poisson distribution with intensity parameter X;J, say Ji. This gives a realization
for the number of jumps over the simulation time span. Then, draw J; uniform random variables over
[0, 7], and sort them in ascending order so that Uy < Us < ... < Uz, . These provide realizations for the Jj
jump times. Then, make Jj independent draws from ¢y, say yr.1,...,Yk,7,- An important feature of this
simulation procedure is that to generate X,f;’fr’;\:;h (Xt),i=1,..,N, fort = R,....,T — 7, we must use (for
each t) the same set of randomly drawn errors as well as the same draws for numbers of jumps, jump times
and jump sizes. Thus, only the starting value used to initialize the simulations changes. More precisely, the
errors used in simulation are defined to be €4 ; i N(0,h), with Qh=7,i=1,...,N.

Now, proceed by constructing XZ”}QIT\Z’; (XR),...,XZ’“Q’«,TZ-”’N’h(XT,T), where T = R+ P+ 7 — 1 and
i =1,..., N. This yields an NxP matrix of simulated values, where P =T — R — 7 + 1 refers to the length
of the out-of-sample period. The key feature of this setup is that it enables the comparison of simulated

Ok, R4, N.h

values X, 20070 (X ryj) with actual values that are 7 periods ahead (i.e., Xrtj4-), for j =1,..., P. In this

manner, we are able to propose tests for simulation based on ez-ante predictive density comparison.



Turning now to the case of SV models, whenever both intensity and jump size are non state dependent,
a jump component can be simulated and added to either the return and/or the volatility process in the same
manner as above. Therefore, for the sake of simplicity, we consider SV models without jumps in the sequel.
Extension to general multidimensional and multifactor models both with and without jumps follows directly.
Finally, note that as we are considering the case of no jumps, parameters and estimators will be denoted by
0 instead of ¥. Consider model k, k =1, ..., m, defined as follows:

dxX(t) ) _ ( bir(X (), 0)) o1V (1), 0) o121V (1), 6])
( dv (1) ) - ( ban(V(2). 6)) )d”( e >dW1(t)+ ( oV (1), 0)) )dWZ@’ W

where Wi ; and W5 are independent standard Brownian motions. Following a generalized Milstein scheme
(see, for example, equation (3.3), pp. 346 in Kloeden and Platen (1999)), for models k = 1,2, ...,m, and for

Or.t,N,s,n an estimator of 9;2 :

Ok,t,N,5,n Ok,t,N.S,h | T Ok,t,N,S,h 7 Ok,t,N.5.h 7
Xoiidn = X + b1,k (X Ore.n,50)h + 011,k (Vyy s Ok.t.N,S,h)€1,(g+1)h

Ok,t,N,5,h
(9012)]@(th ,ek) 2

Wt 1 Wt
+0o12 k(Vek M Ok )ea (g1 + 5022, k(Vek Mt 0;) oV €2,(g+1)h
60—11,k V k t,N,S,h 9/43 (q+l)h s
Jrffzz,k(‘/;];f RS Oy) ( qgv ) / (/ dWl,T> AWy (5)
qh qh
Ok,t,N,S,h Ok,t,N,S,h 9ktNSh Ok,t,N,S,h
Viion = Vo + by *+(V, Ok + 022k (V) s Or)e2 (q+1)n
o
1 Do (Vo ™" O
+5022,k(Vq;f S Ok) VT € (g+1)h (6)

where h_1/26i,qh ~ N(0,1),i=1,2, E(e1,qnea,qn) =0 for all ¢ # ¢, and

_ N N N -
by (V, gk,t,N,S,h) ) _ ( bii(Vy Okt v, 5,0) — 30226 (V, ek,t,N,S,h)%W )

bi(V, é\k,t,N,S,h) = ~ - .
, b2, (V. Ok ,n.5,1) bo,k(V,Or.n,51) — 3022,6(V, 9k,t,MSJz)W

The last terms on the RHS of (5) involve stochastic integrals and cannot be explicitly computed. However,
they can be approximated, up to an error of order o(h) by (see, for example, equation (3.7), pp. 347 in
Kloeden and Platen (1999)):

(q+1)h 1
( dW1,T> dWs s =~ h (55152 + /Pp (11,p€2 — uz,p§1)>
L
2

i% (o1 (V2& ) — 2 (VEE + ).

where for j = 1,2, &, 1 p,Sj,r, j,r are itd N(0,1) random variables, p, = 1—12 - 2—71r2 P, 7127 and p is such

that as h — 0, p — oo.

In order to simulate paths for SV models, proceed as follows:
Step 1: Using the schemes in (5) and (6), simulate (P —7) x S x N paths of length 7, setting the initial values
for the observable state variable equal to the initial value X;, t = R+1,..., R+ P — 7, and for each X, using



the S different starting values for volatility (i.e., V,e’“‘t’N Shj =1,...,8). Thus, there are S paths rather
than one, for each starting value of X;. For any initial value X; and Ve’“ ENSE = R+1,...,R+P—7 and

j=1,...,5, generate N independent paths of length 7. Also, keep the s1mulated randomness (1.e., €1 qn, €2,gh,

f(qul)h

ah < f 5 dW; T) dWs,s) constant across the different starting values for the unobservable and observable

state variables. Now, define X,(jktjrf i (X, Ve’” “M5%) 10 be the T—step ahead value for the return series

simulated (under model k), at replication ¢, i = 1,..., N, using initial values X; and Vjek,t,N,S,h-
Step 2: Construct an estimator of F' ot (ug) — F A (uy) using
Xk (X0 Xk (X0

w35 Zle Zf\il 1 {u1 < XZj“,gif",fjh (X, V:)’;;;‘N’S’h) < uz} , where Vg’;;;‘N’S’h denotes the value of volatility at
time ¢ and at simulation j, simulated under model k, using parameters ék,t, N,S,h-

The asymptotic results in the sequel require the following assumptions.
Assumption A1l: (i) X(t),t € R, is a strictly stationary, geometric ergodic 3—mixing diffusion; and (ii)
Jy ¥ ér(y)dy < oo for some p > 2.
Assumption A2: For k = 1,...,m, by(-,0") and oy(-,0"), as defined in (1), are twice continuously differ-
entiable. Also, bx(+,-),bk(+,-)",0%(+, ), and oy (-,-)" are Lipschitz, with Lipschitz constant independent of 0y,
where by (-, )" and o(+, )" denote derivatives with respect to the first argument of the function.
Assumption A2’: Let bi(-) and oy(-) (as defined in (4)) and oy 1 (V, Qk)%‘w be twice continuously
differentiable, Lipschitz, with Lipschitz constant independent of €, and assume that these terms grow at
most at a linear rate, uniformly in Oy, for [,I',j,c =1,2 and k =1, ..., m.
Assumption A3: For k = 1,..m: (i) for any fixed h and ¥), € Oy, O} compact set in R%*, Xg,’; is
geometrically ergodic and strictly stationary; (ii) X}:’; i
for i =1,...,N; and (iii) Vg, X

k % +r.i 18 r—dominated in Oy, umformly in ¢ for r > 4.
Assumption A4: For each model k =1, ..., m the parameters 19k7t, ~,n, admit the following expansion:

is continuously differentiable in the interior of Oy,

#jz:;: (’gk,t,N,h *%) = TT_Zkat N,k < ) + 0p(1)
and as P,R,N — oo and h — 0,
TZTPktNh( )iN(O,VJ),
=R

where VkT =limy g N p-1m00 Var (# Z;‘F:_]% Ukt Nk <19L>> .

Assumption A4’: For each model £ =1, ..., m the parameters ¥y ; n s, admit the following expansion:

1 T—1 N 1 T—1
— Openvsn—0L) = Al—=S" Uprnsn (9L) + 0p(1)
\/]—Dg(ktNS} k) k\/]—Dt:ZR ktNSh<k> D

and as P,R,N,S — oo and h — 0,
TZmeSh( ) N (0.),
t=R

where Vil = Timr, g x,-1 o0 Var (5 S1g s (V1) ) -



Assumption A1(i) requires the diffusion, X (¢), to be geometrically ergodic and S—mixing. In the case
of no jumps, conditions for (geometric) f—mixing for (multivariate) diffusions that can be relatively easily
verified are provided by Meyn and Tweedie (1993). Such conditions also suffice for the case of jump diffusions,
when both the intensity parameters and the jump sizes are independent of the state of the system. Recently,
Masuda (2007) has extended the conditions for 3—mixing to the case of jump diffusions in which the intensity
parameter is constant, but the size of the jumps is state dependent.

Assumptions A4 and A4’ require that the contribution of (recursive) parameter estimation error is
v/ P—consistent and asymptotically normal, regardless of whether or not the underlying model is misspeci-
fied. As outlined in detail in Section 4, a key point here is that F (1/%,15, N.h <9£>> and F (wk,t, N,S.h <9,1>> are
o (P~1/2), regardless of whether or not the model is misspecified. We shall show that NPSQMLE satisfies
this requirement. Needless to say, in some cases the transition density is known in closed form and can be
used to obtain QML estimators. For example, if the drift and variance terms as well as the intensity of the
jump process have affine structures, then there is no need to rely on simulation methods and parameters can

be estimated via use of the conditional empirical characteristic function (see, for example, Singleton (2001)).

3 Test Statistics

3.1 Omne Factor Models

First, consider comparing the predictive accuracy of two possibly misspecified diffusion models. The hy-

potheses of interest are:

2
Hy: Ex ((F ol (ug) = F (U1)> — (FG (ua] X)) — F()T(U1|Xt))>

X1 bar (Xe) Xy (Xe)

—Ex ((F of (ug) — F of (“1)> — (Fg (ua|Xt) — F()T(“1|Xt))> =0

X e (X0) Xt (Xo)

Hy4 : negation of Hy

Notice that the hypotheses are stated using a particular interval (i.e., (u1,us) € UxU)) so that the objective

is evaluation of predictive densities for a given range of values. The test statistic is:

T—1 2
1
= — [N E 1 {ul < Xﬁﬁf (Xy) < Uz} —Hu < Xiyr < UQ}]

2

N

1 In s

N E 1 {Ul <X (X)) < uz} —Hur < Xyyr <un}
i=1

Theorem 1: Let Assumptions A1-A4 hold. Also, assume that models 1 and k are nonnested. If as
P RN — oo, h - 0, PIN — 0, h?P — 0, and P/R — 7, where 0 < m < oo, then: (i) Under



Hoy, Dy, pn(ui,us2) 4, N0, Wi (u1,uz2)), where Wi(ui,u2) is defined in the Appendiz. (ii) Under Ha,
Pr (# |Dk)p’N(U1,U2)| > 8) — 0.
Note that W (u1,us) reflects the contribution of recursive parameter estimation error. The intuitive

argument underlying the proof to Theorem 1 is the following. Note that:

19t
NZ { ki—i—;—vzh Xt <u}:]_vz { kt+TLXt)<u}

—

ka”t+f,¢(Xf) t

T
+E (f ol (u)Vg, X kt-s-m )ﬁZ(ﬂktth>+0P(1)

= FX;:EJFT(Xt)(u) + F (fXZEJrTJ(Xt)( W, X k t+‘r J(Xe) ) \/_ Z ﬂk tNh — 19T> +op(1)+on(1),
where on (1) denotes terms approaching zero, as N — oco. The statement follows by the same argument used
in the case in which the closed form of the conditional distribution is known. Note that as N/P — oo, we
can neglect the contribution of simulation error in the asymptotic covariance matrix. Finally, it is easy to
see that if P/R — 7 = 0, then the contribution of parameter estimation error vanishes.

In some circumstances, one may be interested in comparing one (benchmark) model against multiple
competing models. In this case, the null hypothesis is that no model can outperform the benchmark model.?

More specifically, setting model 1 as the benchmark, the hypotheses of interest are:

H|: max Ex ((F ol (u2) = F 1 (u1)> — (Fo(ug| Xy) — Fo(u1|Xt))>

k=2,..., X e (Xt) Xy b (Xe)

2
—Ex ((F o (ug) — F O x )(u1)> — (Fo(uz|Xt) — Fo(u1|Xt))> <0

k
Koy tr (X2)

Hf4 : negation of H

The statistic for testing these hypotheses is:

D%ﬁﬁv(ul, ug) = Jmax Dy, p n(u1,u2).

Corollary 1: Let Assumptions A1-Aj hold. Also, assume that models 1 and k are nonnested for at least
onek=2,..m. If as P, R, N — oo, h — 0, P/N — 0, h?P — 0, and P/R — 7, where 0 < 7 < 0o, then:

d
max (Dk,p,N(ul,ug)—pk(ul,ug)) — HQlaX Zk(ul,ug),

k=2,...m k=2,....m

where, with an abuse of notation, p(u1,us) = p1(ur, ue) — pr(u1, uz), and

2
pi(ur,ug) = E ((F of (ug) = F ' (U1)> — (Fo(uz|X;) — FO(U1|Xt))> ,

Xgr(Xe) X e (Xe)

2See White (2000) for a discussion of a discrete time series analog to this case, whereby point rather than density-based loss
is considered; Corradi and Swanson (2007a) for an extension of White (2000) that allows for parameter estimation error; and
Corradi and Swanson (2006a) for an extension of Corradi and Swanson (2007a) that allows for the comparison of conditional

distributions and densities in a discrete time series context.



for g =1,...,m, and where (Z1(uy,us), ..., Zm(u1,us)) is an m—dimensional Gaussian random variable for
which the associated covariance matriz has kk element given by Wiy (u1,uz), as in Theorem 1(i).

Critical values for these tests can be obtained using a recursive version of the block bootstrap. When
forming block bootstrap samples in the recursive case, observations at the beginning of the sample are used
more frequently than observations at the end of the sample. This introduces a location bias to the usual
block bootstrap, as under standard resampling with replacement, all blocks from the original sample have
the same probability of being selected. Also, the bias term varies across samples and can be either positive
or negative, depending on the specific sample. A first-order valid bootstrap procedure for non simulation
based m—estimators constructed using a recursive estimation scheme is outlined in Corradi and Swanson
(2007a). Here we extend the results of Corradi and Swanson (2007a) by establishing asymptotic results for
cases in which simulation-based estimators are bootstrapped in a recursive setting.

In order to carry out the bootstrap, begin by resampling b blocks of length [ from the full sample,
with [b = T. For any given 7, it is necessary to jointly resample X, Xi41, ..., X¢+r. More precisely, let
Z4T = (X4, X¢a1y oy Xpar), t = 1,..., T — 7. Now, resample b overlapping blocks of length [ from Z%7. This
yields Z0* = (X}, X/, ... X/ ,), t =1,..., T — 7. Use these data to construct 327,5)]\%. Recall that N is the
number of simulated series used to estimate the parameters. Note that as we assume N/P — oo, simulation
error vanishes and there is no need to resample the simulated series. We proceed by assuming that first-order

asymptotic validity of the bootstrap estimator, as outlined in the following assumption (in Section 4 we shall
provide primitive conditions under which NPSQMLE and satisfies this assumption).
Assumption A5: As P, RN — oo and h — 0, for k =1,...,m:

T T
1 ~ —~ 1 o
P (W : vseué}l%)e Py (ﬁ ;:R ( Z,t,N,h - ﬂk,t,N,h) < U) - P (ﬁ E <’L9k,t,N,h — 19;) < U) > 5) — 0.

t=R
It can be seen immediately that A5 ensures that # Zf: R (ﬁzt Nh~ ﬁkm N,;L> has the same limiting

distribution as # ZtT: R (3;” N — 15‘,1) , conditional on sample, and for all samples except a set with

probability measure approaching zero. Given this assumption, the appropriate bootstrap statistic is:

)
! L\ - . ’
VP [J_\T ; 1 {u1 < Xy (X)) < uz} —1{u < X7, < uQ}]
N_ 2
1 >l {Ul < XP N (XG) < uz} — 1w < Xjir < us}

2
1 *
N > {u1 < X/f,)fsi:j%h (X7) < Uz} - Hu <X/, < U2}]
1 2
¥ 2 U < XU ) S|~ L < Xjir <)

i=1

1T
T2

j=1

Note that each bootstrap term is recentered around the (full) sample mean. This is necessary because the

bootstrap statistic is constructed using the last P resampled observations, which in turn have been resampled



from the full sample. In particular, this is necessary regardless of the ratio, P/R. Thus, even if P/R — 0, so
that there is no need to mimic parameter estimation error (and hence the above statistic can be constructed
using 1/9\k,t, ~,n instead of 1/9\215 N,h)? it remains the case that recentering of all bootstrap terms around the
(full) sample mean is necessary.

Theorem 2: Let Assumptions A1-Ab hold. Also, assume that models 1 and k are nonnested. If as P, R, N —
o0, h — 0, P/N — 0, k2P — 0, | — 00, [/TY* =0, and P/R — 7, where 0 < 7 < 00, then:

P (w : Suglé) |P7 (Dj. p (1, uz) < v) — P (Dy,pn(ut,u) — pup(uy, up) < v)| > 5) — 0.
veRe

Corollary 2: Let Assumptions A1-A5 hold. Also, assume that at least one model is nonnested with model
1. If as P,R,N — 0o, h — 0, P/N — 0, h?P — 0,1 — o0, [/T"* =0, and P/R — 7, where 0 < w < o0,
then:

= =2,...,m

P (w : sup
veRe

Pi (o D) < o) = P (o (Drrin, ) = ) <o)

>5>HO.

— 0.

The above results suggest proceeding in the following manner. For any bootstrap replication, compute
the bootstrap statistic (i.e. D;7P7N(u1, Ug) OF MAXk=2, . m D,’;)P)N(ul, us)). Perform B bootstrap replications
(B large) and compute the percentiles of the empirical distribution of the B bootstrap statistics. Reject Hy,
if Dy, p n(u1,uz) is less than the a/2th-percentile or greater than the (1 — a/2)th-percentile of the bootstrap
empirical distribution. This provides a test with asymptotic size o and unit asymptotic power. Furthermore,
reject H) if maxg—s, m Dy pn(ui,us2)) is greater than the (1 — a)th-percentile of the bootstrap empirical
distribution. Whenever g (ug,us) = pug(ur, us), for k = 2,....,m (i.e., when all competitors are as good as
the benchmark), then the asymptotic size is «. However, whenever py(u1,us) > u1(u1,usz) for some k, the

bootstrap critical values define upper bounds, and inference drawn on them is conservative.

3.2 Stochastic Volatility Models

The test statistic for comparing two models is:

1 T—71 1 S N 2
9 9

- Up NS E E 1 {ul < X1,1t’ilrv,’f’jh (Xnvl,}’t’N’s’h) < Uz} —1{u < Xigr <ug}
—R j=1i=1
| SN 2

9 9
| vg Y M1 {Ul < XTI (X, Vst o) < U2} —1{ur < Xpyr <un} :
j=1i=1

10



and the bootstrap test statistic is:

DVI:,P,S,N(UD uz)
12

_ N
1
_ Ly s o2 < A V) b -1 < X7 < )
t=R j=1i=1

2

—P

1z i | SN 2

T Z NS Zzl {U1 < Xf,lt’if,’is,jh (Xl,ij’t’N’s’h) < UQ} — Hur < Xppr <uo}
al or or

~3 > {u < XS (X Ve vy < uz} - Hu <X}, <w}

T S N
1 1
N ?Z N—SZZ:l{ <XZkt:szsjh(Xl7V0ktNSh)Su?}_l{ul SX[+T§u2}

Note that we do not need to resample the volatility process, although volatility is simulated under both
am,t,N,S,h and G:IL,t,N,S,h m = 1, ceny k.

Also, maxg=2 . m DVi pn(u1,u2) and maxg=y . m DV p ~(u1, ug) are defined analogous to their one-factor
counterparts.
Assumption A5’: As PR,N,S - ocand h —» 0, for k=1,...,m

T
P (W : vseugle)e Pr (% t:ZR (@Z,t,N,S,h - 3k,t,N,s,h> < v) - (\/— Z <19k t.N,S,h — 19T> < v) > ) — 0.

Theorem 3: Let Assumptions Al, A2’, A3, and A4’ hold. Also, assume that models 1 and k are nonnested.
If as P,R,S,N — oo, h — 0, P/N — 0, P/S — 0, h?P — 0, and P/R — m, where 0 < 7 < oo, then: (i)
under Ho, DVi pn.s(u1,u2) LA N(O,Wk(ul,uz)), where Wk(ul,uz) has the same format as Wy (u1,ug) in
the statement of Theorem 1(i). Also,

d
max (DV]g7P7N,S(U1,IL2) 7,[14(U1,U2)) — max Zk(Ul,Uz),
k=2,...m k=2,....m

where p(uy,ug) and Zp(ui,uz) are defined as in the statement of Corollary 1; and (ii) under Hga, for

k= 2, e, m, Pr (\/LI—D |DVk)p’N,S(U1,U2)| > E) — 1.

Theorem 4: Let Assumptions Al, A2’, A8, and A}’-A5’ hold. Also, assume that models 1 and k are
nonnested. If as P,R,S,N — oo, h — 0, P/N — 0, P/S — 0, h*P — 0, | — oo, /T"/* = 0, and P/R — T,
where 0 < m < 00, then:

P (w : Su;e) |Pr (DV: p s (U1, uz) < v) — P (DVi,pn,s(ur, uz) — pi(ur, uz) < )| > 5) — 0,
veke

and

P (w : sup
veRe

where p(u1,u2) is defined as in the statement of Corollary 1.

Py (k max DV} p n g(u1,uz) < v) -P ( max (DVi pn,s(ur,uz) — p(u,ug)) < U)‘ > 5) — 0,

2,...,m k=2,....,m

11



3.3 Further Extensions

3.3.1 Out of Sample Specification Tests

In this paper the focus is on the comparison of out of sample predictive accuracy of possible misspecified
diffusion models, when the conditional distribution is not known in closed form. One may wonder whether
the tools developed here can also allow for the construction out of sample specification tests, based on
recursively estimated parameters. As we briefly outline below, this is indeed possible.

As mentioned in the introduction, specification tests for the conditional distribution of a diffusion, when
its closed form is unknown, have also been recently suggested by Ait-Sahalia, Fan and Peng (2009) and by
Bhardwaj, Corradi and Swanson (2008). The former test is based on the integrated mean square error of
the difference between a local polynomial estimator of the conditional CDF and an exact approximation,
based on Hermite expansion, of the parametric CDF under the null, constructed with historical data. The
latter test is based on the comparison of empirical CDFs constructed with historical and simulated data
respectively. Both tests require estimated parameters, the former to construct the approximated CDF under
the null, and the latter to simulate data. In both cases, parameters are estimated using the full sample, and
tests are thus in-sample. Hereafter, to facilitate comparison, set 7 = 1.

Ait-Sahalia, Fan and Peng’s statistic, equation (4.4) in their paper, is based on

T-1 R N 9
h’;/Z Z <FT,hT (Xt+1|Xt) - F <Xt+l|Xt;7~9T>> w(Xt+17Xt)7 (7)
t=1

where ﬁT,hT (X¢41]|X+) is a local polynomial estimator of the conditional distribution constructed using
the full sample, and evaluated at (X;11,X}), hr is a bandwidth parameter, F <Xt+1|Xt; 5T> is an exact
approximation of the CDF under the null, evaluated at 19}, and w(Xy11, X¢) is a weighting function. It is

straightforward to construct an out of sample version of their test based on recursively estimated parameters.

Namely, consider:

~

_1 N N 2
h;/z (Ft,hT (Xt+1|Xt) - F (Xt+1|Xt;19t)) w(Xt-‘rlaXt)? (8)

t

||
o]

where ﬁt7hT (Xt+1|X+) is a recursive local polynomial estimator constructed using observations up to time
t, and 1/9\t are recursively estimated parameters. As the statistic in (8) converges at a nonparametric rate
(see their Theorem 3), the contribution of parameter estimation error is always negligible, regardless of the
estimation scheme. On the other hand, the asymptotic bias terms as well as the variance are affected by
nonparametric recursive estimation.

Turning to Bardwaj, Corradi and Swanson (2008), their statistic given in their equations (10)-(11) can

be written as Vi = sup, e xv |Vr(w,v)|, with

T-1 N
1 1 9
Vr(u,0) = ——> (— So{XT S uf - X < u}> 1{X, <v},
T-1 t=1 N s=1

where thTﬂ‘h is the process simulated using 51 ~,n and with initial value X;. It is immediate to see that

12



an out of sample version of this test can be written as Vp = sup, e xv |Vr(u,v)|, with

T-1 N
1 1 Sun,
Vp(u,v) = VP o1 ;R: (1—\; ;:1: 1 {Xs,tflh < u} - X1 < u}> 1{X; < v},

where 1/9;, ~,» are recursively estimated parameters. Thus, the limiting distribution of Vp follows by combining
the proof of Theorem 3 in Bardwaj, Corradi and Swanson (2008) with that of Theorem 1 in this paper.
Validity of bootstrap critical values and extension to stochastic volatility models also follows using the tools

developed in this paper.

3.3.2 Choice of Intervals

Thus far, our focus has centered on comparing models over a specific conditional interval. Needless to
say, one may choose different models for different intervals. However, if one is interested in comparing
predictive accuracy over multiple intervals, one can construct weighted versions of maxg—2, .. m Dy, pn (U1, u2)
and maxg—=2 . m DV ps n(ui,us). For notational simplicity, hereafter we limit our attention to the one-

factor case, but extension to stochastic volatility models follows by a similar argument. More precisely, let

(=00, u1], (u1,us2l, ..., (uj—1,00) be a partition of the support of the variable to be predicted, and define
J—1
J
Dk,P,N = k::HZlaXm Z Dk,P,N(Uja uj+1)w (Uj, Uj+1) ,
g
where 1y = —00, u; = 0o, and Z;’:—Ol w (uj, ujy1) = 1. Of course, DY p v is not independent of the bounds

of the interval, and in fact it depends on the number of intervals considered and on their relative length.
Moreover, J should be finite and not too large, otherwise one will be left with fewer observations than needed
to construct reliable estimates. Intuitively, this is the price we pay for using statistics that converge at a
parametric rate.

Alternatively, if interest lies in approximation of the entire conditional distribution, one can consider the

one-sided interval (—oo,u], and construct the following statistic,
Dy, pN = / Dy, p,n(w)(u)du,
U

where ¢(u) >0 and [ ¢(u)du = 1.
Finally, one may prefer to minimize the integrated mean square error between the model and the true
conditional density. In this case, the null hypothesis is:

2 2
/. et _ ot <
Hy: k:rrzlaxm/U/V {(fl (u|v,1§‘1) fo (u|v)) (fk (u|v,19k) fo (u|v)) ] fo(u,v)dudv <0,
where f(u|v; 15‘,1) is the conditional density implied by model k, fy (u|v) and fo (u,v) are true conditional
and joint densities respectively. A test statistic for H|,, requires estimators of f; (u|v; 191 s fr (u|v; ﬁL) , and
fo (ulv).
Ok, t,N,h

Given recursively estimated parameters {9\k,t, N,h, one should thus generate a sample of length IV, X ah
qg=1,...,Q where Qh = N, and sample the simulated data at the same frequency as the historical data,

13



in order to get a discrete sample, X?“N‘h, i=1,...,N. As N/T — oo, the initial value effect is negligible.
Then, construct a kernel estimator of the conditional density, using both simulated and historical data,

" 9
1 ZN—TK Xifﬂy—t'N’h_XtJrﬂ' K X, BN X,
NhZ, 2ei=1 in Tin
%,t,N,h o
[k ™" (Xegr | X)) =

’ L N7 e [ XTRON X,
N Qi1 v

and

1 Zt‘ K (Xj+T_Xt+T) K (Xj—Xt
~ 2 =1
ft (Xt+7—|Xt) _ ThZ, J hr hr
1 t K X=X
Thy ijl ( hr >

where hy and hp are bandwidth parameters. Then, we can test H| via a statistics based on:

), t=R,....T —T

T—1

th/2 Z {(?NN}L (Xiegr | Xy) = f (Xt+T|Xt)) - (A:I}\;Nh (Xer | Xe) = fo (Xt+T|Xt)) ] '
t=R

The study of the asymptotic properties of the statistic above is left to future research.

4 Recursive Nonparametric Simulated Quasi Maximum Likeli-

hood Estimators

In this chapter we develop a recursive version of the nonparametric simulated (quasi) maximum likelihood
(NPSQML) estimator of Fermanian and Salanié (2004) and outline conditions under which asymptotic
equivalence between the NPSQML estimator and the corresponding recursive QML estimator obtains, hence
ensuring that A4 and A4’ hold. Analogous results are also established for the bootstrap counterpart of the
recursive NPSQML estimators.

A previous version of this paper contains results analogous to those reported in this section for the case

of exactly identified simulated generalized methods of estimators of Duffie and Singleton (1993).

4.1 One Factor Models

The idea underlying the nonparametric simulated maximum likelihood estimator of Fermanian and Salanié
(2004) is to replace the unknown conditional density with a kernel estimator, constructed using simulated
data. Fermanian and Salanié (2004) focus on the case of exogenous conditioning variables, while Kristensen
and Shin (2008) consider extensions to (fully observed) Markov models. In the sequel, we extend the
estimator of Fermanian and Salanié (2004) and Kristensen and Shin (2008) to the recursive estimation case.
In a subsequent section, we outline a bootstrap version of the estimator and establish first-order validity
thereof.

3see http://econweb.rutgers.edu/nswanson/papers.htm

We conjecture that one could establish the asymptotic properties of recursive versions and bootstrap analogs for all other
simulation-based estimators, such as indirect inference (Gourieroux, Monfort, and Renault (1993), Dridi, Guay, and Renault
(2007)), efficient method of moment (Gallant and Tauchen (1996)) and simulated GMM with a continuum of moment conditions
(Carrasco, Chernov, Florens, and Ghysels (2007)). We leave this to future research.
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Hereafter, let f (Xt|Xt_1,19£) be the conditional density implied by model k. If we knew fj in closed

form, we could just estimate 192( . recursively, using standard QML as:*

Oy = arg max mek (X/|X,_1,9), t=R,...,R+P—1.

Ip€O T

Now, define:
19; =arg max F(In fr (X|X¢—1,9%)) - 9)
9, EO

Following Kristensen and Shin (2008), generate T' — 1 paths of length one for each simulation replication,
using X7, ..., Xp_1 as starting values and hence construct Xg,t,j(Xt—1)7 fort=2,...,T—1,j=1,...,N. Note
that we keep the N random draws fixed across different initial values. Then, define the following estimator
of the conditional density:

(X X;
kah(Xt|Xt 1,0) = N§ Z ( ) gNl) )

Further, define the recursive NPSQML estimator as follows:

ﬁktN}L—arg Jmax _Zlnkah(X | Xs—1,0%) ™7 (kah(X | X 1779k)) t>R,

V€O, T

where the trimming function 7 (ﬁ N,k (Xt|Xt_1,19k)) is a positive and increasing function, such that

TN <J?k,N,h (Xt,Xt—l,ﬂk)> =0, if fro v (X Xom1,0k) < ), and 7y <J?k,N,h (Xt,Xt—l,ﬂk)> =1

if ﬁg,mh (Xt, Xp—1,0) > 25%, for some § > 0.°> The reason for the trimming parameter is that when the log
density is close to zero, the derivative tends to infinity and so even very tiny simulation errors have a large
impact on the likelihood. Our result in this subsection requires the following additional assumptions.
Assumption A3 Fork =1,....m: (i) X,?’“ (z) and X,ffl (z) are geometrically ergodic and strictly stationary,

. . . ) 9 9 PR 2O

oy OXTR(2) Xk (z) 92X (x) 0°XUk(x) OX k() 0X k(x) O*X k(x) O°X k(x) .
() —F5— — 5 90,00, 0040 d =5 —%s 90,00, * ovgoxw  MC r—dominated on Oy
and on X1 : {z:2 <T?) for r >4 and a > 1.

,

) < o0,

T
aX)h(Xo_1)

Assumption 6: Let /\/ﬁz be a neighborhood of 15‘,1, E (SupﬁkENﬂL HM%’M
50, ‘ > < oo, for k=1,...,m and for r > 4.

X H (X, 4)
I

E (SUPf)kENM ) < o0, E <Sup19k€N§T
k k
Assumption 7: Fork=1,...,m: (i) ﬁL is uniquely identified (i.e. E (ln e (Xe| Xi—1,%%)) < E(ln fi (Xt|Xt_1,19£))

for any ¥y # 192); (ii) 1/9\k,t7N,h and 192 are in the interior of Oy, (iii) fi (x|x_1,9%) is s + 1—continuously
differentiable on the interior of Oy, fi (z|x—1,%%), Vi fi (x|x_1,0%), ViV, fi (x|r_1,7%) are bounded on

4Note that as model k is, in general, misspecified, 3:11 In fr (X¢|X¢—1,9%) is a quasi-likelihood and
Vo, In fi X X1, 19}; is not necessarily a martingale difference sequence.
5As an example of a trimming function, Fermanian and Salanie (2004) suggest using:
4(z —an)® 3(x—an)d

T~ (z) = 3 - 1 )
an an

for ay <z <2ap.
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R X R x O, for s > 2; (iii) the elements of Vy, fi. (X¢|Xt—1, k), V%kfk (Xt|Xe-1,9%) , Vg, In fr (X3|Xe—1, k)
and Vy, In fi. (X¢| X¢—1, %) are r—dominated on Oy, with r > 4; and (iv) E (—Vg In fk(ﬁk)) is positive def-
inite, uniformly on ©y.

Assumption 8: The kernel, K, is a symmetric, nonnegative, continuous function with bounded support
[—A, A], s-time differentiable on the interior of its support and satisfies: [ K(u)du =1, [uw*"'K (u)(u)du =
0, 5 > 2. Let K) be the j — th derivative of the kernel. Then, K (—A) = KW (A) =0, for j =1,...,s,
s> 2.

Theorem 5: Let Assumptions A1-A2, A3’, and AG-A8 hold. Let T = R+ P, P/R — 7, where 0 <
m<ocoandlet N =T%a > 1 As T,P,N — oo, (a) T70 [néx|# 7 infoen, f(X;1X;1,9) — 0,

k
(b) T2 nén| — 0, (¢) T 2 (Ine2) T — 0, (d) TV " h|Ineg| — 0. Then, for
E=1,...,m: (i) Sup;> (19k7t,N7h — 192) 20 and (i) ﬁ Z;‘F:R (19;6,,57N,;L — 192) 4, N(O,QHALVJAD,where

Al =B (~Vo i (XX 0,0})), W = 5 B (vek In fic (Xal X, 0} ) Vi, In fi (X2+i|X1+i,19L)/)
and I =1— 7~ tn(1 + 7).

As 0 < 7 < oo, P grows at the same rate as T, for sake of simplicity, we have stated the rate conditions
(a)-(d) in terms of T, instead of a combination of 7" and P. Note that if we simulate the process using
the Euler scheme, instead of the Milstein scheme, the rate condition in (d) should be strengthened to
T1/2§;I(d+3)h1/2 }ln ffv} 0.

From Theorem 5 it can be seen immediately that the NPSQML estimator satisfies Assumption 4 and
is asymptotically equivalent to the unfeasible QML estimator, which is constructed by maximizing the
likelihood of model k. An interesting alternative nonparametric simulated maximum likelihood estimator
has recently been suggested by Altissimo and Mele (2009). Their estimator is based on the minimization of
a properly weighted distance between kernel conditional density estimators based on historical and simulated
data. For fully observable systems, it is asymptotically equivalent to the maximum likelihood estimator.

Under the rate conditions in Theorem 5, the contribution of simulation error is asymptotically negligible,
and thus there is no need to resample the simulated observations. In particular, let Z"* = (X}, X[\, ..., X[\ ),
t=1,...,T — 7 be as outlined in Section 3. For each simulation replication, generate T'— 1 paths of length
one, using as starting values X7, ..., X7_;, and so obtaining X}i’;,j( s ), fort=2..T-1 4j=1,..,N.
Further, let:

N I
Tx * * 1 X k}( t*fl) 7Xt*
Tenn (XP1X 0, 0,) = Nén ZK ( — En ;

Now, fort =R, ..., R+ P — 1, define:

t

* 1 N * * N * *
RN T Arg IMax - ; (111 S (XFIX7 1, 08) T (fk:,N,h (X; |Xl—17'l9k:))

9 1 « Ve (Xv| Xy —1,0)
B it
Ti= fenn (XvlXp—1,0k)

+7N (ﬁc,N,h (Xl’|Xl’717'l/9\k,t,N,h)) vﬁkﬁc,N,h (X | Xy —1,08)

O nn TN <fk,N,h (Xz/|Xz/—1ﬂ9k,t,N,h>>

In ﬁ:,N,h (Xl’ | X1, ﬁk,t,N,h) ) ) )

Yk, t,N,n

where 75 (-) denotes the derivative of 7n(-) with respect to its argument. Note that each term in the

simulated likelihood is recentered around the (full) sample mean of the score, evaluated at 1/9\;“, N, This
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ensures that the bootstrap score has mean zero, conditional on the sample. The recentering term requires
computation of ngﬁw,h (Xl/|Xl/_1, 1/9\k,t7N,h) , which is not known in closed form. Nevertheless, it can be
computed numerically, by simply taking the numerical derivative of the simulated likelihood.

Theorem 6: Let Assumptions A1-A2, A3’, and AG-A8 hold. Let T = R+ P, P/R — m, where 0 < 7 < 00

T

andlet N =T%a > 1. AsT,N,l — oo, /T"* — 0, and (a) T?T-D |1n§N|2‘TT—t11 infﬂe_/\[ﬁf [ (X5]1X-1,09) =0,
k
(b) T2 nén| — 0, (¢) T2 (Ine2) T — 0, (d) T2 " h|Ined| — 0. Then, for

k=1,..,m:
1 & ~ 1 &
P (w : vseugl%)g Py (ﬁ ; ( z,t)N,h — ﬁk,t,N,h) < U) - P (ﬁ ; (19;6¢,N7h — 192) < U) > 5) — 0,

where P} denotes the probability law of the resampled series, conditional on the (entire) sample.

Thus, # Z;‘F:R (1/9\,’;7,5,N7h — 1/9\;€7t,N7h) has the same limiting distribution as # Z;‘F:R (1/9\k7t7N,h — 192) ,
conditional on sample, and for all samples except a set with probability measure approaching zero, and A5
is satisfied by bootstrap NPSQML estimator.

4.2 Stochastic Volatility Models

Since volatility is not observable, we cannot proceed as in the single factor case. Instead, let V¢ be generated
according to (4), setting gh = s, ¢ = 1,...,1/h, and s = 1,...,S. For each model k = 1,...,m, and at each
simulation replication, ¢ = 1,..., N, generate S paths of length one, using X;_; as the starting value for
the observable, and using S different starting values for the unobservable volatility (i.e., V%, s =1,...,9).
Thus, for any ¢t = 1,...,7 — 1, and for any set i, i = 1,..., N of random errors €; ;4 (q4+1)n,; and €214 (q+1)h,i>
g =1,...,1/h, generate S different values for the observable at time ¢ + 1, each of them corresponding to
a different starting value for the unobservable. Note that it is important to use the same set of random
eITOIS €1 ¢4 (g4+1)h,i AN €314 (g+1)h,; across different initial values for volatility. Using (5) and (6), generate
Xf”; (X;, VO) fort =2,...,T,i=1,..,N and s = 1,..., S. Now, define:

g N Ok O

N 1 1 Xiin(Xe1, V) — X
XilXe1,00) = 5 D~ > K [ —=

fk‘,N,S,h( t| t—1, k‘) S;NgN; ( §N )

and note that by averaging over the initial values for the unobservable volatility, its effect is integrated out.

Finally, define:

t
N 1 N N
Ok t,N,5,, = arg min — E In fi nosn (X0 Xi21,0k) T (fk,N,S,h (Xl|Xl—179k)> , t>R.
0,L€O) T =2

Before establishing the asymptotic properties of @\k,t, N,S,h, We need another assumption:

9 T
) < 00,
k

Theorem 7: Let Assumptions A1,A2-A3’, and A6-A9 hold. Let T = R+ P, P/R — 7, where 0 < 7 < 00.
Let N =T¢%, for e > 0 arbitrarily small, ' =N — 0, a > 1. As T, N, S — oo,

Assumption 9: Let N% be a neighborhood of 192, E (S.upﬂke/\/l9£

09y,
9 9 T

OX k(X4 y, VI F

%IJ)H < oo, for k=1,...,m and for r > 4.
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() T I F5 infoen, F (X 1X-1,0) = 0, (0) 72652 ] — 0, (6) TO-I65* (n ) In T —
0, (d) TV/2(-a)¢y <5+3>h|1n§N| — 0, (e) TV25-1/2¢ (39 0 Then for k=1,..,m
(i) supsp (9k,t,N,S,h—9k> 20 and (i) X1, <9k,t,N,S7h—9j€> 4 N(0,2MA VI AD), where Al =

B (=Vo,n fi (X Xi1,0) ) Vi = X2 B (vgk In fi. (Xa1X1,0}) Vo, In fi (X2+Z~|X1+i,e,1)/> . and
O=1-7"tIn(l+n).

Note that in this case, X; is no longer Markov (i.e., X; and V; are jointly Markovian, but X; is not).
Therefore, even in the case in which model k is the true data generating process, the joint likelihood cannot
be expressed as the product of the conditional and marginal distributions. Thus, @\k,t, N,S,h is necessarily a
QML estimator. Furthermore, note that Vg, In f(X¢| X¢—1, 9,1) is no longer a martingale difference sequence;
therefore, we need to use HAC robust covariance matrix estimators, regardless of whether k is the “correct”
model or not.

Note that for the bootstrap counterpart of é\k,t,N,S,h, since S/T — oo and N/T — oo, the contribution of
simulation error is asymptotically negligible. Hence, there is no need to resample the simulated observations

or the simulated initial values for volatility. Define:

N 1 1 X0 VO ) = X
fk,N,s,h(XEIXf_l,Hk)EZ_EZK< 1 (X : 1) — t>.

s=1 i=1

Now, for t = R,..., R+ P — 1, define:

A*
0%t N,8,h
t

1 ~ —~
= arg max — Z (hl fk,N,S,h (Xl*|X;;1, Gk) TN <fk,N,S,h (Xl*|Xl*717 Gk)>
2

0,€0
kkl_

TN (fk,N,S,h (Xzf | X1, 9k,t,N,s,h))

Ok, t,N,n

0 (1 VekakNSh (Xv | Xv—1,6k)
=0 | &
/=9 fk: N,h (Xl/|Xl/ 1791@)

+7y (fk,N,Sh <Xl/|Xl/71;9k:,t,N,S,h>> Va, J/c;c,N,S,h (Xv | Xp—1,6k)

In ,]?k,N,S,h (Xl/ | X1, gk,t,N,h) )) )

Ok,t,N,h

where 74 (+) denotes the derivative with respect to its argument. We have:
Theorem 8: Let Assumptions A1,A2-A8’, and A6-A9 hold. Let T = R+ P, P/R — m, where 0 < 7w < 00
T r+1
andlet N =T%a > 1. AsT,N, S,l — oo, [/TY* — 0, and (a) TT"-D |In&y|? T infgen , f(X;1Xj-1,0) —
k

O(Wméﬁthﬂ()WWQHWM@MWHQ@WW&W%ﬂﬂﬂHQ@TW?WGMWH
0. Then, fork=1,....m
> 5) — 0,

T
P<WZUS€11£Q Pr (\/_Z(ektNSh ektNSh) <U>_P<%§(é\k,t,N,S,h_ﬁT)<U>

where P} denotes the probability law of the resampled series, conditional on the (entire) sample.
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5 Empirical Illustration: Choosing Between CIR, SV, and SVJ
Models

In this section, we choose between Cox-Ingersoll-Ross (CIR), stochastic volatility (SV) and stochastic
volatility with jumps (SV'J) models by comparing the models’ predictive performance across two different
sample periods. Our primary objective is to illustrate the implementation of our tests statistics and our
secondary objective is to assess whether the choice of model is impacted by the choice of sample period.
There are many precedents in the empirical literature suggesting that evaluation of subsample robustness is
an important issue when evaluating models. For example, see Bandi and Reno (2008), who compare their
semiparametric estimates of a jump diffusion for S&P500 returns to a less general affine model estimated
by Eraker, Johannes, and Polson (2003). In their analysis, the alternative models are rather similar, but
they use different sample periods and different variance filtering methods. In our example, we use the same
estimation method for different models across different estimation periods. In particular, we consider two
samples of weekly data, one from January 6, 1989 - December 31, 1998 (526 observations) and one from
January 8, 1999 - April 30, 2008 (491 observations), chosen arbitrarily. The variable that we model is the
effective (or market) federal funds rate (i.e., the interbank interest rate), measured at the close.

In our analysis, we use the three models implemented in Bhardwaj, Corradi, and Swanson (2008). Other
than considering similar models, our empirical illustration is quite different from theirs. Namely, they report
on in-sample Kolmogorov type consistent specification tests for individual models, while we report the model
selection type test statistics and related forecast error measures discussed in this paper. More specifically, we
jointly compare the out-of-sample predictive accuracy of various models using recursively estimated models
and recursively constructed predictive densities. The three models that we examine are:

CIR: dX (t) = k1 (o1 — X (t)) dt +v11/X (t)dW(t), where #; > 0, y; > 0 and 2k1a; > 43,

SV: dX (t) = ko (ag — X (1)) dt + /V()dW,.(t), and dV (t) = r3 (az — V(1)) dt +y21/V (t)dW, (t) , where
W, (t) and W, (t) are independent Brownian motions, and where xg > 0, k3 > 0, 72 > 0, and 2k3a3 > 3.

SVIJ: dX(t) = ka (g — X (t))dt + V() dW,5(t) + Judgy — Jadqa, and dV (t) = ks (a5 — V() dt +
Y33/ V (t)dW, (t) , where W,.s (t) and W, ; (t) are independent Brownian motions, and where x4 > 0, x5 > 0,
v3 > 0, and 2ksa5 > ~3. Further g, and g; are Poisson processes with jump intensity A\, and )4, and
are independent of the Brownian motions Wiy (¢t) and Wh (t). Jump sizes are iid and are controlled by
jump magnitudes (,,(s > 0, which are drawn from exponential distributions, with densities: f(J,) =
Clu exp (f%:) and f(Jq) = Cld exp (f%j) . Here, A, is the probability of a jump up, Pr(dg, (t) =1) = Ay,
and jump up size is controlled by J,; while A\; and Jy control jump down intensity and size. Note that
the case of Poisson jumps with constant intensity and jump size with exponential density is covered by the
assumptions stated in the previous sections.

Note that the CIR model is neither nesting the SVJ and the SV models nor is nested in either of them. On
the other hand, SV is clearly nested in SVJ.

The tests that we construct are D8% (u1,ug) and DV;M$E v (u1, ug). In our tables, we also report the

so-called “predictive density” mean square forecast error (PDMSFE) terms in these statistics, which are
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constructed using the following formulae:

T—1 S N

1 1 01,4 01,0

52 | g o 2ot {w < XV (0 V) S s | —Lun € Xigr < ua)
t=R j=1i=1

and
17/ XN 5 2
72 (N SOt {uw < XX Sweb -1 < Xiys < u2}> ,
t=R =1

depending upon whether we are predicting using one factor or SV models. We define the CIR model to be
our “benchmark”, against which the other models are compared. Thus, both competitors are neither nested
in nor nesting the benchmark. For the estimation of parameters as well as the construction of predictive
densities, data were generated using the Milstein scheme discussed above, with h = 1/T, where T is the
sample size. The jump component in our SVJ model was simulated without any error because of the
constancy of the intensity parameter. The three models fall in the class of affine diffusions. Therefore, it is
possible to compute parameter estimates using the conditional characteristic function (see Singleton (2001)
for the CIR model, Jiang and Knight (2002) for the SV model, and Chacko and Viceira (2003) for the
SV J model). We leave analysis of the predictive accuracy of the models discussed herein under different
estimation methods to future research. All parameters are estimated recursively, all empirical bootstrap
distributions are constructed using 500 bootstrap replications, and critical values are reported for the 95",
90", 85" and 80" percentiles of the relevant bootstrap empirical distributions. For the bootstrap, block
lengths of 5 and 10 are reported on. Additionally, we set S = 1000, and for model SV and SV J we set
N = S. Tests were carried out based on the construction of 7 — step ahead predictive densities and associated
confidence intervals, for 7 = {1,2,3,4,5,6,12}. We set (ug,uz2) equal to X +0.50x, and X + oy, where
X and ox are the mean and variance of an initial sample of data.

Test statistic values, PDMSF Es, and bootstrap critical values are reported for various uy, us combina-
tions, forecast horizons, and bootstrap block lengths in Tables 1-4. The first two tables report results for the
sample period January 6, 1989-December 31, 1998, while Tables 3 and 4 report results for the sample period
January 8, 1999-April 30, 2008. Interestingly, a number of very clear-cut conclusions emerge. In particular,
PDMSF Es are lower for the SV J model in 12 of 14 cases in Table 1. Moreover, in the two cases where SV J
is not “PDMSF E-best”, there is little to choose between the PDMSF E's of the different models. Perhaps
not surprisingly, then, the null hypothesis that the CIR model yields predictive densities at least as accurate
as the two competitor models is rejected in almost all cases, at a 95% level of confidence. (Starred entries in
the tables denote rejection using CVs equal to the 95" percentile of the empirical bootstrap distributions.)
Notice also that although bootstrap CVs increase in magnitude when a longer block length is used (see Table
2), the number of rejections of the null hypothesis remains the same, suggesting that our findings, thus far,
are somewhat robust to bootstrap block length.

Turning now to Table 3, note that it is now the SV model that yields the “PDMSF E-best” predictive
densities in all but two cases. Moreover, in the two cases that SV does not “win”, the SVJ model “wins”,
albeit with only marginally lower PDM SF Es. However, significant rejection of the null only occurs in 8 of
14 cases based on the more recent sample of data used in construction of the statistics reported in Tables 3

and 4, rather than 10 cases, as in Tables 1 and 2. Moreover, when the block length is increased from 5 to 10,
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the number of rejections of the null deceases almost to zero (see Table 4). Thus, while the point PDMSFE
is lower in 12 of 14 cases, it is more difficult to discern a statistically significant difference between the SV
and the CIR model when using data from 1999-2008. Two points are worth mentioning in this regard.
First, in Tables 3 and 4, the absolute magnitude of the SV PDMSFFEs are actually substantively lower
than those for the C'IR model, when comparing CIR and SV models, just as they were when comparing
CIR and SV J models in Tables 1 and 2, suggesting that the reduction in rejections when increasing the
block length in Table 4 may be due in part to size bias in the case of the longer block length. Second,
and more important, regardless of the above findings, it is very clear that the selection of PDMSF E-best
model is indeed dependent upon the sample period used to construct predictive densities. While the one
factor model generally performs worse than the other two models, whether or not jumps improve model
performance depends on the sample period being investigated. Thus, different sample periods do not result
in the same model being chosen, which is not surprising, given that the extant empirical evidence concerning
which model to use when examining interest rates is rather mixed.®

In Figures 1 and 2, predictive densities are plotted for various evaluation points given a particular set
of recursively estimated parameters (chosen to illustrate the variety of predictive densities that arise, in
practical applications). Evaluation points are chosen to be equal to the mean of the data and various points
around the mean. Figure 1 reports densities for our first sample period and Figure 2 for our second sample
period. Notice that a model yielding a density centered around the evaluation point is preferred, assuming
that it yields predictions with equal or less dispersion than its competitor model. Interestingly, in Figure
1 it is quite apparent that the SVJ model is preferred, although none of the models are particularly well
centered for evaluation points not equal to the mean of 0.055. In Figure 2, where results are reported for
the second sample period, the models are well centered around the evaluation point, even for points that are
relatively distant from the mean (see Figures la and 1c). Moreover, in this particular set of plots, the SV
model is clearly dominant, as it yields densities that are better centered and exhibit much less dispersion.

SNote that SV is nested by SVJ. However, neither nests or is nested by CIR, and hence the “nestedness” assumptions
made in the statements of the theorems and corollaries above are not violated. Additionally, note that one might be tempted to
think that if there is a model that outperforms CIR, this should be SV J, as SV J nests SV. However, as we are performing true
ex-ante prediction experiments using predictive densities, this is clearly not the case; more parsimonious models may perform

better, particularly if they are “better approximations” of the true underlying DGP.
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6 Appendix

Proof of Theorem 1:
(i) We begin by analyzing the term in the test statistic that is associated with model 1. Without loss of

generality and for the sake of brevity, set u; = —oo and ug = u. Consider:
T—r N 2
1 1 V1,¢,N,h
s N 1 {Xl,t-‘rT,i (Xt) < U} Y X¢yr <u}

1 T—1 1 N i 2
= 7P (N Z 1 {XﬁltJrT,i(Xt) < u} HXiyr < u}>

t=R =1
! e 1 al 9 97 2
T 2 (N S (t{airon) <} -1 {x{h (0 < u}))
t=R i=1
2 T—1 1
75 ;{ [(N ;1{ Dhira(X0) S} —1{Xir < u}>
1 N 19 of
T ({ Xt o) s uf -1 {x7h 0 < u}))]
i=1
= Ipnn+Ilpnp+IllpNng (10)

Now,

Ip N = T z_: ( U X7 <up— Fo(ulXy)) + (FO(U|Xt) - FXIﬂ (U|Xt)>> +0,(1),

1,t47

;
as E (% ZN 11 {Xﬁ;+77i(Xt) < u} —F (u|Xt)> = 0; and for N/P — oo,

1=
1,t+7

T—T1 N
1 1 of
— Y e W0 e —F L @lXo| =00,
P t=R 1=1 1,47
Letting HF = E (FXﬂ‘I (u|Xt)71{Xt+T < U}):
1,t4+7
1 T—1
Hlpnn =75 z}; (F o (u| X)) —1{ X1y < u}>
t= 5 T
L . 91,6,N,h 91
| w2 ({0 < up -1 { XX < u}) )|+ onl)
T

_ ;\1/% g %i ( {Xf;i;vzh (X,) < u} 1 {Xﬁ%i(xt) < u})) +op(1)
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(% SO X < u— (XD () - XY (60) b

N
9 91
“F (o (05 (30 - X (X)) |Xt)> - ( S X <} - F L (X))
1,t4+7 i=1 1,t4+7
[ T—71 1 N 9 of
HEL . 1(1@(& ((u= (XT3 (X0) = X hyra(X0)) ) 1X) = F " <u|Xt>>+op<1>.
t=R 1= T .

By arguments similar to those used in the proof of Proposition 1 in Corradi and Swanson (2005b), the first
term of the last equality on the RHS of (11) is op(1). Now, by taking a mean value expansion around 191, it
is easy to see that the second term of the last equality on the RHS of (11) can be written as:

= > (% > (= (T (0 = Xl (X0) ) 1X0) Vo, XT3 (XJ)
t=R i=1
X ({9\1,t,N,h - 19{) ; (12)

where f1(-]X;) denotes the conditional density under model 1.
Finally, I1p np is op(1), given that it is of smaller order than the other two terms on the RHS of (10).
By treating model k£ in the same manner as model 1, we have that,

PN (u)

2 2
1 -7
= F of U|Xt FQ(U|X,5) — | F of (U|Xt)—F0(U|Xt)
P —n X1 e X,k

k,t+T

(Fo(u|Xe)—1{ Xtyr <u}) ( ol (u| X¢)—F ol (u|Xt)>>

1,t+7 k,t+T
T—1

N
i —= f Z (% S ((w= (KT () = X{h, o(X0) ) 1X0) Vo XD <Xt>'>
=R i=1
X (191 {Nh — 19{)
—1F, = \/— Z ( ka: (( ( ,?’;frfzh(Xt) XZE;JFT),L,(Xt))) |Xt> VekXZ’;;‘r’;\fjih (Xt)’>

X (3k,t,N,h - 19;) +op(1).

— ’
Now, let 1, ol (u) = Ex (f " (u| Xy) En (ngXZ”;i;\j%h (Xt)) ) , where Ex denotes expectation with

k
Xl,t+7‘

respect to the probability measure governing the data and FExn denotes expectation with respect to the
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probability measure governing the simulated data. Thus, given Assumption A4:

T—1 2 2
1
= —7= F oy (uXe)=Fo(ulXe) ) — | F i (u[Xe)—Fo(ulXy)
Pt:R X1,1t+7- Xk,’i+_r
1

((Fo(U|Xt)—1{Xt+T<u}) (qu (u[Xe)=F 1 (UlXt)>>

1,t47 kyt4T

T-1

1

F1E g, gt (0 u)Aj PE "/JItNh( ) HEfy, 1 (U E "/}ktNh( )+0P(1)~
=R

It then follows that Dy p n(u) <, N(0, Wg(u)), where

Wi(u) = C(u)+V(u)+2CV(u)+ Pri1(u)
+ Py (u) — Pip(u) + PLC(u) — PC(u) + PiV(u) — P,V (u),

and where, recalling A4,

00 2 2
ZE(<<FX19{ <u|X1>Fg<u|X1>> - (FX% <u|X1>F5<u|X1>> )
j:() 1,147 k,1+7

2 2
Foop (X)) =Fg (uXog) | — | F o (ulXi)—Fg (ulX1g)
Xiigitr X dtitr

ZE (( Fg (u] X1)=H{X14r < u}) (qu (ulX1)=F (U|X1)>>

1,147 k14T

((FJ(U|X1+j)1{X1+j+TSu}) (F o (WXigy)=F o (U|X1+j)>>

L14j+ ko d4j4r

ZE(<<FXGI (U|X1)—F0(U|X1)> - (er; (U|X1)—F0(U|X1)> )

((FJ(U|X1+J‘)1{X1+J‘+T < u}) (F of  (WXigg)=F (U|X1+j)>>>
Litjtr ko l+j4T

Pll(IL) = 4H,U%‘1 (U)'u“/fl,ﬁ‘; (u) (AJ{VlTAI> ’ufhﬂ;f

Pu(u) = 8Tlpg Wy, 4 () A]

> (wu (01) s (92)/> Ay, 1 (Wi,
j=0
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PCu) = 4Hupl(u)ufl,ﬂi(u)AIZE(wl,l (9{)

Jj=0

(F ot (U|X1+j)—Fo(u|X1+j)> - (F ol (U|X1+j)—Fo(u|X1+j)> ;

I ko 14j+T

and

PVi(u) = AT, ()i, g ()AL B (00 (01)

=0

((F()T(U|X1+j)—1{X1+j+r <u}) (F o (WXig)=F o (U|X1+j)>>> :

114547 ke 14j+7

2 2
(ii) Under Hy, # Z;‘F:_RT (Fxﬁl (u|Xt)—F0(u|Xt)> - (F o (u|Xt)—F0(u|Xt)> diverges at rate

1,t+7 k,t+T
V/P. This drives the statistic to either plus or minus infinity.
Proof of Corollary 1: For any given k, the limiting distribution of Dy, p (1, u2) — p(u1, u2) follows from

inspection of Theorem 1(i). Also, by the Cramer-Wold device,

((Da,p N (u1,u2) — pa(ur, uz)) ;o (D, pn (ur, u2) — pm (ur, uz)))

converges to a m—dimensional mean zero Gaussian random variable with covariance matrix that has kk
element given by Wy (u1,us), as defined in the statement of Theorem 1(i). The statement in the corollary
then follows as a straightforward consequence of the Cramer-Wold device and the continuous mapping
theorem.

Proof of Theorem 2: As before, set u; = —oo and ug = u. We begin by analyzing the term in the test

statistic that is associated with model 1, which can be written as:

1 T—1 B 1 N 5 2
- 7P 21 {lei’if;h (X7) < u} —1{X},, < u}]
t=R \ L~ i=1
1 T T 1 N Y 2
A\ T Z N Z 1 {Xl,ii’ff (Xj) < U} - Xy < u}]
j=1L1"" i=1
1 T-1T 1 N - 5 2
v =3 |23 (1 i on <o} -1 (xasron <))
t=R L =1
1 T—1 1 N
+2— (N 1 {X;{;%h (X7) < u} — X7, < u})
t=R i=1
1Y gt
x (N > (1 {lei‘f,;*‘ (X7) < u} — XU () < u}))] (13)
1=1
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First, note that:

1 T—71 1 N 2
= F2F ( T A () < uf -1, <w) >
t=R =1
= AN R ) 2
= =2 |7 |7 D HE A () Suf ~1{Xper Sw}| | +O@/PY?) PrP
t=R j=1 i=1

Also, by the same arguments as those used in the proof of Theorem 4 in Bhardwaj, Corradi, and Swanson
(2008),

T—r N 2
1 1 9
Var [ —= S —E:l{X LAy <u}71 X <u
\/ﬁ = N P Lt+7, ( t) = { t+17 — }

2

T—7 N
1 1 9] * 1/2
— R — 1 i < — < —P.
Var 75 S lN ‘ 1{X17t (X u} UX; . <u}| | +0(/PY?) Pr—P.

Thus, from Theorem 3.5 in Kiinsch (1989), it follows that the first term on the RHS of the last equality in
(13) has the same limiting distribution as:

N 2

2
1 T—1 1 . N
ﬁ tgl:? (N Z ' {XﬁJrT’i(Xt) = u} ~ WX < U}> o (N ; ! {XﬁJrr,i(Xt) < U} - {Xitr < u}>

i=1

:

Now, + Zf\il 1 {Xﬁ;JrT,i(Xt) < u} —F (u|X;) = On(N~1/?), and as N/P — oo, the third term on the
1,t+7

RHS of (13) can be written as:

T—71 N
1 1 *
2m—= 3 [ D (13X ) <up -1 {ﬁiiﬁf?(ﬁ) < u} +0j(1) Pr—P,
\/ﬁ t=R N =1

1
Xl,t+7’

where up, = F (F o X)Xy r < u}) . Now,

T—1 N
1 1 .
— (N > (1o <o) -1 {xir o) < }))
1 1 . 9%, .
. (N S {atir oo <u- (i oo -l o) |
7F U — Xﬁit,N,h(X ) _ Xﬁl,t,N,h(X ) |X _
Xfti,N,h 1,t+7,0 t 1,t+7,0 t t
N
1 ! {Xﬁl’“Nth (X,) < u} _F (u|X,)
N 1,t+7,0 t) = X‘sl,t,N,h t

i=1 1,t+7

-7 N
1 1 97, 91,¢,N,h
3 2 (P (= (373020 00 = X020 00) ) 1X6) = Py 00) 19

1,t+7 1,t+7
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By the same argument as that used in the proof of Theorem 1(i):

B
Z(( S {xtzr o <u- (oo - xlir o) |

i=1

97, Y1t
oo (o= (00 o0 - X o0 ) ) 1))
1,t+7

(N Z { f;—:—:jzh Xt) < U} - FXﬂl,t,N,h (U|Xt)>> = Opx (1) Pr—P.

1,t4+7

Finally, the last term on the RHS of (14), conditional on the sample, and for all samples except a set with

probability measure approaching zero, has the same limiting distribution as:

Z Z( o ((u= (e oo - X)) ) 1x) -7 <u|Xt>>

Xl,t+7—
and the statement then follows by the same argument as that used in Theorem 1(3i).
Proof of Corollary 2: Given Theorem 2, the result follows directly upon application of the Cramer-Wold
device and the continuous mapping theorem.

Proof of Theorem 3: We begin by analyzing the term in the test statistic that is associated with model

1. Without loss of generality and for the sake of brevity, we yet again set u; = —oo and uy = u. Consider:
1 T—1 1 S N 0 2
75 oo 21 {X11t-t+fzsjh (X¢) < U} U Xpyr <uj
VP t=R N§ j=1i=1

i
!

I

4

N
-
4
i
—

»—AN%

E

(X0 Suf -1 Xesr <)

-
||
o]
<
Il
—
~
Il
—

(1 {xtieer o) <} -1 X000 <))

t=

=Y

+
Sl
i
—_—
3~
Mco
E

9 T—1 1 S N GT
— — 1{X X }71 Xipr <
+\/ﬁt: NS;; 1t+7—z,J( t) { t+ —U}

1 X! ol
x NS Z ( { 1 ;iﬁi,sjh(xt) = u} -1 {Xl,lt-i-T,z',j(Xt) < u}

j=1i=1

N———

= Ipnsn+IIpNnsn+IIIpNsh-

The statement follows by the same argument as that used in Theorem 1, as by Proposition 5 in Bhardwaj,
Corradi, and Swanson (2008),

N
1 0! 2
ZZ 1 {Xl,t+7,i,j(Xt) < U} —F o} (u| X, th) =0,
i=1

j=1 1t+7

NS
and for S/P — oo and N/P — oo,

T—T1 S N
1 1 of of
=2 | qe o X (X0 Suf —F Ly (X, V)| = 0n(0).
P j=11i=1 Xiigr

27



Proof of Theorem 4: Since S/T — oo, we do not need to resample the initial value of volatility, and the
statement thus follows by the same argument as that used in Theorem 2.

For notational simplicity, in the proof of Theorems 5-8 below, we drop the subscript k, as the arguments
used in this proof are the same for all k.

Proof of Theorem 5: Define,

N 19
X (Xt 1) — Xt
v (Xel Xio1,0) = New ZK<—>,

N

where Xgi (X¢—1) is the i—th simulated value, when starting the path at X;_1, for the case in which there
is no discretization error (i.e. for the case in which we could generate continuous paths), and define:

Lo, - ~

Ly (9) = : > I finon (X515 21,9) T (fk,N,h (Xj|Xj—1719)> ) (15)
j=1

I~ - ~

LY 9) = 7 Y I fon (X1X1.9) 7y (Fun (X51X5-0,9)) (16)
j=1
and
1 t
=< I f(X51X;0,0), (17)
j=1

where L; (¢) is the pseudo true density under P.
We organize the proof into four steps. Steps 1 and 2 suffice for the statement in (i) to hold.
Step 1:

sup sup [ (9)  Li (9)] = 0,(1).

9EO t>R
Step 2:
SUPSUP|Lth J) — Liv(ﬁ)|:0p(1).
9EO >R
Step 3:
1 X
sup —— VLN (9) = VgL (9)| = 0,(1).
2 75 2 [VaLY (0) = VoLe ()] = oy(1)
Step 4:

T
sup —= " VoL, (9) — VLY (0)] = 0,(1).
veN of —R

Proof of Steps 1 and 3: We first need to show that our assumptions imply the assumptions in Theorems
1.1 and 1.2 in Fermanian and Salanié (FS: 2004), and then we outline which steps in their proofs have to be
modified in order to take into account the fact that X; is f—mixing (instead of iid) and the fact that our
estimator is recursive. Then, the statements in Steps 1 and 3 will follow directly from their Theorems 1.1 and
1.2. Now, A8 implies KO, in F'S (2004). A1(ii)-(iii) and A6-A7 imply L1 and L2, with § = r, and L3, with
vy=+"=7r>4inFS (2004). A3’ implies M1 with sp = 0, and M2 withrg = s; =0andpy = =r >4,in FS
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(2004). It remains to check that the rate conditions T1, R1, T2, R2 and R3 in FS (2004) are implied by the
rate conditions in the statement of the theorem. First, recall that T, R, P grow at the same rate, given 0 <
m<ooand N=T% a > 1. Given Al(iii), Pr (sup, | X¢| > eT?) < Zthl Pr(|Xy| > eTe) < LT B(|Xy|"),
and as a > 1 and r > 4, (c) in the statement of the theorem implies T2 (and hence T1) in FS (2004) for
v=1and v=+"=({=r >4. Condition (a) corresponds to R3 in F'S (2004), for v = r. Finally, (c) and (b)
are equivalent to R2 in FS (2004), for m = 1 and ro = 0.

As the proof in FS (2004) is based on the rate at which

| Xe, Xe1]l < N} supyeo )m P (XelXo—1,0) —In f (X;]X;_1,0)| and

{|| X¢, X¢—1]| > N}supyeco ‘1n I (Xt|Xt,1,19)) approach zero, the fact that we are estimating parameters
in a recursive manner plays no role. On the other hand, the iid assumption is used in the exponential
inequalities in the proof of Lemma 1 and Theorem 1.1 in FS (2004). However, given the geometric f—mixing
assumption in A1(i), the rate in the exponential (Bernstein and Hoeffding) inequalities is slower than in the
itd case, only up to a logarithmic term (see e.g. Doukhan, 1995, p.33-36). Thus, consistency follows from
their Theorem 1.1 and asymptotic normality from their Theorem 1.2. Moreover, Step 2 follows by the same
argument. Hence, it remains to prove Step 4.

Proof of Step 4:

T T t
1 1 1 ~ 1
sup —= |V19L]Yh (0) — VLY (W) < sup —= - 5 (v (X X;1,0)) =——
IEN 1 \/_; t ! DEN ¢ P;?, t ; ( i ) In (X;]X-1,9)
(O (K31 Xi1,0)  Ofy (X1 Xj1,0)
oY oY
+ lzt: i <fN’h (XJ|XJ_1’Q9)> v (fN (Xj|Xj_1’19)> Of v (X5 X5-1,0)
t3 Iy (X51Xj-1,9) In (X;]X-1,9) o
t ~
1 - Ofnn (Xi|X;1,0)  ~
+ ? TJ,V (fN,h (Xj|Xj—1719)) fN’} ( 51|9 =t )hlfN,h (Xj|Xj_1,19)
j=1
t ~
1 - Ofn (Xi|X;1.0) . ~
TN (fN (Xj|Xj—1ﬂ9)) ful gﬁj SIS (X;|X;j-1,9)

—

J:
= Airnn+ Ao v + As oo + AaT N k-

Now, note that Yﬁi)h(Xj,l) € (Xf,i,h(Xj,l), X}%i(Xj,l)) , and recall by Theorem 2.3 in Pardoux and Talay
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(1985) that E ((XJ in(Xjo1) — X;%i(le))z) — O(h?). Thus,

AT Np
I~ 1 XV, (X)) — X XPi(X5-0) = X;

< &8VPsup sup |- — VoK | —2& — VoK .

N t>RoeN ;| ; 9 ; &N &N

k
t N 9

(643 1 1 X‘,i,h(Xj—l) - X

< fN( )VPsup sup 7 2 NZVT%K< j e 0 o

t>R 196/\/191
k
—(6+3
(X750 (Xj21) = X5:(X5-1)) | = Oy <\/J_D€N( : )h> ’ -
and given A6,

Ao rNh
™ (J?N (Xj|Xj—1,19)> (J?N,h (X, X;-1,9) — fn (Xj|Xj—1ﬂ9)>
= P (X51X;21,9)

oY
+\/]_D 1 Z ™ <«]?N (X]|XJ*1719)> — TN (fN,h (X]|XJ*1719)>
su su — =
_p 2 t o (X51X5-1,9)

oln F (X;|X;_1,9 _
N(@ﬁ =9 _o, (VPR h ey ) - (19)

x v (X5]X;-1,9)

Given the rate conditions in (a),(b), and (c), A3 r .y, and Ay N5 are op(l), by the same argument as
used in the study of the term A4 in FS (2004).
Proof of Theorem 6: Define,

t T
th %Z <lan}L X | 19) N (J/C\N,h (X;|X;_1,’l9)) —ﬁ’%ZVﬂLQIh (7/9\15,N,h)>
=1 i=1
1< 1 < ~
zz<lnf (X51X; —19'TZV19L1‘ (1%))-
= i=1

and let 3;‘ = arg mingeo L} (0) . We organize the proof into two steps.
Step 1:

sup sup | L (9) — Lj (9)] = op-(1).
YEO t>R

Step 2:
1 L
sup —= > [Vy L} (9) = Vo Li (9)] = op(1),
196./\[191 —R

Given Steps 1 and 2, the desired outcome follows from Theorem 1 in Corradi and Swanson (2007).
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Proof of Step 1: Given the definition of L;”,f (9) and L (9), and recalling that © is a compact set, it

suffices to show that:

arg max sup
V€O >R

37 (i P (571570, 9) 7o (B (X7 1XG20,9) ) = F (X7 1, 19))'
=2
= o (1) (20)

and

sup % i (WLL N (@,N,,J ~VyL? (@)) — 0, (1). (21)
1=1

t>R

Now, (20) follows from Steps 1 and 2 in the proof of Theorem 5, given that the only difference is that we

evaluate the likelihood at the resampled observations. Note also that (21) is majorized by:

%ET: (VﬁL?,]}\[ (@,N,h) - VyL} <"§t,N,h>>
im1

The first term above is 0,+(1) as a direct consequence of Steps 3 and 4 in the proof of Theorem 5. The

sup
t>R

+ sup
t>R

LS (ot (Gun) - vtz (3.))].

i=1

) ‘

second term is majorized by

7 Z (Vﬁ (Fe,n,n) <1§t,N,h - 315))

Proof of Step 2: Follows directly from Steps 2 and 4 in the proof Theorem 5.
Proof of Theorem 7: Let:

sup |=
t>R

< sup — Z}w (Texn) [ sup (B = 91) = Opr (Do, (1).

t>R

t

1 N N
Li\,[;’LS 0) = n Zln Insn (Xi|Xi-1,0) 7,5 (fN,s,h (Xl|Xl—179)) .
=2

We show that:

supsup | L (6) = LY, (6)] = 0,(1) (22)
0O t>R
and
1 T
su VoL (0) = VLY, (0)| = 0,(1). 23
22 Pt_Z) 0 oL, (0)] = 0(1) (23)
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The desired outcome then follows from Theorem 5. Note first that (22) can be written as:

sup sup Livhs (9) — Li\fh (9))
0O t>R

t
1 .
= supsup _Z<1anSh (Xi|Xi-1,0) 7,5 (fN,S,h (X1|le1,9)>
peo >R |t =

—In fN,h (Xi| Xi-1,0) TN (fN’h (X Xi-1, 9))) ’

t
1 . . .
< supsup |- E TN,S (fN,S,h (X1|X171,9)> (hlfN,S,h (Xi|Xi—1,0) —In fyp (X1|le1,9)>
peot>R |t =
¢
1 ~ ~ R
+supsup |- E (TN,S (fN,S,h (X1|le1,9)) — TN (fN,h (X1|le1,9))) In fnn (Xi| X121, 6)
90 1>R|t =
= Sup(ItNSh+IItNSh)
€O

Let 7N,S,h (X1|Xl_1, 9) € (fAN,S,h (X1|Xl_1,9) ,fN,}L (X1|Xl_1,9)) , and note that for all 4, j

0 _ 0 0y _
K<Xl,i,h<Xz—1> Xl) /V K(Xl’z’h(Xl;V?v) Xl)fﬁ(v)dfu

N
ES (K (Xlevi,h(Xl—17v0) - Xl)) 7
én

where Eg denotes the expectation with respect to the simulated initial values of volatility. By a mean value

expansion,
1< .
Iinsn < 5&5 2 Z (lanSh (Xi|X1-1,0) —In fnn (Xl|Xl170))‘
ti=
t N S ) 0
—(6+1) 1 1 Xth X]*h‘/s)_X] Xl,i,h(Xjfl)_Xj
= = = - K
- t ; zz:: (S z:: ( 3 &N
= O (fE(Hl)S_l/Z) , uniformly in ¢ and 6.
Also,

Iy N5

IN

1o - ~
n Zﬁ’v,s (fn.sn (Xi|Xi21,0)) In v (Xi| Xi-1,0)
=2

(fN,S,h (Xi|X1-1,0) — J?N,h (X1 X141, 9)) ‘

= 0O, (EZQ((SH)S_”Z }ln f&‘sD , uniformly in ¢t and 6.

Given the rate condition in (e), this proves (22). Turning now to (23), note that after few simple manipula-

tions:

T
1
sup —Z)WL;V,LS (0) — VoLY, ()] <
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zf: TN,S (fN,S,h (Xl|Xl—179)) <8fN,s,h (Xi|Xi-1,0) Ofw.n (X1|Xl_1,9)>

()

1
GGN VP = fvsa (X|Xis1,0) 00 0
+ 1 i (f (X |X )) afAN,h (XI|X[_1,9) (fN,h (Xl|Xl—1,9) — .]?N,S,h (AleLXl_l7 9))
n N8,k (Xi| Xi—1, A i
= o6 Insn (Xi|Xi-1,0) fnn (Xi|Xi-1,0)
Ly 7 n dln f1 X1 X;_1,0
M Z (TN’S (fN’S’h (X1|Xl_l’9)> —N (fN,h (Xl|Xl—179)>> n S (891| -1 )‘

||
N

+
~& | =
Mﬂ

(fNSh(Xl|Xl 1, )) (hlJ?N,s,h (X1|X1-1,0) *hlJ?N,h (X1|Xl1,9))'

I|
N

t ~ ~
1 - i) X1 X;-1,0 Xi|Xi-1,0) ), =~
+ ;l; (fN,s,h(XlIXl_l,e))< In.sih (aal| =10) v é'al L )>1an,h (Xi|X;-1,0)
1 ¢ ~ .
+ 7 Z (TN,S (fN,S,h (X1|Xzf1,9)> - TN (fN,h (Xl|Xl,1,9)>>

-
y fN n (X1 Xi-1,0)

- )

= GS%’ Virnsn (0) + Var,nsn (0) + Varnsn (@) +Varnsn (0)+ Vs rnsn(0)+ Vernsn(f)).
ENgt

In fN,h (X1 Xi1-1,0)

Now, recalling A9,

sup Vir.n,sn (0)

96/\[91
T ¢ N S 0 0 0 0
(5+2)_1 1 1 1 OX,; (X1, V) X (Xm0, V) — X
< osup ¢ =D |72~ < K
oen, \/ﬁtzz t;NiZ(SSZ 90 3%

sup Vo n,s,h (0)
96/\[91

< ap Ly Iy s (Fvsn GXi1,0)  Fy0 (Xi1Xi1,0)
T 0eN VP S| S s (XU X1, 0) v (X0 Xo-1,0) 00

N

+ sup 1 zT: lzt: NS <fNSh (XZ|XZ_1’9)> Ofnn (Xi|Xi-1,0)
OEN ot \/ﬁt:R = fnsn (Xi| X1, 0) favon (Xi| X1, 0) o6
af (Xi|Xi_1,0)\ [~ ~
—%> (fN,h (Xi|Xi-1,0) = f,s.n (Xl|Xl—179)))‘ (24)

Given Steps 2 and 4 in the proof of Proposition 2, it can be seen immediately that the second term on the
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r1/r

RHS of (24) is of smaller order than the first. Now, the first term on the RHS of (24) is majorized by:
f;, sup sup

lzt: Ofnn X1|Xz 1,6)
0N, t>R |t =

1
sup ﬁ;% (

t 1-1/r
~ (r=1)/r
Z (ho (X1|X1-1,0) — fnos,n (X1|le1,9))
0N+ 1=

— Op (VPSR E)

X

~ | =

and so

sup Vs.r .55 (0)
1 t

0Nt
ee/\/gf \/— Z ; Z (TN,S (fN,S,h (Xl|Xl—179)) — TN (fN,h (Xl|Xl—170)))

dln f (Xl|Xl—17 )
00

- 0, (\/]3571/2@;(1%)) '

IA

+ term of smaller order

By a similar argument as that used in the proof of (22), SUPgenr,, Va,1,N,5h 0) =0, (EX,(‘SH)@S_l/z) ;
Vsr.n,s,n (0), (other than a log term), can be treated as Virn,sn (0), and so supyepr . Vs rn,sm (0) =

@) P1/2§7(5+2)S_1/2 In€5°|) . Finally, by a similar argument as that used to examine Vi 7 n g5 (6)
P N N .T,N,S,

sup Vs.1,n,5,h (0)

QENGT
t
< 02%; Z %; (T]'vys (fN,S,h (X1|le1,9)) — Ty (fN,h (X1|le1,9)))
(X1|Xl 1,0)

50 In fN,h (X1 Xi-1, G)D -+ terms of smaller order

0, (\/]_3571/25;7(1%5)) )

Proof of Theorem 8: Follows immediately, given Theorem 7, and by the same arguments as those used

in the proof of Theorem 6.
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Table 1: Predictive Density Model Selection Test Results
Sample period January 6, 1989 - December 31, 1998

(CIR model is the benchmark, bootstrap block length=>5)

- wy, up pMazT  (ui,u3) PDMSFEcrg PDMSFEgy PDMSFEgy; 5% CV 10% CV 15% CV 20% CV
1 X +0.50x 2.82027* 5.66205 3.62009 2.83278 1.76793  1.65848  1.59048  1.53149
X+ox 1.31996 1.58636 0.3691 0.2664 1.78705  1.64695  1.57157  1.5188

2 X 4050 1.57134%* 4.13194 2.62781 2.56061 0.95374  0.85015  0.81374  0.77364
X+ox 0.53925 0.85434 0.34105 0.31509 0.88404  0.8354 0.7433  0.67953

3 X 40.50x 0.80223* 4.26257 3.87959 3.46034 0.23338  0.20535  0.19317  0.16539
X+ox 1.19189* 1.82012 0.93572 0.62823 0.48909  0.40461  0.36703  0.30468

4 X +050x 1.23058* 4.32896 3.82788 3.09838 0.34424  0.28591  0.22947  0.21701
X+ox 0.48079* 1.02194 0.76792 0.54115 0.32672  0.28204  0.22131  0.20073

5 X +050x -0.00077 3.71976 3.72053 3.97788 0.25028  0.2032  0.17763  0.16541
X+ox 0.18502 1.09725 1.01962 0.91223 0.2864 0.2164  0.19567  0.14872

6 X +050x 1.52213% 4.949 3.83724 3.42687 0.11366  0.08187  0.07064  0.05948
X+ox 0.58406* 1.63659 1.05253 1.18955 0.16156  0.12362  0.11468  0.10462

12 X +0.50x 0.56293* 4.58393 4.37846 4.021 0.03752  0.03085  0.02742  0.01931
X+ox 0.41295* 1.30048 1.5585 0.88753 0.02381  0.01912  0.01574  0.01425

(*) Notes: Numerical entries in the table are test statistics, predicitve density type PDMSFEs (see Section 7 for further
discussion), and associated bootstrap critical values, constructed using intervals given in the second column of the table, and
for predictive horizons, 7 =1,2,3,4,5,6,12. Starred entries denote rejection of the null hypothesis that the CIR model yields
predictive densities at least as accurate as the competitor SV and SVJ models. Weekly data are used in all estimations, and
the sample period across which predictive densities are constructed is 7'/2, where T is the sample size. Predictive densities
are constructed using simulations of length S = 107. Empirical bootstrap distributions are constructed using 100 bootstrap
replications, and critical values are reported for the 95t" 90t" 85t" and 80" percentiles of the bootstrap distribution. X
and ox are the mean and variance of an initial sample of data used in the first in-sample estimation, prior to the construction
of the first predictive density (i.e., using T'/2 observations). Finally, the predictive density type “mean square forecast errors”
(M SFEs) reported in the fourth through sixth columns of the table are defined above and reported entries are multiplied by
P1/2 where P = T/2 is the ex-ante prediction period.

Table 2: Predictive Density Model Selection Test Results
Sample period January 6, 1989 - December 31, 1998
(CIR model is the benchmark, bootstrap block length=10)

~ uy, up pMaz, (ui,u3) PDMSFEcrg PDMSFEgy PDMSFEgy; 5% CV 10% CV 15% CV 20% CV
1 X +£050x 2.82027" 5.66205 3.62009 2.83278 2.00777  1.87180  1.79275  1.74894
X+ox 1.31996 1.58636 0.3691 0.2664 2.04287  1.94914  1.92829  1.82353

2 X + 050 1.57134% 4.13194 2.62781 2.56061 1.20729  1.12574  1.09287  1.01652
Xtox 0.53925 0.85434 0.34105 0.31509 1.18083  1.12383  1.02568  0.93639

3 X +050x 0.80223* 4.26257 3.87959 3.46034 0.30797  0.26336  0.23572  0.21822
X +oyx 1.19189* 1.82012 0.93572 0.62823 0.72656  0.61716  0.5816 0.5347

4 X+o050x 1.23058* 4.32896 3.82788 3.00838 0.390022  0.31387  0.28820  0.27063
Xtoyx 0.48079* 1.02194 0.76792 0.54115 0.52736  0.45501  0.41484  0.37745

5 X £ 050 -0.00077 3.71976 3.72053 3.97788 0.20617  0.18285  0.16524  0.13619
X+ox 0.18502 1.09725 1.01962 0.91223 0.36255  0.20925  0.2721  0.22753

6 X +0.50x 1.52213% 4.949 3.83724 3.42687 0.11792  0.10103  0.08588  0.08082
Xtox 0.58406* 1.63659 1.05253 1.18955 0.1695  0.14107  0.12773  0.09614

12 X +0.50x 0.56293* 4.58393 4.37846 4.021 0.05866  0.04347  0.03611  0.03507
X+ox 0.41295* 1.30048 1.5585 0.88753 0.03615 _ 0.03183  0.02711 _ 0.02122

(*) Notes: see Table 1
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Table 3: Predictive Density Model Selection Test Results

Sample period January 8, 1999 - April 30, 2008

(CIR model is the benchmark, bootstrap block length=>5)

T wy, ug DIICW}%ES N (w1, u2) PDMSFEQIR PDMSFEgy PDMSFEgy j 5% CV 10% CV 15% CV 20% CV
1 X + 0.50 x 3.36528™ 3.93191 0.56663 2.35979 2.4573 2.31001 2.17511 2.05169
X + ox 0.39113 0.39172 0.00059 0.13535 2.09495 1.99902 1.93683 1.84544

2 Y_:t 0.50 x 1.8218* 2.32377 0.50197 2.04596 1.82588 1.71781 1.64691 1.55461
_X + ox 0.59514 0.60979 0.01464 0.26331 2.182 2.09447 1.99572 1.93641

3 X_:E 0.50 x 1.2709 1.86856 0.59766 2.29788 1.47533 1.33248 1.19701 1.11857
X tox 0.97425 1.04645 0.0722 0.46272 1.98624 1.77604 1.71385 1.63308

4 Y} 0.50 x 1.33461* 1.86611 0.5315 2.50816 1.18714 1.03895 0.92443 0.74572
_X + ox 0.59446 0.78217 0.18771 0.23341 1.44947 1.31151 1.23566 1.18198

5 X £ 0.50x 1.55731%* 1.92318 0.36586 2.3208 0.94807 0.72157 0.63611 0.56305
_7 +ox 0.62454* 0.92698 0.30244 0.42899 1.12818 0.91251 0.81989 0.69776

6 X_:E 0.50 x 1.07981 1.5355 0.45569 2.23224 0.90627 0.81358 0.58599 0.49386
X tox 1.0877* 1.3928 0.39654 0.3051 1.11448 0.88946 0.69749 0.57532

12 X + 0.50 x 1.06647* 1.72738 0.66091 2.59892 0.96992 0.7709 0.65347 0.54271
X + ox 0.74472* 0.9282 0.43853 0.18348 0.93258 0.73613 0.59269 0.4251

(*) Notes: see Table 1
Table 4: Predictive Density Model Selection Test Results
Sample period January 8, 1999 - April 30, 2008
(CIR model is the benchmark, bootstrap block length=10)

T uy, ug pMazT  (ui,us) PDMSFEcrg PDMSFEgy PDMSFEgy; 5% CV 10% CV 15% CV 20% CV
E + 0.50x 3.36528* 3.93191 0.56663 2.35979 3.22922 2.79456 2.66332 2.49582

X +ox 0.39113 0.39172 0.00059 0.13535 2.49945 2.30575 2.18381 2.15431

2 X_:E 0.50 x 1.8218 2.32377 0.50197 2.04596 2.97083 2.41921 2.29894 2.2163
_X +ox 0.59514 0.60979 0.01464 0.26331 2.82514 2.67829 2.64444 2.55817

3 X_:t 0.50 x 1.2709 1.86856 0.59766 2.29788 2.51858 2.25422 2.06351 1.93476
_X + ox 0.97425 1.04645 0.0722 0.46272 2.98617 2.8359 2.75257 2.59837

4 X_:t 0.50 x 1.33461 1.86611 0.5315 2.50816 2.14655 1.91697 1.73401 1.59074
X +ox 0.59446 0.78217 0.18771 0.23341 2.72152 2.56512 2.49455 2.37684

5 X_:E 0.50 x 1.55731 1.92318 0.36586 2.3208 1.9112 1.80572 1.4376 1.33975
_X + ox 0.62454 0.92698 0.30244 0.42899 2.57883 2.30651 2.14454 1.96686

6 X_:t 0.50 x 1.07981 1.5355 0.45569 2.23224 2.11693 1.64939 1.47409 1.34432
X + ox 1.0877 1.3928 0.39654 0.3051 2.37199 2.08945 1.83042 1.71404

12 ?_:t 0.50 x 1.06647* 1.72738 0.66091 2.59892 1.36719 1.00359 0.8389 0.57706
X +ox 0.74472 0.9282 0.43853 0.18348 1.77444 0.98574 0.75872 0.54984

(*) Notes: see Table 1
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Figure 1a: Evaluation point = 0.035

Figure 1: Predictive Densities for CIR, SV and SVJ Models - 01:1989-12:1998

Figure 1b: Evaluation point = 0.055
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Figure 1c: Evaluation point = 0.075

.00 .02 .04 .06 .08 .10 A2

e (R eeme SV a=e SVJ

40

14




Density

200

160

120

80

Figure 2: Predictive Densitie s for CIR, SV and SVJ Models - 01:1999-04:2008

Figure 1a: Evaluation point = 0.020 Figure 1b: Evaluation point = 0.035
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Figure 1c: Evaluation point = 0.050
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