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Abstract

We review and construct consistent in-sample specification and out-of-sample model selection tests on conditional

distributions and predictive densities associated with continuous multifactor (possibly with jumps) and (non)linear

discrete models of the short term interest rate. The results of our empirical analysis are used to carry out a “horse-

race” comparing discrete and continuous models across multiple sample periods, forecast horizons, and evaluation

intervals. Our evaluation involves comparing models during two distinct historical periods, as well as across our

entire weekly sample of Eurodollar deposit rates from 1982-2008. Interestingly, when our entire sample of data is

used to estimate competing models, the “best” performer in terms of distributional “fit” as well as predictive density

accuracy, both in-sample and out-of-sample, is the three factor Chen (CHEN: 1996) model examined by Andersen,

Benzoni and Lund (2004). Just as interestingly, a logistic type discrete smooth transition autoregression (STAR)

model is preferred to the “best” continuous model (i.e. the one factor Cox, Ingersoll, and Ross (CIR: 1985) model)

when comparing predictive accuracy for the “Stable 1990s” period that we examine. Moreover, an analogous result

holds for the “Post 1990s” period that we examine, where the STAR model is preferred to a two factor stochastic

mean model. Thus, when the STAR model is parameterized using only data corresponding to a particular sub-sample,

it outperforms the “best” continuous alternative during that period. However, when models are estimated using the

entire dataset, the continuous CHEN model is preferred, regardless of the variety of model specification (selection)

test that is carried out. Given that it is very difficult to ascertain the particular future regime that will ensue when

constructing ex ante predictions, thus, the CHEN model is our overall “winning” model, regardless of sample period.
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1 Introduction

Diffusion processes are used in virtually all aspects of continuous time finance from yield curve

to exchange rate modeling, and for the purposes of prediction, simulation and pricing. This has

led to many papers recently being published in the field, numerous of which are a part of an

ongoing effort to specify models that adequately capture the dynamics of financial variables across

reasonable spans of time, rather than across specific historical episodes. In this paper we first

review recent methodological advances in the area of specification and predictive accuracy testing,

and subsequently undertake a specification search of alternative short rate models, thereby adding

to the rich literature begun by the key research of Chan, Karolyi, Longstaff and Sanders (CKLS:

1992). Our search focuses on a variety of multi factor continuous models both with and without

jumps as well as simple and nonlinear discrete models.

One characteristic of continuous time models that is crucial to the application of such models

is that only a few of those currently in use by practitioners have closed form solutions (see e.g.

Vasicek model (1977), Cox, Ingersoll, and Ross (CIR: 1985), Black and Scholes (1973), and Hull

and White (1990)). Indeed, many do not have closed form solutions, particularly those involving

one or multiple latent variables (see e.g. the stochastic mean model of Balduzzi et al. (1998),

the stochastic volatility model of Heston (1993), the three-factor model of Chen (1996), and the

three-factor model with jumps discussed in the noteworthy paper by Andersen, Benzoni and Lund

(ABL: 2004)). This issue has implications not only for pricing formulae derived from these models,

but also for estimation. In recent years, many new methods have been developed for the estimation

of continuous time models and the (often unknown in closed form) conditional densities associated

with them. For example, Aït-Sahalia (1999, 2002, 2008) provides closed form approximations of

(unknown) conditional densities using Hermite polynomials, for one-factor, stochastic volatility,

and multi-factor models, respectively. These and other approximations (as well as general work

on conditional Kolmogorov testing - see e.g. Andrews (1997) and Corradi and Swanson (2005a))

have led to the development of numerous consistent specification tests for evaluating individual

models. Some of the earliest key papers on “goodness of fit" testing of continuous time models

include those by Stanton (1997), Conley, Hansen, Luttmer, and Scheinkman (1997), Jiang (1998),

and Jones(2003). Many specification tests for continuous models fall within one of two different

categories. One category focuses on nonparametric tests. For example, tests characterized by

comparing model implied transition densities with their nonparametric estimated (e.g. using ker-

nels) counterparts (see e.g. Aït-Sahalia(1996, 2002), Aït-Sahalia, Fan and Peng (2009)); and tests

involving the examination of generalized cross spectra (see e.g. Hong and Li (2005) and Chen
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and Hong (2008)). Another category that includes papers by Gallant and Tauchen (1997), Ander-

sen and Lund (1997), Dai and Singleton (2000), Ahn, Dittmar and Gallant (2002), ABL (2004),

Thompson (2008), Aït-Sahalia and Kimmel (2007), and Corradi and Swanson (2005a), to name

but a few, who use parametric methods to examine the “goodness of fit” of models. The testing

approaches reviewed and used in this paper falls within this category. Namely, we review, extend

and implement the simulation based test for the correct specification of a diffusion process due to

Bhardwaj, Corradi and Swanson (BCS: 2008). This test is in the spirit of the conditional Kol-

mogorov test of Andrews (1997). In addition, we discuss a simple extension to the test of Corradi

and Swanson (CS: 2011) for comparing the accuracy of predictive densities derived from (possibly

misspecified) diffusion models. These tests are continuous time generalizations of the discrete time,

point mean square forecast error, model selection test statistics of White (2000) which are widely

used in empirical finance (see e.g. Sullivan, Timmermann and White (1999, 2001)).

It should be noted that the tests used in this paper are also closely related to the interesting

nonparametric specification tests of Hong (2002), Hong, Li and Zhao (2004, 2007), and Chen and

Hong (2008), some of which are based upon use of the conditional characteristic function (ccf) in

conjunction with the generalized cross spectrum. Our in-sample specification test is in the same

spirit as these tests. Both, for example, are motivated by the classical Kolmogorov-Smirnov test,

and our test along with many of their tests do not require a closed form solution for the transition

density. However, our tests converge at a parametric rate while theirs converge at nonparametric

rates. Moreover, our out-of-sample predictive density type model selection tests have the added

feature that estimation is recursive, parameter estimation error does not vanish asymptotically and

is explicitly accounted for, and multiple (possibly misspecified) models are jointly compared.

Of further note is that the difference between our approaches to in-sample (and out-of-sample)

specification testing (and predictive density type model selection) and that taken elsewhere can

be easily motivated within the framework used by Diebold, Gunther and Tay (DGT: 1998), Bai

(2003), Hong (2002) and Hong, Li and Zhao (2004). In their paper, DGT use the probability integral

transform (see e.g. Rosenblatt (1952)) to show that Ft(yt|=t−1, θ0), is identically and independently

distributed as a uniform random variable on [0, 1], where Ft(·|=t−1, θ0) is a parametric distribution

with underlying parameter θ0, yt is the random variable of interest, and =t−1 is the information

set containing all “relevant” past information (see below for further discussion). They thus suggest

using the difference between the empirical distribution of Ft(yt|=t−1,bθT ) and the 45◦−degree line
as a measure of “goodness of fit”, where bθT is some estimator of θ0. This approach has been shown
to be very useful for financial risk management (see e.g. Diebold, Hahn and Tay (1998)), as well as
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for macroeconomic forecasting (see e.g. Diebold, Tay and Wallis (1998) and Clements and Smith

(2000, 2002)). Likewise, Bai (2003) proposes a Kolmogorov type test of Ft(u|=t−1, θ0) based on

the comparison of Ft(yt|=t−1,bθT ) with the CDF of a uniform on [0, 1]. As a consequence of using

estimated parameters, the limiting distribution of his test reflects the contribution of parameter

estimation error and is not nuisance parameter free. To overcome this problem, Bai (2003) uses

a novel approach based on a martingalization argument to construct a modified Kolmogorov test

which has a nuisance parameter free limiting distribution. This test has power against violations of

uniformity but not against violations of independence. Two features differentiate our approach from

that taken in the above papers. First, we assume strict stationarity, while they do not. Second,

we allow for dynamic misspecification under the null hypothesis, while they do not. While our

approach is clearly less general because of the first feature, the second feature allows us to obtain

asymptotically valid critical values even when the conditioning information set does not contain all

of the relevant past history. More precisely, we are interested in testing for correct specification,

given a particular information set which may or may not contain all of the relevant past information.

This is relevant when a Kolmogorov test is constructed, as one is generally faced with the problem

of defining =t−1. If enough history is not included, then there may be dynamic misspecification.

Additionally, finding out how much information (e.g. how many lags) to include may involve pre-

testing, hence leading to a form of sequential test bias. By allowing for dynamic misspecification,

we do not require such pre-testing. Another key feature of our approach concerns the fact that

the limiting distribution of Kolmogorov type tests is affected by dynamic misspecification. Critical

values derived under correct specification given =t−1 are not in general valid in the case of correct

specification given a subset of =t−1. Consider the following example. Assume that we are interested

in testing whether the conditional distribution of yt|yt−1 is N(α†1yt−1,σ1). Suppose also that in

actual fact the “relevant” information set has =t−1 including both yt−1 and yt−2, so that the true

conditional model is yt|=t−1 = yt|yt−1, yt−2 = N(α1yt−1+α2yt−2,σ2), where α
†
1 differs from α1. In

this case, we have correct specification with respect to the information contained in yt−1; but we

have dynamic misspecification with respect to yt−1, yt−2. Even without taking account of parameter

estimation error, the critical values obtained assuming correct dynamic specification are invalid,

thus leading to invalid inference. Stated differently, tests that are designed to have power against

both uniformity and independence violations (i.e. tests that assume correct dynamic specification

under H0) will reject; an inference which is incorrect, at least in the sense that the “normality”

assumption is not false. In summary, if one is interested in the particular problem of testing for

correct specification for a given information set, then our approach is appropriate.
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One feature of the current literature is that the application of different specification tests and

different data sets have led to a variety of different conclusions. For example, Aït-Sahalia (1996)

test fails to reject the CKLS (1992) model and the nonlinear drift model of Aït-Sahalia (1996). On

the other hand, Hong and Li (2005) strongly reject all univariate affine models of the Euro dollar

rate, and suggest that even very sophisticated models (including GARCH, regime switching, and

jumps) do not adequately capture interest rate dynamics. BCS (2008) reject the CIR (1985) model,

and conclude that stochastic volatility models are superior to the CIR model. To some extent, one

might argue that the mixed evidence in the extant literature can be attributed to the fact that

numerous analyses have been carried out using (relatively) small numbers of models and varying

data samples, many of which can be tied to particular historical “episodes”. In light of this, we

examine multiple time periods and a relatively rich set of models in this paper. We then compare

our findings based on multiple sample periods with those based on analysis of our entire sample

period of Eurodollar deposit rates from 1982-2008.

Interestingly, when our entire sample of data is used to estimate competing models, the “best”

performer in terms of distributional “fit” as well as predictive density accuracy, both in-sample

and out-of-sample, is the three factor Chen (CHEN: 1996) model examined by ABL (2004). This

model is selected from a group of continuous time models including one, two, and three factor

variants (with and without jumps), a simple discrete AR(p) benchmark model with lags (p) se-

lected recursively using the Schwarz information criterion, and a nonlinear (logistic type) smooth

transition autoregression (STAR) model. Just as interestingly, the STAR model is preferred to

the “best” continuous model (i.e. the one factor CIR (1985) model) when comparing predictive

accuracy for the “Stable 1990s” period that we examine. Moreover, an analogous result holds for

the “Post 1990s” period that we examine, where the STAR model is preferred to a two factor sto-

chastic mean model. Thus, when the STAR model is parameterized using only data corresponding

to a particular sub-sample, it outperforms the “best” continuous alternative during that period.

However, when models are estimated using the entire dataset, the continuous CHEN model is pre-

ferred, regardless of the variety of model specification (selection) test that is carried out. Given

that it is very difficult to ascertain the particular future regime that will ensue when constructing

ex ante predictions, thus, the CHEN model is our overall “winning” model, regardless of sample

period. These findings are largely in agreement with the caveat pointed out by Hong, Li and Zhao

(2004) that a model which fits historical data well is not guaranteed to have better out-of-sample

performance. Indeed, this feature of empirical models is one of the main reasons why we carry out

both in-sample and out-of-sample tests in our analysis.
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In summary, our empirical analysis suggests that continuous time models do actually “hold

their own” against discrete time models, even in forecasting competitions involving comparison of

predictive density accuracy. Thus, the oft asked question of whether continuous time models that

impose certain critical restrictions (such as no arbitrage) actually compare favorably with discrete

time models is answered in the affirmative in our experiments. That said, it should be stressed

that further research comparing our continuous time models with even more dynamically complex

discrete models remains to be undertaken.

The rest of the paper is organized as follows. In Section 2, we review recent in-sample and

out-of-sample specification tests that are used in the sequel. Section 3 summarizes the short term

interest rate models that we examine. Finally, Section 4 discusses the data used in our experiments

and empirical results are gathered in Section 5. Concluding remarks are given in Section 6.

2 Specification Tests and Model Selection

Our testing methodology follows that of BSC (2008) and CS (2011). In particular, we first im-

plement in-sample consistent specification tests that due to BCS (2008). These tests, including

a generalization to the case of three factor models, are Kolmogorov type tests utilizing a simple

simulation based approach to construct conditional distributions when the functional form of the

conditional density is unknown. The distributions are in turn used to form predictive confidence

intervals for time period t + τ , given information up to period t. The specification test measures

the difference between simulated conditional confidence distributions generated using fitted para-

metric models and empirical conditional distributions implied by historical data. This approach

is closely related to the specification testing approach discussed in Corradi and Swanson (2005a),

Aït-Sahalia (1996, 2006), Hong and Li (2005) and Hong, Li and Zhao (2007). As opposed to the

above approach of testing each individual model to ascertain whether it is correctly specified, we

also implement out-of-sample model selection type tests due to CS (2011) that jointly compare

all models based on predictive accuracy. These tests are in the spirit of the predictive accuracy

tests due to Diebold and Mariano (1995) and White (2000), and involve using a simulation based

approach closely related to the approach used in BCS (2008). Of note is that all models in both

types of tests carried out in this paper are (possibly) misspecified. For a complete discussion of

the importance of model misspecification in the case of specification testing and model selection,

please refer to Corradi and Swanson (2006a). In the following sub-sections, we briefly discuss the

in-sample and out-of-sample tests discussed above.
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2.1 A Consistent Specification Test

The BCS (2008) test is based on the comparison of the empirical cumulative distribution function

(CDF) and the cumulative distribution function implied by the specification of the drift and the

variance under a given null model. To illustrate the idea, consider a parametric diffusion process:

dXt = b(Xt, θ
†)dt+ σ(Xt, θ

†)dWt, (1)

whereWt is a Brownian motion, and the true parameter vector is θ0 = (b00,σ
0
0)
0 ∈ Θ, Θ is a compact

subset of <K . Thus, we are assuming that Xt is a one-dimensional diffusion process solution to the

above stochastic differential equation, where the true parameters, θ0, have been replaced by their

pseudo true analogs, θ†. The discrete analog to the above process is a model in which Xt is a scalar.

Multi-dimensional diffusion processes are discussed later.

Under correct specification of the diffusion process, we have that b(·, ·) = b0(·, ·) and σ(·, ·) =

σ0(·, ·), that is θ† = θ0. Note that the stationary density, f(x, θ†), and its associated invariant

probability measure are uniquely determined by b(·) and σ2(·) (the drift and variance terms in

the model). The alternative hypothesis is that the parameters in the above diffusion process do

not coincide with the true parameters. Instead of comparing transition densities directly (see Aït-

Sahalia et al. (2009)), we compare the cumulative distribution function. The null and alternative

hypotheses are:

H0 : Fτ (u|Xt, θ†) = F0,τ (u|Xt, θ0), for all u, a.s.

HA : Pr
¡
Fτ (u|Xt, θ†)− F0,τ (u|Xt, θ0) 6= 0

¢
> 0, for some u ∈ U, with non-zero Lebesgue measure.

To construct a specification test, we follow BCS (2008) by defining the τ−step ahead conditional

distribution of Xθ†
t+τ , given X

θ†
t = Xt, as:

Fτ (u|Xt, θ†) = Pr
³
Xθ†
t+τ ≤ u|Xθ†

t = Xt

´
, (2)

where t = 1, 2, 3, ..., T − τ . Instead of comparing Fτ (u|Xt, θ†) and F0,τ (u|Xt, θ0), we need to replace

Fτ (u|Xt, θ†) with its simulated counterpart. Namely:

bFτ (u|Xt,bθT,N,h) = 1

S

SX
s=1

1

½
X

θT,N,h
s,t+τ ≤ u

¾
, (3)

where bθT,N,h is estimated by using the whole sample of T observations. Here, bθT,N,h converges
to θ†, and S is the number of simulation paths. BCS (2008) show that 1

S

PS
s=1 1

½
X

θT,N,h
s,t+τ ≤ u

¾
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is a consistent estimate of Fτ (u|Xt, θ†). Moreover, under the null hypothesis of correct speci-

fication, 1
S

PS
s=1 1

½
X

θT,N,h
s,t+τ ≤ u

¾
is also a consistent estimator of F0,τ (u|Xt, θ0). Thus, we can

implement a simulation-based version of the conditional Kolmogorov tests of Andrews (1997), in

which we compare the joint empirical distribution 1
T−τ

PT−τ
t=1 1{Xt+τ ≤ u}1 {Xt ≤ v} with its semi-

empirical/semi-parametric analog given by the product of 1
T−τ

PT−τ
t=1 F0,τ (u|Xt, θ0)1 {Xt ≤ v} . In-

tuitively, if the null model used for simulating the data is correct, then the difference between the

two approaches zero, and has a well-defined limiting distribution when properly scaled.

Namely, in order to test the above hypotheses, we measure the departure from the null hypoth-

esis by defining the test statistic ZT = supu×v∈U×V |ZT (u, v)| , where

ZT (u, v) =
1√
T − τ

T−τX
t=1

Ã
1

S

SX
s=1

1

½
X

θT,N,h
s,t+τ ≤ u

¾
− 1{Xt+τ ≤ u}

!
1 {Xt ≤ v} , (4)

and U and V are compact sets on the real line. BCS outline block-bootstrap methods for construct-

ing critical values for this test. Specifically, the bootstrap statistic is Z∗T = supu×v∈U×V |Z∗T (u, v)| ,

where

Z∗T (u, v) =
1√
T − τ

T−τX
t=1

Ã
1

S

SX
s=1

1

½
X

θ
∗
T,N,h

s,t+τ ≤ u
¾
− 1{X∗t+τ ≤ u}

!
1 {X∗t ≤ v}

− 1√
T − τ

T−τX
t=1

Ã
1

S

SX
s=1

1

½
X

θT,N,h
s,t+τ ≤ u

¾
− 1{Xt+τ ≤ u}

!
1 {Xt ≤ v} , (5)

and X∗t is a resampled series constructed using standard block-bootstrap methods, bθ∗T,N,h is esti-
mated parameter using the resampled data, X∗t , and is in turn used to construct simulated paths,

X
θ
∗
T,N,h

s,t+τ , s = 1, ..., S and t = 1, ..., T − τ . In order to generate the empirical distribution of Z∗T ,

one performs B bootstrap replications (B is large). Then, one compares ZT with the percentiles

of the empirical distribution of Z∗T , and rejects H0 if ZT is greater than the (1 − α)th-percentile.

Otherwise, one fails to reject. BCS (2008) has proved that the test carried out in this manner is

correctly asymptotically sized, and has unit asymptotic power.

For two-factor models (e.g. stochastic mean and stochastic volatility models, where Xt =¡
X1
t ,X

2
t

¢0
), the difficulty lies in dealing with the initial value for the simulation process, given that

the latent variable in Xt is unobservable. BCS (2008) integrate out this effect by first simulating a

long path of length N observations for latent variable X2
t . Second, they take the simulated values

in the first step as starting values for the latent variable and simulate S×N paths in order to form,bFτ (u|Xt,bθT,N,h). The associated test statistic in Eq(4) is:

7



ZT (u, v) =
1√
T − τ

T−τX
t=1

⎛⎝ 1

NS

NX
j=1

SX
s=1

1

½
X
1,θT,N,h
j,s,t+τ ≤ u

¾
− 1{X1

t+τ ≤ u}

⎞⎠ 1©X1
t ≤ v

ª
. (6)

Similarly, the bootstrap statistic analogous to that given in Eq(5) is Z∗T = supu×v∈U×V |V ∗T (u, v)| ,

where

Z∗T (u, v) =
1√
T − τ

T−τX
t=1

⎛⎝ 1

NS

NX
j=1

SX
s=1

1

½
X
1,θ
∗
T,N,h

j,s,t+τ ≤ u
¾
− 1{X1∗

t+τ ≤ u}

⎞⎠ 1©X1∗
t ≤ v

ª

− 1√
T − τ

T−τX
t=1

⎛⎝ 1

NS

NX
j=1

SX
s=1

1

½
X
1,θT,N,h
j,s,t+τ ≤ u

¾
− 1{X1

t+τ ≤ u}

⎞⎠ 1©X1
t ≤ v

ª
. (7)

Of note that we use X1
t+τ and X

1,θT,N,h
j,s,t+τ to construct the conditional interval because only X1

t is

observable in Xt.

Now, consider a three-factor model (see e.g. the “CHEN” and “CHENJ” models discussed

below), where Xt =
¡
X1
t ,X

2
t ,X

3
t

¢0
, and Wt =

¡
W 1
t ,W

2
t ,W

3
t

¢
are mutually independent standard

Brownian motions in Eq(1). The key issue concerns how to construct the conditional distribution

Fτ (u|Xt, θ†) = Pr
³
Xθ†
t+τ ≤ u|Xθ†

t = Xt

´
without knowing the starting value of X2

t and X
3
t . To deal

with this issue, we propose a simple simulation based method that is an immediate consequence of

the approach discussed in BCS for one and two factor models:

Step 1: Given the estimated parameter bθT,N,h, generate a path of length N (a large number) for
X

θT,N,h
t . The key here is to use the mean of stochastic volatility and the mean of stochastic mean

in bθT,N,h as the initial start values for these two latent variables. Retrieve X2,θT,N,h
t and X

3,θT,N,h
t

, t = 1, 2, ..., N from the path.

Step 2: Given the observable X1
t and the N ×N simulated latent paths (X

2,θT,N,h
j ×X3,θT,N,h

m

j,m = 1, ...,N) as the start values , we simulate τ -step ahead X
1,θT,N,h
t+τ . Since the start values for

the two latent variables are N ×N length, so for each X1
t we have N

2 path, that is Fτ ,i(u|Xt,bθ) =
1
N2

PN
m=1

PN
j=1 1

½
X
1,θT,N,h
j,m,t+τ ≤ u

¾
, where i denotes the ith simulation.

Step 3: Simulate X
1,θT,N,h
t+τ S times, that is to repeat step 2 S times. 1

S

PS
i=1 Fτ ,i(u|Xt,bθT,N,h)

is the estimator of Fτ (u|Xt, θ†).

Step 4: Construct the statistic for the null of correct specification of the conditional distribution:

ZT = sup
u×v∈U×V

|ZT (u, v)| ,

where

ZT (u, v) =
1√
T − τ

T−τX
t=1

⎛⎝ 1

N2S

NX
m=1

NX
j=1

SX
s=1

1

½
X
1,θT,N,h
j,m,s,t+τ ≤ u

¾
− 1{X1

t+τ ≤ u}

⎞⎠ 1©X1
t ≤ v

ª
. (8)
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It follows immediately from BCS (2008) that T,N, S → ∞. Then, if h → 0, T/N → 0, T/S → 0,

h2T → 0, and the model is correctly specified, the following result holds for any X1
t , t ≥ 1 :

1

N2S

NX
m=1

NX
j=1

SX
s=1

1

½
X
1,θT,N,h
j,m,s,t+τ ≤ u

¾
− F0(u|Xt, θ0)

p→ 0,uniformly in u.

Moreover, we can implement the same bootstrap method as that outlined in BCS (2008) in order

to form the resampled series, X1∗
t and construct bootstrap statistics. Namely:

Step 1: Resample X1
t . In particular, we draw b blocks (with replacement) of length l, where

bl = T . Thus, each block is equal to X1
i+1, ...,X

1
i+l, for some i = 0, ..., T − l, with probabil-

ity 1/(T − l). More formally, let Ik, k = 1, ..., b be iid discrete uniform random variables on

[0, 1, ..., T − l]. Then, the resampled series, X1∗
t is such that {X1∗

1 ,X
1∗
2 , ...,X

1∗
l ,X

1∗
l+1, ...,X

1∗
T } =

{X1
I1+1

,X1
I1+2

, ...,X1
I1+l

,X1
I2
, ...,X1

Ib+l
}, and so a resampled series consists of b blocks that are dis-

crete iid uniform random variables, conditional on the sample. Use these data to construct bθ∗T,N,h.
Step 2: Repeat Steps 1-3 in constructing ZT (u, v), but we use X1∗

t and bθ∗T,N,h to replace X1
t

and bθT,N,h respectively, to construct the conditional distribution for X1∗
t+τ . Particularly, X

1,θ
∗
T,N,h

j,s,m,t+τ

is the simulated value at simulation s, constructed using bθ∗T,N,h, and X1,θ
∗
T,N,h

t , X
2,θ
∗
T,N,h

j,h , X
3,,θ

∗
T,N,h

m,h

as initial value. Of note that we use the same set of random errors used in X
1,θT,N,h
j,m,s,t+τ to construct

X
1,θ
∗
T,N,h

j,m,s,t+τ .

Step 3: Construct the bootstrap statistic, which is the bootstrap counterpart of ZT :

Z∗T = sup
u×v∈U×V

|Z∗T (u, v)| , (9)

where

Z∗T (u, v) =
1√
T − τ

T−τX
t=1

⎛⎝ 1

N2S

NX
m=1

NX
j=1

SX
s=1

1

½
X
1,θ
∗
T,N,h

j,m,s,t+τ ≤ u
¾
− 1{X1∗

t+τ ≤ u}

⎞⎠ 1©X1∗
t ≤ v

ª

− 1√
T − τ

T−τX
t=1

⎛⎝ 1

N2S

NX
m=1

NX
j=1

SX
s=1

1

½
X
1,θT,N,h
j,m,s,t+τ ≤ u

¾
− 1{X1

t+τ ≤ u}

⎞⎠ 1©X1
t ≤ v

ª
,

Step 4: Repeat step 1-3 B times to generate the empirical distribution of the B bootstrap statis-

tics.

2.2 An Out-of-Sample Model Selection Test

The approach of CS (2011) is to measure predictive accuracy using a distributional generalization

of mean square error, as defined in Corradi and Swanson (2005b). Namely, let F τ
k (u|Xt,ϑ

†
k) be the

9



distribution of Xt+τ given Xt, evaluated at u, implied by diffusion model k, where θ
†
k is a para-

meter vector,and let F τ
0 (u|Xt,ϑ0) be the distribution associated with the underlying and unknown

“true” model. Now, choose model k over model 1, say, if E
µ³
F τ
k (u|Xt,ϑ

†
k)− F τ

0 (u|Xt,ϑ0)
´2¶

<

E

µ³
F τ
1 (u|Xt,ϑ

†
1)− F τ

0 (u|Xt,ϑ0)
´2¶

. The test can be viewed as distributional generalizations of

both Diebold and Mariano (1995) and White (2000). Note that in the case of continuous time

models, if we knew F τ
k (u|Xt,ϑ

†
k) in closed form, then we could proceed as in Corradi and Swanson

(2006a,b). However, the functional form of the model implied conditional distribution is unknown

in closed form, in general, and hence we rely on a simulation-based approach to facilitate testing.

As is customary in the out-of-sample evaluation literature, the sample of T observations is split

into two subsamples, such that T = R + P, where only the last P observations are used for pre-

dictive evaluation. We first simulate S paths of length P − τ (each path is τ−steps ahead) using

XR, ...,XR+P−τ as starting values. Then, a scaled difference between the conditional distribution,

estimated with historical as well as simulated data, is used to construct our test statistic.

H0 : max
k=2,...,m

⎛⎝EX ÃÃF
X
ϑ
†
1

1,t+τ (Xt)
(u2)− F

X
ϑ
†
1

1,t+τ (Xt)
(u1)

!
− (F0(u2|Xt)− F0(u1|Xt))

!2

−EX

⎛⎝⎛⎝F
X
ϑ
†
k

k,t+τ
(Xt)

(u2)− F
X
ϑ
†
k

k,t+τ (Xt)
(u1)

⎞⎠− (F0(u2|Xt)− F0(u1|Xt))
⎞⎠2⎞⎠ ≤ 0

HA : the negation of H0

The test statistic is:

DMaxk,P,N(u1, u2) = max
k=2,...,m

Dk,P,N(u1, u2),

where the test statistic is constructed over an interval (u1, u2) ∈ UxU and

Dk,P,N (u1, u2)

=
1√
P

T−τX
t=R

⎛⎝" 1
N

NX
i=1

1

½
u1 ≤ X

ϑ1,t,N,h
1,t+τ ,i (Xt) ≤ u2

¾
−1{u1 ≤ Xt+τ ≤ u2}

#2

−
"
1

N

NX
i=1

1

½
u1 ≤ X

ϑk,t,N,h
k,t+τ ,i (Xt) ≤ u2

¾
−1{u1 ≤ Xt+τ ≤ u2}

#2⎞⎠ .
with X

ϑk,t,h
k,t+τ ,i the simulated τ -step ahead value given Xt and the recursively estimated parameterbϑk,t,h. Of note is that bϑk,t,h is the parameter implied by model k and it is estimated from the first

t observations instead of total sample T as in BCS (2008) test, and more precisely, it is updated
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prior to each new forecast construction. A version of the test that applies for evaluation of the

entire predictive density is discussed in CS (2011). The appropriate bootstrap statistic for critical

value construction is:

D∗k,P,N (u1, u2)

=
1√
P

T−τX
t=R

⎧⎨⎩
⎛⎝" 1

N

NX
i=1

1

½
u1 ≤ X

ϑ
∗
1,t,N,h

1,t+τ ,i (X
∗
t ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

#2

−

⎛⎝ 1
T

TX
j=1

"
1

N

NX
i=1

1

½
u1 ≤ X

ϑ1,t,N,h
1,t+τ ,i (Xj) ≤ u2

¾
− 1{u1 ≤ Xj+τ ≤ u2}

#2⎞⎠⎞⎠
−

⎛⎝" 1
N

NX
i=1

1

½
u1 ≤ X

ϑ
∗
k,t,N,h

k,t+τ ,i (X
∗
t ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

#2

−

⎛⎝ 1
T

TX
j=1

"
1

N

NX
i=1

1

½
u1 ≤ X

ϑk,t,N,h
k,t+τ ,i (Xj) ≤ u2

¾
− 1{u1 ≤ Xj+τ ≤ u2}

#2⎞⎠⎞⎠⎫⎬⎭ .
where X∗t+τ is from a bootstrap sample constructed using the standard block bootstrap and bϑ∗1,t,N,h
are parameter estimates based on the bootstrap sample (see CS (2011) for complete details). Of

note is that each bootstrap term is recentered around the (full) sample mean. This is necessary

because the bootstrap statistic is constructed using the last P resampled observations, which in

turn have been resampled from the full sample. In particular, this is necessary regardless of the

ratio, P/R. Thus, even if P/R → 0, so that there is no need to mimic parameter estimation error

(and hence the above statistic can be constructed using bϑk,t,N,h instead of bϑ∗k,t,N,h), it remains the
case that recentering of all bootstrap terms around the (full) sample mean is necessary.

3 The Models

In our empirical analysis we consider a variety of continuous and discrete models, both with and

without jumps. The jump processes that we model are driven by two separate Poisson draws (up

jumps and down jumps) with different intensities, and different jump magnitudes, as discussed in

Chacko and Das (2002). Overall, our models are most closely related to those examined in ABL

(2004), and Hong and Li (2005), although we consider both continuous time and discrete models.

In total, we consider six affine models, one nonaffine model, and two discrete models of the short

rate, all of which are outlined briefly below.

The Cox-Ingersoll-Ross (CIR) Model: We follow CIR (1985) and posit that:

dr (t) = κr (θ − r (t)) dt+ σr
p
r (t)dWr (t) , (10)
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where Wr (t) is standard Brownian motion, θ is the long-run mean of the interest rate, κr measures

the speed of mean-reversion, and σr is a standard deviation parameter that is assumed to be fixed.

Also, non-negativity is imposed, as 2κrθ > σ2r.

Stochastic Mean Model (SM): As above, but θ (t) is a mean reverting process that converges to its

unconditional mean:

dr (t) = κr (θ (t)− r (t)) dt+ σrdWr (t) , (11)

dθ (t) = κθ
¡
θ − θ (t)

¢
dt+ σθ

p
θ (t)dWθ (t) ,

where Wr (t) and Wθ (t) are independent Brownian motions, and θ and σθ are the mean and

standard deviation of θ (t) , respectively. Of note is that the mean process, θ (t) , cannot take

negative values provided that 2κθθ > σ2θ. Stationarity requires that κr and κθ (which control mean

reversion speeds) are greater than zero.

Stochastic Volatility Model (SV): We estimate the Heston (1993) model (see also Chen (1996),

Andersen, and Lund (1997), and Aït-Sahalia and Kimmel (2007)). Namely:

dr (t) = κr (r − r (t)) dt+
p
V (t)dWr (t) , (12)

dV (t) = κv (v − V (t)) dt+ σv
p
V (t)dWv (t) ,

where κr,κv > 0 in order to ensure stationarity, and v and σv are the mean and standard deviation

of V (t) . As above, Wr (t) and Wv (t) are scalar Brownian motions in some probability measure.

However, we now assume that Wr (t) and Wv (t) are correlated, such that dWr (t) dWv (t) = ρdt,

where the correlation, ρ, is some constant in [-1,1]. Finally, note that volatility is a square-root

diffusion process, which requires that 2κvv > σ2v.

Stochastic Volatility Model with Jumps (SVJ): We add Poisson-exponential jumps to the previous

model. Namely:

dr (t) = κr (r − r (t)) dt+
p
V (t)dWr (t) + Judqu − Jddqd, (13)

dV (t) = κv (v − V (t)) dt+ σv
p
V (t)dWv (t) ,

where qu and qd are Poisson processes with jump intensity λu and λd respectively, and are inde-

pendent of the Brownian motions Wr (t) and Wv (t) . In particular, λu is the probability of a jump

up, Pr (dqu (t) = 1) = λu and λd is the probability of a jump down, Pr (dqd (t) = 1) = λd. Ju and

Jd are jump up and jump down sizes and have exponential distributions: f (Ju) = 1
ζu
exp

³
−Juζu

´
and f (Jd) = 1

ζd
exp

³
−Jdζd

´
, where ζu, ζd > 0 are the jump magnitudes, which are the means of

the jumps, Ju and Jd.
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Three Factor Model (CHEN): We combine various features of the above models, by considering a

version of the oft examined 3-factor model due to CKLS (1992), which is discussed in detail in Dai

and Singleton (2000). In particular, we consider the Chen (1996) 3-factor model:

dr (t) = κr (θ (t)− r (t)) dt+
p
V (t)dWr (t) ,

dV (t) = κv (v − V (t)) dt+ σv
p
V (t)dWv (t) , (14)

dθ (t) = κθ
¡
θ − θ (t)

¢
dt+ σθ

p
θ (t)dWθ (t) ,

whereWr (t) , Wv (t) andWθ (t) are independent Brownian motions, and V and θ are the stochastic

volatility and stochastic mean of short rate r, respectively. As discussed above, non-negativity for

V (t) and θ (t) requires that 2κvv > σ2v and 2κθθ > σ2θ.

Three Factor Jump Diffusion Model (CHENJ): ABL (2004) extend the three factor Chen (1996)

model by incorporating jumps in the short rate process, hence improving the ability of the model

to capture the effect of outliers, and addressing the finding of Piazzesi (2004, 2005) that violent

discontinuous movements may arise from monetary policy regime changes. The model is defined

as follows:

dr (t) = κr (θ (t)− r (t)) dt+
p
V (t)dWr (t) + Judqu − Jddqd,

dV (t) = κv (v − V (t)) dt+ σv
p
V (t)dWv (t) , (15)

dθ (t) = κθ
¡
θ − θ (t)

¢
dt+ σθ

p
θ (t)dWθ (t) ,

where parameters are as defined for the above SVJ and CHEN models.

General Single-Factor Diffusion Model (CEV):

The best known model that incorporates the dependence of volatility on the level of the interest

level is probably the nonaffine constant elasticity of volatility (CEV) model discussed in CKLS

(1992), which has been studied by numerous authors (see e.g. Aït-Sahalia(1996), Stanton (1997),

Durham (2003), Hong and Li (2005), and Bali and Wu (2006)). In light of this, we also consider

following CEV model

dr (t) = κr (θ − r (t)) dt+ σrr(t)
ρdWr (t) , (16)

where parameters are defined as in the CIR model. We also assume that ρ > 1 (see e.g. Aït-

Sahalia(1996)). The CEV model is probably the best known model that incorporates the depen-

dence of volatility on the level of the interest level.

Linear Autoregression Model (AR(p)):

As a discrete benchmark model, we estimate a standard AR(p) model:
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rt = θ + βrt−1 + ut, (17)

where ut is a disturbance term, and the number of lags, p, is selected via the use of the Schwarz

information criterion, and is re-estimated prior to each new prediction when the model is used to

construct predictions.

Smooth Transition Autoregression Model (STAR):

Finally, we estimate a standard version of the STAR model developed by Chan and Tong (1986)

(see also Teräsvirta and Anderson (1992), Teräsvirta(1994, 1998), and the references therein):

rt = (θ1 + β1rt−1)G(γ, zt, c) + (θ2 + β2rt−1)(1−G(γ, zt, c)) + ut, (18)

In our analysis, the transition function, G(·) is defined to be the logstic CDF (i.e. G(γ, zt, c) =
1

1+eγ(zt−c)
) and zt, is an exogenous transition variable, defined in the same manner as the moving

average process used in Franses and van Dijk (2000).

Of note is that there are many estimation techniques that can be used to estimate the above

continuous time models. For example, there are many simulation based methods, such as efficient

method of moments (see Gallant and Tauchen (1996,1997), Chernov and Ghysels (2000), and the

references cited therein) and nonparametric simulated maximum likelihood (see e.g. Fermanian

and Salanié (2004) and CS (2011)). For further discussion, see Aït-Sahalia (2007) which provides

a survey on estimating continuous models using discrete observations. In the current paper, we

follow the simulated generalized method of moments estimation approach discussed in Duffie and

Singleton (1993). Of course, it should also be pointed out that it is possible in the case of the affine

models considered here to compute in closed form the conditional characteristic function, and hence

follow Singleton (2001), Jiang and Knight (1997, 2002), Duffie, Pan and Singleton(2000), or Chacko

and Viceira (2003). Finally, note that our discrete models are estimated using maximum likelihood,

and as discussed in Franses and van Dijk (2000), and van Dijk, Teräsvirta, and Franses (2002).

Given that we estimate our parameters recursively, the values are not reported here, for the sake

of brevity (complete results are available upon request from the authors).

4 Data

In order to facilitate the comparison of our empirical findings with those of BCS (2008), we use

the same dataset as they do. Namely, we use data collected on the one-month Eurodollar deposit

rate as our proxy of the short rate. Our data ranges from June 1982 to April 2008 (1,396 weekly
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observations). Other yields that are often considered in the literature include the monthly federal

funds rate (Aït-Sahalia (1999)), monthly yields on zero-coupon bonds with different maturities (see

Duffie (2002) and Diebold and Li (2006, 2007) ), and the weekly 3-month T-bill (see ABL (2004)

and Durham (2003)).
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Figure 1: Eurodollar rate 06/04/1982 to 04/25/2008

Economic Expansion

Notes: This figure plots empirical weekly data on the Eurodollar rate for the period 06/04/1982 to 04/24/2008. The

shadowed is the "Stable 1990s" period, which covers period 03/1991- 05/2001.

Bai and Perron (1998, 2003) extend the single unknown break point testing approach (see

Andrews (1993), Andrews and Ploberger (1994)) to testing for no structural breaks against an

unknown number of breaks, (i.e. 0 against l breaks and l against l+1 breaks, where l is arbitrary but

fixed number). They apply a dynamic programming algorithm to estimate breakpoints sequentially

by adding one breakpoint at a time and minimizing the resulting sum of squared residuals. We

implement the tests outlined in Bai and Perron (1998, 2003) to test and date structural changes in

our dataset. In particular, we test whether the mean of the spot interest rate changes over time.

We find two breakpoints, corresponding to February 1991 and May 2001. These results lead to our

consideration of three 3 different sample periods (see Figure 1). The first sub-sample corresponds

to the “Stable 1990s” period (i.e. March 1991 to May 2001). The second sub-sample is the so-called

“Post 1990s” period from June 2001 to April 2008. Finally, we consider our entire sample from June

1982 to April 2008 (denoted as “Whole Sample” in the sequel). Of note is that the “Stable 1990s”

is the longest economic expansion that the United States has ever experienced. In early 1990s, the

Federal Reserve returned to targeting the federal funds rate. In particular, the Federal Reserve

fixed the federal funds rate at 3% from late 1992 until February 1994, and increased the rate to 6%

by early 1995. Only in January 2001 did the Federal Reserve begin to cut rates again. Of further
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note is that our 2 sub-samples are consistent with break dates found using the multiple break point

test developed by Bai (1997) and Bai and Perron (1998, 2003). Details of these calculations are

available upon request from the authors. For an excellent and exhaustive survey of the extant

literature on testing for structural breaks in financial time series, the reader is referred to Andreou

and Ghysels (2009).

5 Empirical Results

In this section, we first present various summary measures for our dataset, then we summarize our

main findings based on specification tests and model selection tests.

5.1 Summary Statistics

Table 1: Summary Statistics for Different Subsamples
Sample period Date Mean Median Std. Dev. Skewness Kurtosis Jarque Berra

Whole Sample 06/1982-04/2008 0.0568 0.0563 0.0259 0.2890 3.0451 19.0971

Pre 1990s1 06/1982-02/1991 0.0851 0.0825 0.0160 1.1003 5.7137 232.6905

The Stable 1990s 03/1991-05/2001 0.0508 0.0540 0.0106 -0.7292 2.4262 55.4637

Post 1990s 06/2001-04/2008 0.0302 0.0283 0.0161 0.3002 1.5218 38.5192

Notes: This table reports summary statistics for our historical data. The“Whole Sample” stands for the period from
June 1982 to April 2008. The “Stable 1990” period is from March 1991 to May 2001. The “Pre 1990s” period covers
June 1982 to February 1991. The “Post 1990s" period is from June 2001 to April 2008. See section 4 for details.

Table 1 reports various summary statistics for the data, including mean, median, variance,

skewness, kurtosis and Jarque-Bera test statistics. The “Whole sample” data has a mean of 0.0568

or 5.68%, a standard deviation of 0.0259, negligible positive skewness of 0.289, and substantial

kurtosis relative to that of a normal distribution. The Jarque-Bera test indicates that the sample

does not follow a normal distribution. The three sub-samples are also not normally distributed; and

they have quite different distributional properties. Although not examined further in this paper,

note that the “Pre 1990s” period is quite volatile, and has the highest mean 8.51%. This is due

to the high inflation/interest rate regime in the 1980s. In contrast, the “Stable 1990s” period is

much more stable, with a mean of 5.08%, standard deviation of 0.0106, and smaller skewness and

1Of note is that during the period prior to 1990, the Federal Reserve targeted, at various times, monetary aggregates

and interest rates, which resulted to some extent in elevated interest rate volatility relative to that experienced during

the 1990s. Moreover, high inflation and recessions in the 1980s also increased volatility over this period and unit root

tests for this period suggest that interest rate are nonstationary. As Pritsker (1998) documents, specification tests

that assume stationarity can lead to over-rejection of the null hypothesis, in such cases (see also Aït-Sahalia and Park

(2009)). For this reason, we do not separately report results for the "Pre 1990s" period.
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kurtosis. Of note is that the “Stable 1990s” period is negatively skewed (−0.729), although all other

samples have significant positive skewness. As opposed to the other two sub-samples, the “Post

1990s” period demonstrates a bimodal distribution2. Of note is that in 2004 the Eurodollar rate

reached a low of 1.04%. Moreover, it is not surprising that the Eurodollar rate data that we examine

shares the same patterns of increase and decrease as the federal funds rate, which explains the sharp

decreases and increases in the Eurodollar rate in the “Post 1990s” period. Compared with other

samples, the “Post 1990s” period has the lowest mean (3.02%), but has a relatively high standard

deviation. These results suggest that interest rate models that are “regime-dependent” may provide

a better good fit to the data and possibly also good predictions. Hence our specification of the

STAR model. Of course, a difficulty with modelling individual regimes, in general, is ascertaining

whether the period to be simulated can be expected to remain within the regime.

5.2 Consistent Specification Test Results

Tables 2-4 report our in-sample specification test results for the 3 sample periods outlined above.

Tests are carried out using τ−step ahead confidence intervals. We set τ = {1, 2, 4, 12}, correspond-

ing to one week, two weeks, one month, and one quarter ahead conditional distribution evaluation

periods. The confidence intervals that we use in test statistic construction are chosen based on the

properties of our historical data. In particular, we set u and u equal to X ± σX and X ± 0.5σX ,

respectively. Additionally, we set our simulation sample length as S = 10T, where T is the histor-

ical sample length. The simulation sample length for latent variables is set at N = 10T . When

simulating using our discrete models, errors are drawn randomly from the empirical distribution

of the residuals. In our implementation of the bootstrap, we set block length to be 20, and carry

out 100 bootstrap replications. In the tables, test statistics (denoted by ZT ) and 5%, 10%, 15%

and 20% bootstrap critical values are given. Single starred entries denote rejection at the 10%

significant level.

5.2.1 Whole sample

Results are presented in Table 2 for the “Whole Sample” case. Not surprisingly, the CIR model

is rejected for all τ , regardless of confidence interval width. Moreover, the SV model performs the

best amongst the CIR, SV and SVJ models. These results are in line with those reported in BCS

(2008). Interestingly, though, we find that the three-factor model (CHEN) not considered in BCS

2It should be noted that the “Post 1990s” period has also been more volatile, as the federal funds rate was first
lowered in order to stimulate the economy after the high-tech bubble crash, was later increased to accommodate
increasing inflation and concerns about the booming housing market, and has recently again been lowered due to
global financial concerns surrounding the recent crash of the U.S. housing market and related problems.
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(2008) performs at least as well as the SV model, and indeed fails to reject at higher significance

levels, suggesting that the CHEN model may actually be marginally better than the SV model.

Overall, it seems that increased model complexity may help capture spot rate dynamics when long

samples of data across many historical regimes are used to calibrate models. Of further note is that

the CHENJ model performs marginally better than the SVJ model. These results are in accordance

with the findings of Hong, Li and Zhao (2004) that more complicated models tend to have better

in-sample fit since they have more parameters to catch different aspects of interest rate dynamics.

Turning now to our discrete models, note that the AR(p) and STAR models are not rejected for

any τ interval combinations, as expected. In the next sub-section, we shall examine whether or not

this in-sample dominance of discrete models parlays into superior ex-ante forecasting performance.

To further illustrate the findings of Table 2, we plot kernel densities of our simulated data and

actual data in Figure 2, for selected models. Specifically, we choose points that represent the left

tail, middle points and right tail of our historical data as evaluation points, and construct kernel

density estimates. Figure 2a contains plots of the simulated density at x = 0.03. Compared with

the CIR and the SV models, note that simulated data from CHEN model are more concentrated

around the actual data point. Moreover, the 3-factor CHEN model has higher kurtosis than the

SV model. These findings are consistent with the above results suggesting that CHEN is superior

to the other candidate models. Similar results are reported in Figures 2b-d for other evaluation

points.

5.2.2 The stable 1990s

Table 3 presents results for the “Stable 1990s” period. The most noteworthy result is that the

univariate CIR model beats all multifactor models. The CIR model fails to be rejected for all

values of τ , and for all confidence intervals, at almost any confidence level. This result is in stark

contrast to our findings for the whole sample period. As discussed in Section 5.1, this is perhaps not

surprising given the stable monetary regime of the 1990s; and reminds us that our different models

perform very differently depending upon the particular regime from whence data are generated.

Figures 3a-d display plots of the simulated densities for the CIR, SM and CHENJ models. We

choose the SM model instead of the SV model in Panel A (plots a and b) of Figure 3 because

the SM model is the “second best” from amongst the continuous candidate models. The CHENJ

model is depicted in order to illustrate how the jump process distorts the simulated densities in

this stable period. As evidenced upon inspection of Panel A of Figure 3, the CIR model is superior

to the SM model in that CIR-simulated data is more concentrated around the actual evaluation
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point. As expected, the simulated density for the CHENJ model is far from the evaluation point.

Similar conclusions emerge upon examination of Panel A (plots c and d) of Figure 3. Finally, note

that the CIR model outperforms the discrete models when the simulation period is long (τ = 12)

and the confidence interval is wide (X±σX), which suggests that the CIR model is superior to our

dynamically more flexible discrete models for long-run modeling, and points to the need for careful

examination and comparison of the ex-ante predictive performance of the continuous and discrete

models.

5.2.3 Post-1990s

The bimodality associated with the “Post 1990s” period makes our specification test results quite

different from those reported for our other sample periods. The SM model “outperforms” other

models. The rejection frequency for the CIR model is low as well. Additionally, we fail to reject

the null of correct specification for the complex three-factor with jumps CHENJ model. These

results are sensible given the underlying economic conditions prevailing during this period. As is

apparent upon inspection of Table 4, the SM model captures the changing mean in this period quite

well. However, since the Federal Reserve Bank changed the target rate with more frequently and

with greater magnitude during this period, the CHENJ model which combines stochastic mean and

jump components also performs well.3 Moreover, the CHENJ model appears to be able to capture

possible outliers in this period via its inclusion of two latent variables. Panel B (plots e and f)

of Figure 3 contain plots of empirical densities for the SM, CIR and SV models at the two modal

points ( x = 0.02 and x = 0.05). The densities associated with the SM model have higher peak

and narrower tails than those for the CIR model, at both evaluation points. As expected, the SV

model has densities with very fat tails; but these are centered far from the evaluation point. Of

final note is that there are evaluation points for which other models do beat the SM model, but

the SM performs best, overall. This is a feature which should be expected, and underscores the

importance of using not only portmanteau type specification tests but also inspecting individual

densities when evaluating alternative models.

5.2.4 Is there an overall winner?

The above question can be answered, to some extent, by fixing the parameterization estimated

for the “best” model in our “Whole Sample” analysis (i.e. the CHEN model) and comparing the

performance of this model with that of the “winners” during our two sub-sample periods. Results

3The Federal Reserve Board changed interest rate target 11 times in 2001, once in 2002 and 2003, 5 times in 2004,
8 times in 2005, 4 times in 2006 and 2008, and 3 times in 2007.
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of consistent specification tests constructed in this manner are contained in Table 5. Both panels

of this table report test results for the CHEN model. The results in Panel A should be compared

with the CIR results from Table 3, while the results in Panel B should be compared with the SM

model results from Table 4. Interestingly, the CHEN model fails to reject for all significance levels

for the “Post 1990s” period, when using the “Whole Sample” parameterization. However, perhaps

not surprisingly given our above discussion, the CHEN model is rejected during the “Stable 1990s”.

Overall, thus, the CHEN model appears to be a reasonably adequate model, nesting all but one

historical episode at least as well as any other model. In the next section, we shall ascertain whether

this finding translates into superior predictive performance when comparing the CHEN to all other

models, including our discrete alternatives.

5.3 Prediction Based Model Selection Test Results

Given our above findings, a natural next step is the construction of ex-ante prediction type model

selection tests in order to determine whether the CHEN model dominates all other models for the

entire sample. This is done by applying the Dk,P,N (u1, u2) test discussed above. In particular,

tests are carried out using τ−step ahead predictive confidence intervals (with the ex-ante period

P = T/2) constructed using recursively estimated models. For ease of comparison, we focus only

on the “best” continuous and the “best” discrete models, according to the finding of the previous

section. In addition, we set τ = {1, 2, 3, 4, 5, 6, 12}, and the confidence intervals that we use in test

statistic construction are chosen based on the properties of our historical data. In particular, we

set u and u equal to X ± σX and X ± 0.5σX , respectively, as above. Finally, we set our simulation

sample length to be S = 10T, and the simulation sample length for latent variable integration to

be N = 10T . In our implementation of the bootstrap, we set block length to be 20, and carry out

100 bootstrap replications. In the tables, test statistics (denoted by Dk,P,N) and predictive density

type “mean square forecast errors” (MSFEs - see footnote to Table 6 for further details) values

are reported. Single starred entries denote rejection at the 10% significant level. Turning to our

results, note that upon inspection of the entries in Table 6 it is clear that the null hypothesis that

the CHEN model generates predictive densities at least as accurate as the STAR model (our “best”

discrete model) is not rejected at a 90% level of confidence, regardless of forecast horizons and

interval width.4 Moreover, in almost all cases, the CHEN model has lower MSFE, and the MSFE

spread between the CHEN model and STAR model increases in magnitude as the forecast horizon

4Both the AR(p) and the STAR models perform well when evaluated using our in-sample specification tests, as the
null hypothesis of correct specification generally fails to reject for both models (see above discussion). However, given
that the STAR model is more flexible, and given the clear evidence of structural and regime shifts in our dataset, we
use the STAR model as our discrete competitor in our prediction experiments.
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increases. This confirms our in-sample findings that the CHEN model is our “global winner”. To

further illustrate this finding, we provide plots of simulated predictive densities for the CHEN and

STAR models in Panel A of Figure 4. Note that the simulated predictive densities associated

with CHEN model are highly concentrated around the true evaluation points. Moreover, though

the STAR model also has quite peaked densities, they are not generally as centered around the

evaluation points.

In order to shed further light on this interesting conclusion that continuous models do indeed in

certain cases outperform discrete models, even when comparing predictive accuracy, we carry out

the same analysis for the two sub-samples examined in the previous section. Namely, we set CIR

as the benchmark for the “Stable 1990s” and SM as the benchmark for the “Post 1990s”. Results

of comparisons of these models with the STAR model are collected in Tables 7 and 8. Interestingly,

the STAR model is preferred to the CIR model (note that the null of equal predictive accuracy

is rejected in virtually all cases in Table 7) when comparing predictive accuracy for the “Stable

1990s”. An analogous result hold for the “Post 1990s”, where the STAR model is preferred to

the SM model. These findings are confirmed by plots of empirical densities in Panels B and C of

Figure 4. The STAR model has more “correctly” centered and highly concentrated densities when

compared with the CIR and SM models. Thus, when the STAR model is parameterized using only

data corresponding to a particular sub-sample, it outperforms the “best” continuous alternative.

However, and as just noted, when models are estimated using the entire dataset, the continuous

CHEN model is preferred. Given that it is very difficult to ascertain what regime will ensue when

constructing ex ante predictions, thus, the CHEN model is our overall “winner” when it comes to

ex-ante prediction, just as it was carrying out in-sample specification analysis. Still, the discrete

STAR model is clearly also promising, and further analysis using alternative STAR and related

discrete specifications is warranted. This, however, is left to future research.

6 Concluding Remarks

This paper reviews and implements simulation based specification testing methodology in order to

study the in-sample and out-of-sample performance of different affine and non-affine multifactor

diffusion processes and discrete time models across various historical sample periods, for various

(predictive) horizons, and for various density and distributional evaluation intervals. Interestingly,

when our entire sample of weekly data from 1982 to 2008 is used to estimate competing models, the

“best” performer, both in-sample and out-of-sample is the three factor Chen (1996) model exam-

ined by Andersen, Benzoni and Lund (2004). Just as interestingly, a logistic type discrete STAR
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model is preferred to the CIR model when comparing predictive accuracy for the “Stable 1990s”,

during which period the CIR model performs best from amongst continuous models. Moreover, an

analogous result holds for the “Post 1990s”, where the STAR model is preferred to the two factor

SM model. Thus, when the STAR model is parameterized using only data corresponding to a

particular sub-sample, it outperforms the “best” continuous alternative, regardless of sub-sample.

However, when models are estimated using the entire dataset, the continuous CHEN model is pre-

ferred. Given that it is very difficult to ascertain what regime will ensue when constructing ex ante

predictions, we conclude that the CHEN model is our overall “winner” when it comes to ex-ante

prediction (as well as in-sample specification analysis).

Many topics for further research remain. For example, from a theoretical perspective, it remains

to construct specification tests that do not integrate out the effects of latent factors. From an

empirical perspective, it remains to determine whether it is in some sense “optimal” to fit models

to shorter data samples when simulating future scenarios, and if so, exactly how “short” should

samples be? Moreover, there are many STAR and related discrete models for which it may be

fruitful to examine ex-ante predictive performance, given that our logistic-STAR model performed

so well in the different subsamples examined in this paper.
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Table 2: Consistent Specification Test Results - “Whole Sample” Period
τ (u ,u) ZT 5% CV 10% CV 15% CV 20% CV

Panel A : CIR model
1 X ± 0.5σX 3.97∗ 2.4471 2.0527 1.8945 1.7273

X ± σX 3.2325∗ 1.9326 1.693 1.5043 1.4479
2 X ± 0.5σX 5.0864∗ 3.0005 2.6345 2.4161 2.1491

X ± σX 4.731∗ 2.5565 2.346 2.0451 1.945
4 X ± 0.5σX 4.7771∗ 3.5572 3.2868 2.7203 2.6807

X ± σX 5.3449∗ 3.2166 2.9516 2.6501 2.517
12 X ± 0.5σX 4.1669 4.5583 4.2035 3.9597 3.6599

X ± σX 5.0172∗ 4.5625 3.9379 3.5979 3.4429
Panel B : SM model

1 X ± 0.5σX 4.1029∗ 2.5726 2.23 1.9945 1.8777
X ± σX 2.0027∗ 2.1117 1.7365 1.6419 1.5218

2 X ± 0.5σX 4.6284∗ 3.2467 2.8227 2.4263 2.2936
X ± σX 2.6905∗ 2.6297 2.353 2.1306 1.966

4 X ± 0.5σX 4.4489∗ 3.724 3.258 2.9065 2.7414
X ± σX 2.6585 3.1818 2.9199 2.7031 2.5381

12 X ± 0.5σX 4.3481∗ 4.5506 4.2088 3.954 3.6575
X ± σX 3.4824 4.5509 3.9313 3.6011 3.445

Panel C : SV model
1 X ± 0.5σX 3.5915∗ 2.4105 2.0225 1.9037 1.7712

X ± σX 1.6012 2.0766 1.6535 1.5281 1.4746
2 X ± 0.5σX 4.9061∗ 3.1205 2.9481 2.4408 2.297

X ± σX 1.6014 2.717 2.3173 2.1534 2.0269
4 X ± 0.5σX 5.4131∗ 3.7593 3.222 2.933 2.7622

X ± σX 2.3225 3.303 2.9283 2.764 2.5846
12 X ± 0.5σX 5.7327∗ 4.55 4.2148 3.9518 3.6573

X ± σX 2.9625 4.5623 3.9369 3.5926 3.4326
Panel D : SVJ model

1 X ± 0.5σX 3.9196∗ 2.4181 2.182 1.7904 1.7674
X ± σX 1.8143∗ 1.9758 1.6048 1.5391 1.4311

2 X ± 0.5σX 4.9829∗ 2.9419 2.5982 2.3168 2.2438
X ± σX 2.2453 2.4841 2.2923 2.0251 1.8797

4 X ± 0.5σX 5.267∗ 3.6363 3.2304 2.783 2.7213
X ± σX 2.0763 3.0767 2.8884 2.6128 2.4034

12 X ± 0.5σX 5.5122∗ 4.5414 4.2131 3.9532 3.6432
X ± σX 2.9531 4.5539 3.9344 3.5836 3.4191

Panel E : CHEN model
1 X ± 0.5σX 1.414 1.5987 1.4189 1.2948 1.2445

X ± σX 0.7071 1.2897 1.2155 1.0209 0.9702
2 X ± 0.5σX 3.8087∗ 2.319 2.016 1.8504 1.6675

X ± σX 0.9211 2.0005 1.5503 1.4258 1.3638
4 X ± 0.5σX 4.6069∗ 3.0663 2.6457 2.5571 2.3363

X ± σX 1.5877 2.795 2.1432 1.9696 1.9169
12 X ± 0.5σX 5.8624∗ 4.4227 4.0782 3.8436 3.6186

X ± σX 3.2534 4.3738 3.719 3.473 3.2859
Panel F : CHENJ model

1 X ± 0.5σX 3.9669∗ 2.3709 2.1614 1.8063 1.7563
X ± σX 1.868∗ 1.9173 1.6121 1.565 1.4412

2 X ± 0.5σX 5.3442∗ 2.9574 2.6332 2.3669 2.2517
X ± σX 2.0366 2.5034 2.3738 2.1151 1.9418

4 X ± 0.5σX 5.903∗ 3.6088 3.3246 2.75 2.7323
X ± σX 2.3689 3.1013 2.9374 2.6094 2.4238

12 X ± 0.5σX 5.8253∗ 4.5338 4.2128 3.9499 3.6475
X ± σX 3.9154 4.5467 3.9285 3.5873 3.3963

Panel G : CEV model
1 X ± 0.5σX 2.1957∗ 1.2735 1.1942 1.0523 1.0303

X ± σX 0.3725 1.1157 0.9739 0.8576 0.83
2 X ± 0.5σX 3.7249∗ 1.8083 1.6121 1.5055 1.3886

X ± σX 0.6918 1.3775 1.2876 1.1652 1.091
4 X ± 0.5σX 5.5548∗ 2.6036 2.1885 2.0861 2.0038

X ± σX 1.8547∗ 1.813 1.7217 1.5895 1.4788
12 X ± 0.5σX 7.8409∗ 4.0685 3.7453 3.5839 3.4703

X ± σX 4.5488∗ 3.6259 3.3886 2.938 2.7929
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Table 2: Continued

τ (u ,u) ZT 5% CV 10% CV 15% CV 20% CV
Panel H : AR(p) model

1 X ± 0.5σX 0.0444 0.4183 0.3752 0.3542 0.3398
X ± σX 0.4062 0.4488 0.4177 0.4016 0.3819

2 X ± 0.5σX 0.1865 0.7351 0.6871 0.6545 0.6406
X ± σX 0.6387 0.7876 0.7119 0.6891 0.6486

4 X ± 0.5σX 0.5506 1.4469 1.3152 1.2448 1.1821
X ± σX 0.8003 1.3486 1.2614 1.164 1.1345

12 X ± 0.5σX 2.551 3.5545 3.4269 3.1836 3.0745
X ± σX 0.8417 3.0839 2.9831 2.8258 2.7236

Panel I: STAR model
1 X ± 0.5σX 0.3183 4.6367 4.2365 3.8501 3.6128

X ± σX 0.294 8.9534 8.4574 8.163 7.8028
2 X ± 0.5σX 0.6115 5.8465 5.1462 4.8444 4.2511

X ± σX 0.486 9.273 8.5681 8.2037 7.9961
4 X ± 0.5σX 0.9774 5.2979 4.7667 4.3599 4.1673

X ± σX 0.679 6.0715 5.6856 5.168 5.0809
12 X ± 0.5σX 1.228 3.9953 3.4217 3.1175 2.9458

X ± σX 0.7424 4.0021 3.6167 3.3738 3.0446

Notes: Numerical entries in the table are specification test statistics (ZT ) and 5% , 10% ,15% & 20% nominal level
critical values, for tests constructed using intervals given in the second column of the table, and for τ =1, 2, 4, 12 (see
discussion in Section 5 for complete details). Single starred entries denote rejection at the 10% level. The simulation
periods considered is 10T , where T denotes the number of observations in the sample. The block length is set equal to
20 observations, and empirical bootstrap distributions are constructed using 100 bootstrap replications. See Section
2 for further discussion of the test reported on in this table.
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Table 3: Consistent Specification Test Results - “Stable 1990s” Period

τ (u,u) ZT 5% CV 10% CV 15% CV 20% CV
Panel A : CIR model

1 X ± 0.5σX 1.743 2.6772 2.519 2.3908 2.2301
X ± σX 1.4215 1.7076 1.5674 1.4895 1.3517

2 X ± 0.5σX 1.9155 2.9635 2.6364 2.4659 2.3378
X ± σX 1.4151 2.3901 2.1124 1.9591 1.7915

4 X ± 0.5σX 1.7242 3.2826 2.9931 2.7374 2.501
X ± σX 2.3068 3.2457 3.0113 2.4816 2.3736

12 X ± 0.5σX 1.7088 3.47 2.9462 2.7378 2.3888
X ± σX 2.6992 3.557 3.1466 2.9817 2.8276

Panel B : SM model
1 X ± 0.5σX 2.2283∗ 1.8019 1.5585 1.4458 1.3906

X ± σX 0.2205 0.4275 0.3689 0.3253 0.2926
2 X ± 0.5σX 3.3549∗ 2.4955 2.2605 1.8627 1.7101

X ± σX 0.3074 0.6781 0.5977 0.5494 0.493
4 X ± 0.5σX 4.3109∗ 3.1 2.5784 2.347 2.0711

X ± σX 0.4181 1.1967 1.0937 0.9361 0.86
12 X ± 0.5σX 3.1586 3.8378 3.2441 3.0625 2.7503

X ± σX 0.8719 2.6774 2.4825 2.4048 2.3169
Panel C : SV model

1 X ± 0.5σX 2.1092 2.4951 2.1144 1.9801 1.8458
X ± σX 0.2203 0.4064 0.3616 0.3616 0.3169

2 X ± 0.5σX 4.3226∗ 3.6056 2.8024 2.6646 2.5099
X ± σX 0.2205 0.6309 0.5861 0.5412 0.4964

4 X ± 0.5σX 5.6127∗ 3.7268 3.2304 2.6068 2.3773
X ± σX 0.221 1.171 1.1218 1.0363 1.032

12 X ± 0.5σX 7.2161∗ 4.8256 4.3276 4.0473 3.6399
X ± σX 1.1136 3.0511 2.9087 2.8182 2.5466

Panel D : SVJ model
1 X ± 0.5σX 3.9202∗ 2.3198 1.972 1.8152 1.7045

X ± σX 1.2275∗ 1.0654 0.9135 0.8631 0.7727
2 X ± 0.5σX 5.6993∗ 2.91 2.5822 2.2936 2.1378

X ± σX 3.4687∗ 2.2945 1.9649 1.9119 1.6689
4 X ± 0.5σX 8.0184∗ 3.1449 2.8082 2.6843 2.3019

X ± σX 4.6234∗ 3.1318 2.9289 2.3785 2.2673
12 X ± 0.5σX 7.1228∗ 3.5211 2.9906 2.5983 2.4542

X ± σX 3.2521 3.6154 3.2698 3.0074 2.8243
Panel E : CHEN model

1 X ± 0.5σX 1.1898∗ 1.2982 1.1381 1.0555 0.9659
X ± σX 0.0441 0.3134 0.2686 0.2686 0.2686

2 X ± 0.5σX 3.7492∗ 3.4063 2.779 2.5541 2.3748
X ± σX 0.1764 0.6259 0.5363 0.4915 0.4915

4 X ± 0.5σX 5.3033∗ 3.7219 3.1929 2.5194 2.3847
X ± σX 0.8397 1.3842 1.2046 1.1148 0.9984

12 X ± 0.5σX 9.3987∗ 3.8648 3.4118 3.197 2.9153
X ± σX 3.3408∗ 3.1894 2.9631 2.7976 2.6462

Panel F : CHENJ model
1 X ± 0.5σX 1.2177 2.661 2.2292 1.9944 1.788

X ± σX 2.024∗ 2.249 1.9447 1.8089 1.5967
2 X ± 0.5σX 1.9958 3.5217 3.0749 2.8393 2.6268

X ± σX 3.5283∗ 3.2828 2.8685 2.608 2.3076
4 X ± 0.5σX 3.6745∗ 3.462 3.0426 2.8255 2.5908

X ± σX 7.8632∗ 3.403 3.0572 2.7751 2.5688
12 X ± 0.5σX 4.0284∗ 3.5635 3.0355 2.7559 2.3334

X ± σX 9.4419∗ 3.4723 3.0325 2.9193 2.7301
Panel G : CEV model

1 X ± 0.5σX 1.909 2.7254 2.2576 2.0871 1.9806
X ± σX 2.5445∗ 0.4025 1.2714 1.1803 1.0555

2 X ± 0.5σX 2.0945 2.8286 2.6007 2.1757 2.1263
X ± σX 2.8457∗ 1.8066 1.5382 1.5142 1.4221

4 X ± 0.5σX 1.9559 3.0052 2.7391 2.4398 2.3126
X ± σX 3.4883∗ 2.6681 2.4337 2.1319 2.0166

12 X ± 0.5σX 1.1626 3.0454 2.798 2.4371 2.3048
X ± σX 3.1809 3.4433 3.3017 3.0855 2.9496

Panel H : AR(p) model
1 X ± 0.5σX 0.4117 0.4918 0.4532 0.395 0.3444

X ± σX 0.1058 0.3456 0.3066 0.2778 0.2695
2 X ± 0.5σX 0.6637 0.7995 0.6725 0.6119 0.5697

X ± σX 0.1763 0.5604 0.5116 0.4703 0.438
4 X ± 0.5σX 0.6973 1.241 1.1054 1.0731 0.9899

X ± σX 0.8105 0.9317 0.9054 0.8772 0.8564
12 X ± 0.5σX 0.7951 2.4187 2.2064 2.0915 2.0343

X ± σX 2.779∗ 2.5623 2.4562 2.3126 2.2323
Panel I: STAR model

1 X ± 0.5σX 0.4062 1.2184 1.0819 0.9901 0.9315
X ± σX 0.1052 1.1126 0.9989 0.8855 0.8115

2 X ± 0.5σX 0.6334 1.3577 1.2446 1.1096 0.9951
X ± σX 0.2104 1.4041 1.3429 1.2668 1.2481

4 X ± 0.5σX 0.5263 1.6865 1.4475 1.2701 1.0981
X ± σX 0.9331 1.6739 1.5739 1.4553 1.3774

12 X ± 0.5σX 0.8341 2.4829 2.0842 1.9407 1.8637
X ± σX 3.2387∗ 2.8234 2.6331 2.5385 2.4277

Notes: See notes to Table 2.
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Table 4: Consistent Specification Test Results - “Post 1990s” Period

τ (u,u) ZT 5% CV 10% CV 15% CV 20% CV
Panel A : CIR model

1 X ± 0.5σX 0.4175 1.1416 0.969 0.896 0.8026
X ± σX 1.4744∗ 1.6624 1.3556 1.2694 1.1859

2 X ± 0.5σX 0.9852 1.9374 1.6573 1.5173 1.2902
X ± σX 1.7948 2.5406 2.272 1.907 1.8487

4 X ± 0.5σX 1.5983 3.0862 2.5308 2.2108 1.8881
X ± σX 1.904 3.4499 3.166 2.6652 2.4737

12 X ± 0.5σX 1.3776 3.6922 3.0861 2.7607 2.6046
X ± σX 4.8384∗ 4.9892 4.3831 4.113 3.8376

Panel B : SM model
1 X ± 0.5σX 1.6069 3.5855 3.3937 3.1795 2.8959

X ± σX 3.0268 4.1986 3.9257 3.4385 3.3061
2 X ± 0.5σX 1.5331 3.6565 3.3421 3.2023 2.8789

X ± σX 2.0864 4.2483 3.7961 3.3232 3.2102
4 X ± 0.5σX 1.4989 3.4702 3.1957 3.0996 2.8728

X ± σX 1.786 4.2643 3.764 3.3165 3.1994
12 X ± 0.5σX 1.0684 3.3503 2.9153 2.6545 2.473

X ± σX 2.7817 4.4871 3.9436 3.752 3.4919
Panel C : SV model

1 X ± 0.5σX 0.3163 0.6696 0.5703 0.4852 0.461
X ± σX 1.0861∗ 1.252 1.0647 0.9806 0.8843

2 X ± 0.5σX 0.5631 1.1241 0.9481 0.8816 0.8139
X ± σX 1.8053∗ 1.7908 1.6109 1.4518 1.3552

4 X ± 0.5σX 1.3555 1.9716 1.6916 1.3984 1.3023
X ± σX 2.9899∗ 2.8014 2.6081 2.2876 2.1157

12 X ± 0.5σX 3.7886∗ 3.6672 3.2848 2.7219 2.2963
X ± σX 4.2665∗ 4.7145 4.0067 3.769 3.5775

Panel D : SVJ model
1 X ± 0.5σX 2.4083∗ 1.8806 1.8207 1.6944 1.6047

X ± σX 6.1295∗ 3.5185 3.3276 3.1516 2.7994
2 X ± 0.5σX 5.8102∗ 3.5004 2.9123 2.7156 2.5503

X ± σX 9.4311∗ 4.5093 3.8751 3.5117 3.2937
4 X ± 0.5σX 13.7926∗ 3.7881 3.4008 3.1998 3.0058

X ± σX 9.4604∗ 4.416 3.8425 3.6305 3.3264
12 X ± 0.5σX 15.1804∗ 3.7861 3.5181 3.2501 3.1429

X ± σX 9.568∗ 5.2128 4.1002 3.9262 3.7118
Panel E : CHEN model

1 X ± 0.5σX 0.6316 1.1613 1.0557 0.9502 0.8974
X ± σX 4.4211∗ 3.8638 3.2832 2.9446 2.7554

2 X ± 0.5σX 3.4429 3.9571 3.4538 3.1609 3.0027
X ± σX 4.4799∗ 4.1628 3.4456 3.2871 2.8943

4 X ± 0.5σX 8.6148∗ 6.2591 5.8883 4.8281 4.7224
X ± σX 4.4924∗ 4.4947 3.9868 3.4023 3.2448

12 X ± 0.5σX 3.4744∗ 3.2064 2.9047 2.5646 2.4222
X ± σX 4.3134∗ 6.8154 6.5045 6.0347 5.5766

Panel F : CHENJ model
1 X ± 0.5σX 1.8064 3.6712 3.4365 3.0852 2.82

X ± σX 1.9258 4.1339 3.5039 3.3921 3.1739
2 X ± 0.5σX 1.1563 3.5044 3.363 3.105 2.9053

X ± σX 3.4039 4.2549 3.6242 3.3535 3.2984
4 X ± 0.5σX 1.6572 3.4857 3.1576 3.0951 2.8673

X ± σX 4.7218∗ 4.356 3.5848 3.3104 3.1274
12 X ± 0.5σX 1.6528 3.2081 2.9162 2.6076 2.4327

X ± σX 5.6215 4.5307 4.0599 3.7381 3.4972
Panel G : CEV model

1 X ± 0.5σX 0.5804 1.008 0.89 0.7492 0.6945
X ± σX 1.6882∗ 1.4622 1.2565 1.0053 0.9334

2 X ± 0.5σX 1.1163 1.6335 1.4195 1.1507 1.0892
X ± σX 2.3544∗ 2.0459 1.6594 1.4875 1.2815

4 X ± 0.5σX 1.7105 2.4312 2.0406 1.8266 1.7001
X ± σX 3.0353∗ 2.6707 2.3156 2.0381 1.8591

12 X ± 0.5σX 2.5103 3.0373 2.635 2.5062 2.3773
X ± σX 4.4257∗ 4.1555 3.5208 3.2686 3.1363

Panel H : AR(p) model
1 X ± 0.5σX 0.0698 0.2327 0.1988 0.1856 0.175

X ± σX 0.1035 0.3220 0.2842 0.2637 0.2387
2 X ± 0.5σX 0.1181 0.4517 0.3979 0.3847 0.3628

X ± σX 0.2423 0.6653 0.5455 0.4939 0.4595
4 X ± 0.5σX 0.1032 0.7963 0.6644 0.6244 0.6069

X ± σX 0.4478 1.2500 1.0588 0.9773 0.8505
12 X ± 0.5σX 0.8256 1.9280 1.6573 1.4849 1.4053

X ± σX 1.0225 2.8022 2.5988 2.3693 2.2606
Panel I: STAR model

1 X ± 0.5σX 0.0325 3.2741 2.8362 2.4874 2.3679
X ± σX 0.1441 2.4418 2.0411 1.7679 1.6145

2 X ± 0.5σX 0.0456 1.8045 1.5337 1.4612 1.2953
X ± σX 0.2875 2.4282 2.0894 1.7271 1.6094

4 X ± 0.5σX 0.1238 1.8647 1.6553 1.3366 1.069
X ± σX 0.4477 2.9479 2.6598 2.4275 2.3758

12 X ± 0.5σX 0.9691 2.6775 2.2027 2.1023 1.855
X ± σX 0.9583 3.5868 3.4019 3.1724 2.9641

Notes: See notes to Table 2.
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Table 5: Is There An Overall Winner?

τ (u,u) ZT 5% CV 10% CV 15% CV 20% CV
Panel A : Compare CHEN model from the whole sample to

C IR model from the Stable 1990s
1 X ± 0.5σX 2.3388 2.7842 2.6247 2.4437 2.2867

X ± σX 4.1080∗ 1.9003 1.7177 1.628 1.4355
2 X ± 0.5σX 3.0640∗ 2.9183 2.7458 2.6412 2.4222

X ± σX 5.6435∗ 2.5118 2.2071 2.0496 1.9132
4 X ± 0.5σX 3.6340∗ 3.2459 2.7962 2.585 2.4011

X ± σX 7.4294∗ 2.9834 2.7666 2.4598 2.3156
12 X ± 0.5σX 3.6097∗ 3.001 2.7578 2.4197 2.2585

X ± σX 9.3599∗ 3.4502 3.3648 3.1227 2.8756
Panel B : Compare CHEN model from whole sample to

SM model from the Post 1990s
1 X ± 0.5σX 1.9108 2.4683 2.1285 2.0068 1.9351

X ± σX 1.9867 2.7849 2.58 2.4232 2.1239
2 X ± 0.5σX 2.2265 3.0523 2.7975 2.6313 2.4691

X ± σX 2.2016 3.4218 2.9702 2.7547 2.5439
4 X ± 0.5σX 2.0204 3.3607 3.0712 2.9132 2.8101

X ± σX 2.1265 3.9741 3.4823 3.1128 2.9762
12 X ± 0.5σX 1.2257 3.176 3.0793 2.8596 2.6381

X ± σX 2.7404 4.7821 3.8476 3.7598 3.5084

Notes: See notes to Table 2.

Table 6: Prediction Based Model Selection Test Results (CHEN is the benchmark) — “Whole

Sample” Period

τ (u,u) Dk,P,N MSFECHEN MSFESTAR 5% CV 10% CV 15% CV 20% CV
1 X ± 0.5σX -1 .2533 0.3487 1.602 0.2807 0.1267 0.0622 0.0253

X ± σX 0.0524 0.1628 0.1103 0.5598 0.3925 0.3337 0.191
2 X ± 0.5σX -2 .1733 0.5868 2.7601 0.5563 0.3636 0.2688 0.2397

X ± σX -0 .3811 0.0821 0.4632 0.716 0.6226 0.4921 0.3754
3 X ± 0.5σX -2 .1516 0.8527 3.0043 0.8915 0.6571 0.5959 0.5335

X ± σX -1 .6442 0.166 1.8103 0.8152 0.6854 0.5327 0.3758
4 X ± 0.5σX -2 .0863 1.0789 3.1652 1.1685 0.9784 0.9076 0.8682

X ± σX -2 .207 0.2523 2.4594 0.5984 0.4198 0.2145 0.1305
5 X ± 0.5σX -2 .0529 1.3319 3.3847 1.6892 1.3829 1.259 1.1313

X ± σX -2 .5249 0.3417 2.8666 0.7489 0.5714 0.413 0.2415
6 X ± 0.5σX -1 .8553 1.8636 3.7189 2.1268 1.8348 1.7182 1.642

X ± σX -2 .7208 0.4247 3.1454 0.9263 0.6119 0.4027 0.308
12 X ± 0.5σX -2 .3028 2.9195 5.2223 3.5577 3.386 3.0012 2.8985

X ± σX -3 .6963 0.6874 4.3836 1.8131 1.5523 1.3649 1.2853

Notes: See also notes to Table 2. Entries in the table are (Dk,P,N ) test statistics, and predictive density type MSFE
values constructed using intervals given in the second column of the table, for τ =1, 2, 3, 4, 5, 6, 12 step(s) ahead
prediction periods. (Note that MSFE values are simply the (appropriately scaled) individual terms appearing in the
Dk,P,N test statistic (see Section 2 for further details)). The simulation period considered is 10T , where T denotes
the number of observations in the sample. Additionally, the ex-ante prediction period P = T/2, and all model
parameters are estimated recursively. For critical value construction, the block length is set equal to 20 observations,
and empirical bootstrap distributions are constructed using 100 bootstrap replications. Finally, critical values for
various percentiles of the bootstrap distribution are reported. Finally, X and σX are the mean and variance of an
initial sample of data.
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Table 7: Prediction Based Model Selection Test Results (CIR is the benchmark) — “Stable 1990s”

Period

τ (u,u) Dk,P,N MSFECIR MSFESTAR 5% CV 10% CV 15% CV 20% CV
1 X ± 0.5σX 0.7303∗ 4.2423 3.512 -0.044 -0 .2124 -0.3583 -0.5073

X ± σX -0 .5505 2.2923 2.8428 -0.3547 -0.4337 -0.5596 -0.6139
2 X ± 0.5σX 0.3494∗ 3.1674 2.818 -0 .4476 -0.5722 -0.6403 -0.7515

X ± σX -0 .5537∗ 2.0901 2.6438 -0.8879 -1.1865 -1.3721 -1.4046
3 X ± 0.5σX 0.4079∗ 3.2219 2.814 -0 .4925 -0.7128 -0.8527 -0.9482

X ± σX 0.6978∗ 2.642 1.9442 -1.3579 -1.5276 -1.5741 -1.7505
4 X ± 0.5σX 0.4366∗ 3.4308 2.9942 -0.5974 -0.765 -0 .909 -0.9631

X ± σX 0.455∗ 2.5844 2.1294 -1.0219 -1.2414 -1.3949 -1.4966
5 X ± 0.5σX 0.2775∗ 3.4751 3.1975 -0.4922 -0.6762 -0.7841 -0.8996

X ± σX 0.2747∗ 2.5483 2.2736 -1.2877 -1.5109 -1.6417 -1.8064
6 X ± 0.5σX 0.0689∗ 3.4393 3.3704 -0.3984 -0.7375 -0.9125 -1.0316

X ± σX 0.3425∗ 2.9586 2.6161 -1.6824 -1.8853 -2.0199 -2.0992
12 X ± 0.5σX -0 .3276 3.5943 3.9219 -0.1181 -0.2504 -0.3928 -0.4924

X ± σX -1 .4209 3.0032 4.424 -1 .1303 -1.3781 -1.4943 -1.6525

Notes: See notes to Table 6.

Table 8: Prediction Based Model Selection Test Results (SM is the benchmark) — “Post 1990s”

Period

τ (u,u) Dk,P,N MSFESM MSFESTAR 5% CV 10% CV 15% CV 20% CV
1 X ± 0.5σX 4.7024∗ 4.9844 0.282 3.6057 3.3603 3.1556 3.0401

X ± σX 4.8998∗ 5.0651 0.1653 4.7062 4.4529 4.3239 4.1003
2 X ± 0.5σX 4.4802∗ 5.0155 0.5353 2.6576 2.4374 2.316 2.1975

X ± σX 4.9238∗ 5.2451 0.3212 3.6789 3.5336 3.2743 3.0682
3 X ± 0.5σX 3.7971∗ 4.6144 0.8173 2.0624 1.9927 1.7629 1.6506

X ± σX 4.6335∗ 5.1087 0.4751 2.8992 2.7232 2.4348 2.3148
4 X ± 0.5σX 3.1860∗ 4.2874 1.1014 1.5053 1.4101 1.3229 1.2321

X ± σX 4.2125∗ 4.7276 0.5151 2.4542 2.0808 1.900 1.7100
5 X ± 0.5σX 2.6939∗ 4.1103 1.4164 1.3738 1.1603 1.0765 0.9844

X ± σX 3.9075∗ 4.5096 0.6021 2.2932 1.631 1.5173 1.4187
6 X ± 0.5σX 2.5253∗ 4.1587 1.6333 1.3632 1.0159 0.901 0.8401

X ± σX 3.7711∗ 4.413 0.6419 2.1365 1.4571 1.292 1.0949
12 X ± 0.5σX 0.8495∗ 3.5725 2.723 0.7741 0.4611 0.3268 0.0644

X ± σX 2.9897∗ 4.2874 1.2977 0.786 0.5256 0.349 0.0396

Notes: See notes to Table 6.
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Figure 2: Simulated Densities For The CIR, SV And CHEN Models - "Whole Sample" (06/1982-04/2008)

Note: This figure contained kernel density estimates for selected models and selected evaluation points, where evaluation points are taken from
the support of the historical data, and correspond roughly to regions of the support sociated with mean or model behavior, as well as tail behavior.
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b. Simulated densities evaluated at x=0.03 for the CHENJ model
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c. Simulated densities evaluated at x=0.05 for the CIR and SM models
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d. Simulated densities evaluated at x=0.05 for the CHENJ model
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e. Simulated densities evaluated at x=0.02 for the CIR, SM and SV models
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D
en

si
ty

SV

Figure 3: Simulated Densities For ``Stable 1990s'' and ``Post 1990s'' Periods

Panel A: Simulated densities for the CIR, SM and CHENJ models - "Stable 1990s" (03/1991-05/2001)

Panel B: Simulated densities for the CIR, SM and SV models - "Post 1990s" (06/2001-04/2008)

Notes: See Figure 2.
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a. Simulated densities evaluated at x=0.035 for the CHEN and STAR models
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b. Simulated densities evaluated at x=0.0456 for the CHEN and STAR models
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c. Simulated densities evaluated at x=0.0567 for the CIR and STAR models
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d. Simulated densities evaluated at x=0.0497 for the CIR and STAR models
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e. Simulated densities evaluated at x=0.0261 for the SM and STAR models
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f. Simulated densities evaluated at x=0.0547 for the SM and STAR models
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Panel A: Simulated densities for the CHEN and STAR models - "Whole Sample" (06/1982-04/2008)

Panel B: Simulated densities for the CIR and STAR models - "Stable 1990s" (03/1991-05/2001)

Panel C: Simulated densities for the SM and STAR models - "Post 1990s" (06/2001-04/2008)

Note: See figure 2.

Figure 4: Out-of-sample Simulated Densities Comparison
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