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Abstract

In this paper, we empirically assess the predictive accuracy of a large group of models based on the

use of principle components and other shrinkage methods, including Bayesian model averaging and various

bagging, boosting, LASSO and related methods Our results suggest that model averaging does not dominate

other well designed prediction model speci�cation methods, and that using a combination of factor and other

shrinkage methods often yields superior predictions. For example, when using recursive estimation windows,

which dominate other �windowing" approaches in our experiments, prediction models constructed using pure

principal component type models combined with shrinkage methods yield mean square forecast error �best�

models around 70% of the time, when used to predict 11 key macroeconomic indicators at various forecast

horizons. Baseline linear models (which �win�around 5% of the time) and model averaging methods (which

win around 25% of the time) fare substantially worse than our sophisticated nonlinear models. Ancillary

�ndings based on our forecasting experiments underscore the advantages of using recursive estimation strate-

gies, and provide new evidence of the usefulness of yield and yield-spread variables in nonlinear prediction

speci�cation.
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1 Introduction

Technological advances over the last �ve decades have led to impressive gains in not only

computational power, but also in the quantity of available �nancial and macroeconomic data.

Indeed, there has been something of a race going on in recent years, as technology, both

computational and theoretical, has been hard pressed to keep up with the ever increasing

mountain of data available for empirical use. From a computational perspective, this has

helped spur the development of data shrinkage techniques, for example. In economics, one of

the most widely applied of these is di¤usion index methodology. Di¤usion index techniques

o¤er a simple and sensible approach for extracting common factors that underlie the dynamic

evolution of large numbers of variables. To be more speci�c, let Y be a time series vector of

dimension (T � 1) and let X be a time-series predictor matrix of dimension (T �N) ; and

de�ne the following dynamic factor model, where Ft denotes a 1 � r vector of unobserved

common factors that can be extracted from Xt: Namely, let Xt = Ft�
0 + et; where et is an

1 � N vector of disturbances and � is an N � r coe¢ cient matrix. Using common factors

extracted from the above model, we follow Stock and Watson (2002a,b) and Bai and Ng

(2006a) and consider forecasting models of the form:

Yt+h = Wt�W + Ft�F + "t+h; (1)

where h is the forecast horizon, Yt is the scalar valued �target�variable to be forecasted, Wt

is a 1�s vector of observable variables, including lags of Yt, "t is a disturbance term, and the
��s are parameters to be estimated, de�ned conformably. In one of the approaches followed in

this paper, we �rst estimate the unobserved factors, Ft; and then forecast Yt+h using observed

variables and F̂t; where F̂t is an estimator of Ft: Even though factor models are now widely

used, many issues remain outstanding, such as the determination of the number of factors

to be used in subsequent prediction model construction (see e.g. Bai and Ng (2002, 2006b,

2008)). In light of this, and in order to add functional �exibility, we additionally implement

versions of (1) where the numbers and functions of factors to be used is subsequently selected

using a variety of additional shrinkage methods. Various other related methods, including

targeted regressor selection based on shrinkage, are also implemented. In this sense, we

add to the recent work of Stock and Watson (2005a) as well as Bai and Ng (2008a,b), who

survey several methods for shrinkage that are based on factor augmented autoregression

models. Shrinkage methods considered in this paper include bagging, boosting, Bayesian

model averaging, simple model averaging, ridge regression, least angle regression, elastic net
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and the non-negative garotte. We also evaluate various linear models, and hence add to the

recent work of Pesaran et al. (2010), who carry out a broad examination of factor-augmented

vector autoregression models.

In summary, the purpose of this paper is to empirically assess the predictive accuracy of

various linear models; pure principal component type models; principal components models

constructed using subsets of variables selected based on the elastic net and other shrink-

age techniques; principle components models where the factors to be used in prediction are

directly selected using shrinkage methods such as ridge regression and bagging; models con-

structed by directly applying shrinkage methods (other than principle components) to the

data; and a number of model averaging methods. The horse-race that we carry out using

all of the above approaches allows us to provide new evidence on the usefulness of factors

in general as well as on various related issues such as whether model averaging still �wins�

rather ubiquitously.

The variables that we predict include a variety of macroeconomic variables that are useful

for evaluating the state of the economy. More speci�cally, forecasts are constructed for

eleven series, including: the unemployment rate, personal income less transfer payments,

the 10 year Treasury-bond yield, the consumer price index, the producer price index, non-

farm payroll employment, housing starts, industrial production, M2, the S&P 500 index,

and gross domestic product. These variables constitute 11 of the 14 variables (for which long

data samples are available) that the Federal Reserve takes into account, when formulating the

nation�s monetary policy. In particular, as noted in Armah and Swanson (2010b) and on the

Federal Reserve Bank of New York�s website: �In formulating the nation�s monetary policy,

the Federal Reserve considers a number of factors, including the economic and �nancial

indicators which follow, as well as the anecdotal reports compiled in the Beige Book. Real

Gross Domestic Product (GDP); Consumer Price Index (CPI); Nonfarm Payroll Employment

Housing Starts; Industrial Production/Capacity Utilization; Retail Sales; Business Sales and

Inventories; Advance Durable Goods Shipments, New Orders and Un�lled Orders; Lightweight

Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500 Stock Index; M2.�

(see http://www.newyorkfed.org/education/bythe.html).

Our �nding can be summarized as follows. First, as might be expected, for a number

of our target variables, we �nd that various sophisticated models, such as component-wise

boosting, have lower mean square forecast errors (MSFEs) than benchmark linear autore-

gressive forecasting models constructed using only observable variables, hence suggesting

that models that incorporate common factors constructed using di¤usion index methodology
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o¤er a convenient way to �lter the information contained in large-scale economic datasets.

More speci�cally, models constructed using pure principal component type models combined

with shrinkage methods yield MSFE-�best�models around 70% of the time, across multiple

forecast horizons, and for various prediction periods. Moreover, a small subset of combined

factor/shrinkage type models �win� approximately 50% of the time, including c-boosting,

ridge regression, least angle regression, elastic net and the non-negative garotte, with c-

boosting the clear overall �winner�. Baseline linear models (which �win�around 5% of the

time) and model averaging methods (which �win�around 25% of the time) fare substantially

worse than our sophisticated nonlinear models. Ancillary �ndings based on our forecasting

experiments underscore the advantages of using recursive estimation windowing strategies1,

and provide new evidence of the usefulness of yield and yield-spread variables in nonlinear

prediction speci�cation.

Although we leave many important issues to future research, such as the prevalence of

structural breaks other than level shifts, and the use of even more general nonlinear methods

for describing the data series that we examine, we believe that results presented in this paper

add not only to the di¤usion index literature, but also to the extraordinary collection of

papers on forecasting that Clive W.J. Granger wrote during his decades long research career.

Indeed, as we and others have said many times, we believe that Clive W.J. Granger is in many

respects the father of time series forecasting, and we salute his innumerable contributions in

areas from predictive accuracy testing, model selection analysis, and forecast combination, to

forecast loss function analysis, forecasting using nonstationary data, and nonlinear forecasting

model speci�cation.

The rest of the paper is organized as follows. In the next section we provide a brief survey

of dynamic factor models. In Section 3, we survey the robust shrinkage estimation methods

used in our prediction experiments. Data, forecasting methods, and baseline forecasting

models are discussed in Section 4, and empirical results are presented in Section 5. Concluding

remarks are given in Section 6.

2 Di¤usion Index Models

Recent forecasting studies using large-scale datasets and pseudo out-of-sample forecasting

include: Artis et al. (2002), Boivin and Ng (2005, 2006), Forni et al. (2005), and Stock and

1For further discussion of estimation windows and the related issue of structural breaks, see Pesaran and
Timmermann (2007).
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Watson (1999, 2002, 2005a,b, 2006). Stock and Watson (2006) discuss in some detail the

literature on the use of di¤usion indices for forecasting. In the following brief discussion of

di¤usion index methodology, we follow Stock and Watson (2002).

2.1 Factor Models: Basic Framework

Let Xtj be the observed datum for the j�th cross-sectional unit at time t, for t = 1; :::; T

and j = 1; :::; N: Recall that we shall consider the following model:

Xtj = Ft�
0
j + etj; (2)

where Ft is a 1 � r vector of common factors, �j is an 1 �r vector of factor loadings
associated with Ft, and etj is the idiosyncratic component of Xtj. The product Ft�0j is called

the common component of Xtj. This is the dimension reducing factor representation of the

data. Many economic analyses �t naturally into the above framework. For example, Stock

and Watson (1999) consider in�ation forecasting with di¤usion indices constructed from a

large number of macroeconomic variables. Recall also that our basic forecasting equation is:

Yt+h = Wt�W + Ft�F + "t+h; (3)

where h is the forecast horizon andWt is a 1�s vector of observed variables, including, among
others, lags of Yt. Following Bai and Ng (2002), the whole panel of data X = (X1; :::; XN)

can be represented as (2). Connor and Korajczyk (1986, 1988, 1993) note that the factors

can be consistently estimated by principal components as N ! 1; even if etj is weakly

cross-sectionally correlated. Similarly, Forni et al. (2005) and Stock and Watson (2002)

discuss consistent estimation of the factors when N; T ! 1: In a predictive context, Ding

and Hwang (1999) analyze the properties of forecasts constructed from principal components

when N and T are large. They perform their analysis under the assumption that the error

processes fetj; "t+hg are cross-sectionally and serially iid We work with high-dimensional
factor models that allow both N and T to tend to in�nity, and in which etj may be serially

and cross-sectionally correlated so that the covariance matrix of et = (et1; :::; etN) does not

have to be a diagonal matrix. We will also assume fFtg and fetjg are two groups of mutually
independent stochastic variables. Furthermore, it is well known that if � = (�1; :::;�N)

0 for

Ft�
0 = FtQQ

�1�0 , a normalization is needed in order to uniquely de�ne the factors, where

Q is a nonsingular matrix. Assuming that (�0�=N) ! Ir, we restrict Q to be orthonormal.

This assumption, together with others noted in Stock and Watson (2002) and Bai and Ng
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(2002), enables us to identify the factors up to a change of sign and consistently estimate

them up to an orthonormal transformation.

Forecasts of Yt+h based on (3) involve a two step procedure because both the regressors

and coe¢ cients in the forecasting equations are unknown. The data Xt are �rst used to

estimate the factors, F̂t; by means of principal components. With the estimated factors in

hand, we obtain the estimators �̂F and �̂W by regressing Yt+h on F̂t and Wt. Of note is that

if
p
T=N ! 0, then the generated regressor problem does not arise, in the sense that least

squares estimates of �̂F and �̂W are
p
T consistent and asymptotically normal (see Bai and

Ng (2008)). In this paper, we try di¤erent methods for estimating �̂F and then compare the

predictive accuracy of the resultant forecasting models.2

2.2 Factor Models: Estimation

Before implementing principal components analysis in the context of factor models, there

remains the question of how many components to use. Bai and Ng (2002) provide one

solution to the problem of choosing the number of factors. They establish convergence rates

for factor estimates under consistent estimation of the number of factors, r; and propose

panel criterion to consistently estimate the number of factors. Begin with an arbitrary

number r (< min [N; T ]) and let � and F be the coe¢ cient vector and r factors included in

the estimation via solving (2). Let F be a matrix of r factors and

V (r; F ) = min
�

1

NT

TP
t=1

NP
j=1

�
Xtj � Ft�

0
j

�2
(4)

be the sum of squared residuals from regression of Xj on the r factors for all j. Then we

can estimate number of factors, r, can be determined using loss function V (r; F )+kg (N; T )

where g (N; T ) is the penalty function: Also, without loss of generality, we can set

V
�
r; F̂

�
= min

�

1

NT

TP
t=1

NP
j=1

�
Xtj � F̂t�

0
j

�2
(5)

Along these lines Bai and Ng (2002) de�ne selection criteria of the form PC (r) = V
�
r; F̂

�
+

rh (N; T ) ; where h (�) is a penalty function. In this paper, the following version is used (for
2We refer the reader to Stock and Watson (1999, 2002, 2005a,b) and Bai and Ng (2002, 2008, 2009) for a

detailed explanation of this procedure, and to Connor and Korajczyk (1986, 1988, 1993), Forni et al. (2005)
and Armah and Swanson (2010a) for further detailed discussion of generic di¤usion models.
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discussion, see Bai and Ng (2002) and Armah and Swanson (2010a)):

SIC(r) = V
�
r; F̂

�
+ r�̂2

�
(N + T � r) ln (NT )

NT

�
: (6)

Our consistent estimate of the true number of factors is thus r̂ = arg min
0�r�rmax

SIC(r): We

use this criteria for choosing the number of factors in the sequel, in cases where factors are

included in our prediction models.

3 Robust Estimation Techniques

We consider a variety of �robust�estimation techniques, including bagging, boosting, ridge

regression, least angle regression, elastic net, non-negative garotte and Bayesian model aver-

aging. In the following discussion, we brie�y summarize some of the key literature on these

methods.

Bagging, which was introduced by Breiman (1996), is a machine based learning algorithm

whereby outputs from di¤erent predictors are combined in order to improve overall forecasting

accuracy. Bühlmann and Yu (2002) use bagging in order to improve forecast accuracy when

data are iid:. Inoue and Kilian (2005) and Stock and Watson (2005a) extend bagging to

time series models. Stock and Watson (2005a) consider �bagging�as a form of shrinkage,

when constructing prediction models. In this paper, we use the same algorithm that they

do when constructing bagging estimators. This allows us to avoid time intensive bootstrap

computation done elsewhere in the bagging literature. Boosting, a close relative of bagging, is

another statistical learning algorithm, and was originally designed for classi�cation problems

in the context of Probability Approximate Correct (PAC) learning (see Schapire (1990)) and

is implemented in Freund and Schapire (1997) using the algorithm called �AdaBoost.M1�.

Hastie et al. (2001) apply it to classi�cation, and argue that �boosting� is one of the most

powerful learning algorithms currently available. The method has been extended to regression

problems in Ridgeway et al. (1999) and Shrestha and Solomatine (2006). In the economics

literature, Bai and Ng (2009) use a boosting for selecting the predictors in factor augmented

autoregressions. We implement a boosting algorithm that mirrors that used by these authors.

The �least absolute shrinkage and selection operator�(LASSO) was introduced by Tibshi-

rani (1996), and is another attractive technique for variable selection using high-dimensional

datasets, especially when N is greater than T . One version of the LASSO, �Least Angle Re-

gression�(LARs), is introduced in Efron et al. (2004), and is a method for choosing a linear
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model using the same set of data as that used to evaluate and implement the model. LARs

is based on a well known model-selection approach known as �forward-selection�, which has

been extensively used to examine cross-sectional data (for further details, see Efron et al.

(2004)). Bai and Ng (2008) show how to apply the LARs and LASSO methods in the context

of time series data, and Gelper and Croux (2008) extend Bai and Ng (2008)�s work to time

series forecasting with many predictors. We implement Gelper and Croux (2008)�s algorithm

when constructing the LARs estimator. A related method is the so-called �Elastic Net�,

proposed by Zou and Hastie (2005), which is similar to the LASSO, as it simultaneously

carries out automatic variable selection and continuous shrinkage. Its name comes from the

notion that it is similar in structure to a stretchable �shing net that retains �all the big �sh�.

LARs-Elastic Net (LARs-EN) is proposed by Zou and Hastie (2005) for computing entire

elastic net regularization paths using only a single least squares model, for the case where

the number of variables is greater than the number of observations. Bai and Ng (2008) apply

the elastic net method to time series using the approach of Zou and Hastie (2005). We also

follow their approach when implementing the elastic net.

Another method that we consider is the so-called, �non-negative garotte�, originally in-

troduced by Breiman (1995). This method is a scaled version of the least square estimator

with shrinkage factors. Yuan and Lin (2007) develop an e¢ cient garrotte algorithm and

prove consistency in variable selection. As far as we know, this method has previously not

been used in the econometrics literature. We follow Yuan and Lin (2007) and apply it to

time series forecasting. Yet another method that we consider is ridge regression, which is a

well known linear regression shrinkage method which modi�es sum of square residual compu-

tations to include a penalty for inclusion of larger numbers of parameters. Ridge regression

has been used widely, and hence we omit discussion of further details in the sequel.

Finally, we consider Bayesian model averaging (henceforth, BMA), as it is one of the most

attractive methods of model selection currently available (see Fernandez et al. (2001b), Koop

and Potter (2004) and Ravazzolo et al. (2008)). The concept of Bayesian model averaging

can be described with simple probability rules. If we consider R di¤erent models, each model

has a parameter vector and is represented by its prior probability, likelihood function and

posterior probability. Given this information, using Bayesian inference, we can obtain model

averaging weights based on the posterior probabilities of the alternative models. Koop and

Potter (2004) consider BMA in the context of many predictors and evaluate its performance.

We follow their approach.

The following sub-sections provide summary details on the implementation of the above
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methods in contexts where in a �rst step we estimate factors using the approach discussed

above, while in a second step we select factor weights using a shrinkage method. Approaches

in which we �rst directly implement shrinkage methods to select an informative set of variables

for: (i) direct use in prediction model construction; or (ii) use in a second step where factors

are constructed for subsequent use in prediction model construction follow immediately.

3.1 Bagging

Bagging, which is short for �bootstrap aggregation�, was introduced by Breiman (1996) as

a device for reducing the prediction error of learning algorithms. Bagging involves drawing

bootstrap samples from the training sample (i.e. in-sample), applying a learning algorithm

(prediction model) to each bootstrap sample, and averaging the predicted values for test

observations. Consider the regression problem with the training sample fY;Xg : Generate
B bootstrap samples from dataset form predictions, Ŷ �

b (X
�
b ) ; say, using each bootstrap

sample, b = 1; :::; B. Bagging simply averages the B prediction values, and can reduce

prediction variance. Bühlmann and Yu (2002) consider bagging with a �xed number of

strictly exogenous regressors and iid errors, and show that, asymptotically, the bagging

estimator can be represented in shrinkage form. Namely:

Ŷ Bagging
T+h =

N

�
j=1
 (tj) �̂jPTj + op (1) ; (7)

where Ŷ Bagging
T+h is the forecast of YT+h made using data through time T; �̂j = T�1�Tt=1PtjYt+h

is the least squares estimator of �j, Pt is the 1 � N vector of the orthonormal predictors,

tj =
p
T �̂j=se; with s

2
e = �

T
t=1(Yt+h � Pt�̂

0
)2=(T � N); where �̂ =

�
�̂1; :::; �̂N

�0
; and  is a

function speci�c to the forecasting method. In the current context we set:

 (t) = 1� � (t+ c) + � (t� c) + t�1[� (t� c)� � (t+ c)]; (8)

where c is the pre-test critical value, � is the standard normal density and � is the standard

normal CDF. Further, following Stock and Watson (2005a) de�ne

Ŷ Bagging
T+h = WT �̂W +

r

�
j=1
 (tj) �̂FjF̂Tj (9)

where �̂W is the LS estimator of �W ; Wt is a vector of lags of YT as in (3), and �̂Fj is

estimated using residuals, ZT+h = YT+h �WT �̂W : The t-statistics used for shrinkage factors

are computed using LS with Newey-West standard errors and the pretest critical value for
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bagging in this paper is set at c = 1:96.

3.2 Boosting

Boosting (see Freund and Schapire (1997)) is a procedure that combines the outputs of many

�weak learners�(model) to produce a powerful �committee�(prediction). In this sense, boost-

ing bears a resemblance to bagging and other committee-based approaches. Conceptually,

the boosting method builds on a user-determined set of many weak learners (for example,

least square estimators) and uses the set repeatedly on modi�ed data which are typically

outputs from previous iterations of the algorithm.

The �nal boosted procedure takes the form of linear combinations of weak learners.

The AdaBoost algorithm proposes a method to estimate the response variable Y 2
f�1; 1g : First, initialize weights associated with each observation, say wt = 1=T; for t =

1; :::; T . Given a particular explanatory variable set, X; a classi�er or learner, �̂; is used to

produce one of two outcomes, �1 or 1: At the ith algorithm iteration, �t a learner �̂i to the

date using weights wt, then construct the error rate

êi =

TP
t=1

wtI(Yt 6= �̂it)

TP
t=1

wt

(10)

where I(�) is the indicator function. Now, compute �i = log ((1� êi) =êi) ; then update

Friedman (2001) introduce �L2Boosting�, which takes the simple approach of re�tting

base learners to residuals from previous iterations (i.e. they use no penalty � k�k). Bühlmann
and Yu (2003) suggest another boosting algorithm �tting learners using one predictor at one

time when large numbers of predictors exist. Bai and Ng (2009) modify this algorithm to

handle time-series. We use their �Component-Wise L2Boosting�algorithm in the sequel. Let

Z = Y � Ŷ W ; which we obtain as a �rst step by �tting an autoregressive model to response

variable using Wt as regressors. Then, using estimated factors: (i) Initialize : �̂
0 (Ft) =

_

Z,

for each t. (ii) For i = 1; :::;M iterations, carry out the following procedure. For t = 1; :::; T;

let ut = Zt� �̂i�1 (Dt) be the �current residual�. For each j = 1; ::; r; regress the current

T � 1 residuals, u on F̂j (the j-th factor) to obtain �̂j: (iii) Compute d̂j = u � F̂j�̂j for

j = 1; ::; r;and the sum of square residuals, SSRj = d̂0j d̂j: Let j
i
� denote the column selected

at the ith iteration, say, such that SSRji� = minj2[1;:::;r] SSRj then let ĝi�(F ) = F̂ji� �̂ji� : (iv)

For t = 1; :::; T; update �̂i = �̂i�1 + �ĝi�; where 0 � � � 1 is the step length.
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We may encounter a problem of over-�tting if we iterate this algorithm too many times.

Therefore, selecting the number of iterations is crucial. Bai and Ng (2009) de�ne the stop-

ping parameter M using an information criterion of the form: IC (i) = log
h
�̂
i2
i
+ AT �df i

T
;

where �̂
i2

= �Tt=1

�
Yt � �̂i

�
F̂t

��2
and AT = log(T ): Then M = argmin

i
IC (i) : Here, the

degrees of freedom is de�ned as df i = trace (Bi) ; where Bi = Bi�1�P(i) (IT �Bi�1) =

IT � �ih=0
�
IT � �P(h)

�
; with P(i) = F̂ji�

�
F̂ 0ji�F̂ji�

��1
F̂ji� : Starting values for B

i are given as

B0 = 1
�
P (0) = 10T1T=T; where 1T is T � 1 vector of 1�s. Our boosting estimation uses this

criterion. Finally, we have

Ŷ Boosting
t+h = Wt�̂W + �̂M

�
F̂t

�
(11)

where �̂W is de�ned above andM denotes the �nal number of iterations of the above boosting

algorithm.

3.3 Least Angle Regression (LARs)

Like many other stagewise regression approaches, we start with �̂0 = 0; work with the

residuals after �tting Wt to the target variable, and construct a �rst estimate �̂ = Xt�̂; in

steps, using standardized data. De�ne �̂G to be the current LARs estimator, where G is a
set of variables that is incrementally increased according to the relevance of each variable

examined. As with stagewise regression, we de�ne c (�̂G) = ĉ = X 0 (Y � �̂G) ; where X is the

�current�set of regressors, to be the �current correlation�vector of length N . In particular,

de�ne the set G to be the set including covariates with the largest absolute correlations; so
that we can de�ne Ĉ = max

j
fĉjg and G =

n
j : jĉjj =

���Ĉ���o ; by letting sj = sign (ĉj) equals

�1; for j 2 G and de�ning the active matrix corresponding to G as XG = (:::sjXj:::)j2G : Let

DG = X 0
GXG and AG =

�
10GD�1G 1G

�� 1
2 ; (12)

where 1G is a vector of ones equal in length to the rank of G. A unit equiangular vector with
columns of XG can be de�ned as uG = XGwG; where wG = AGD�1G 1G so that X 0

GuG = AG1G:

LARs then updates �̂ as

�̂G+ = �̂G + ̂uG (13)

where

̂ = min
j2Gc

+

 
Ĉ � ĉj
AG � aj

! 
Ĉ + ĉj
AG + aj

!
; (14)
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with aj = X 0wj for j 2 Gc: Efron et al. (2004) show that the lasso is in fact a special case
of LARs that imposes a speci�c sign restriction.

For applying LARs to time series data, Gelper and Croux (2008) revise the basic al-

gorithm described here. They start by �tting an autoregressive model to the dependent

variable, excluding predictor variables, using least squares. The corresponding residual series

is retained and its standardized version is denoted Z. The time-series LARs (henceforth, TS-

LARs) procedure ranks the predictors according to how much they contribute to improving

upon autoregressive �t. Using estimated factors as regressors, the following is the �LARs�

algorithm of Gelper and Croux (2008): (i) Fit an autoregressive model to the dependent

variable without factors and retain the corresponding residuals. The objective is to forecast

these residuals. Begin by setting �̂0 = �̂0
�
F̂
�
= �Z; as done in the boosting algorithm above,

except that the data used in this algorithm are standardized. (ii) For i = 1; 2; :::; r :(a) Pick

ji� from j = 1; 2; :::; r (� N) which has the highest R2 value, R2
�
�̂i�1 � F̂j

�
; where R2 is

a measure of least square regression �t, and where �v " denotes horizontal concatenation.

The predictor with highest R2 is denoted F̂(i) = F̂ji� ; and this predictor will be included in

the active set Gi: That is, F̂(i) denotes the ith ranked predictor, the active set Gi will contain
F̂(1); F̂(2); :::; F̂(i); and ji� is excluded in next procedure. (b) Denote the hat-matrix correspond-

ing to the ith ranked active predictor by H(i); which is the projection matrix on the space

spanned by the columns of F̂(i): That is, H(i) = F̂(i)

�
F̂ 0(i)F̂

�1
(i)

�
F̂ 0(i):(c) Let ~F(i) = H(i)�̂

i�1 be

the T � 1 standardized vector of values F̂ at ith iteration: Then �nd equiangular vector ui;

where ui =
�
~F(1); ~F(2); :::; ~F(i)

�
wi; wi =

D�1
Gi
1iq

10iD
�1
Gi
1i
; DGi = F 0

GiFGi , FGi =
�
:::sjF̂

j:::
�
j2Gi

,

sj = sign (ĉj) and ĉ = F̂ 0
�
�Z � �̂i

�
. (iii) Update the response �̂i = �̂i�1 � ̂iui; where ̂i is

the smallest positive solution for a predictor F̂j which is not already in the active set, and

is de�ned in (14):Then go back to Step 2, where F̂(i+1) is added to the active set and the

new response is standardized and denoted by �̂i+1 (see Gelper and Croux (2008) for further

computational details).

After ranking the predictors, F̂(i+1), the highest ranked will be included in the �nal

model. Now, the only choice remaining is how many predictors to include in the model. This

number, i� is chosen using the Schwarz Information Criterion (SIC), as done in Gelper and

Croux (2008). Finally, construct

Ŷ LARs+

t+h = Wt�̂W + �̂i
�
(F̂t) (15)

where �̂i
�
(F̂t) is the optimal value of �̂

i selected using the SIC, and evaluated at time t: The
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�nal predictor of Y is formed by adding back the mean to Ŷ LARs+

t+h :

3.4 LARs - Elastic Net (LARs-EN)

Zou and Hastie (2005) point out that the lasso has some limitations under certain scenarios,

such as when T is greater than N or when there is a group of variables among which the

pairwise correlations are very high. They develop a new regularization method, the so-called

the �Elastic Net�, that they claim remedies the above problems. The method is similar to

the LASSO estimator discussed above and in Bai and Ng (2008b).

In order to motivate the LARs-EN, we begin with a generic discussion of the �naïve

elastic net�(NEN). Assume again that we are interested in X and Y; and that the variables

in X are standardized as above. For any �xed non-negative �1 and �2, the naive elastic net

criterion is de�ned as:

L (�1; �2; �) = jY �D�j2 + �2 j�j
2 + �1 j�j1 ; (16)

where j�j2 =
NP
j

(�j)
2 and j�j1 =

NP
j

���j��. The naive elastic net estimator is �̂
NEN

=

argmin
�
fL (�1; �2; �)g : This problem is equivalent to the optimization problem:

�̂
NEN

= argmin
�
jY �X�j2 ; subject to (1� �) j�j1 + � j�j2 ; (17)

where � = �2
�1+�2

: The term (1� �) j�j1 + � j�j2 is called the elastic net penalty, and leads
to the LASSO or ridge estimator, depending on the value of �: (If � = 1; it becomes ridge

regression; if � = 0; it is the lasso, and if � 2 (0; 1); it has properties of both methods.) The
solution to the naive elastic net solution begins with de�ning new data set (X+; Y +) ; where

X+
(T+N)�N = (1 + �2)

�1=2
�

Xp
�2IN

�
; Y +

(T+N)�1 =

�
Y
0N

�
: (18)

Then, we can rewrite the naive elastic criterion as:

L

�
�1p
1 + �2

; �

�
= L

�
�1p
1 + �2

; �+
�
=
��Y + �D+�+

��2 + �1p
1 + �2

���+��
1
: (19)

If we let

�̂
+
= argmin

�+
L

�
�1p
1 + �2

; �+
�

(20)
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then the NEN estimator �̂
NEN

is:

�̂
NEN

=
1p
1 + �2

�̂
+

(21)

In this orthogonal setting, the naive elastic net can be represented as combination of ordinary

least squares and the parameters (�1; �2). Namely:

�̂
NEN

=

�����̂LS���� �1=2
�
pos

1 + �2
sign

n
�̂
LS
o
: (22)

where �̂
LS
is the least square estimator of � and sign (�) equals �1: Here, \pos" denotes the

positive part of the term in parentheses. Using these expression, the ridge estimator can be

written as

�̂
ridge

=
�̂
LS

1 + �2
(23)

and the LASSO estimator is

�̂
lasso

=
�����̂LS���� �1=2

�
pos
sign

n
�̂
LS
o
: (24)

Zou and Hastie (2005), in the context of above naive elastic net, point out that there is

double shrinkage, which does not help to reduce the variance and may lead to unnecessary

bias so that they propose the elastic net, in which this double shrinkage is corrected. Given

equation (18), the naive elastic net solves the LASSO problem of the type:

�̂
+
= argmin

�+

��Y + �X+�+
��2 + �1p

1 + �2

���+��
1
: (25)

In this context, the elastic net estimator, �̂
EN
; is de�ned as:

�̂
EN

=
p
1 + �2�̂

+
: (26)

Thus ,

�̂
EN

= (1 + �2) �̂
NEN

: (27)

By this rescaling, this estimator preserves the properties of naive elastic net. Moreover, by

Theorem 2 in Zou and Hastie (2005), is can be seen that the elastic net is a stabilized version

of LASSO. Namely,

�̂
EN

= argmin
�
�0
�
X 0X + �2IN
1 + �2

�
� � 2Y 0X� + �1 j�j1 ; (28)
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which we use in the forecasting model given as (3) to construct predictions.

Zou and Hastie (2005) propose an algorithm called the LARs-EN to estimate �̂
EN

using

the LARs discussed above. With �xed �2; the elastic net problem is equivalent to the LASSO

problem on the augmented data set (X+; Y +) ; so that LARs can create an entire elastic net

solution path e¢ ciently by letting DG in (12) be 1
1+�2

�
X 0
GXG + �2IG

�
for any active set G:

Then the LARs-EN algorithm updates the elastic net estimator sequentially. Choosing tuning

parameters, �1 and �2; is a critical issue here. Hastie et al. (2001) discuss some popular ways

to choose tuning parameters, and Zou and Hastie (2005) use tenfold cross-validation (CV).

Since there are two tuning parameters, it is necessary to cross-validate on two dimensions.

At �rst, we pick a small grid of values for �2, say (0; 0:01; 0:1; 1; 10; 100). Then, for each

�2, LARs-EN produces the entire solution path of the elastic net. �2 and i, the number of

iterations in the LARs algorithm is selected by tenfold CV. The selected �2 value will be the

one giving the smallest CV error. We follow the above approach when using the EN method.

3.5 Non-Negative Garotte (NNG)

The NNG estimator of Breiman (1995) estimator is a scaled version of the least squares

estimator. As in the previous section, we begin by considering genericX and Y . Assume that

the following shrinkage factors are given: q (�) = (q1 (�) ; q2 (�) ; :::; qN (�))
0 : The objective is

to choose the shrinkage factors in order to minimize:

1

2
kY �Gqk2 + T�

NP
j=1

qj; subject to qj > 0; j = 1; ::; N; (29)

where G = (G1; ::; GN)
0, Gj = Xj

b�LSj ; and b�LS is the least squares estimator. Here � > 0

is the tuning parameter. The NNG estimator of the regression coe¢ cient vector is de�ned

as �̂
NNG

j (�) = qj (�) �̂
LS

j ; and the estimate of Y is de�ned as b� = X�̂
NNG

(�). Assuming,

for example, that X 0X = I, the minimizer of expression (29) has the following explicit

form: qj (�) =
�
1� �

(�̂
LS
j )2

�
+

; j = 1; :::; N: This ensures that the shrinking factor may be

identically zero for redundant predictors. The disadvantage of the NNG is its dependence on

the ordinary least squares estimator, which can be especially problematic in small samples.

Accordingly, Yuan and Lin (2007) consider lasso, ridge regression, and the elastic net as

alternatives for providing an initial estimate for use in the NNG; and they prove that if the

initial estimate is consistent, the non-negative garotte is a consistent estimator, given that

the tuning parameter, �; is chosen appropriately. Zou (2006) shows that the original non-

14



negative garotte with ordinary least squares is also consistent, if N is �xed, as T !1: Our

approach is to start the algorithm with the least squares estimator, as in Yuan (2007), who

outline the following algorithm for the non-negative garotte that we use in the sequel: (i)

First, set i = 1; q0 = 0; �̂0 = �Z: Then compute the current active set

Gi = argmax
j

�
G0j�̂

i�1� ;
where Gj = F̂j�̂j, is the j

th element of the T � r vector G and the initial �̂ is obtained by

regressing F̂ on Z using least squares. (ii) Compute the current direction ; which is a r

dimensional vector de�ned by (Gi)c = 0 and


Gi
=
�
G0GiG

0
Gi
��1

G0Gi�̂
i�1

(iii) For every j0 =2 Gi; compute how far the non-negative garotte will progress in direction 
before F̂j enters the active set. This can be measured by a �j such that

G0j0
�
�̂i�1 � �jG

0
�
= G0j

�
�̂i�1 � �jG

0
�

where j is arbitrary chosen from Gi: And for every j 2 Gi; compute �j = min
�
�j; 1

�
;

where �j = �qi�1j =j; if nonnegative, measures how far the group non-negative garotte will

�progress�before dj becomes zero. (iv) If �j � 0, 8j or min
j;�j>0

f�jg > 1; set � = 1: Otherwise,

denote � = min
j;�j>0

f�jg � �j� Set qi = qi�1 + �0: If j� =2 Gi; update Gi+1 by adding j� to the

set Gi; else update Gi+1 by taking out j� from the set Gi: (v) Set �̂i = Y �G0qi and i = i+1:

Go back to Step 1 repeat until � = 1; yielding �̂final = �̂NNG: Finally, form

Ŷ NNG+

t+h = Wt�̂W + �̂NNG; (30)

and construct the prediction Ŷ NNG
t+h by adding back the mean to Ŷ NNG+

t+h :

3.6 Bayesian Model Averaging

Bayesian Model Averaging (BMA) has received considerable attention in recent years (see

e.g. Hoeting et al. (1999) and Koop and Potter (2004)). Assume that we are interested in Q

possible models, denoted by M1; :::;MQ;. The posterior probability of interest is,

p (!jData) =
QX
q=1

p (!jData;Mq) p (MqjData) ; (31)

15



where ! is a vector of coe¢ cients. If g (!) is a function of !; the conditional expectation is

given as:

E [g (!) jData] =
QX
q=1

E [g (!) jData;Mq] p (MqjData) : (32)

Accordingly Bayesian model averaging involves obtaining results for all candidate models and

averaging them with weights determined by the posterior model probabilities. However, if

we have 20 potential variables, then we have 220 possible models. This means that we must

estimate 1; 048; 576 models at every forecasting horizon and prior to the construction of each

new prediction, if recursive or rolling estimation methods are used, as in this paper. Thus

there is a need for algorithms which do not require us to consider every possible model. The

most popular one is MC3; which takes draws from the posterior distribution of the models

and MCMC draws from the posterior distributions of the parameters. In this paper, we use

the related algorithm of Koop and Potter (2004) which follows Clyde (1999).

To implement Bayesian model averaging, we require a slightly di¤erent setup for that

discussed above, in order to handle lagged dependent variables, which are included in most

of our models. Chipman et al. (2001) suggest to integrating them out using non-informative

priors. Speci�cally, let our forecasting model be

Y �
t+h = ��F �t + "�t ; (33)

where Y �
t+h = [IT �Wt (W

0
tWt)W

0
t ]Yt+h, F

�
t = [IT �Wt (W

0
tWt)W

0
t ] F̂t; Wt; F̂t is de�ned in

(3), and "t+h � N (0; �2) : We use a natural conjugate prior (i.e. ��j��2 � N
�
��; �2V

�
and

��2 � G (s�2; $) ; where G (s�2; $) denotes the Gamma distribution with mean s�2 and

degrees of freedom $.

Each candidate models is described with U which is an r� 1 vector which shows whether
each column of explanatory variables is included in current model with a one or a zero.

According to Koop and Potter (2004), p (U jY �) is drawn directly, since our explanatory

variables are orthogonal. We set p (Y �jU; �2) to be the marginal likelihood for the normal
regression model de�ned by U; and derive P (U jY �; �2), given a prior, p (U) and p (�2jY �; U)

takes the inverted-Gamma form as usual. Next step is specifying the prior model probability,

p (Mq) or equivalently, a prior for p (U) :

p (U) =
RQ
j=1

�
Uj
j (1� �j)

Uj ; (34)

where �j is the prior probability that each potential factor enters the model. A common

16



benchmark case sets �j = 1
2
; equivalently, P (Mq) =

1
Q
for q = 1; :::; Q: Other choices are also

possible. For example, we can allow �j to depend on the j-th largest eigenvalue of F̂tF̂ :

Using the strategy described in Fernandez et al. (2001a) and Kass and Raftery (1995),

we use a noninformative, improper, prior over parameters for lagged variables to all models

and Koop and Potter (2004) suggest a noninformative prior for ��2; that is, if $ = 0; s�2

does not enter the marginal likelihood or posterior). Following Fernandez et al. (2001a), we

set �� = 0R and use a g-prior form for V by setting

V r = [grF
�0
r F

�
r ]
�1 (35)

(see Fernandez et al. (2001a) and Zellner (1986) for more details about the use of g-priors).

Then, next issue is specifying g. Fernandez et al. (2001a) studied about the properties of

many possible choices for g and Koop and Potter (2004), in an objective Bayesian spirit,

focus on some values for g as g = 1
T
and g = 1

R2
: Finally, we will have

Ŷ �;BMA
t+h = �̂FF

�
t (36)

and our forecast, Ŷ BMA
t+h is rede�ned as [IT �Wt (W

0
tWt)W

0
t ]
�1 Ŷ �;BMA

t+h :

4 Data, Forecasting Methods, and Baseline Forecast-
ing Models

4.1 Data

The data that we use are monthly observations on 146 U.S. macroeconomic time series for

the period 1960:01 - 2009:5 (N = 144; T = 593)3. Forecasts are constructed for eleven

variables, including: the unemployment rate, personal income less transfer payments, the

10 year Treasury-bond yield, the consumer price index, the producer price index, non-farm

payroll employment, housing starts, industrial production, M2, the S&P 500 index, and gross

domestic product.4. Table 1 lists the eleven variables. The third row of the table gives the

transformation of the variable used in order to induce stationarity. In general, logarithms

were taken for all nonnegative series that were not already in rates (see Stock and Watson

(2002, 2005a) for complete details). Note that a full list of predictor variables is provided in

3This is an updated and expanded version of the Stock and Watson (2005a,b) dataset.
4Note that gross domestic product is reported quaterly. We interpolate these data to a monthly frequency

following Chow and Lin (1971),
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the appendix to an earlier working paper version which is available upon request from the

authors.

4.2 Forecasting Methods

Using the transformed data set, denoted above byX, the factors are estimated by the method

of principal components. Thereafter, the alternative methods outlined in the previous sec-

tions are used to form forecasting models and predictions. In particular, we consider three

speci�cation types when constructing shrinkage based prediction models.

Speci�cation Type 1: Principal components are �rst constructed, and then prediction

models are formed using the shrinkage methods of Section 3 to select functions of and weights

for the factors to be used in our prediction models of the type given in (3).

Speci�cation Type 2: Principal component models of the type given in (3) are con-

structed using subsets of variables from the largescale dataset that are �rst selected via

application of the shrinkage methods of Section 3. This is di¤erent from the above approach

of estimating factors using all of the variables.

Speci�cation Type 3: Prediction models are constructed using only the shrinkage

methods discussed in Section 3, without use of factor analysis at any stage.

We specify various linear as well as pure principal component type prediction models (see

the subsequent section for details of these models).

In our prediction experiments, pseudo out-of-sample forecasts are calculated for each

variable and method, for prediction horizons h = 1; 3; and 12. All estimation, including lag

selection, shrinkage method application, and factor construction is done anew, at each point

in time, prior to the construction of each new prediction, using both recursive and rolling

estimation strategies. Note that at each estimation period, the number of factors included

will be di¤erent, following the testing approach discussed in Section 2. Note also that lags

of the target predictor variables are also included in the set of explanatory variables, in all

cases. Selection of the number of lagged variable to include is done using the SIC. Out-of-

sample forecasts begin after 13 years (e.g. the initial in-sample estimation period is R =156

observations, and the out-of-sample period consists of P observations, for h = 1). For

example, when forecasting the unemployment rate, when h = 12, the �rst forecast will be

Ŷ168 = �̂WW156 + �̂F ~F156: In our rolling estimation scheme, the in-sample estimation period

used to calibrate our prediction models is �xed at length 10 years. The recursive estimation

scheme begins with the same in-sample period of 10 years, but a new observation is added

to this sample prior to the re-estimation and construction of each new forecast, as we iterate
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through the ex-ante prediction period. Note that the actual observations being predicted as

well as the number of predictions in our ex-ante prediction period remains �xed, regardless of

forecast horizon, in order that we may compare predictive accuracy across forecast horizons

as well as models.

Forecast performance is evaluated using mean square forecast error (MSFE), de�ned as:

MSFEi;h =
T�h+1P
t=R�h+2

�
Yt+h � Ŷi;t+h

�2
(37)

where bYi;t+h is i�th method�s forecast for horizon h. Forecast accuracy is evaluated using
point MSFEs as well as the predictive accuracy test of Diebold and Mariano (DM: 1995),

which is implemented using quadratic loss, and which has a null hypothesis that the two

models being compared have equal predictive accuracy. DM test statistics have asymptotic

N(0; 1) limiting distributions, under the assumption that parameter estimation error vanishes

as T; P;R!1, and assuming that each pair of models being compared is nonnested:Namely,
the null hypothesis of the test is H0 : E

h
l
�
"1t+hjt

�i
� E

h
l
�
"2t+hjt

�i
= 0;where "it+hjt is i�th

model�s prediction error and l (�) is the quadratic loss function. The actual statistic in this
case is constructed as: DM = P�1

PP
i=1 dt=�̂d; where dt =

�
["1t+hjt

�2
�
�
["2t+hjt

�2
; d is the

mean of dt, �̂d is a heteroskedasticity and autocorrelation robust estimator of the standard

deviation of d, and ["1t+hjtand ["2t+hjt are estimates of the true prediction errors "
1
t+hjtand "

2
t+hjt.

Thus, if the statistic is negative and signi�cantly di¤erent from zero, then Model 2 is preferred

over Model 1.

4.3 Baseline Forecasting Models

In conjunction with the various forecast model speci�cation approaches discussed above, we

form predictions using the following benchmark models, all of which are estimated using least

squares.

Univariate Autoregression: Forecasts from a univariate AR(p) model are computed

as Ŷ AR
t+h = �̂+ �̂ (L)Yt; with lags , p, selected using of the SIC.

Multivariate Autoregression: Forecasts from an ARX(p) model are computed as

Y ARX
t+h = �̂+ �̂Zt+ �̂ (L)Yt; where Zt is a set of lagged predictor variables selected using the

SIC. Dependent variable lags are also selected using the SIC. Selection of the exogenous pre-

dictors includes choosing up to six variables prior to the construction of each new prediction

model, as the recursive or rolling samples iterate forward over time.

Principal Component Regression: Forecasts from principal component regression
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are computed as Ŷ PCR
t+h = �̂ + ̂F̂t; where F̂t is estimated via principal components using

fXtgTt=1 ; as in equation (3).
Factor Augmented Autoregression: Based on equations (3), forecasts are computed

as Y h
t+h = �̂ + �̂F F̂t + �̂W (L)Yt: This model combines an AR(p) model, with lags selected

using the SIC, with the above principal component regression model.

Combined Bivariate ADL Model: As in Stock and Watson (2005a), we implement a

combined bivariate autoregressive distributed lag (ADL) model. Forecasts are constructed by

combining individual forecasts computed from bivariate ADL models. The i-th ADL model

includes pi;x lags ofXi;t; and pi;y lags of Yt; and has the form Ŷ ADL
t+h = �̂+�̂i (L)Xi;t+�̂i (L)Yt:

The combined forecast is Ŷ Comb;h
T+hjT =

n

�
t=1
wiŶ

ADL;h
T+hjT . Here, we set (wi = 1=n) ; where n =

146. There are a number of studies that compare the performance of combining methods in

controlled experiments, including: Clemen (1989), Diebold and Lopez (1996), Newbold and

Harvey (2002), and Timmermann (2005); and in the literature on factor models, Stock and

Watson (2004, 2005a, 2006), and the references cited therein. In this literature, combination

methods typically outperform individual forecasts. This stylized fact is sometimes called the

�forecast combining puzzle.�

Mean Forecast Combination: To further examine the issue of forecast combination,

we form forecasts as the simple average of the thirteen forecasting models summarized in

Table 2.

5 Empirical Results

In this section, we discuss the results of our prediction experiments. The variable mnemonics

are given in Table 1, and forecasting models used are summarized in Table 2. Details of

the data and estimation procedures used to construct the sequences of recursive and rolling

ex-ante h-step ahead forecasts reported on are outlined in Section 4. For the case where

models are estimated using recursive data windows, our results are gathered in Tables 3 to 6

and some summary results are presented in Tables 7 and 8.

Tables 3-6 report MSFEs and the results of DM predictive accuracy tests for all alternative

forecasting models, using Speci�cation Type 1 without lags (Table 3), Speci�cation Type 1

with lags (Table 4), Speci�cation Type 2 (Table 5), and Speci�cation Type 3 (Table 6). Panels

A-C reports results for h =1, 3 and 12 month prediction horizons, respectively. In each panel,

the �rst row of entries reports the MSFE of our AR(SIC) model, and all other rows report

MSFEs relative to the AR(SIC) value. Thus, entries greater than unity imply point MSFEs
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greater than that of our AR(SIC) model, etc. Entries in bold denote point-MSFE-�best�

models for a given variable,forecast horizon, and speci�cation type. In each table, dot-circled

entries denote cases for which the MSFE-best model of the speci�cation type reported on in

a table (using recursive estimation) yields a lower MSFE than that based on using rolling

estimation. Circled entries denote models that are MSFE-best across all speci�cation types

and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models

are �winners�across all speci�cation types, when only viewing recursively estimated models

(i.e. cases where the MSFE-best model uses rolling estimation (rolling window results are

not reported here, for the sake of brevity). The results from DM predictive accuracy tests,

for which the null hypothesis is that of equal predictive accuracy between the benchmark

model (de�ned to be the AR(SIC) model), and the model listed in the �rst column of the

table, as described in Section 4.2, are reported with single starred entries denoting rejection

at the 10% level, and double starred entries denoting rejection at the 5% level.

Various results are apparent, upon inspection of tables. For example, for Speci�cation

Type 1, notice that in Panel A of Table 3, every forecast method yields a lower MSFE than

the AR(SIC) model, when predicting the unemployment rate (UR). This result holds for

all forecast horizons except one (see Panels A-C of the table). Indeed, for most variables,

there are various models that have lower point MSFEs that the AR(SIC) model, regardless

of forecast horizon. However, there are exceptions. For example, for TB10Y, there are few

models that yield lower MSFEs that the AR(SIC) model, and these are all for prediction

horizons other than h = 1: In particular, for h = 3, only the Combined-ADL model is

MSFE-�better�, while for h = 12, Combined -ADL as well as a very few others (including C-

Boosting, BMA, LARS and EN) �beat�AR(SIC), and they are only marginally superior, at

that (see Tables 3 and 4). Additionally, comparison of the results in Tables 3 and 4 suggests

that there is little advantage to using lags of factors when constructing predictions in our

context. Instead, it appears that the more important determinant of model performance is

the type of combination factor/shrinkage type model employed when constructing forecasts.

Further evidence of this will be discussed in some detail shortly.

There are no models that uniformly yield lowest MSFEs, across both forecast horizon and

variable. However, various models perform quite well, including in particular FAAR and PCR

models. This supports the oft reported result that models that incorporate common factors

o¤er a convenient way to �lter the information contained in large-scale economic datasets.

When comparing results across Speci�cation Types 1, 2, and 3 (compare Tables 3-6),

we �nd that forecasts constructed using our model averaging speci�cations (Combined-ADL,
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BMA, and Mean) yield MSFE-best predictions for 4/11, 5/11, and 3/11 variables when using

only recursive estimation, and for 0/11, 5/11, and 3/11 variables when using both recursive

and rolling estimation windows (see Panel A of Table 7). This result is quite interesting, given

the plethora of recent evidence indicating the superiority of model averaging methods in a

variety of forecasting contexts; and is accounted for in part by our use of various relatively

complicated combined factor/shrinkage models. In particular, note in the right hand section

of Panel A in Table 7 that C-Boosting, Ridge, LARS, EN, and NNG �win�in 15/33 cases,

when considering MSFE-best models across all speci�cation and estimation window types.

Moreover, the majority of these �wins�are accounted for by Speci�cations 1 and 2, suggesting

that our shrinkage type methods perform best when coupled with factor analysis. In contrast,

pure factor models (FAAR and PCR) yield �wins�in 8/33 cases, model averaging methods

yield �wins� in 8/33 cases, and our non-factor and non-shrinkage based models �win� in

2/33 cases. Thus, the dominant model type is the combination factor/shrinkage type model.

Moreover, models that involve factors, in aggregate, �win�in 23/33 cases; model averaging

fares quite poorly; and pure linear models are almost never MSFE-best.

As evidenced in Panel B of Table 7, MSFE-best recursively estimated models dominate

MSFE-best models estimated using rolling windows around 70% of the time, regardless of

forecast horizon. (Complete results for rolling estimation-type models are available upon

request from the authors.) This is not surprising, given the number of times that our more

complicated combination factor/shrinkage type models are MSFE-best across all speci�cation

and estimation types; and suggests that structural breaks play a secondary role to parameter

estimation error in determining the MSFE-�best�models.5

It should also be noted that DM test statistics yield ample evidence that a variety of

models are statistically superior to our simple linear benchmark model, including many of

our more sophisticated shrinkage based models. Such models are denoted as starred entries

in the tables (see Section 4.2 for further details).

Finally, turning to the results in Table 8, notice that for a single forecast horizon, h = 1,

results have been re-calculated for sub-samples corresponding to all of the NBER-dated ex-

pansionary periods in our sample, and to the combination of all recessionary and all expan-

5In lieu of this �nding, the experiments carried out in this paper were replicated using the approach
proposed by Clements and Hendry for addressing level shifts in the underlying data generating processes
of our target variables (for details, refer to Clements and Hendry (1994), Clements and Hendry (1995),
Clements and Hendry (2008)). Adjusting for level shifts by using di¤erences of di¤erences did not lead to
notably improved prediction performance, however. (Complete results are available upon request from the
authors.)
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sionary periods. Although results apparent upon inspection of this table are largely in accord

with those reported above, one additional noteworthy �nding is worth stressing. Namely, in

Panel A of the table, note that, when MSFE-best models are tabulated by speci�cation type,

our model averaging speci�cations perform quite well, particularly for Speci�cation Types 2

and 3. This conforms to the results that can be observed by individually looking at each of

Tables 3-6 (i.e. compare the bolded MSFE-best models in each individual table). However,

notice that when results are summarized across all speci�cation types (see Panel B of the

table), then the model averaging type speci�cations yield MSFE-best predictions in around

30% instead of 40% of the cases. This is because Speci�cation Type 1, where model averaging

clearly �wins�the least, is the predominant winner when comparing the three speci�cation

types, as mentioned previously. Namely, the model building approach whereby we �rst con-

struct factors and thereafter use shrinkage methods to estimate functions of and weights for

factors to be used in our prediction models is the dominant speci�cation type. This result

serves to further stress that when more complicated speci�cation methods are used, model

averaging methods fare worse, and combination factor/shrinkage based approaches fare bet-

ter. Put di¤erently, we have evidence that when simpler linear models are speci�ed, model

averaging does worse than when more sophisticated nonlinear models are speci�ed. Addi-

tionally, pure factor type models also perform well, particularly for the long expansion period

from 1982-1990.

Given the importance of factors in our MSFE-best forecasting models, it would seem

worthwhile to examine which variables contribute to the estimated factors used in our MSFE-

best models, across all speci�cation and estimation window types. This is done in Figure

1, where we report the ten most frequently selected variables for a variety of MSFE-best

models and forecast horizons. Keeping in mind that factors are re-estimated at each point

in time, prior to each new prediction being constructed, a 45 degree line denotes cases for

which a particular variables is selected every time. For example, in Panels A and B, the BAA

Bond Yield - Federal Funds Rate spread is the most frequently selected predictor when con-

structing factors to forecast the Producer Price Index and Housing Starts, respectively. For

Speci�cation Type 1, variables are selected based on the A(j) and M(j) statistics following

Bai and Ng (2006a) and Armah and Swanson (2010a), and for Speci�cation Type 2, we di-

rectly observe variables which are selected by shrinkage methods and then used to construct

factors, prior to the construction of each new forecast. The list of selected variables does not

vary much, for Speci�cation Type 1. On the other hand, in Panels D and F, we see that

the most frequently selected variables are not selected all the time. For example, in Panel
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D, CPI:Apparel is selected over all periods and the 3 month Treasury bill yield is selected

continuously, after 1979. Of further note is that interest-rate related variables (i.e. Trea-

sury bills rates, Treasury bond rates, and spreads with Federal Funds Rate) are frequently

selected, across all speci�cation type, estimation window types, and forecast horizons. This

con�rms that in addition to their well established usefulness in linear models, yields and

spreads remain important in nonlinear modelling contexts.

6 Concluding Remarks

This paper surveys factor models and shrinkage techniques, and presents the results of a

�horse-race�in which mean-square-forecast-error (MSFE) �best�models are selected, in the

context of a variety of forecast horizons, estimation schemes and sample periods. In ad-

dition to pure common factor prediction models, the forecast model speci�cation methods

that we analyze include bagging, boosting, Bayesian model averaging, ridge regression, least

angle regression, elastic net and non-negative garotte as well as univariate autoregressive

and autoregressive plus exogenous variables models. For the majority of the target variables

that we forecast, we �nd that various of these shrinkage methods, when combined with factor

analysis (e.g. component-wise boosting), perform better than all other models. This suggests

that di¤usion index methodology is particularly useful when combined with other shrinkage

methods, thus adding to the extant evidence of this �nding (see Bai and Ng (2008a,b) and

Stock and Watson (2005a). We also �nd that model averaging methods perform surprisingly

poorly. Given the rather extensive empirical evidence to the contrary, when specifying linear

prediction models, this is taken as further evidence of the usefulness of our more sophisticated

nonlinear modelling approach.
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Series Abbreviation Yt+h

Unemployment Rate UR Zt+1-Zt

Personal Income Less Transfer Payments PI ln(Zt+1-Zt)
10 Year Treasury Bond Yield TB10Y Zt+1-Zt

Consumer Price Index CPI ln(Zt+1-Zt)
Producer Price Index PPI ln(Zt+1-Zt)
Nonfarm Payroll Employment NNE ln(Zt+1-Zt)
Housing Starts HS ln(Zt)
Industrial Production IPX ln(Zt+1-Zt)
M2 M2 ln(Zt+1-Zt)
S&P 500 Index SNP ln(Zt+1-Zt)
Gross Domestic Product GNP ln(Zt+1-Zt)

Method
AR(SIC)
ARX
Combined-ADL
FAAR
PCR
Bagging
Boosting
BMA(1/T)
BMA(1/N2)
Ridge
LARS
EN
NNG
Mean

Autoregressive model with exogenous regressors
Combined autoregressive distributed lag model
Factor augmented autoregressive model

Ridge regression

Table 1: Target Variables For Which Forecasts Are Constructed*

Table 2: Models and Methods Used In Real-Time Forecasting Experiments*

Description
Autoregressive model with lags selected by the SIC

* Notes : Data used in model estimation and prediction construction are monthly U.S. figures for 
the period 1960:1-2009:5. The transformation used in forecast model specification and forecast 
construction is given in the last column of the table. See Section 4.1 for complete details.

* Notes: This table summarizes the model specification methods used in the construction of 
prediction models. In addition to the above pure linear, factor and shrinkage based methods, 
three different combined factor and shrinkage type prediction model specification methods are 
used in our forecasting experiments, including: Specification Type1 - Principal components are 
first constructed, and then prediction models are formed using the above shrinkage methods 
(ranging from bagging to NNG) to select functions of and weights for the factors to be used in 
our prediction moels. Specification Type 2 - Principal component models are constructed using 
subsets of variables from the large-scale dataset that are first selected via application of the 
above shrinkage methods (ranging from bagging to NNG). This is different from the above 
approach of estimating factors using all of the variables. Specification  Type 3 - Prediction 
models are constructed using only the above shrinkage methods (ranging from bagging to NNG), 
without use of factor analysis at any stage. See Sections 3 and 4.3 for complete details.

Principal components regression

Elastic net
Non-negative garotte

Bagging with shrinkage, c = 1.96
Component boosting, M = 50
Bayesian model averaging with g -prior = 1/T
Bayesian model averaging with g -prior = 1/N2

Arithmetic mean

Least angle regression
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.874 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

FAAR 0.780** 0.902 0.950 0.916 0.969 0.811* 0.961 0.804** 0.953 1.023 0.965
PCR 0.830** 0.870 1.019 0.875 0.943 0.922 1.764** 0.800** 1.43** 1.018 0.973

Bagging 1.025 1.062 0.977 1.341* 1.167** 0.913 1.084 1.080 0.985 1.019 0.958
C-Boosting 0.902* 0.969 0.953 0.963 0.989 0.875** 0.949 0.848** 0.958 0.978 1.006
BMA(1/T) 0.899 0.965 0.954 0.954 0.991 0.873** 0.960 0.851** 0.972 0.989 1.018
BMA(1/N2) 0.892* 0.969 0.947 0.954 0.991 0.866** 0.949 0.839** 0.969 0.987 1.012

Ridge 0.887** 0.964 0.940 0.963 1.000 0.885* 0.938 0.816** 0.969 1.006 0.996
LARS 0.913* 0.968 0.972** 0.977 0.984 0.954** 0.981 0.949** 0.977 0.982 0.995

EN 0.913* 0.969 0.972** 0.977 0.984 0.954** 0.981 0.95** 0.977 0.982 0.995
NNG 0.966** 0.98** 0.994 0.979* 0.984 0.95** 0.989 0.984* 0.989** 0.985 0.991
Mean 0.859** 0.933** 0.942** **0.910 0.953 0.841** 0.910** 0.845** 0.939** 0.976 0.940**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

FAAR 0.915 0.867** 1.026 0.929 0.936 0.818** 0.895 0.866 1.006 1.052 1.058
PCR 0.912 0.865** 1.004 0.930 0.909 0.835* 1.447** 0.859 1.164* 1.043 1.020

Bagging 1.062 1.071 1.013 1.168** 1.096 1.016 0.899 0.938 1.017 1.004 1.025
C-Boosting 0.935 0.924* 1.004 0.977 0.984 0.883* 0.852* 0.880 0.988 1.005 0.983
BMA(1/T) 0.946 0.935 1.006 0.992 0.983 0.868* 0.852* 0.888 0.996 1.006 0.994
BMA(1/N2) 0.932 0.920 1.008 0.988 0.984 0.861* 0.854* 0.881 0.994 1.011 0.996

Ridge 0.919 0.893** 1.012 0.982 0.991 0.866* 0.891 0.865 0.993 1.017 0.994
LARS 0.977 0.977** 1.003 0.992 0.993 0.984 0.926* 0.963 0.997 0.994 0.974

EN 0.977 0.977** 1.003 0.992 0.993 0.984 0.926* 0.963 0.996 0.993 0.974
NNG 0.980* 0.992* 1.005 0.990 0.990 0.989 0.984** 0.987* 0.996 1.003 0.985*
Mean 0.920* 0.898** 1.000 0.947 0.938** 0.858** 0.862** 0.849** 0.977 0.998 0.955

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.620 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.996 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

FAAR 0.956 1.009 1.032 0.886** 0.939 0.874 0.818** 0.972 0.989 1.022 1.045
PCR 0.958 1.003 1.021 0.929 0.948 0.887 0.956 0.962 1.061 1.023 1.034

Bagging 1.072** 0.968 1.035 0.895** 0.993 1.178** 0.932 1.052* 0.982 1.003 1.008
C-Boosting 0.950 0.986 1.005 0.901** 0.955* 0.909 0.85** 0.954 0.989 1.007 1.010
BMA(1/T) 0.960 1.000 1.002 0.901* 0.955 0.922 0.852** 0.956 0.994 1.003 1.015
BMA(1/N2) 0.959 0.997 1.004 0.903* 0.955 0.908 0.854** 0.955 0.995 1.005 1.020

Ridge 0.939 0.988 1.007 0.896** 0.954 0.892 0.875** 0.949 0.991 1.007 1.021
LARS 0.959 0.981 1.005 0.983** 0.985** 0.932 0.909** 0.936 0.993 1.008 1.001

EN 0.960 0.980 1.004 0.983** 0.985** 0.932 0.909** 0.936 0.992 1.008 1.001
NNG 0.975** 0.988* 1.010 0.992** 0.991** 0.975** 0.981** 0.967** 0.992 1.011 1.000
Mean 0.942 0.955 1.005 0.894** 0.939** 0.875** 0.853** 0.918 0.957** 1.001 0.999

*Notes: See notes to Tables 1 and 2. Numerical entries in this table are mean square forecast errors (MSFEs) based on the use of various 
recursively estimated prediction models. Forecasts are monthly, for the period 1974:3-2009:5. Models and target variables are predicted 
in Tables 1 and 2. Forecast horizons reported on include h=1,3 and 12. Entries in the first row, corresponding to our benchmark 
AR(SIC) model, are actual MSFEs, while all other entries are relative MSFEs, such that numerical values less than unity constitute 
cases for which the alternative model has lower point MSFE than the AR(SIC) model. Entries in bold denote point-MSFE "best" models 
for a given variable and forecast horizon. Dot-circled entries denote cases for which the Specification Type 1 (no lags) MSFE-best 
model using recursive estimation yields a lower MSFE than that based on using rolling estimation. Circled entries denote models that 
are MSFE-best across all specification types and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models 
are "winners" across all specification types, when only viewing recursively estimated models. The results from Diebold and Mariano (199
accuracy tests, for which the null hypothesis is that of equal predictive accuracy between the benchmark model (defined to be the AR(SIC
model), and the model listed in the first column of the table, are reported with single starred entries denoting rejection at the 10% level, 
and double starred entries denoting rejection at the 5% level. See Sections 4 and 5 for complete details.

Panel C: Recursive, h = 12

Table 3. Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 1 (no lags)*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.874 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

FAAR 0.850* 0.926 1.044 0.888 1.008 1.005 1.079 0.851 0.968 1.095 1.050
PCR 0.908 0.888 1.058 0.864 1.002 0.999 1.646** 0.855 1.292** 1.091 1.076

Bagging 1.287** 1.017 1.069* 2.566** 1.545** 2.160** 1.851** 1.304** 1.028 1.131** 0.962
C-Boosting 0.903 0.968 0.961 0.951 1.002 0.910 0.945 0.827** 0.963 0.975 1.005
BMA(1/T) 0.910 0.972 0.988 0.942 1.018 0.904 0.956 0.804** 0.959 1.012 1.019
BMA(1/N2) 0.907 0.962 0.996 0.955 1.023 0.904 0.954 0.816** 0.947 1.002 1.022

Ridge 0.911 0.959 0.988 0.919 1.014 0.944 0.992 0.821** 0.977 1.048 1.040
LARS 0.975** 0.977* 0.981 0.988 0.988 0.967* 0.974 0.948** 0.972* 0.989 0.995

EN 0.977** 0.978** 0.982 0.988 0.988 0.969* 0.975 0.949** *0.970 0.989 0.992
NNG 0.972** 0.990 0.994 0.984 0.996 0.975 0.989 0.964** 0.993 0.993 0.994
Mean 0.867** 0.922** 0.955 0.889** 0.944 0.879** 0.922* 0.821** **0.930 0.977 0.948*

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

FAAR 1.014 0.931 1.106 0.907 0.992 0.886 0.898 0.925 1.069 1.117* 1.144
PCR 0.999 0.928 1.092 0.906 0.975 0.898 1.404** 0.921 1.249** 1.107 1.115

Bagging 1.174** 1.017 1.141** 1.339** 1.204* 1.295** 1.050 1.010 0.995 1.007 1.087**
C-Boosting 0.951 0.914* 1.010 0.946 0.969 0.832** 0.879 0.868 1.006 1.007 0.967
BMA(1/T) 0.944 0.932 1.020 0.943 0.982 0.818** 0.903 0.851 1.027 1.030 0.990
BMA(1/N2) 0.954 0.942 1.011 0.953 0.981 0.836* 0.889 0.862 1.020 1.011 0.979

Ridge 0.944 0.917 1.047 0.933 0.992 0.844 0.891 0.869 1.046 1.064 1.033
LARS 0.979 0.973** 0.992 0.984 0.982 0.968 0.951** 0.962 0.996 1.000 0.969

EN 0.973* 0.975** 0.991 0.983 0.986 0.963 0.965** 0.962 0.996 1.000 0.969**
NNG 0.980 0.986* 1.001 0.991 0.995 0.963** 0.977** 0.967** 0.993 0.993 *0.970
Mean 0.924 0.891** 0.988 0.901** 0.928** 0.84** 0.851** 0.838** 0.977 0.997 0.962

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.621 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.997 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

FAAR 0.985 1.070 1.087 0.938 0.951 0.932 0.841* 1.082 1.049 1.081* 1.145**
PCR 0.983 1.069 1.081 0.932 0.942 0.924 1.020 1.071 1.116* 1.081* 1.132**

Bagging 1.003 **1.050 1.053 1.137* 1.078 1.174** 0.900 1.104** 0.971 1.034 1.001
C-Boosting 0.913 0.985 0.988 0.89** 0.947 0.896 0.846** 0.947 0.941 0.999 1.031
BMA(1/T) 0.930 1.007 1.002 0.908 0.935* 0.888 0.853** 0.975 0.981 1.006 1.031
BMA(1/N2) 0.936 0.997 0.999 0.909* 0.952 0.907 0.833** 0.964 0.982 1.002 1.019

Ridge 0.926 1.005 1.029 0.897 0.931 0.867 0.887* 1.006 1.001 1.029 1.067
LARS 0.968** 0.973 0.992 0.974** 0.988 0.974* 0.923** 0.963* 0.973** 0.995 1.004

EN 0.969** 0.971 0.992 0.972** 0.989 0.963** 0.929** 0.965* 0.975** 0.994 1.003
NNG 0.979** 0.985 1.002 0.993 1.007 0.975** 0.967** 0.978* 0.994 0.998 0.999
Mean 0.902** 0.956 0.995 0.888** 0.927** **0.860 0.829** 0.925 0.943** 0.999 1.010

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 1 (lags) MSFE-best model 
using recursive estimation yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best 
across all specification types and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are 
"winners" across all specification types, when only viewing recursively estimated models.

Panel C: Recursive, h = 12

Table 4. Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 1 (with lags)*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

C-Boosting 0.891* 0.962 0.971 0.961 1.024 0.887 0.961 0.906 1.047 1.011 0.865**
BMA(1/T) 0.896* 0.956 1.005 0.968 0.989 0.870** 0.990 0.864** 0.960 0.995 1.013
BMA(1/N2) 0.900* 0.962 0.986 0.945 0.983 0.899* 0.942 0.893** 0.926 1.019 1.012

LARS 0.914** 0.994 0.972** 0.998 1.008 0.916** 0.978 0.996 0.982** 0.983 0.876**
EN 1.149* 1.217 1.118 3.646** 1.464** 2.804** 11.041** 1.186** 4.340** 1.092** 1.308**

NNG 0.993** 0.996* 0.997 0.999 1.000 0.991** 1.001* 0.997* 1.000 1.001 1.000
Mean 0.907** 0.963** 0.968 0.960 0.979 0.886** 0.953** 0.902** 0.951* 0.984 0.93**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

C-Boosting 0.934 0.902 1.028 0.946 1.020 0.847** 0.780 0.819* 1.016 1.017 0.985
BMA(1/T) 0.959 0.920 1.011 0.996 1.023 0.903 0.882 0.902 0.994 1.009 0.991
BMA(1/N2) 0.946 0.937 1.006 1.005 1.011 0.912 0.871 0.890** 1.001 1.010 1.027

LARS 0.983 0.982** 1.000 0.996 1.005 0.968** 0.937 0.960* 0.990 0.998 0.994
EN 1.136** 1.206** 0.961 2.678** 1.280** 2.166** 5.287** 1.103* 3.488** 1.010 **1.240

NNG 0.997** 0.996** 1.000 0.997 0.998 0.995** 1.000 0.999 0.999 1.001 0.998**
Mean 0.943 0.922** 1.005 0.966 0.994 0.887** 0.827** 0.871** 0.976 0.997 0.966

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.620 0.009

C-Boosting 0.936 0.976 1.031 0.907 0.972 0.845* 0.786** 0.940 0.962 1.016 1.006
BMA(1/T) 0.947 1.000 1.003 0.902** 0.991 0.930 0.887* 0.959 0.997 1.004 1.011
BMA(1/N2) 0.938 1.007 1.003 0.917* 0.975 0.920 0.881** 0.993 0.981 1.007 1.024

LARS 0.957 0.979 1.002 0.970** 0.979** 0.966** 0.910** 0.912** 0.959** 1.006 0.981
EN 0.977 1.19** 0.979 2.497** 1.251** 1.242** 1.307** 0.977 3.206** 1.010 1.226**

NNG 0.997** 0.999 1.001 0.997** 0.997** 0.995** 0.997** 0.995** 0.999 1.002 0.999
Mean 0.933 0.965 1.004 0.913** 0.966** 0.892** 0.846** 0.925* 0.961* 1.004 0.994

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 2 MSFE-best model using recursive 
estimation yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best across all specification 
types and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are "winners" across all specification 
types, when only viewing recursively estimated models.

Panel C: Recursive, h = 12

Table 5. Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 2*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3

 32



Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 0.000 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.873 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

C-Boosting 0.944 0.965* 0.992 0.962 0.975 0.910 0.924* 0.936 1.010 0.988 0.915**
BMA(1/T) 1.012 1.137 1.059 1.541 1.223** 1.685** 1.250 0.980 1.193 1.231** 0.933
BMA(1/N2) 0.933 0.985 1.028 1.018 1.089 1.042 1.066 0.891 1.131 1.077 0.911

Ridge 1.668** 1.575** 1.424** 1.547** 1.643** 1.743** 1.795** 1.789** 1.430** 1.688** 1.388**
LARS 1.952** 0.993 1.797** 0.998 1.008 0.914** 2.02** 1.008 0.978** 1.975** 0.875**

EN 1.057 0.994 1.116 0.998 1.008 0.916** 1.082 0.996 0.982** 1.258** 0.876**
NNG 0.993** 0.996* 0.997 0.999 1.000 0.991** 1.001* 0.997* 1.000 1.001 1.000
Mean 0.924 0.943* 0.995 0.933 0.956 0.826** 0.910 0.875** 0.977 1.045 0.873**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.62 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

C-Boosting 0.943 0.951* 1.010 0.999 1.016 0.899** 0.820** 0.886** 0.980 1.014 0.974
BMA(1/T) 1.154 1.022 1.241** 1.092 1.094 1.109 1.041 1.076 1.089 1.158* 1.168**
BMA(1/N2) 0.969 0.922 1.025 1.047 1.034 0.877 0.941 0.881 1.063 1.034 1.011

Ridge 1.873** 1.517** 1.743** 1.362** 1.479** 1.675** 1.133 1.811** 1.447** 1.813** 1.95**
LARS 2.183** 0.977** 1.923** 0.997 1.006 0.962** 1.299 0.958** 0.989 2.099** 1.255**

EN 1.169 0.982** 1.319** 0.996 1.005 0.968** 0.828 0.96** 0.990 1.243** 0.994
NNG 0.997** 0.996** 1.000 0.997 0.998 0.995** 1.001 0.999 0.999 1.000 0.998**
Mean 0.991 0.911** 1.070 0.926* 0.953 0.859** 0.723** 0.881** 0.938* 1.033 0.992

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.62 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.996 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

C-Boosting 0.926 0.961 1.015 0.934* 0.971 0.862** 0.874** 0.934 0.969 1.007 0.995
BMA(1/T) 1.233 1.073 1.152** 1.298** 1.199 1.760 **1.760 1.164 1.366** 1.082 1.254**
BMA(1/N2) 1.019 1.009 1.039 1.127 1.106 1.447 1.618** 0.958 1.163* 1.017 1.074

Ridge 1.555** 1.807** 1.752** 1.382** 1.677* 1.859* 1.087 1.936** 1.316** 1.794** 1.925**
LARS 1.858** 0.979 1.983** 0.975* 0.979* 1.123 1.312 2.212** 0.957** 2.226** 0.983

EN 1.207 0.978 1.327** 0.97** 0.979** 0.966** 0.803** 0.889 0.959** 1.283** 0.981
NNG 0.997** 0.999 1.001 0.997** 0.997** 0.995** 0.997** 0.995** 0.999 1.002 0.999
Mean 0.960 0.966 1.076* 0.899** 0.953 0.885 0.840** 0.925 **0.910 1.047 1.011

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 3 MSFE-best model using 
recursive estimation yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best 
across all specification types and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are 
"winners" across all specification types, when only viewing recursively estimated models.

Panel C: Recursive, h = 12

Table 6. Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 3*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3
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h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
AR(SIC) 0 0 0 1 0 0

ARX(SIC) 1 0 0 1 0 0
Combined-ADL 0 0 0 0 0 0

FAAR 2 0 1 2 0 1
PCR 4 3 0 3 2 0

Bagging 0 0 0 0 0 0
C-Boosting 2 1 2 3 2 3
BMA(1/T) 0 1 0 0 0 0
BMA(1/N2) 0 0 0 0 2 0

Ridge 1 0 0 1 0 0
LARS 0 0 1 0 0 1

EN 0 1 3 0 1 3
NNG 0 1 1 0 1 0
Mean 1 4 3 0 3 3

h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
Specification Type 1
       Rolling 2 2 3
       Recursive 9 9 8
Specification Type 2
       Rolling 5 9 4
       Recursive 6 2 7
Specification Type 3
       Rolling 3 2 2
       Recursive 8 9 9

*Notes: See notes to Table 3. Specification types are defined as follows. Specification Type1 - 
Principal components are first constructed, and then prediction models are formed using the above 
shrinkage methods (ranging from bagging to NNG) to select functions of and weights for the 
factors to be used in our prediction model. Specification Type 2 - Principal component models are 
constructed using subsets of variables from the largescale dataset that are first selected via 
application of the above shrinkage methods (ranging from bagging to NNG). This is different from 
the above approach of estimatiing factors using all of the variables. Specification  Type 3 - 
Prediction models are constructed using only the above shrinkage methods (ranging from bagging 
to NNG), without use of factor analysis at any stage.

Winners by Estimaton Window Type Winners by Specification Type

Table 7. Forecast Experiment Summary Results*

Recursive Estimation Window Recursive and Rolling 
Estimation Windows

Panel A: Summary of MSFE-"best" Models Across All Specification Types

7 4 5

0

4 6

Panel B: Summary of MSFE-"best" Models

1 1

5
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Subsample Mean Linear 
Factor

Nonlinear
Factor Other Mean Linear 

Factor
Nonlinear

Factor Other Mean Linear 
Factor

Nonlinear
Factor Other

75:03 ~ 79:12 3 1 5 2 4 0 6 1 3 0 5 3
80:07 ~ 81:06 1 4 2 4 5 0 5 1 6 0 2 3
82:11 ~ 90:06 1 8 2 0 8 0 3 0 4 0 4 3
91:03 ~ 01:02 5 2 2 2 6 0 5 0 8 0 1 2
01:11 ~ 07:11 5 0 4 2 6 0 5 0 5 0 2 4
Non Recession 1 6 2 2 8 0 3 0 7 0 3 1

Recession 3 5 1 2 5 0 6 0 7 0 2 2

Subsample Mean Linear 
Factor

Nonlinear
Factor Other Mean Linear 

Factor
Nonlinear

Factor Other Mean Linear 
Factor

Nonlinear
Factor Other

75:03 ~ 79:12 2 1 3 1 0 0 2 0 1 0 1 0
80:07 ~ 81:06 0 4 0 2 1 0 3 0 1 0 0 0
82:11 ~ 90:06 1 8 0 0 1 0 0 0 1 0 0 0
91:03 ~ 01:02 3 1 2 0 0 0 0 0 4 0 0 1
01:11 ~ 07:11 0 4 3 1 1 0 0 0 2 0 0 0
Non Recession 1 5 2 0 0 0 1 0 2 0 0 0

Recession 1 3 0 1 0 0 1 0 4 0 1 0

Specification Type 2 Specification Type 3

*Notes: See notes to Tables 3 and 7. In the above table, "Mean" includes the following models: BMA, Combined-ADL and Mean. "Linear 
Factor" includes the following models: FAAR and PCR. "Nonlinear Factor" includes the following models: all shrinkage/factor combination 
models (i.e. Specification Types 1 and 2). Finally, "Other" includes our linear AR(SIC) and ARX(SIC) models. See Section 4.3 for further details.

Table 8. Forecast Experiment Summary Results: Various Subsamples*

Specification Type 3Specification Type 1 Specification Type 2

Panel B: Wins Across All Specification Types
h = 1, Recursive Estimation

Panel A: Wins by Specification Type
h = 1, Recursive Estimation

Specification Type 1
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*Notes: Panels in this figure depict the 10 most commonly selected variables for use in factor construction, across the entire prediction period from 1974:3-2009:5, where factors are re-estimated at each point 
in time, prior to each new prediction being constructed. 45 degree lines denote cases for which a particular variables is selected every time.  All models reported on are MSFE-best models, across Specification 
Types 1 and 2, and estimation window types. For example, in Panels A and B, the BAA Bond Yield - Federal Funds Rate spread is the most frequently selected predictor when constructing factors to forecast 
the Producer Price Index and Housing Starts, respectively. Note that in Panel E, the 10 most commonly selected variables by EN are picked at every point in time.

Figure 1: Most Frequently Selected Variables by Various Specification Types*

Panel E: Specification Type 2 : 10 Year Treasury Bill Yield , EN model, h = 3 Panel F: Specification Type 2 : Nonfarm Payroll Employment, C-boosting model, h = 12

Panel A: Specification Type 1 :  Producer Price Index, PCR model, h = 1

Panel C. Specification Type 1 : Consumer Price Index, FAAR model, h = 12 Panel D. Specification Type 2 : Gross Domestic Product, C-boosting model, h = 1

Panel B: Specification Type 1 :  Housing Starts, PCR model, h = 3
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