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Abstract

Central banks regularly monitor select financial and macroeconomic variables in order to obtain early indication

of the impact of monetary policies. This practice is discussed on the Federal Reserve Bank of New York website, for

example, where one particular set of macroeconomic “indicators” is given. In this paper, we define a particular set of

“indicators” that is chosen to be representative of the typical sort of variable used in practice by both policy-setters

and economic forecasters. As a measure of the “adequacy” of the “indicators”, we compare their predictive content

with that of a group of observable factor proxies selected from amongst 132 macroeconomic and financial time series,

using the diffusion index methodology of Stock and Watson (2002a,b) and the factor proxy methodology of Bai and

Ng (2006a,b) and Armah and Swanson (2010). The variables that we predict are output growth and inflation, two

representative variables from our set of indicators that are often discussed when assessing the impact of monetary

policy. Interestingly, we find that thc indicators are all contained within the set the observable variables that proxy

our factors. Our findings, thus, support the notion that a judiciously chosen set of macroeconomic indicators can

effectively provide the same macroeconomic policy-relevant information as that contained in a largescale time series

dataset. Of course, the large-scale datasets are still required in order to select the key indicator variables or confirm

one’s prior choice of key variables. Our findings also suggest that certain yield “spreads” are also useful indicators.

The particular spreads that we find to be useful are the difference between Treasury or corporate yields and the

federal funds rate. After conditioning on these variables, traditional spreads, such as the yield curve slope and the

reverse yield gap are found to contain no additional marginal predictive content. We also find that the macroeconomic

indicators (not including spreads) perform best when forecasting inflation in non-volatile time periods, while inclusion

of our spread variables improves predictive accuracy in times of high volatility.
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1 Introduction

In assessing the usefulness of macroeconomic models, two criteria are often used. The first is the

model’s performance against well established alternative models in out-of-sample forecasting exer-

cises. The second is the assessment of the (perceived) relevance of the model in policy formulation

and analysis. These two criteria may be exclusive, in the sense that a model might offer nothing

from a policy perspective, but be extremely useful for forecasting purposes, if it offers superior

out-of-sample forecast performance. For instance, a univariate autoregressive (AR) model might

exhibit superior forecasting performance, but might not contain relevant regressors that can act as

policy instruments for controlling a given “target” variable. On the other hand, a model formulated

solely based on economic theory could by design provide a number of instruments (regressors) or

policy “control” variables, but might be characterized by poor predictive accuracy. In this paper,

we evaluate the argument that a judisiously chosen set of macroeconomic “indicators” that can

be easily extracted from a largescale dataset may be useful from both a policy and a forecasting

perspective. We further argue that such a group of “key” indicators can take the place of all other

variables in the largescale dataset, both when forecasting and when carrying out analysis of the

impact of monetary policies.

Central banks regularly monitor select financial and macroeconomic variables in order to obtain

early indication of the impact of monetary policies. This practice is discussed on the Federal Reserve

Bank of New York website, for example, where one particular set of macroeconomic “indicators”

is given. Our approach is to define a particular set of “indicators” chosen to be representative

of the type of variables used in practice. As a measure of the “adequacy” of our “indicators”,

we compare their predictive content with that of a group of observable factor proxies selected

from amongst 132 macroeconomic and financial time series, using the diffusion index methodology

of Stock and Watson (2002a,b) and the factor proxy methodology of Bai and Ng (2006a,b) and

Armah and Swanson (2010). The variables that we predict are output growth and inflation, two

representative variables from our set of indicators. One of our primary objectives is to ascertain

whether a carefully chosen set of indicators can effectively provide the same macroeconomic policy-

relevant information as that contained in a largescale time series dataset. Ancilliary questions that

we attempt to provide answers for include: Does the relevant set of indicators remain constant

across different phases of the business cycle? Are there additional indicators that may hitherto

1



have failed to be recognized in the prediction literature, and that can be obtained via analysis of

large scale datasets commonly used in diffusion index construction?

Some of the financial and macroeconomic indicators that central banks often rely on for mon-

itoring monetary policy, and that we examine in this paper include: real gross domestic product

(GDP), the consumer price index (CPI), nonfarm payroll employment, housing starts, industrial

production/capacity utilization, retail sales, business sales and inventorie, advanced durable goods

shipments, new orders and unfilled orders, lightweight vehicle sales, the yield on 10-year Treasury

bonds, the S&P 500 stock price index, and the money supply (M2). Collectively, these are re-

ferred to as our macroeconomic “indicators”. In order to examine these indicators, we carry out an

extensive set of real-time prediction experiments in which benchmark linear models that directly

include the above indicators are compared against a variety of other prediction models. One of

the alternative groups of models that we examine involves constructing predictions using common

factors of the Stock and Watson (1998,1999,2002a,b) variety. The reason why we use the diffusion

index methodology of Stock and Watson as a starting point in our factor analysis is that their

methodology has been shown to quite robustly estimate the relevant common factors that underlie

the co-movements of a given set of macroeconomic variables. A second alternative group of models

that we examine replaces common factors with observable factor proxies. The idea behind this

latter group of models is that a properly chosen set of factor proxies may in some cases contain the

same marginal predictive content as the factors that they replace. The theory for this approach is

discussed in Bai and Ng (2006a,b) and further developed in Armah and Swanson (2010).

Interestingly, we find that our macroeconomic indicators are all contained within the set of ob-

servable variables that proxy our factors. Our findings, thus, support the notion that a judiciously

chosen set of macroeconomic indicators can effectively provide the same macroeconomic policy-

relevant and forecast relevant information as that contained in a largescale time series dataset,

inasmuch as the indicators can be used to construct predictions as accurate or more accurate than

those constructed using the entire dataset. In addition, our analysis suggests that certain yield

“spreads” are also useful indicators. The particular spreads that we find to be useful are the differ-

ence between Treasury or corporate yields and the federal funds rate. When predicting inflation,

we find that models with these spreads outperform models without these spreads at the 1-month

ahead prediction horizon around one half the time, and at the 3- and 12-month ahead horizons in

virtually all cases, based on point mean square forecast error (MSFE) comparison. Moreover, at
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the 12-month horizon, most of the prediction models including these spreads are also significantly

better, based on application of Diebold and Mariano (1995) tests (see also Clark and McCracken

(2005) and McCracken (2007)). For output growth, models with these spreads outperform those

without spreads around 90% of the time, at the 1-month ahead horizon; but add little when con-

sidering longer horizons, based on point MSFE comparison. In summary, these results suggest that

certain “non-traditional” spreads may be useful for monitoring economic activity. Moreover, after

conditioning on the “non-traditional” variables, traditional spreads, such as the yield curve slope

and the reverse yield gap are found to contain no additional marginal predictive content for output

growth and inflation. We also find that the macroeconomic indicators (not including our spread

variables) perform best when forecasting inflation in non-volatile time periods, while inclusion of

our spread variables improves predictive accuracy in time of high volatility. This suggests that there

are relevant business-cycle induced informational asymmetries that should not be overlooked when

using our spread indicators to predict macroeconomic variables that are in turn used to evaluate

monetary policy.

The rest of the paper is organized as follows. In Section 2, we summarize some useful features

of the diffusion index literature and briefly discuss the methodology associated with forming pre-

dictions using factor proxies and the macroeconomic indicators. Section 3 gives an outline of the

empirical methodology used in the sequel, and Section 4 contains a brief overview of the data em-

ployed in our prediction experiments. Empirical findings are summarized in Section 5 and Section

6 offers concluding remarks.

2 Diffusion Index Methodology

2.1 Prediction Using Diffusion Index Models

Following Stock and Watson (2002a,b), let yt+1be the series we wish to forecast and Xt be an N -

dimensional vector of predictor variables, for t = 1, . . . , T . Assume that (yt+1,Xt) has a dynamic

factor model representation with r common dynamic factors, ft. Hence, ft is an r× 1 vector. The

dynamic factor model is written as:

yt+h = α(L)ft +
p∑

j=1

βjyT−j+1 + εt+h (1)
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and

xit = λi(L)ft + eit, (2)

for i = 1, 2, . . . ,N , where h > 0 is the forecast horizon; xit is a single datum for a particular

predictor variable; eit is the idiosyncratic shock component of xit; and α(L) and λi(L) are lag

polynomials in nonnegative powers of L. The N dimensional spectral density of xit has rank r.

This implies that data generated under (2) would have r dynamic factors (see Boivin and Ng

(2005)). In general, dynamic factor models can be transformed into static factor models. In Stock

and Watson (2002a), the lag polynomials α(L) and λi(L) are modeled as α(L) =
∑q
j=0 αjL

j and

λi(L) =
∑q
j=0 λijL

j. The finite order of the lag polynomials allows us to rewrite (1) and (2) as:

yt+h = α
′Ft +

p∑

j=1

βjyT−j+1 + εt+h (3)

and

xit = Λ′iFt + eit, (4)

where Ft = (f ′t, . . . , f
′
t−q)

′ is an r×1 vector, with r = (q+1)r and α is an r×1 vector. As discussed
in the next section, the model depicted as (3) is the factor model that we use to predict output

growth and inflation. Here, r is the number of static factors (i.e. the number of elements in Ft).

Additionally, Λi = (λ′i0, . . . , λ
′
iq)
′ is a vector of factor loadings on the r static factors, where λij is

an r× 1 vector for j = 0, . . . , q. The N dimensional population covariance matrix of xit generated

under (4) has r nonzero eigenvalues that diverge with N . Thus the model is said to have r static

factors (see Boivin and Ng (2005)). Some technical assumptions we make are 1
N

∑N
i=1 λiλ

′
i

p−→∑
Λ

as N → ∞, and 1
T

∑T
t=1 FtF

′
t

p−→ ∑
F as T → ∞, where

∑
Λ and

∑
F are r × r positive definite

matrices.

Ding and Hwang (1999), Forni and Reichlin (1996,1998), Forni et al. (2000, 2005), Stock and

Watson (2002b), Bai and Ng (2002) and Bai (2003) showed that the space spanned by both the

static and dynamic factors can be consistently estimated when N and T are both large. For

forecasting purposes, little is gained from a clear distinction between the static and the dynamic

factors. Boivin and Ng (2005), and Rapach and Strauss (2007) compare alternative factor based

forecast methodologies, and conclude that when the dynamic structure is unknown and the model

is characterized by complex dynamics, the approach of Stock and Watson performs favorably.
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2.2 Estimating the Number of Factors

Following Bai and Ng (2002), let Xi be a T × 1 vector of observations for the ith variable. For a

given cross-section i, we have:

Xi
(T×1)

= F 0

(T×r)
Λi

(r×1)
+ ei

(T×1)

where Xi = (Xi1, . . . ,XiT )
′, F 0 = (F1, . . . , FT )

′ and ei = (ei1, . . . , eiT )
′. The whole panel of data

X = (X1, . . . ,XN) can consequently be represented as:

X
(T×N)

= F 0

(T×r)
Λ′

(r×N)
+ e,

(T×N)

where Λ = (Λ1, . . . ,ΛN)
′ and e = (e1, . . . , eN). X can be viewed as a representative set of variables

that characterize the whole economy. The set of macroeconomic indicators is a subset of X.

We work with high-dimensional factor models that allow both N and T to tend to infinity,

and in which eit may be serially and cross-sectionally correlated so that the covariance matrix of

et = (e1t, . . . , eNt) does not have to be a diagonal matrix. Furthermore, it is well known that for

ΛFt = ΛQQ−1Ft , a normalization is needed in order to uniquely define the factors, where Q is

a nonsingular matrix. Now, assuming that (Λ′Λ/N) → Ir, we restrict Q to be orthonormal, for

example. This assumption, together with others noted in Stock and Watson (2002b), enables us to

identify the factors up to a change of sign and consistently estimate them up to an orthonormal

transformation. Forecasts of yT+h based on (3) and (4) involve a two step procedure because both

the regressors and coefficients in the forecasting equations are unknown. The data sample {Xt}Tt=1

are first used to estimate the factors, {F̃t}Tt=1 by means of principal components. With the estimated

factors in hand, we obtain the estimators α̂ and β̂ by regressing yt+1 onto F̃t and the observable

variables inWt. Of note is that if
√
T/N → 0, then the generated regressor problem does not arise,

in the sense that least squares estimates of α and β are
√
T consistent and asymptotically normal

(see Bai and Ng (2006a)).

Since the common factors are not observed, in the regression analysis of (4), we replace Ft by

F̃t, estimates that span the same space as Ft when N,T →∞. Estimation of these common factors

from large panel data sets of macroeconomic variables can be carried out using principal component

analysis. We refer the reader to Stock and Watson (1998, 2002a, 2002b, 2004, 2006) and Bai and

Ng (2002, 2007) for a detailed explanation of this procedure.
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From (4), estimates of Λki and F
k
t are obtained by solving the optimization problem:

V (k) = min
Λk ,F k

(NT )−1
N∑

i=1

T∑

t=1

(xit − Λk′i F
k
t )

2 (5)

Let F̃ k and Λ̃k be the minimizers of equation (5). Since Λk and F k are not separately iden-

tifiable, if N > T , a computationally expedient approach would be to concentrate out Λ̃k and

minimize (5) subject to the normalization F k′F k/T = Ik. Minimizing (5) is equivalent to max-

imizing tr[F k′(XX ′)F k]. This optimization is solved by setting F̃ k to be the matrix of the k

eigenvectors of XX ′ that correspond to the k largest eigenvalues of XX ′. Note that tr[·] represents
the matrix trace. The superscript in Λk and F k signifies the use of k factors in the estimation

and the fact that the estimates will depend on k. Let D̃ be a k × k diagonal matrix consisting of

the k largest eigenvalues of XX ′. The estimated factor matrix, denoted by F̃ k, is
√
T times the

eigenvectors corresponding to the k largest eigenvalues of the T × T matrix XX ′. Given F̃ k and

the normalization F k′F k/T = Ik, Λ̃
k′ = (F̃ k′F̃ k)−1F̃ k′X = F̃ k′X/T is the corresponding factor

loadings matrix.

The solution to the optimization problem in (5) is not unique. If N < T , it becomes com-

putationally advantageous to concentrate out F
k
and minimize (5) subject to Λ

k′
Λ
k
/N = Ik.

This minimization is the same as maximizing tr[Λk′X ′XΛ], the solution of which is to set Λ
k

equal to the eigenvectors of the N × N matrix X ′X that correspond to its k largest eigen-

values. One can consequently estimate the factors as F
k
= X ′Λ

k
/N . F̃ k and F

k
span the

same column spaces, hence for forecasting purposes, they can be used interchangeably depend-

ing on which one is more computationally efficient. We employ the methodology of Bai and Ng

(2002) to consistently estimate the true number of a factors, r. Given F̃ k and Λ̃k, let V̂ (k) =

(NT )−1
N∑
i=1

T∑
t=1

(xit − Λ̃k′i F̃
k
t )

2 be the sum of squared residuals from regressions of Xi on the k fac-

tors, ∀i and IC(k) = log(V̂ (k)) + k(N+T
NT ) logC2

NT be the Bai and Ng (2002) information criterion

where CNT = min{
√
N,
√
T}. The consistent estimate of the true number of factors is then

k̂ = argmin0≤k≤kmax IC(k).

Stock and Watson (2002b) show that the difference between feasible (estimated model) and

unfeasible (true model) factor based forecasts converge in probability to zero as N,T →∞.
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2.3 Observable Factor Proxies

As the Stock and Watson principal components factors are not observable, the methodology of Bai

and Ng (2006b) is used to select observable macroeconomic and financial variables that closely proxy

the constructed diffusion indices. Armah and Swanson (2010) demonstrate that the factor proxies

perform just as well as and at times significantly better than the Stock andWatson estimated factors

in a number of forecasting exercises. We compare the macroeconomic indicators with the observable

factor proxies in order to determine whether the indicators contain the same prediction-relevant

information as that contained in the factors constructed using the above methodology.

Recall that yt+h = α′Ft +
p∑
j=1
βjyT−j+1 + εt+h. As mentioned above, and shown in Stock and

Watson (2002b) and Bai and Ng (2006b), under a set of moment conditions on (ε, e, F 0) and an

asymptotic rank condition on Λ, if the space spanned by Ft can be consistently estimated, then
√
T consistent estimates of α and β are obtainable. Under a similar set of conditions, it is also

possible to obtain min[
√
N,
√
T ] consistent forecasts if

√
T/N → 0 as N,T →∞.

Suppose that we observe G′, a (T × m) matrix of observable economic variables that could

potentially proxy the latent factors. At any given time t, any of the m elements of Gt (m × 1)

will be a good proxy if it is a linear combination of the r × 1 latent factors, Ft. Let Gjt be an

element of the m vector Gt. The null hypothesis is that Gjt is an exact proxy, or more precisely, ∃
θj (r × 1) such that Gjt = θ′jFt. In order to implement all of the methods, consider the regression

Gjt = γ′jF̃t + ρ. Let γ̂j be the least squares estimate of γj and let Ĝjt = γ̂′jF̃t. The test is carried

out by constructing the following t-statistic:

τt(j) =
(Ĝjt −Gjt)
(v̂ar(Ĝjt))1/2

(6)

where

v̂ar(Ĝjt) =
1

N
γ̂′jD̃

−1

(
F̃ ′F̃

T

)
Γ̃t

(
F̃ ′F̃

T

)
D̃−1γ̂j

=
1

N
γ̂′jD̃

−1Γ̃tD̃
−1γ̂j, (7)

and Γ̃t is defined below. The last step above is due to the normalization that F̃ ′F̃ /T = I
k̂
. Once

again, D̃ is a k × k diagonal matrix consisting of the k largest eigenvalues of XX ′.Given the null

hypothesis that Gjt = θ
′
jFt and that Ĝjt converges to Gjt at rate

√
N , Bai and Ng (2006b) show

that the limiting distribution of
√
N(Ĝjt − Gjt) is asymptotically normal and hence τt(j) has a
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standard normal limiting distribution. The k̂ × k̂ matrix Γ̃t is consistently estimated as

Γ̃t =
1

N

N∑

i=1

ẽ2itΛ̃iΛ̃
′
i, (8)

and where ẽit = xit − Λ̃′iF̃t. Equation (8) allows for time-series heteroskedasticity, but assumes no

cross-sectional correlation of eit. For small cross-sectional correlation in eit, Bai and Ng (2006a)

found that constraining the correlations to be zero could sometimes be desirable. In this regard,

they make the point that (8) is useful even if residual cross-correlation is genuinely present.

As mentioned earlier, τt(j) in (6) has a standard normal limiting distribution. Let Φτξ be the ξ

percentage point of the limiting distribution of τt(j). The hypothesis test based on the t-statistic

in (6) enables us to determine whether an observed value of a candidate variable is a good proxy at

a specific time t. For our purposes however, given information up to time T , whatever methods or

procedures we use to select the proxies ought to select whole time series Gj , for which Gjt satisfies

the null hypothesis, ∀t. In this regard, the proxy selection method is based upon the following

statistic:

A(j) =
1

T

T∑

t=1

1(|τt(j)| > Φτξ ). (9)

The A(j) statistic is the actual size of the test (i.e. the probability of Type I error given the sample

size). Since τt(j) is asymptotically standard normal and the test is a two-tailed test, the actual

size, A(j), of the t-test should converge to the nominal size (the desired significance level is 2ξ) as

T →∞. This means that if a candidate variable is a good proxy of the underlying factors of a data

set, the A(j) statistic calculated from its sample time series should approach 2ξ as the sample size

increases. This is the basis on which we use the A(j) statistic to select proxies. It should be noted

that the A(j) statistic does not constitute a test in the strict sense since we do not compare a test

statistic to a critical value to determine whether or not to reject a null hypothesis. Rather, this

procedure gives a ranking of the proxies with the best proxy having an A(j) statistic value closest

to 2ξ. In our implementation, the candidate set of proxies, G′, is the same as the the panel data

set X from which we estimate the factors.

The A(j) statistic discussed above may yield a different set of proxies at each recursive forecast

iteration. This is because the A(j) statistic is composed of some estimated values. In view of

this, Armah and Swanson (2010) develop a version of the A(j) statistic where the sample period

in an empirical analysis is broken into three subsamples (R1, R2, and E, such that T = R1 +R2+
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E). The first subsample, R1, is used to select the initial set of factor proxies. Thereafter, one

observation from R2 is added, and this new larger sample is used to recursively select a second set

of factor proxies. This is continued until the second subsample is exhausted, yielding a sequence

of R2 different vectors of factor proxies. Individual proxies are then ranked according to their

selection frequency, and those occurring the most frequently are selected and fixed for further use

in constructing E ex ante predictions. Loading parameters for the proxies are still re-estimated prior

to the formation of each new recursive prediction although the set of proxies is fixed throughout

the forecast experiment. The advantage to this approach is that noise across the proxy selection

process is potentially suppressed.

3 Empirical Methodology

3.1 Prediction

In our setup, the target variable to be predicted (either output growth or inflation) is defined as

yt. Namely, our objective is to predict the marginal growth rates yt+h = log( Yt+h
Yt+h−1

), where Yt is

the level of the variable of interest. As discussed in the previous subsection, the available data is

split into three subsamples such that T = R1 + R2 + E. Here, E denotes our ex-ante prediction

period, and R = R1 + R2 denotes the number of observations used to estimate factors, and the

sub-samples R1 and R2 are used in the selection of observable factor proxies.

In our prediction experiments, we begin by specifying simple linear prediction models. These

so-called “strawman” models have been found to perform well when used to predict a variety

of macroeconomic variables (see e.g. Swanson and White (1995,1997)), and have the following

functional form:

yt+h =
p1∑

i=1

α′iWt−i+1 +
p2∑

j=1

βjyt−j+1 + εt+h, (10)

where Wt is a vector of observable variables, p1 and p2 are lags selected using the Schwarz infor-

mation criterion (SIC), and h is the prediction horizon. Note that this model nests random walk,

random walk with drift, and AR models, which are other commonly used “strawman” models.

These other strawman models were examined, but they are excluded from further discussion be-

cause their inclusion does not change our findings. The above linear model, where our so-called
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macroeconomic indicators are contained in Wt, is one benchmark against which we compare all

other prediction models. When constructing predictions, this model is estimated recursively.

A second set of models that we examine are factor models of the variety discussed in Section

2.1. Namely, predictions are formed using models of the following variety:

yt+h = α
′Ft +

p∑

j=1

βjyT−j+1 + εt+h (11)

Forecasts using this model are constructed in the following manner. At each recursive iteration,

the panel dataset of stationary variables is standardized to have zero mean and unit variance. The

number of factors and the factors are re-estimated from this stationary panel dataset with unit

variance and zero mean. The factor forecast model is then re-estimated by OLS and the h-step

ahead forecast is constructed. This means that the specification for the factor forecast model can

change at each recursive iteration. The number of lags of the target variable, p, is selected using

the SIC, based on examination of the first subsample of data, R1. One of the main reasons that the

factor model of Stock and Watson (2002a,b) is included as one of the prediction models is because

such models are typically difficult to consistently outperform. The factor model thus serves as a

sort of “credibility check” against which all other models are compared.

Our final group of prediction models are those constructed using observable factor proxies (see

Section 2.3 for complete details on how observable proxies are selected). Unlike the factors in the

factor forecast model, the observable variables in these models (denoted below as Model 2 to Model

8) are kept the same at each recursive iteration, although they are standardized to have zero mean

and unit variance at each recursive iteration.

In summary, the prediction models that we consider include the following:

Factor: ŷt+h = ĉ+ α̂
′F̃t+

∑p
j=1 β̂jyt−j+1: F̃t contains the estimated Stock and Watson diffusion indices.

Model 1: ŷt+h = ĉ+ α̂
′W1t +

∑p
j=1 β̂jyt−j+1: W1t contains the variables that make up the “macroeco-

nomic indicators”.

Model 2: ŷt+h = ĉ + α̂
′W2t +

∑p
j=1 β̂jyt−j+1: Consider the model X̂i = F̂iΩ

′ + e where X̂i ⊂ X is a

specific class of variables. F̂i is made up of the first two principal component factors that underlie X̂i alone.

The classes considered for X̂i are X̂1: CPI; X̂2: Industrial Production; X̂3: Housing; X̂4: Employment;

X̂5: Yields. Each of these five classes contains one of the “macroeconomic indicators”. The smoothed A(j)

statistic is then used to select one observable variable from X that proxies F̂i ∀i. W2t contains these five
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factor proxies in conjunction with the remaining macroeconomic indicators that are not included in the above

classes. Only five classes are considered for X̂i because the other macroeconomic indicators are members of

classes that are too small to meaningfully apply our factor analysis.

Model 3: ŷt+h = ĉ+ α̂
′W3t+

∑p
j=1 β̂jyt−j+1: W3t contains the variables selelcted by the smoothed A(j)

statistic without spreads

Model 4: ŷt+h = ĉ+ α̂
′W4t +

∑p
j=1 β̂jyt−j+1: Consider the model X̂i = F̂iΩ′ + e where X̂i ⊂ X is a

specific class of variables. F̂i is made up of the first two principal component factors that underlie X̂i alone.

The classes considered for X̂i are X̂1: Housing; X̂2: Industrial Production; X̂3: Yields. Each of these three

classes contains one of the “macroeconomic indicators”. The smoothed A(j) statistic is then used to select

two observable variable from X that proxy F̂i ∀i. W4t contains these six factor proxies in conjunction with

the remaining observable variables that are included inW3t but not in the above classes. Only three classes

are considered for X̂i because the other variables are members of classes that are too small to meaningfully

apply our factor analysis.

Model 5: ŷt+h = ĉ+ α̂
′W5t+

∑p
j=1 β̂jyt−j+1: W5t contains a subset of the “macroeconomic indicators”

selected by the smoothed A(j) statistic

Model 6: ŷt+h = ĉ + α̂′W6t +
∑p
j=1 β̂jyt−j+1: Consider the model X̂i = F̂iΩ

′ + e where X̂i ⊂ X is

a specific class of variables. F̂i is made up of the first two principal component factors that underlie X̂i

alone. The classes considered for X̂i are X̂1: Housing Starts; X̂2: Industrial Production. Each of these two

classes contains one of the “macroeconomic indicators”. The smoothed A(j) statistic is then used to select

one observable variable from X that proxies F̂i ∀i. W6t contains these two factor proxies in conjunction

with the remaining observable variables that are not included in W5t. Only five classes are considered for

X̂i because the other variables are members of classes that are too small to meaningfully apply our factor

analysis.

Model 7: ŷt+h = ĉ+ α̂
′W7t+

∑p
j=1 β̂jyt−j+1: W7t contains a subset of the “macroeconomic indicators”

selected by the smoothed A(j) statistic in addition to Money Supply and the 6-month Treasury Bill Yield.

Model 8: ŷt+h = ĉ + α̂′W8t +
∑p
j=1 β̂jyt−j+1: W8t contains the variables in W6t plus Money Supply

and the 6-month Treasury Bill Yield.

Models 1S-8S: ŷt+h = ĉ+ α̂
′WS

nt+
∑p
j=1 β̂jyt−j+1 :WS

nt = (W ′
nt, S

′
t)
′ and St is a vector of spreads listed

in Panel I of Table 1.

Note that in the above models, explanatory variable are denoted asW1t to W8t. The observable

contained in each of W1t to W8t are listed in Table 2.
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Of note is that various classes of variables in the Stock and Watson dataset have aggregates

as well as subaggregates. However, when picking macroeconomic “indicators” one is often given

little guidance as to which variable is suitable. For example, if an indicator is CPI, one is left

with a choice concerning precisely which CPI variable to use. In general, it is not a trivial task to

pick a representative variable from a particular class of variables. Included in our macroeconomic

indicators are CPI, industrial production and housing starts. However, there are at least 9 CPI, 12

industrial production, and 9 housing start variables in our panel dataset. Picking a representative

CPI variable can consequently be tricky if not ad hoc. In specifying our benchmark model (i.e.

Model 1), we subjectively pick variables as default representatives of the associated variable class.

So for example, CPI (all items) is our representative CPI variable. The rationale behind this

is that by construction, the aggregate variable contains information from the subaggregates. An

alternative approach could be to use the smoothed A(j) statistic on a specific class of variables.

In this regard, let X̂ ⊂ X where X̂ contains all the relevant aggregate and subaggregate variables

in a particular class like CPI. Therefore, for CPI, X̂ will contain CPI: all items; CPI: apparel

and upkeep; CPI: transportation; CPI: medical care; etc. The first two principal components are

estimated from X̂ and the smoothed A(j) statistic is used to select variables from X that proxies

these two principal components. In this way, we methodically select a representative variable from a

class. The principal components factors estimated from X̂ and the corresponding observable factor

proxies will be called focused factors and focused factor proxies. In the empirical implementation,

although X is the candidate set of proxies, the variable selected by the smoothed A(j) statistic to

proxy the focused principal components factors always ends up being a variable from X̂. Some of

the models have focused factor proxies as regressors, and in these cases we select focused variables

only from classes with more than 10 subaggregates. Given this approach, the classes considered

are CPI, Industrial Production, Housing, Employment and Yields. The Yield class includes the

various interest rates and spreads.

From the above discussion, it follows that Model 1 represents our linear benchmark model, where

W1t contains the macroeconomic indicators as listed in Panel A of Table 1. Model 3 is the same

model specified for Model 1 except that W3t contains the factor proxies selected by the smoothed

A(j) statistic. In Model 5, W5t contains a subset of the macroeconomic indicators selected by the

smoothed A(j) statistic (i.e. macroeconomic indicators that were selected as factor proxies). W7t

in Model 7 contains the same variables as W5t with the explicit addition of the Money Supply
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(M2) and the Yield on the 6-month Treasury Bill. All even numbered models, Wnt (n = 2, 4, 6, 8)

contain the variables in the corresponding previous models with the relevant ones replaced by

variables selected using our “focused principal components” approach which is discussed above. In

Models 1S-8S, the corresponding variables in Wnt have been augmented with the spreads in Panel

I of Table 1. Figure 1 depicts various spreads, including those listed in Panel I of Table 1 that

are “selected” using our observable factor proxy approach (see Panel 1 of the figure), as well as

standard yield spreads often used in the empirical macroeconomics literature (see Panel 2 of Figure

1). Of note is that the dynamic behavior of the preads differs markedly when comparing the two

panels of plots.

3.2 Predictive Evaluation

The test statistic used for all forecast evaluation is the t-statistic for equal forecast accuracy dis-

cussed in Diebold and Mariano (1995) and West (1996), under quadratic loss. Note that because

we use the same loss function both in- and out-of-sample, parameter estimation error vanishes as-

ymptotically, and the simpler DM version of the test can be used. As discussed above, the sample

is divided into two sub-samples R and E such that T = R+E and R = R1 +R2. The sub-sample

used to initially estimate the models spans 1 to R. The number of out-of-sample observations as

well as the number of h-step ahead predictions span R+ 1 to R+E − h, for a total of E − h pre-

dictions. Forecasts for both null and alternative models are made recursively using least squares.

In the context of Diebold and Mariano (DM: 1995), let ε̂a,t+h = yt+h− α̂′aWa,t+
p∑
j=1
β̂a,jyt−j+1 and

ε̂b,t+h = yt+h − α̂′bWb,t +
p∑
j=1
β̂b,jyt−j+1, then the sample mean square forecast error is defined to

be: MSFE = 1
E−h

T−h∑
t=R+1

ε̂2t . The null hypothesis of equal forecast accuracy from two models is

given by H0 : E[dt] = 0, where dt = ε
2
a,t − ε2

b,t is the loss differential and d =
1

E−h

T−h∑
t=R+1

d̂t, where

d̂t = ε̂
2
a,t − ε̂2

b,t. The DM test statistic is then:

DM =
1

E−h

∑T−h
t=R+1 d̂t√

1
E−h

∑j

j=−j

∑T−h
t=R+1+jK( jM )(d̂t − d)(d̂t−j − d)

,

where K( jM ) is the kernel with bandwidth M . For non-nested models of the sort that arise when

comparing our alternative predictive models, the distribution of this statistic is standard normal,

but this is not the case for nested models. Under the null hypothesis, population forecast errors of
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the restricted and alternative models are identical, implying dt = 0, ∀t, in population. This means

that the population variance of dt+h is equal to 0, and standard inference does not apply. One can,

however, use the results of Clark and McCracken (2005) and McCracken (2007) in order to obtain

valid critical values in this case.

4 Data

The dataset used in this paper is that used in Stock and Watson (SW: 2005). The SW dataset

contains 132 monthly time series for the United States from 1960:1 to 2003:12. A updated version

of this dataset is examined by Stock and Watson (2006) using data aggregated to a quarterly

frequency, and ending in 2006:4. In this paper, however, we only report results based on analysis

of the monthly dataset, given that the reporting frequency of the variables that we use as our

macroeconomic “indicators” is monthly. Moreover, by using data only up until 2004, we avoid

tricky issues associated with data revision that may impact upon our empirical findings (see Diebold

and Rudebusch (1991) and Croushore and Stark (2001,2003) for further discussion). Results based

on our analysis of the quartely dataset are available upon request from the authors.

The time series in the dataset were obtained from the Global Insights Basic Economic Data-

base or The Conference Board’s Indicators Database (TCB). Other series were calculated by Stock

and Watson with prior information from the two databases mentioned above. The variables were

selected from the following categories of macroeconomic time series: real output and income; em-

ployment, manufacturing and trade sales; consumption; housing starts and sales; real inventories

and inventory-sales ratios; orders and unfilled orders; stock price indices; exchange rates; interest

rate spreads; money and credit quantity aggregates; and price indexes.

The variables that we initially chose to comprise our group of our macroeconomic “indicators”

were real gross domestic product (GDP); the consumer price index (CPI); nonfarm payroll em-

ployment; housing starts; industrial production/capacity utilization; retail sales, business sales and

inventories; advanced durable goods shipments, new orders and unfilled orders; lightweight vehicle

sales; the yield on the 10-year treasury bond; the S&P 500 stock price index; and M2. The choice of

these variables was motivated by examination of a list of “policy-relevant” variables appearing on

the New York Federal Reserve Bank website (http://www.newyorkfed.org/education/bythe.html).

However, data for two of these variables (business sales and inventories as well as advanced durable
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goods shipments, new orders and unfilled orders), is available only from 2002. In light of this fact,

these two “indicators” are replaced with manufacturing and trade sales as well as manufacturing

and trade inventories. In addition, we use industrial production: durable goods materials as a

replacement for advanced durable goods shipments, new orders and unfilled orders. Finally, data

for lightweight vehicle sales is only available beginning in 1976:1, and hence all other variables were

truncated at this date in order to obtain a balanced panel dataset.

The SW dataset includes spreads constructed as the difference between the yields on the follow-

ing bonds and the effective federal funds rate: commercial paper; 3-month, 6-month, 1-year, 5-year,

and 10-year Treasury bills/bond; and Moody’s Aaa and Baa corporate bond yields. We addition-

ally considered the difference between the following yield variables and the 3-month Treasury bill

yield: 6-month, 1-year, 5-year, and 10-year Treasury bills/bond yields; and Moody’s Aaa and Baa

corporate bond yields. Finally, we examined a reverse yield gap spread defined as the difference

between the yield on the 10-year Treasury bond and the S&P 500 common stock dividend yield.

In summary, the final dataset used in this paper includes a total of 139 variables.

Note that, given the above discussion, one of the traditional spreads considered in this paper is

the slope of the yield curve. This is defined as the difference between a long-term and a short-term

interest rate. Under some restrictive assumptions such as constant real interest rates over time,

perfect substitutability between assets of different maturities and that the expectations theory

of the term structure holds, the slope of the yield curve will provide an exact measure of the

market’s expected inflation path (see Davis and Fagan (1997)). Another variety of spread that

we consider is the reverse yield gap which is defined as the difference between yields on long-term

or short-term debt instruments and the dividend yield on domestic equity. Debt securities issued

by the government are typically regarded as risk-free assets with guaranteed coupon payments

whiles equities are risky assets with non-guaranteed dividend payments. The reverse yield gap

consequently reflects the premium that an investor is likely to demand to compensate for the

extra risk (Nobili (2005)). Thus, increases in this spread will predict downturns in economic

activity. Furthermore, the reverse yield gap is expected to be positively related to inflation because

a rising spread will accompany a tightening of monetary policy in response to increased inflationary

pressures (Nobili (2005)).

All variables that are not already stationary (based upon examination of the properties of

the variables using augmented Dickey-Fuller tests), where differenced or log differenced prior to
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prediction model estimation and forecast construction.

5 Empirical Results

5.1 Observable Factor Proxies

In our empirical implementation of the diffusion index methodology discussed in Section 2.3, the

factor proxies selected by the smoothed A(j) statistic are listed in Panel C and Panel I of Table 1.

Our macroeconomic indicators are listed in Panel A of Table 1. Examination of the two groups of

observable variables indicates a strong resemblance. With the exception of the three spread variables

listed in Panel I of Table 1, most of the other variables from the two groups are either identical or can

be viewed as belonging to similar classes of variables. This result suggests that the macroeconomic

indicators are suitable proxies to the underlying factors describing the dynamics of our entire

dataset. Moreover, we shall see below that various subsets of these macroeconomic indicators

additionally outperform diffusion indices when used to predict output growth and inflation at

various forecast horizons.

It is noteworthy that the only observable factor proxies selected that are not in our set of

macroeconomic indicators are the three spread variables defined as the difference between the

federal funds rate and yields on either the 5-year treasury bond, the 10-year treasury bond, or

Moody’s Aaa corporate bond yield. In general, yield spread variables have played an important

role in empirical research in recent years, although these particular spreads are not always those

that have been found to be useful, particularly when the objective has been to construct the most

accurate prediction models. More specifically, note that there is a vast literature on the predictive

content of spreads for inflation and output growth. The fundamental idea underlying this body

of literature is that financial market participants are forward-looking. Asset prices and yields

consequently embody useful information such as expectations of future economic activity. Spreads

are also quite reliable as real-time indicators, as they are not subject to revision. The usefulness

of spreads for forecasting output growth and inflation in the U.S. has previously been studied in

Laurent (1988, 1989); Harvey (1988, 1989); Stock and Watson (1989); Mishkin (1990a,b, 1991);

Estrella and Hardouvelis (1991); Jorion and Mishkin (1991); Friedman and Kuttner (1991). Other

researchers who have also considered the predictive content of spreads in the U.K., some European

countries and other OECD countries include Davis (1993); Davis and Henry (1994); Plosser and
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Rouwenhorst (1994); Davis, Henry and Pesaran (1994); Bonser-Neal and Morley (1997); Kozicki

(1997); Gerlach (1997); Davis and Fagan (1997); Estrella and Mishkin (1997). In order to observe

the difference between the yield spreads that were selected as observable factor proxies and other

spreads often examined in the literature, please refer to Figure 1. Recall from Section 3.1 that

Figure 1 contains plots of the three yields spreads selected as proxies, as well as a yield curve slope

(defined to be the difference between the 10-year treasury bond and the 3-month treasury bill yield)

and the reverse yield gap.

5.2 Prediction Experiments

The variables that we predict in our experiments are output growth, which is proxied for by the

growth rate of industrial production (total index), and the growth rate in CPI (all items). The

prediction models used in our experiments are summarized in Table 2 and in the Section 3.1. All

prediction models are estimated recursively using least squares, and the ex-ante prediction period

is 1994:09-2003:12. The choice of ex-ante prediction period was set arbitrarily by partitioning the

dataset into three approximately equal sub-samples, the first corresponding to R1, the second to

R2, and the third to E, as discussed in Section 3.1.

The main results of our prediction experiments are collected in Tables 3 and 4. The first column

in both tables contains the mnemonic used to denote the prediction model (see Table 2 for further

details). Numerical entries in the second column are MSFEs. Those in bold correspond to models

with lower MSFEs, relative to Model 1. Boxed MSFEs represent the lowest MSFE amongst all

models considered, for a particular prediction horizon, h = 1, 3, or 12. In addition to Model 1,

the other key “benchmark” model against which the out-of-sample forecast performance of the

alternative models is compared is the diffusion index model. Numerical entries in the third column

of the tables report DM test statistic, where the benchmark model is the diffusion index model.

Since the factor model and all the alternative models are non-nested, these DM test statistics have

a standard normal limiting distribution (see Section 3.2 for further discussion). Negative entries

denote cases for which the benchmark model has a lower point MSFE than the alternative model,

and positive entries denote the converse. Starred entires denote models where the null of equal

predictive accuracy is rejected at 20%(∗), 10%(∗∗) and 5%(∗∗∗) significance levels, respectively.

Numerical entries in the next column in the tables are DM test statistics for cases where the

benchmark model is Model 1. The final column of entries in the tables are DM test statistics where
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a model with spreads is compared against one without spreads. Thus, for example, the first entry

in Panel A of Table 3 reports the DM test statistic for the case where the benchmark model is

Model 1, and the alternative model is Model 1 with three spread variables added as additional

regressors. As discussed below, the three spread variables that we use in these tests correpond to

the three spread variables chosen as observable proxies for the factors using our diffusion index

model construction methodology.

In Table 3, where the target variable is CPI inflation, the SW factor model significantly out-

performs all alternative models at the 3 step horizon. On the other hand, the evidence is more

mixed at other forecast horizons, as the null hypothesis of equal predictive accuracy between the

factor model and the alternative models is never rejected. Moreover, at the 1 and 12 month forecast

horizon, the point MSFE of SW model is higher than that associated with a variety of alternative

models. Thus, most of the alternative models do indeed provide reduced MSFEs, relative to the

factor model. However, this reduction is generally not enough to cause a rejection of the null

hypothesis of equal predictive accuracy.

Turning to Table 4, where results from our output growth prediction experiments are summa-

rized, note that the factor model is often “worse” than various competitor models, when comparing

point MSFEs, at all horizons; and is in various cases significantly “worse”. Moreover, results

increasingly favor our alternative models, as the forecast horizon is increased.

Summarizing the above results, we have evidence suggesting that many of our alternative models

have lower MSFEs than our benchmark factor model, in 5 of 6 variable/horizon combinations.

Moreover, the lowest-MSFE model is a model with our new spread variables in 4 of 6 combinations.

Given that one of the remaining 2 combinations is one for which the factor model is MSFE-best, we

have rather surprising evidence of the usefulness of our three spread variables; particularly when

one considers the fact that some of the alternative models are quite parsimonious, and that the

inclusion of three new spread variables to them adds substantially to the parameter estimation error

associated with estimation of the models. Finally, the specification of models that provide superior

predictions and the specification of models that are useful for policy monitoring are usually one and

the same, in the sense that models with our macroeconomic “indicators” are generally MSFE-best.

Turning now to a discussion of our yield spread-type observable factor proxies variables, note

that we have already pointed out that the lowest-MSFE model is a model with our new spread

variables in 4 of 6 combinations. However, it should also be noted that evidence in favor of the
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spread-augmented models is weakest at our shorter forecast horizons, when considering inflation.

This could be because at the shorter horizons, the macroeconomic indicators already encapsulate

much of the information contained in spreads. For longer horizons, inflation prediction is improved

by including spreads, though. In particular, Model 1S strongly and significantly outperforms Model

1 at the 12-month ahead horizon (the DM test statistic is 2.02), suggesting that spreads have

marginal predictive content for inflation at longer horizons. The story is somewhat similar when

considering output growth - spread-augmented models are MSFE-best at a 10% significance level

in many cases; and in cases where the point MSFEs associated with spread augmented models

are larger, there is usually nothing to choose between the models, as the null hypothesis of equal

predictive accuracy fails to reject. Thus, we have evidence that our macroeconomic indicators can

usefully be augmented by including our three yield spread-type observable factor proxy variables.

Recall that parsimonious models may outperform larger models simply because parsimonious

models set to zero coefficients that are truly zero (or close to zero) in the population. By setting

these coefficients to zero instead of estimating them, the parsimonious models gain efficiency, and

thereby benefit from increased predictive accuracy. Evidence in support of this point is provided in

Table 3, where Models 5 and 7, which are restricted versions of Model 1, both have lower MSFEs,

relative to Model 1, at all forecast horizons. Also, in Table 4, Models 5 and 7 outperform Model 1

half the time, with the more parsimonious models outperforming Model 1 at longer horizons. On

the other hand, setting the coefficients of variables with “strong” predictive content for the target

variable to zero simply to deliver parsimony can clearly be costly. Tables 3 and 4 illustrate this

point. The “spread augmented” models, which are by construction less parsimonious than their

counterparts not containing spreads, yield improved predictions for a variety of models and forecast

horizons. In particular, for inflation, prediction models with spreads outperform models without

spreads at the 1-month ahead horizon around half the time, and at 3- and 12-month ahead horizons

in virtually all cases, based on point MSFE comparisons. Moreover, at the 12-month horizon, most

of the prediction models including spreads are also significantly better. For output growth, models

with spreads outperform those without spreads around 90% of the time at the 1-month ahead

horizon, but add little when considering longer horizons, based on point-MSFE comparison. These

results constitute further evidence in favor of the marginal predictive content of our spread proxies

variables.

In Panel 1 of Figure 2, note that observed CPI inflation is very volatile between September
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1999 and September 2002, but relatively calmer in years prior to September 1999. Interestingly,

the MSFEs of Models 1 and 1S are also almost identical in the relatively calmer period prior

to September 1999. However, as illustrated in Panel 2 of Figure 2, the MSFE of Model 1S is

substantially lower than that for Model 1 during the high volatility period between September

1999 and September 2002. These observations suggest that our macroeconomic indicators (without

spreads) perform best when forecasting inflation in non-volatile time periods. On the other hand,

the forecast performance of the indicators can be improved by including spreads when forecasting

inflation in times of high volatility. Although the addition of spreads significantly improves the

forecast performance of the macroeconomic indicators when predicting inflation in this case, there

is little difference between the MSFEs of Models 1 and 1S when forecasting output growth (see

Panel 3 of Figure 2).

Finally, notice that for both inflation and output, the lowest MSFE occurs for one of our

even numbered models, at all forecast horizons. As discussed in Section 3.1, all even numbered

models have variables selected from their respective classes using the smoothed A(j) statistic. One

interpretation of this result is that although aggregate variables such as those used in our benchmark

Model 1 by design contain some information from all of the members in a class, they might not

necessarily be “optimally” representative of that class, at least when it comes to prediction. Rather,

we find that a variety of subaggregates chosen using the smoothed A(j) statistic have “better”

predictive content. This in turn suggests that one direction for future research is the inclusion of

multiple members of particular classes in our prediction models.

6 Concluding Remarks

In order to obtain early indication of the impact of current monetary policy, policy makers mon-

itor select financial and macroeconomic variables. Likewise, many forecasters do the same, using

revisions and fresh information on select variables to update their models and predictions of key

macroeconomic variables. We lend credence to the use of such judiciously chosen macroeconomic

“indicators” by establishing that a set of variables that are likely to be related closely to those

used by federal and private agencies are largely the same as those variables that proxy common

factors constructed via analysis of a largescale macroeconomic dataset using the diffusion index

methodology of Stock and Watson (2002a,b). Out-of-sample forecast exercises further suggest that
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augmenting the particular set of macroeconomic indicators that we consider with yield spreads is

in some cases useful when forecasting inflation and output growth. The particular spreads that

we find to be most helpful are constructed as the difference between short or long term debt in-

struments and the federal funds rate. Interestingly, spreads constructed as yield curve slopes and

reverse yield gaps are not found to provide additional marginal predictive content. Finally, we find

that our initial set of macroeconomic indicators performs best when forecasting inflation in non-

volatile time periods, while the forecast performance of the indicators is most clearly improved by

including spreads when forecasting inflation in times of high volatility.
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Table 1: Predictors Used in Empirical Experiments∗

Regressors Stationarity Transformtion

Panel A: Model 1 (W1t)

Consumer Price Index: all items ∆ log

Nonfarm Payroll Employment: total private ∆ log

Housing Starts: total farm and nonfarm log

Industrial Production Index: total index ∆ log

Capacity Utilization ∆levels

Retail Sales of Stores ∆ log

Manufacturing and Trade Sales ∆ log

Manufacturing and Trade Inventories ∆ log

Industrial Production Index: durable goods materials ∆ log

Lightweight Vehicle Sales ∆ log

Yield on 10-year Treasury Bond ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Money Supply - M2 ∆ log

Panel B: Model 2 (W2t)

Consumer Price Index: apparel and upkeep ∆ log

Nonfarm Payroll Employment: goods producing ∆ log

Housing Starts: northeast log

Industrial Production Index: manufacturing ∆ log

Capacity Utilization ∆levels

Retail Sales of Stores ∆ log

Manufacturing and Trade Sales ∆ log

Manufacturing and Trade Inventories ∆ log

Industrial Production Index: durable goods materials ∆ log

Lightweight Vehicle Sales ∆ log

Yield on 6-month Treasury Bill ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Money Supply - M2 ∆ log

Panel C: Model 3 (W3t)

Housing Starts: total farm and nonfarm log

Housing Authorized: total new private housing units log

Industrial Production Index: total index ∆ log

Industrial Production Index: products, total ∆ log

Capacity Utilization ∆levels

Yield on 6-month Treasury Bill ∆levels

Yield on 1-year Treasury Bond ∆levels

S&P 500 Stock Price Index: Composite ∆ log

S&P 500 Stock Price Index: Industrials ∆ log

S&P 500 Stock Price Index: Dividend Yield ∆levels
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Table 1 (cont.)∗

Regressors Stationarity Transformtion

Panel D: Model 4 (W4t)

Housing Starts: northeast log

Housing Authorized by Building Permits: northeast log

Industrial Production Index: manufacturing ∆ log

Industrial Production Index: nondurable consumer goods ∆ log

Capacity Utilization ∆levels

Yield on 3-month Treasury Bill ∆levels

Yield on 6-month Treasury Bill ∆levels

Yield on 10-year Treasury Bond ∆levels

S&P 500 Stock Price Index: Composite ∆ log

S&P 500 Stock Price Index: Industrials ∆ log

Panel E: Model 5 (W5t)

Housing Starts: total farm and nonfarm log

Industrial Production Index: total index ∆ log

Capacity Utilization ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Panel F: Model 6 (W6t)

Housing Starts: northeast log

Industrial Production Index: manufacturing ∆ log

Capacity Utilization ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Panel G: Model 7 (W7t)

Housing Starts: total farm and nonfarm log

Industrial Production Index: total index ∆ log

Capacity Utilization ∆levels

Yield on 6-month Treasury Bill ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Money Supply - M2 ∆ log

Panel H: Model 8 (W8t)

Housing Starts: northeast log

Industrial Production Index: manufacturing ∆ log

Capacity Utilization ∆levels

Yield on 6-month Treasury Bill ∆levels

S&P 500 Stock Price Index: Composite ∆ log

Money Supply - M2 ∆ log

Panel I: Spreads

Yield on 5-year Treasury Bond − Federal Funds Rate levels

Yield on 10-year Treasury Bond − Federal Funds Rate levels

Yield on Moody’s Aaa Corporate − Federal Funds Rate levels

Panel J: Class Representatives Selected by the Smoothed A(j) Statistic

Housing Starts: Northeast (Housing Class) log

CPI: Apparel and Upkeep (CPI Class) ∆ log

Industrial Production: Manufacturing (Industrial Production Class) ∆ log

Yield on 6-month Treasury Bill (Yield Class) ∆levels

Nonfarm Payroll Employment: goods producing (Employment Class) ∆ log

∗ Notes: The second column under “Stationarity Transformation” indicates the data transformation that was performed to

induce stationarity, levels means no transformation; ∆levels denotes first difference of the levels; log denotes the natural log

function; and ∆ log denotes first log differences.
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Table 2: Prediction Models

Model Specification

Factor ŷt+h = ĉ+ α̂′F̃t +
∑p

j=1
β̂jyt−j+1

Model 1 ŷt+h = ĉ+ α̂′W1t +
∑p

j=1
β̂jyt−j+1

Model 2 ŷt+h = ĉ+ α̂′W2t +
∑p

j=1
β̂jyt−j+1

Model 3 ŷt+h = ĉ+ α̂′W3t +
∑p

j=1
β̂jyt−j+1

Model 4 ŷt+h = ĉ+ α̂′W4t +
∑p

j=1
β̂jyt−j+1

Model 5 ŷt+h = ĉ+ α̂′W5t +
∑p

j=1
β̂jyt−j+1

Model 6 ŷt+h = ĉ+ α̂′W6t +
∑p

j=1
β̂jyt−j+1

Model 7 ŷt+h = ĉ+ α̂′W7t +
∑p

j=1
β̂jyt−j+1

Model 8 ŷt+h = ĉ+ α̂′W8t +
∑p

j=1
β̂jyt−j+1

∗ Notes: See discussion in Section 3.1 for complete details on the models given in the table. The
Wt variables in the models contain various regressors, as outlined in Table 1.
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Table 3: Forecasting Experiment Results for CPI Inflation∗

Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel A: One-Month Ahead Forecast

Factor 3.66

Model 1 3.93 -0.98

Model 1S 3.96 -0.81 -0.08 -0.08

Model 2 3.96 -0.96 -0.21

Model 2S 3.88 -0.59 0.18 0.26

Model 3 3.51 0.53 2.39

Model 3S 3.60 0.17 1.06 -0.32

Model 4 3.60 0.23 2.23

Model 4S 3.49 0.51 1.44 0.36

Model 5 3.61 0.20 2.28

Model 5S 3.68 -0.06 0.76 -0.20

Model 6 3.71 -0.18 1.59

Model 6S 3.63 0.10 0.91 0.23

Model 7 3.61 0.19 2.27

Model 7S 3.62 0.12 1.00 -0.05

Model 8 3.66 0.01 1.92

Model 8S 3.55 0.34 1.33 0.34

Panel B: Three-Month Ahead Forecast

Factor 3.16

Model 1 4.15 -2.79∗∗∗

Model 1S 4.20 -3.39∗∗∗ -0.21 -0.21

Model 2 4.34 -3.35∗∗∗ -0.85

Model 2S 4.30 -3.40∗∗∗ -0.44 0.21

Model 3 3.81 -2.53∗∗∗ 1.46

Model 3S 3.85 -3.19∗∗∗ 0.90 -0.21

Model 4 4.54 -4.28∗∗∗ -1.21

Model 4S 4.45 -4.15∗∗∗ -0.72 0.39

Model 5 3.77 -2.30∗∗∗ 2.07

Model 5S 3.76 -2.77∗∗∗ 1.11 0.02

Model 6 4.35 -3.95∗∗∗ -0.67

Model 6S 4.31 -3.77∗∗∗ -0.36 0.16

Model 7 4.02 -2.53∗∗∗ 0.91

Model 7S 3.99 -3.08∗∗∗ 0.57 0.14

Model 8 4.41 -3.70∗∗∗ -1.17

Model 8S 4.30 -3.54∗∗∗ -0.41 0.49
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Table 3 (cont.): Forecasting Experiment Results for CPI Inflation∗

Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel C: Twelve-Month Ahead Forecast

Factor 4.57

Model 1 4.71 -0.24

Model 1S 3.93 1.18 2.02 2.02∗∗

Model 2 4.26 0.57 1.81

Model 2S 4.03 1.00 1.38 0.70∗∗

Model 3 4.24 0.58 2.48

Model 3S 3.75 1.51∗ 2.36 1.59∗∗

Model 4 4.00 1.07 2.62

Model 4S 3.78 1.49∗ 1.77 0.67∗∗

Model 5 4.56 0.01 1.12

Model 5S 3.79 1.52∗ 2.29 1.95∗∗

Model 6 3.96 1.15 3.10

Model 6S 3.73 1.55∗ 1.82 0.64∗∗

Model 7 4.60 -0.06 0.82

Model 7S 3.82 1.40 2.15 1.95∗∗

Model 8 3.96 1.11 3.39

Model 8S 3.69 1.56∗ 1.97 0.79∗∗

∗ Notes: The first column in both tables contains the mnemonic used to denote the prediction
model (see Table 2 for further details). Numerical entries in the second column are MSFEs. Those
in bold correspond to models with lower MSFEs, relative to Model 1. Boxed MSFEs represent the
lowest MSFE amongst all models considered, for a particular prediction horizon, h=1,3, or 12. In
addition to Model 1, the other key ”benchmark” model against which the out-of-sample forecast
performance of the alternative models is compared is the diffusion index model. Numerical entries
in the third column of the tables report DM test statistic, where the benchmark model is the
diffusion index model. Since the diffusion index (i.e. the factor model) and all alternative models
are non-nested, these DM test statistics have a standard normal limiting distribution (see Section
3.2 for further discussion). Negative entries denote cases for which the benchmark model has a
lower point MSFE than the alternative model, and positive entries denote the converse. Starred
entires denote models where the null of equal predictive accuracy is rejected at 20%(∗), 10%(∗∗)
and 5%(∗∗∗) significance levels, respectively. Numerical entries in the next column in the tables are
DM test statistics for cases where the benchmark model is Model 1. The final column of entries
in the tables are DM test statistics where a model with spreads is compared against one without
spreads. Thus, for example, the first entry in Panel A of Table 3 reports the DM test statistic for
the case where the benchmark model is Model 1, and the alternative model is Model 1 with three
spread variables added as additional regressors.
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Table 4: Forecasting Experiment Results for Output Growth∗

Model MSFE DM-Test Benchmark
Factor Model 1 No Spread

Panel A: One-Month Ahead Forecast
Factor 2.29
Model 1 2.31 -0.07
Model 1S 2.19 0.38 1.49 1.49∗∗

Model 2 2.31 -0.08 0.00

Model 2S 2.09 1.06 1.02 2.62∗∗

Model 3 2.54 -1.21 -1.24
Model 3S 2.41 -0.58 -0.54 1.92∗∗

Model 4 2.63 -1.66∗∗ -1.40
Model 4S 2.33 -0.17 -0.08 3.04∗∗

Model 5 2.73 -1.89∗∗ -2.04
Model 5S 2.50 -0.98 -1.01 3.86∗∗

Model 6 2.74 -2.21∗∗∗ -1.70
Model 6S 2.58 -1.66∗∗ -0.98 2.11∗∗

Model 7 2.63 -1.55∗ -1.93
Model 7S 2.67 -1.41∗ -2.16 -0.47
Model 8 2.56 -1.49∗ -1.22
Model 8S 2.41 -0.82 -0.46 1.81∗∗

Panel B: Three-Month Ahead Forecast
Factor 2.45
Model 1 2.40 0.27
Model 1S 2.43 0.16 -0.21 -0.21
Model 2 2.36 0.63 0.45
Model 2S 2.45 -0.02 -0.36 -0.99
Model 3 2.44 0.05 -0.24
Model 3S 2.52 -0.33 -0.58 -0.68
Model 4 2.26 1.07 0.77

Model 4S 2.15 1.81∗∗ 1.39 0.87∗∗

Model 5 2.37 0.90 0.24
Model 5S 2.72 -1.43∗ -1.75 -2.32
Model 6 2.31 1.49∗ 0.48
Model 6S 2.50 -0.43 -0.55 -1.45
Model 7 2.56 -0.77 -1.61
Model 7S 2.67 -1.28 -1.87 -0.94
Model 8 2.45 0.04 -0.36
Model 8S 2.50 -0.41 -0.67 -0.58
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Table 4 (cont.): Forecasting Experiment Results for Output Growth∗

Model MSFE DM-Test Benchmark
Factor Model 1 No Spread

Panel C: Twelve-Month Ahead Forecast
Factor 3.44
Model 1 3.07 2.36∗∗∗

Model 1S 3.02 2.52∗∗∗ 0.43 0.43
Model 2 3.07 1.59∗ -0.01
Model 2S 3.06 1.80∗∗ 0.06 0.10
Model 3 2.73 2.36∗∗∗ 1.31
Model 3S 3.17 1.09 -0.45 -2.39
Model 4 2.94 1.58∗ 0.48
Model 4S 3.02 1.70∗∗ 0.23 -0.48
Model 5 2.71 2.47∗∗∗ 1.53
Model 5S 3.03 1.78∗∗ 0.22 -1.74

Model 6 2.70 2.59∗∗∗ 1.65
Model 6S 3.00 1.93∗∗ 0.35 -1.73
Model 7 2.73 2.52∗∗∗ 1.80
Model 7S 2.87 2.45∗∗∗ 1.15 -0.93
Model 8 2.72 2.71∗∗∗ 2.04
Model 8S 2.87 2.53∗∗∗ 1.17 -1.10

∗ Notes: See notes to Table 3.
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Figure 1: Various Yield Spread Variables
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Notes: The yield spreads in Panel 1 are the three spread variables selected as observable factor
proxies, using the methodology discussed in Section 2.3, while those depicted in Panel 2 are standard
measures of the slope of the yield curve and the reverse yield gap.
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Figure 2: Forecasts of CPI Inflation and Output Growth at a 1-Step Ahead Horizon
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Notes: Plots in Panels 1 and 3 depict actual and forecast values of CPI inflation and GDP growth
for the period 1994:9-2003:12, and are all approximately “fully” revised data (see Section 4 for
further details). Correpsonding squared forecast errors are depicted in Panels 2 and 4. See Section
3.1 and 5.2 for further details about the prediction methodology used.
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