
Kurbel, Karl; Schnieder, Thomas

Working Paper

Integration issues of information engineering based I-
CASE tools

Arbeitsberichte des Instituts für Wirtschaftsinformatik, No. 33

Provided in Cooperation with:
University of Münster, Department of Information Systems

Suggested Citation: Kurbel, Karl; Schnieder, Thomas (1994) : Integration issues of information
engineering based I-CASE tools, Arbeitsberichte des Instituts für Wirtschaftsinformatik, No. 33,
Westfälische Wilhelms-Universität Münster, Institut für Wirtschaftsinformatik, Münster

This Version is available at:
https://hdl.handle.net/10419/59349

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59349
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

University of Münster, Institute of Business Informatics

Grevener Straße 91, D-48159 Münster, Germany, Tel. (0251) 83-9750, Fax (0251) 83-9754

September 1994

Working Papers of the Institute of Business Informatics

Editors: Prof. Dr. J. Becker, Prof. Dr. H. L. Grob, Prof. Dr. K. Kurbel,

Prof. Dr. U. Müller-Funk, Prof. Dr. R. Unland, Prof. Dr. G. Vossen

Working Paper No. 33

- Extended version of paper presented at the Fourth International Conference on Information

Systems Development, Bled, Slovenia, September 20-22, 1994 -

Integration Issues of Information
Engineering Based I-CASE Tools

Karl Kurbel, Thomas Schnieder

- 2 -

Contents

1 The "I" of I-CASE 3

1.1 Missing Integration in Software Development 3

1.2 Information Engineering and I-CASE 5

2 Integration in Life-cycle CASE 6

2.1 Horizontal Integration 6

2.2 Vertical Integration 7

2.3 Interpersonal Integration 7

3 Integration Aspects of ADW 8

3.1 Tools of ADW 8

3.2 Horizontal Integration 10

3.3 Vertical Integration 11

3.4 Interpersonal Integration 13

4 Integration Aspects of IEF 14

4.1 Tools of IEF 14

4.2 Horizontal Integration 15

4.3 Vertical Integration 17

4.4 Interpersonal Integration 18

5 Comparison and Conclusions 19

References 20

Abstract

Problems and requirements regarding integration of methods and tools across phases of the

software-development life cycle are discussed. Information engineering (IE) methodology and

I-CASE (integrated CASE) tools supporting IE claim to have an integrated view across major

stages of enterprise-wide information-system development: information strategy planning,

business area analysis, system design, and construction. In the main part of this paper, two

comprehensive I-CASE tools, ADW (Application Development Workbench) and IEF (Infor-

mation Engineering Facility), are analyzed and compared with regard to integration issues.

- 3 -

1 The "I" of I-CASE

1.1 Missing Integration in Software Development

The so-called "software crisis", for the first time addressed in 1968, seems to have continued

until today. Many of the problems of software development are still present: Complexity of

large systems is still not sufficiently mastered. Software contains errors and is unreliable. De-

velopment takes longer and costs more than expected. Maintenance is awkward, time-consum-

ing, and expensive. New information systems (IS) cannot be developed on demand because of

the application backlog, etc.

One of the achievements of the emerging discipline of software engineering was gradual transi-

tion from intuitive to more systematic procedures. In particular, management of the software-

development process became an issue, leading to generic process models (software life-cycle

models). Such models were proposed and further refined by many authors. The best-known

process model is probably the "waterfall model" originally introduced by Royce1) and later

propagated by Boehm2).

The basic structure of the waterfall model, and of other models derived from it, is a linear se-

quence of phases. In principle, each phase is executed once. Although many extensions, modi-

fications, and counter-proposals allowing for minor loops or even major development cycles

have been proposed, the basic linear structure of phases is still found in most process models

employed in practice.

From this, it is not surprising that early computerized tools assisting software developers were

also designed according to phases of the process. Drawbacks of the waterfall model − e.g. lack

of feedback from later to earlier phases, loss of information between phases due to breaks re-

garding language and representation − were thus transferred to supporting tools as well. Many

CASE (computer-aided software engineering) tools give only limited support − just for one

phase or for a few phases of the development cycle, or just for one view of the problem (e.g.

for process modeling, but not for data modeling)3). When isolated tools have to be applied for

different phases, or for different aspects of the problem, work can become rather cumbersome.

Consider, for example, a development project where one tool for Structured Analysis is used

to define processes and data flows, and another tool is used to develop an entity-relationship

1) Cf. Royce (1970).
2) Cf. Boehm (1981).
3) Cf. Nomina (1993).

- 4 -

model, but there is no connection between these tools. In this case, developers will have to en-

ter the same data twice − and maybe even a third time, namely when the data structures finally

will be specified for the target database management system. Problems resulting from this

redundancy are well-known. Tool integration therefore is an important issue. Lack of inte-

gration is a major criticism regarding CASE tools4) because it is detrimental to acceptance of

CASE by the users5).

Integrated tools do not only enhance development productivity but also help to avoid unneces-

sary inconsistencies among different representations of the same things. Various approaches

aiming at tool integration − in particular integration of tools from different vendors − have

been proposed6). The best-known example is probably IBM's Repository Manager. Its un-

derlying idea was a common information model for all tools. Tools should use this model to

represent their data, to store them in the repository, and also be able to read data created by

other tools from the repository. IBM's failure with this concept after ten years of development

effort shows very clearly that this solution is a difficult one7).

Integration of tools requires integration of methods first8). Different methods applied

throughout the development cycle have to match. This means that (a) if different methods are

applied for different views of the problem, results have to be compatible in the sense that they

can be joined in further problem solving, and (b) that results achieved in one phase can be used

as input for methods used in the next phase.

Another aspect regarding lack of integration is related to the fact that real-world information

systems are rarely stand-alone systems. Instead, they are part of enterprise-wide information

management and have to match with other information systems. Software engineering, how-

ever, takes a rather limited view: It looks at development of just one information system at a

time, but it does not take into account explicitly that many interlocking IS are needed to solve

business problems. Integration of information systems as a development goal has long been ne-

glected by software engineering.

4) Cf. Stobart et al. (1993), p. 84.
5) Cf. Zarrella (1990), p. 208.
6) Cf. e.g. Dineur (1990), Venable (1990), Wybolt (1991).
7) Cf. e.g. Polilli (1992), Bucken (1992).
8) Cf. Robinson (1991), p. 507.

- 5 -

1.2 Information Engineering and I-CASE

A more comprehensive view of business information processing underlies the information engi-

neering methodology introduced by James Martin. According to Martin, information engi-

neering (IE) is "the application of an interlocking set of formal techniques for the planning,

analysis, design, and construction of information systems on an enterprise-wide basis or across

a major sector of the enterprise"9). Information engineering proceeds in a top-down manner,

starting with overall strategic planning and continuing with analysis of major sectors of the

enterprise, design of individual information systems within this framework, and finally con-

struction of these systems.

Information processing is treated on four levels of abstraction, corresponding to major devel-

opment stages. In IE publications, these levels are often depicted as a pyramid.

• Information strategy planning (ISP) is concerned with strategic goals and critical success

factors of the enterprise, and how information technology can help to achieve these goals.

A high-level overview is created of the enterprise, its functions, data, and information

needs. It is represented in various models. Major business areas are identified.

• In business area analysis (BAA), those areas are examined in detail. In particular, the fun-

damental data and the fundamental processes needed to run a business area as well as their

interrelations are analyzed. Data models and functional models of ISP are refined.

• System design (SD) is concerned with individual information systems identified in BAA.

Procedural logic, user interfaces, reports, and database schemata are specified here. Each

IS may be regarded as a separate SD project.

• In construction, specifications from SD are used to create executable programs, data

definitions, and database accesses. According to IE philosophy, this should happen auto-

matically.

The four stages may be regarded as a generic macro process model, but this model differs from

other process models in that it is not a linear list of phases but a tree (for example, several de-

sign projects may have to be conducted within one business area).

9) Cf. Martin (1989), p. 1.

- 6 -

The major concern of information engineering is integration across stages and tool support.

This means that not only techniques employed in the four stages have to match but also that

there have to be tools supporting these techniques, and that these tools have to be integrated.

Information engineering is closely related to tool support. In another definition of IE, Martin

indicates this property more directly, describing IE as "an interlocking set of automated tech-

niques in which enterprise models, data models, and process models are built up in a compre-

hensive knowledge base and are used to create and maintain data processing systems"10).

Integration regarding tools means, among others, that the entire development cycle has to be

supported, i.e. all stages from ISP to construction. Information engineering tools thus have to

be I-CASE (integrated CASE) tools. Two well-known tool sets supporting the comprehensive

and rather sophisticated IE philosophy are: ADW (Application Development Workbench) by

KnowledgeWare and IEF (Information Engineering Facility) by Texas Instruments Information

Engineering.

In this paper, both tools will be analyzed and compared with regard to integration issues.

Chapter 2 describes those issues in more detail. Afterwards, ADW will be examined in chapter

3, and IEF in chapter 4. Some conclusions are given in chapter 5.

2 Integration in Life-cycle CASE

Considering the number of papers and software products addressing "integration", this term

has become something like a buzzword. Integration may simply mean, for example, that user

interfaces of different tools are alike, that data can be interchanged between tools for one

phase, or that more than one phase of the life cycle is covered somehow11). In this paper, we

discuss integration from two points of view. One is the tool view, i.e. horizontal and vertical

integration among tools. The other one is the interpersonal view, related to cooperative devel-

opment.

2.1 Horizontal Integration

Horizontal integration refers to tools that are employed within one IE stage. As will be illus-

trated below, there is quite a number of tools available for each stage. They deal with different

10) Cf. Martin (1989), p. 1.
11) Cf. Zarrella (1990).

- 7 -

aspects of the problem to be solved (e.g. process decomposition, data flows), or they show the

same things in different views. For example, entities appear in entity-relationship diagrams, in

data flow diagrams, in association matrices, etc.

Horizontal integration means that tools can easily interchange their results and that modifi-

cations or new results established by one tool are immediately available for other tools. This is

particularly important with regard to information interchange between two complementary

views of IS development, the data view and the activities view (functions, processes, proce-

dures). Whereas data and activities have been treated separately in the past, it is a major con-

cern of information engineering that data modeling and process modeling should go hand in

hand. This can only work, however, if the tools supporting either view are truly integrated.

2.2 Vertical Integration

Vertical integration means integration across information engineering stages, or, in general,

across life-cycle phases. Results established with tools of one stage should be available to tools

of other stages in a natural way. In particular, results should be represented not only as docu-

mentation but also in a format that they can be processed automatically by other tools.

Two specific aspects of vertical integration are forward integration and reverse integration.

Forward integration capability calls for features permitting model objects to be specified on a

high abstraction level first and to be expanded and enriched by additional details later. Reverse

integration capability means that changes made in the representation format of a later stage

will be adopted in the models and representation formats used in earlier stages. As an example,

consider relational database design during the SD stage. If relations representing additional en-

tity types are introduced here, those entity types should also be represented automatically in

the ER models of business area analysis.

2.3 Interpersonal Integration

When several people form a development team, intermediate results are produced at different

places, e.g. on different workstations connected in a local-area network, if not stand-alone.

Distributed development is typical for most real-world IS projects. In this case, distributed re-

sults have to be coordinated in a systematic manner. The most straightforward solution to this

problem (and the most ambitious one at the same time) is a central repository all distributed

workplaces are connected to and all tools store their results in, but it is difficult to realize.

IBM's failure with this approach has already been mentioned. Central repositories, however,

- 8 -

also have other drawbacks12); for example, they suffer from severe performance problems.

Distributed repositories may reduce some of the problems, but ensuring consistency among in-

termediate results established at different places is even harder. Techniques to maintain consis-

tency in team work were proposed by Garbajosa et al.13) and Robinson14), for example. Such

techniques are state of the art in the field of CSCW (computer-supported cooperative work),

but in I-CASE tools advanced CSCW concepts have not been implemented yet.

3 Integration Aspects of ADW

ADW (Application Development Workbench) is a large tool set for information engineering

distributed by KnowledgeWare Inc. According to KnowledgeWare ADW has over 5,000 cus-

tomers worldwide. ADW is the successor of IEW (Information Engineering Workbench). It

runs on PCs under the OS/2 operating system. Target environments are primarily IBM main-

frames under MVS. Since 1992, OS/2-based PCs with Presentation Manager (PM) interface

are also supported. Very recently, in version 2.7, MS-Windows has been added to the list of

target operating systems. This report and evaluation is based on experience with ADW, version

1.6.04, for OS/2 PM both as development and target environment.

3.1 Tools of ADW

All information collected and produced during IE stages is stored in an encyclopedia. Objects

of an encyclopedia are, for example, business functions, processes, organizational units, entity

types, etc. Developers describe those objects by so-called details associated with them, and

specify interrelations between objects.

For this purpose, a set of tools is available. ADW tools are grouped, according to IE stages,

into four subsets called workstations15):

• Planning Workstation

• Analysis Workstation

• Design Workstation

• Construction Workstation.

12) Cf. Kramer (1991), p. 501.
13) Cf. Garbojosa et al. (1990).
14) Cf. Robinson (1991).
15) Cf. KnowledgeWare (1994).

- 9 -

Figure 1 shows 11 of the tools that were used during the first three stages of one of our pro-

jects, as an example. There are more tools in the tool set. The tools of figure 1 will be briefly

outlined before information exchange between them is described.

Importance Response Time
Importance Response Time

Ziele

Minispecification

Database Design

Data Model

* Process order

Structure ChartData Structure
Relation Primary Key

Customer
Cust.-No

GUI

Create Customer

First name Surname

Street Address

CancelOK

Cancel
if value < 50 $ then
Do while order left

Objects

P
ro

pe
rty

 M
at

rix

D
ia

gr
am

m
er

Entities
Composite
Objects

A
ssociation M

atrix
D

iagram
m

er
D

ecom
position

D
iagram

m
er

Processes
Sequential ProcessesViews

E
nt

ity
 R

el
at

io
ns

hi
p

D
ia

gr
am

m
er

Input/ Output Flows

M
inispec A

ction
D

iagram
m

erD
at

a
F

lo
w

D

ia
gr

am
m

er
R

e
la

tio
na

l D
at

ab
a

se

D
ia

gr
am

m
er

Relations

M
odule A

ction
D

iagram
m

er

Formal
Parameters

Modular
Structures

Module
Specifications

D
at

a
S

tr
uc

tu
re

D

ia
gr

am
m

er

S
tructure C

hart
D

iagra
m

m
er

G
U

I L
ay

ou
t

D
ia

g
ra

m
m

er

Database Designs

Relations

Entities
Entity Type
Descriptions

Data Structures
Relations

IS
P

S
D

B
A

A

Importance Response Time

Process

Data Flow Diagram

Functional Decomposition

R

C

R

U

R

C
R

U

D

CRUD Matrix

Importance Response Time

Entities
Entity Type
Descriptions

Module Specification

Sequential Processes

* Process order

else

Cancel
if value < 50 $ then
perform

Do while not status = 'end'

else

Data
Structures

Data Structures
Data
Structures

Cust.-Name

City

Generation of Objects

Transfer of Objects
Legend:

Minispecifications

Data Structures

Entities
Entity Type
Descriptions

Composite
Objects

Processes
Sequential Processes

Input/ Output Flows

√

Fig. 1: Horizontal and vertical integration in ADW

- 10 -

The Association Matrix Diagrammer is used to specify relations between different types of en-

cyclopedia objects (e.g. which entities are read or written by which processes). Hierarchical

relations are described and plotted with the help of the Decomposition Diagrammer (e.g. proc-

ess hierarchies, organizational structures). The Property Matrix Diagrammer is applied to

specify details of objects (e.g. entity descriptions). The Entity Relationship Diagrammer sup-

ports data modeling. Connections between data and processes are described by data flow dia-

grams created by the Data Flow Diagrammer. Coarse procedural logic of elementary proc-

esses may be outlined within the Minispec Action Diagrammer and later refined by means of

the Module Action Diagrammer.

3.2 Horizontal Integration

ADW's encyclopedia is a central encyclopedia with respect to the tool view, but it is not a cen-

tral one regarding interpersonal cooperation (see chapter 3.4 below). As to the former view,

"central" means that all pieces of information, no matter which tool they were created with, are

stored just once. All tools have access to the encyclopedia. When they read information from

the encyclopedia, it is transformed into a tool-specific representation format (usually a graph-

ical one) and displayed to the user. When they write information, it is represented within the

encyclopedia in a standard format that can be interpreted by other tools. In this way, con-

sistency among tools is no problem.

Information exchange between tools comprises not only object definitions but also relations be-

tween encyclopedia objects. For example, hierarchical relations among organizational units,

specified by the Decomposition Diagrammer, are also available for the Association Matrix Dia-

grammer; the latter one creates the relationship "organizational unit coordinates organizational

unit" from information about the hierarchy. Vice versa, if a new association is introduced in a

matrix, it will be considered by the Decomposition Diagrammer, too.

An advantage of integrated tools is that the developer may choose the most appropriate tool

for a certain task himself, if the task can be attacked by more than one tool. For example, de-

tails of objects can either be entered directly, by using a specific editor, or with the help of the

Property Matrix Diagrammer. Another example is definition of data flows. The Data Flow Dia-

grammer provides a formal language to describe data flows, but there is a more user-friendly

way to achieve the same result, by means of the Entity Relationship Diagrammer. When a view

of the data flow is specified there, ADW will derive the formal description automatically,

without bothering the user further.

- 11 -

Horizontal integration includes context-sensitive transition from one tool to another. This

means that a tool may be called from within another one, and that the current context of the

first tool will be considered by the second one. If an object has been selected, for example, and

a second tool is called afterwards, the latter one will focus on the selected object and display

information concerning that particular object and its surroundings. For example, when a proc-

ess of a data flow diagram is selected, within the Data Flow Diagrammer, and the Minispec

Action Diagrammer is then called, the procedural description of just that process will be dis-

played.

Furthermore, consistency among different models is supported by context-sensitive transition

from one tool to another, because some information can be derived automatically. Since it is

not necessary to enter it by hand, sources of error are reduced. For example, when the devel-

oper calls the Minispec Action Diagrammer from the Data Flow Diagrammer in order to de-

scribe process logic, input and output data of the process will be derived automatically from

data flow descriptions and displayed within the Minispec Action Diagrammer. In this way,

information from one model (data flow model) is available in another model (process model).

The developer may use it in the description of process logic.

3.3 Vertical Integration

Vertical tool integration across stages is less complete than horizontal integration. In principle,

models and diagrams of earlier stages are available in later stages, but there are several restric-

tions and drawbacks.

Decomposition diagrams (e.g. functional hierarchies), data models, associations, etc. from ISP

can be adopted and further processed by Analysis Workstation tools without any problems. As

to forward integration, however, a distinction has to be made between hierarchical objects and

data. Decomposition diagrams may be further refined by additional levels. For example, busi-

ness functions can be split up into more detailed functions; those functions can be described by

processes which can be further refined by other processes and finally by so-called "elementary

processes".

Refining the ISP data model, however, is less satisfactory. For this purpose, features for clus-

tering entities and relationships would be necessary16), but they are not available in ADW. In-

stead, coarse entities and relationships may be substituted by more detailed ones. This means,

16) Cf. e.g. Teorey (1989), Rauh (1992), Jaeschke (to appear).

- 12 -

however, that the ISP model providing a high-level overview is destroyed. Furthermore, en-

tries of the new data model are on different abstraction levels now. Some parts of the overall

model are elaborated in detail (i.e. parts where business area analysis have been conducted),

whereas other parts are still on a level of coarse description. There is no way of distinguishing

detailed information from high-level one.

Components of the data model defined in ISP and BAA can be processed directly in the design

stage where the relational model is generated from the conceptual ER model. However, the

relational model is just a so-called "first-cut" model. Since ADW's derivation rules are rather

stereotype, the first-cut model needs thorough revision. Generating the relational model from

the ER model could be improved significantly if up-to-date research results were imple-

mented17) For example, if information about functional dependencies were attached to the ER

model during analysis and used by the translator, the resulting relational model would be more

adequate than the uncouth first-cut model.

When changes of the ER model are made, a new relational model (at least a partial model) has

to be generated. Before that, however, all elements of the relational model affected by the

modification must be deleted manually − an error-prone and time-consuming task. ADW ver-

sion 2.7 has been improved in this respect. A so-called data catalog was introduced as a buffer

between BAA and SD stages. Among others, it provides an update option that automatically

deletes old information and inserts new one.

Furthermore, vertical integration on the data side has been extended into construction. Rela-

tions or relational databases can be handed over directly to the DB2 Storage Diagrammer.

This diagrammer now provides a tool which can be used for tuning the databases from design

stage.

On the activities side, top-down forward integration from business functions to processes and

further on to elementary processes is intuitive and easy, but only until the design stage. A mi-

nor drawback of former ADW versions was that all procedural logic finally had to be specified

in elementary processes. This meant that no abstraction or refinement levels were left in the fi-

nal code, which somewhat contradicts insights from software engineering. In version 2.7, logic

may also be specified for processes other than elementary ones.

Procedural logic descriptions from the Minispec Action Diagrammer can be adopted by the

corresponding design tool (Module Action Diagrammer), but they serve only as comments

17) Cf. e.g. Markowitz, Shoshani (1992), Mc Cormack (1993), Batini et al. (1992).

- 13 -

there. In particular, there is no support whatsoever as to translation of minispecifications into

module-action code. This means that the developer has to write new procedures; in doing so,

the minispecifications may be taken as a guideline or may be ignored.

In version 2.7, some improvements regarding the activities side have been made. Module ac-

tion diagrams generated from BAA processes now may contain parameter lists and calls of

other module actions. Parameter lists and calls are automatically derived from data-flow dia-

grams and from decomposition diagrams, respectively. Minispecifications are still adopted only

as comments. A new feature is, however, that comments specifying the connection between a

module action diagram and the process it was derived from are inserted automatically into the

module-action header.

Whereas construction is fairly efficient regarding database definitions and user-interface com-

ponents, it is extremely awkward when it comes to programs that need access to databases.

This is primarily due to lack of tool integration. One of the reasons is that the tools involved

were adopted from ADW's mainframe predecessor and have not been sufficiently adapted to

the OS/2 environment yet. In order to generate correct code, a large number of technical de-

tails have to be specified by the developer. Since error messages are insufficient, fault diagnosis

is extremely difficult. Our experience showed that it is sometimes easier to delete modules, re-

define them completely, and try to generate again.

As to reverse integration, there is only unessential support. For example, changes of module

actions during design are not available in the minispecifications of BAA. If the designer never-

theless adapts minispecification code copied from analysis, modifications will not be transferred

to the Analysis Workstation. Another example is new relations introduced in design that will

not be available in ER diagrams.

3.4 Interpersonal Integration

ADW's central encyclopedia is central only in the sense that it is used by all workstation tools.

Team work is only adequately supported if a mainframe is available for storing the encyclope-

dia. In this case, each developer can download parts of the encyclopedia from the mainframe to

his PC, process them there and store them back to the mainframe again. Appropriate locking

mechanisms guarantee that other developers have read-only access to the respective parts.

If no mainframe is available, the encyclopedia runs on a PC, but it is not LAN-based. Instead,

ADW allows several parallel encyclopedias to be kept and consolidated from time to time. This

- 14 -

is a rather insufficient substitute for large projects, however. Organizational rules are necessary

to coordinate decentral activities.

In one of our projects about 30 people were involved18). To cope with this situation, a master

encyclopedia on one computer and nine additional working encyclopedias on other computers

had to be created. They were consolidated at regular intervals. Between consolidation runs,

read-only copies of the master encyclopedia and of the working encyclopedias were given to

the project subteams. Consolidation runs took very long; for 9 encyclopedias, they amounted

to ½ - 1 day during which encyclopedias could not be used.

Recently KnowledgeWare introduced two new tools that improve interpersonal integration.

The Encyclopedia Expert simplifies consolidation of individual, PC-based encyclopedias to one

common project encyclopedia. The Workgroup Coordinator for ADW, version 2.7, enables

several users to have simultaneous access to a LAN-based encyclopedia.

4 Integration Aspects of IEF

IEF (Information Engineering Facility) was developed by James Martin Associates Inc. (now

Texas Instruments Information Engineering Inc.). According to Texas Instruments Information

Engineering, IEF has some 750 customers worldwide. IEF runs under OS/2 PM and Windows.

Target environments are IBM mainframes under MVS and PCs under OS/2 PM and Windows.

This evaluation is based on IEF, version 5.1, for OS/2 PM both as development and target

environment.

4.1 Tools of IEF

As in ADW, information collected during the stages of IE is stored in an encyclopedia whose

objects are largely equivalent to ADW objects. IEF offers features to define new objects, i.e.

objects not provided by IEF, and to specify interrelations between these objects. For example,

no diagram for storing the information "which programs have been developed by which pro-

grammers?" is predefined. The developer first has to define objects for programs and pro-

grammers first. Then he uses the Matrix Processor to establish the desired relationship be-

tween programs and programmers (e.g. "program XY was programmed by programmer

Smith"). In this way, it is possible to adjust IEF to enterprise-specific requirements.

18) Cf. Kurbel (1994).

- 15 -

IEF's model of IE stages comprises ISP, BAA, business system design (BSD), technical design

(TD), and construction19). Martin's system design stage thus has been split up into two stages.

TD activities are related to a particular target environment e.g. programming language,

teleprocessing monitor, database management system, etc.). Figure 2 shows major IEF tools

for the first four stages. These tools will be briefly outlined before information exchange

between them is described.

The IEF tool set includes tools for defining and representing matrices (Matrix Processor), ER

diagrams (Data Model Diagrammer), and hierarchy diagrams (Activity Hierarchy Diagrammer

and Organizational Hierarchy Diagrammer). The Activity Dependency Diagrammer is used to

model sequences of functions and processes. (e.g. process A is executed subsequent to process

B). Procedural logic of elementary processes and procedures (procedures include their own

procedural logic and call elementary processes) is specified by means of the Action Diagram-

mer. The Structure Chart Diagrammer is used to process calling structures between elementary

processes. The Dialog Design Diagrammer is applied to process calling structures between

procedures. With the help of the Data Structure Diagrammer, the relational schema generated

from the ER model can be optimized. The Window Diagrammer enables the developer to

define a graphical user interface.

4.2 Horizontal Integration

IEF's encyclopedia is also a central encyclopedia with respect to the tool view, but not with re-

gard to interpersonal cooperation. IEF's concept of horizontal integration corresponds largely

to the concept outlined for ADW. Objects and information about object relationships are ex-

changed between tools via the encyclopedia. In addition, it is possible to link information in a

way that new objects will be derived automatically. This concept is illustrated by the following

example.

During analysis, procedural logic of elementary processes is specified by the developer. For

each elementary process, IEF generates a template that already contains import and export

views, the specified data accesses (create, update, etc.), and standard exception handling.

Information necessary to generate action blocks is taken from the process vs. entity-type

matrix or from statements of expected effects given by the developer. Expected effects describe

how entity types of the data model are accessed (read, write, etc.). Action block templates are

19) Cf. Texas Instruments Inc. (1993).

- 16 -

then filled by the developer with the help of a specific editor that checks input for syntactical

correctness.

D
at

a
M

od
el

D
ia

gr
am

m
er

Subject Areas
Entities

M
atrix P

rocessor
A

ctivity H
ierarchy

D
iagram

m
er

A
ct

iv
ity

 D
ep

en
de

nc
y

D
ia

gr
am

m
er

A
ction D

iagram
m

er
S

tr
uc

tu
re

 C
ha

rt

D
ia

gr
am

m
er

W
in

do
w

 D
ia

gr
am

m
er

D
ialog D

esign
D

iagram
m

er

D
at

a
S

tru
ct

ur
e

D
ia

gr
am

m
er

Processes,
Functions

Generation of Objects

Transfer of Objects

Legend:

Activity Objects
Composite
Objects

Import/
Export Views

Entities

Modular
Structures

Transformation

Ev
en

t,
Pr

oc
es

s
In

fo
rm

at
io

n
V

ie
w

Procedures

Importance Response Time
Importance Response Time

ZieleData Model

R

C

R

U
R

C
R

U

D

CRUD Matrix

Activity Dependencies Functional Decomposition

Module SpecificationModule Structure

Entities

Entities
Entities CRUD

Informations

create customer
IMPORT:
EXPORT:
LOCAL:

Entities

GUI

Create Customer

First Name Surname
City
Street Address

CancelOK

Windows

Dialog Flow

Entities

Database Design

Record
Field
Field

Customer
Cust.-No <Primary>
Cust.-Name

S
D

B
A

A
TD

IS
P

Import/
Export Views

Entities

Import/
Export Views

Import/
Export Views

Import/
Export Views

Fig. 2: Horizontal and vertical integration in IEF

- 17 -

4.3 Vertical Integration

In the planning stage, the developer builds a high-level overview data model of the enterprise.

Components of this model are subject areas and associations between those areas. Subject ar-

eas summarize closely related entity and relationship types. In the analysis stage, the data mod-

el is refined by more detailed subject areas and by entity types. Relationships can be specified

between entity types, but not between subject areas. However, associations between subject

areas are automatically derived from relationships between entities that belong to different

subject areas.

The high-level data model is available for later tasks. In contrast to ADW, it is not destroyed

by BAA activities, but clustering of entities and relationships is not supported, either. There-

fore it is not possible to represent relationships between abstract and more detailed entities.

From the BAA data model, IEF automatically derives a relational database schema. This

schema may then be revised in the TD stage. Two advantages have to be emphasized: First,

IEF prevents any modification of the database schema that would be inconsistent with the ER

model. For example, a data type assigned to a table column cannot be modified directly. It has

to be changed in the ER diagram first, before it can be adapted in the database schema (by new

generation). Second, data accesses defined in action blocks refer to the ER model and not to

the database schema. This means that developers of action blocks do not need to use identifiers

from the database schema they are not familiar with (because the schema was generated!).

On the activities side, information processing is coherent, too. During ISP, a Hierarchy De-

composition Diagram for business functions and a Functional Dependency Diagram is devel-

oped. The respective information is specified in detail during BAA. The Hierarchy Decomposi-

tion Diagram is refined down to the level of elementary processes. Dependencies between

processes are modeled by extending the Functional Dependency Diagram. Diagrams of differ-

ent abstraction levels, from ISP and BAA, remain separate, as on the data side. Thus the ISP

model may be reused for other BAA projects.

Procedural logic of elementary processes is described by means of the Action Diagrammer dur-

ing BAA. In the SD stage, IEF automatically assigns a procedure to control user interaction

with the program to each window or screen. To fill such a procedure, the developer specifies

which action blocks have to be executed when certain user inputs occur. For example, he

specifies that the elementary process "issue and print invoice" will be executed if the user

enters the command "issue invoice". A procedure action block containing the calls of the

corresponding action blocks is generated automatically from this information. Additional

procedural logic may be filled in by the developer.

- 18 -

IEF's concept of vertical integration on the activities side has two major advantages: First, de-

scriptions of elementary processes from BAA can be used for SD. (In contrast, ADW requires

entirely new editing of module actions in SD). Second, modifications of action blocks are auto-

matically available for tools of later stages.

It should be emphasized, however, that IEF's concepts for the activities side do not support

top-down development well. On the contrary, procedural logic of elementary processes has to

be described on a formal language level in BAA already. In addition, procedure action blocks

usually are on a higher abstraction level than action blocks. Since they are specified after

elementary processes (action blocks) have been developed, IEF rather supports a bottom-up

approach. Furthermore, since abstract descriptions of procedural logic exist neither for

elementary processes nor for procedures, they are difficult to understand.

Before code is generated in the construction stage, IEF automatically checks consistency of the

models developed in the previous stages. Source code is only generated if no errors are de-

tected. In contrast to ADW, the generated source code is free of syntax errors. A debugger on

the design level helps to search for semantic errors. If such a debugger is not available (as in

ADW), developers have to examine error messages referring to the generated source code

(which is completely unknown to them).

IEF does not support reverse integration. Some of the problems, however, are totally avoided

because of rigorous restrictions. First, modifying objects created in one stage later on is either

prohibited or only permitted if it cannot cause any inconsistency. One example was mentioned

before: The database schema generated from the BAA data model can only be modified in TD

if changes do not affect consistency with the ER model. Second, in many cases there are just

no means to describe the same things on different abstraction levels. Therefore there is no need

to update models of earlier stages. On the activities side, for example, procedural logic of

elementary processes has to be specified completely on the language level of action blocks.

More abstract descriptions do not exist. Further refinement of action blocks by SD tools is not

possible. Action blocks may only be called from procedures developed in SD.

4.4 Interpersonal Integration

IEF's support for interpersonal integration has three aspects. First, the encyclopedia can be

stored on a mainframe. Using it is then similar to ADW. Second, the encyclopedia of version

5.1 underlying this paper does not support team work at all. Third, a client-server encyclopedia

supporting LAN-based team work has recently become available, but we have not evaluated

this version yet.

- 19 -

One encyclopedia, used by all tools

No redundancy

Results of one tool are immediately available
for other tools

H
or

iz
on

ta
l

in
te

gr
at

io
n

ADW IEF

One encyclopedia, used by all tools

No redundancy

Results of one tool are immediately available
for other tools

V
er

tic
al

 in
te

gr
a

tio
n

R
ev

er
se

 in
te

gr
at

io
n

F
or

w
ar

d
in

te
gr

at
io

n

Straightforward mechanisms for functions and
processes

Weak integration from BAA to SD for processes
(minispecifications are just comments, no further
automatic processing or translation to module
specifications)

Generation of formal parameter lists and calls
of modules in module action diagrams
(version 2.7)

No support for ER model clustering

Modifications in the ER model in BAA can
easily be taken over to SD in version 2.7
(in version 1.6 this is a error-prone and time-
consuming task)

Straightforward mechanisms for functions and
processes

No mechanisms for refining procedural logic

No support for ER model clustering

Refinement of subject areas by subject areas,
entities and relationships

Break between BAA and SD, changes of data
definitions in SD can cause inconsistencies
between SD and BAA models and vice versa

No need for reverse integration, consistency is
supported by

- restricting permissible modifications of data
 definitions

- avoiding different abstraction levels for
 activities

Mainframe-based encyclopedia with multi-user
capability

Awkward consolidation mechanism for parallel
encyclopedias

LAN-based encyclopedia with multi-user
capability (version 2.7)

Mainframe-based encyclopedia with multi-user
capability

LAN-based encyclopedia with multi-user
capability

In
te

rp
er

so
na

l
in

te
gr

at
io

n

Fig. 3: Summary of ADW-IEF comparison

5 Comparison and Conclusions

Enterprise-wide integration of information processing is a central issue of information engi-

neering. In this paper, integration-related aspects of information engineering-based I-CASE

were elaborated. ADW and IEF were analyzed as to how well they support horizontal, vertical,

and interpersonal integration. Figure 3 summarizes the results of this analysis.

From our experience with ADW, horizontal integration can be characterized as excellent, but

vertical integration has quite some flaws. With regard to data modeling, integration is quite sat-

- 20 -

isfactory across ISP and BAA stages, but integration between BAA and SD needs to be im-

proved considerably. On the other hand, the activities side suffers severely from lack of inte-

grative features. Interpersonal integration has also been weak up to now and only recently been

improved. The old concept of consolidation across encyclopedias was insufficient for efficient

support of project work20). The Workgroup Coordinator promises to remedy this drawback.

IEF tools, compared to ADW, appear to be better integrated. Whereas horizontal integration is

about the same, vertical integration has significant advantages over ADW's concepts. Not only

the tools for data modeling are integrated across stages, but the tools creating successive rep-

resentations of activities (processes, procedures, programs) are integrated, too. Program-con-

struction and design tools are integrated better than in ADW. This is particularly useful when it

comes to debugging. Whereas ADW developers have to scan Cobol code for semantic errors,

IEF provides a high-level debugger on the pseudo-code level (i.e. for process-action code). In

addition, IEF prevents some problems from missing reverse integration, as mentioned in

chapter 4.3.

Both ADW and IEF have been employed in large real-world projects. General Electrics, for

example used ADW to develop a system which connects offers, orders and shipping

information into a single sales information system21). Ford of Germany applied information

engineering methodology supported by IEF in several projects. TWA developed their frequent-

flyer bonus system of 1.5 million lines of code with IEF. Since it was so successful, they sold it

to Lufthansa who developed their miles-and-more program based on it within half a year. All

these users claim significant productivity gains as compared to conventional IS development.

On the other hand, I-CASE failures are likely to have occurred, too, but they are rarely

reported in literature. Many potential users still hesitate, being uncertain whether the overhead

of information engineering-based I-CASE really pays.

References

Batini, C., Ceri, S., Navathe B.: Conceptual database design: an Entity-Relationship Approach;
Redwood City 1992.

Boehm, B. W.: Software Engineering Economics; Englewood Cliffs 1981.

Bucken, M.: AD/Cycle Changes Continue; Software Magazine 12 (1992) 14, pp. 26-30.

20) Cf. Kurbel (1994).
21) Cf. Douglass, Walsh (1993).

- 21 -

Douglass, D. P., Walsh, L.: The Costs and Benefits of CASE; I/S Analyser 31 (1993) 6.

Dineur, A.: ATMOSPHERE: CASE for System Engineering Support; in: Norman, R. J., Van Ghent, R.
(Eds.): Fourth International Workshop on Computer-Aided Software Engineering; Los Alamitos,
Washington et al. 1990, pp. 154-157.

Jaeschke, P., Oberweis, A., Stucky, W.: Extending ER Model Clustering by Relationship Clustering (to
appear).

KnowledgeWare Inc.: Application Development Workbench - Overview, 0194-PU-0665, Knowledge-
Ware Inc.; Atlanta, GA. 1994.

Kramer, J.: CASE Support for the Software Process: A Research Viewpoint; in: Van Lamsweerde, A.,
Fugetta, A. (Eds.): Proceedings of the 3rd European Software Engineering Conference, Lecture
Notes in Computer Science 550; Berlin, Heidelberg et al., pp. 499-503.

Kurbel, K.: From Analysis to Code Generation: Experiences from an Information Engineering Project
Using I-CASE Technology; in: Wijers, G., Brinkkemper, S., Wasserman, T. (Eds.): Advanced
Information Systems Engineering, 6th International Conference, CAiSE '94, Proceedings, Lecture
Notes in Computer Science 811; Berlin, Heidelberg et al., pp. 214-227.

Garbajosa, J., Jarre, J. R. et al.: Position Paper: Implementing Cooperation and Coordination in Soft-
ware Engineering Environments; in: Norman, R. J., Van Ghent, R. (Eds.): Fourth International
Workshop on Computer-Aided Software Engineering; Los Alamitos, Washington et al. 1990, pp.
163-167.

Markowitz, V. M., Shoshani, A.: Representing Extended Entity-Relationship Structures in Relational
Databases: A Modular Approach; ACM Transactions on Database Systems 17 (1992) 3, pp. 423-
464.

Martin, J.: Information Engineering, Book I Introduction; Englewood Cliffs 1989.

McCormack, J. I., Halpin, T. A., Ritson, P. R.: Automated mapping of conceptual schemas to relational
schemas; in: Rolland, R., Bodart, F., Cauvet, C. (Eds.): Advanced Information Systems Engineer-
ing, 5th International Conference, CAiSE '93, Lecture Notes in Computer Science 685; Berlin,
Heidelberg et al.1993, pp. 432-448.

Nomina Gesellschaft für Wirtschafts- und Verwaltungsregister: ISIS PC Report, Software für Personal
Computer & PC-Netzwerke, Vol. 2; München 1993.

Polilli, S.: IBM Redirects AD/Cycle, Software Magazine 12 (1992) 12, pp. 31-34.

Rauh, O., Stickel, E.: Entity tree clustering - A method for simplifying ER design; in: Pernul, G., Tjoa,
A. M. (Eds.): Proceedings of the 11th International Conference on Entity-Relationship Approach;
Berlin, Heidelberg et al. 1992, pp. 62-78.

Robinson, D.: CASE Support For Large Systems; in: Van Lamsweerde, A., Fugetta, A. (Eds.): Pro-
ceedings of the 3rd European Software Engineering Conference, Lecture Notes in Computer Science
550; Berlin, Heidelberg et al. 1991, pp. 504-508.

Royce, W. W.: Managing the development of large software systems: concepts and techniques; in:
Proceedings of Western electronic show and convention '70; Los Angeles 1970.

- 22 -

Stobart, S. C., van Reeken, A. J. et al.: An Empirical Evaluation of the Use of CASE Tools; in: Lee,
H.-Y., Reid, T. F., Jarzabek, S. (Eds.): Proceedings of the Sixth International Workshop on
Computer-Aided Software Engineering; Los Alamitos, Washington et al. 1993, pp. 81-87.

Teorey, T. J., Yang, D., Fry, J. P.: ER model clustering as an aid for user communication and documen-
tation in database design; Communications of the ACM, 32 (1989) 8, pp. 975-987.

Texas Instruments Inc.: Developer's Reference, 2632047-7301, Texas Instruments Inc.; Plano, Texas
1993.

Venable, J. R.: Achieving Effective Tool Integration in a CASE Environment; in: Norman, R. J., Van
Ghent, R. (Eds.): Fourth International Workshop on Computer-Aided Software Engineering; Los
Alamitos, Washington et al. 1990, pp. 204-205.

Wybolt, N.: Perspectives on CASE Tool Integration; Software Engineering Notes, 16 (1991) 3, pp. 56-
60.

Zarrella, P. F.: CASE Tool Integration and Standardization; in: Norman, R. J., Van Ghent, R. (Eds.):
Fourth International Workshop on Computer-Aided Software Engineering; Los Alamitos,
Washington et al. 1990, pp. 208-209.

- 23 -

Arbeitsberichte des Instituts für Wirtschaftsinformatik

Nr. 1 Bolte, Ch., Kurbel, K., Moazzami, M., Pietsch, W.: Erfahrungen bei der Entwicklung eines In-
formationssystems auf RDBMS- und 4GL-Basis; Februar 1991.

Nr. 2 Kurbel, K.: Das technologische Umfeld der Informationsverarbeitung - Ein subjektiver 'State of
the Art'-Report über Hardware, Software und Paradigmen; März 1991.

Nr. 3 Kurbel, K.: CA-Techniken und CIM; Mai 1991.

Nr. 4 Nietsch, M., Nietsch, T., Rautenstrauch, C., Rinschede, M., Siedentopf, J.: Anforderungen
mittelständischer Industriebetriebe an einen elektronischen Leitstand - Ergebnisse einer Untersu-
chung bei zwölf Unternehmen; Juli 1991.

Nr. 5 Becker, J., Prischmann, M.: Konnektionistische Modelle - Grundlagen und Konzepte; Septem-
ber 1991.

Nr. 6 Grob, H.L.: Ein produktivitätsorientierter Ansatz zur Evaluierung von Beratungserfolgen; Sep-
tember 1991.

Nr. 7 Becker, J.: CIM und Logistik; Oktober 1991.

Nr. 8 Burgholz, M., Kurbel, K., Nietsch, Th., Rautenstrauch, C.: Erfahrungen bei der Entwicklung
und Portierung eines elektronischen Leitstands; Januar 1992.

Nr. 9 Becker, J., Prischmann, M.: Anwendung konnektionistischer Systeme; Februar 1992.

Nr. 10 Becker, J.: Computer Integrated Manufacturing aus Sicht der Betriebswirtschaftslehre und der
Wirtschaftsinformatik; April 1992.

Nr. 11 Kurbel, K., Dornhoff, P.: A System for Case-Based Effort Estimation for Software-Develop-
ment Projects; Juli 1992.

Nr. 12 Dornhoff, P.: Aufwandsplanung zur Unterstützung des Managements von Softwareentwick-
lungsprojekten; August 1992.

Nr. 13 Eicker, S., Schnieder, T.: Reengineering; August 1992.

Nr. 14 Erkelenz, F.: KVD2 - Ein integriertes wissensbasiertes Modul zur Bemessung von Kranken-
hausverweildauern - Problemstellung, Konzeption und Realisierung; Dezember 1992.

Nr. 15 Horster, B., Schneider, B., Siedentopf, J.: Kriterien zur Auswahl konnektionistischer Verfahren
für betriebliche Probleme; März 1993.

Nr. 16 Jung, R.: Wirtschaftlichkeitsfaktoren beim integrationsorientierten Reengineering: Verteilungs-
architektur und Integrationsschritte aus ökonomischer Sicht; Juli 1993.

Nr. 17 Miller, C., Weiland, R.: Der Übergang von proprietären zu offenen Systemen aus Sicht der
Transaktionskostentheorie; Juli 1993.

Nr. 18 Becker, J., Rosemann, M.: Design for Logistics - Ein Beispiel für die logistikgerechte Gestal-
tung des Computer Integrated Manufacturing; Juli 1993.

Nr. 19 Becker, J., Rosemann, M.: Informationswirtschaftliche Integrationsschwerpunkte innerhalb der
logistischen Subsysteme - Ein Beitrag zu einem produktionsübergreifenden Verständnis von
CIM; Juli 1993.

- 24 -

Nr. 20 Becker, J.: Neue Verfahren der entwurfs- und konstruktionsbegleitenden Kalkulation und ihre
Grenzen in der praktischen Anwendung; Juli 1993.

Nr. 21 Becker, K., Prischmann, M.: VESKONN - Prototypische Umsetzung eines modularen Konzepts
zur Konstruktionsunterstützung mit konnektionistischen Methoden; November 1993

Nr. 22 Schneider, B.: Neuronale Netze für betriebliche Anwendungen: Anwendungspotentiale und
existierende Systeme; November 1993.

Nr. 23 Nietsch, T., Rautenstrauch, C., Rehfeldt, M., Rosemann, M., Turowski, K.: Ansätze für die
Verbesserung von PPS-Systemen durch Fuzzy-Logik; Dezember 1993.

Nr. 24 Nietsch, M., Rinschede, M., Rautenstrauch, C.: Werkzeuggestützte Individualisierung des
objektorientierten Leitstands ooL, Dezember 1993.

Nr. 25 Meckenstock, A., Unland, R., Zimmer, D.: Flexible Unterstützung kooperativer Entwurfsumge-
bungen durch einen Transaktions-Baukasten, Dezember 1993.

Nr. 26 Grob, H. L.: Computer Assisted Learning (CAL) durch Berechnungsexperimente, Januar 1994.

Nr. 27 Kirn, St., Unland, R. (Hrsg.): Tagungsband zum Workshop "Unterstützung Organisatorischer
Prozesse durch CSCW". In Kooperation mit GI-Fachausschuß 5.5 "Betriebliche Kommunika-
tions- und Informationssysteme" und Arbeitskreis 5.5.1 "Computer Supported Cooperative
Work", Westfälische Wilhelms-Universität Münster, 4.-5. November 1993

Nr. 28 Kirn, St., Unland, R.: Zur Verbundintelligenz integrierter Mensch-Computer-Teams: Ein orga-
nisationstheoretischer Ansatz, März 1994.

Nr. 29 Kirn, St., Unland, R.: Workflow Management mit kooperativen Softwaresystemen: State of the
Art und Problemabriß, März 1994.

Nr. 30 Unland, R.: Optimistic Concurrency Control Revisited, März 1994.

Nr. 31 Unland, R.: Semantics-Based Locking: From Isolation to Cooperation, März 1994.

Nr. 32 Meckenstock, A., Unland, R., Zimmer, D.: Controlling Cooperation and Recovery in Nested
Transactions, März 1994.

Nr. 33 Kurbel, K., Schnieder, T.: Integration Issues of Information Engineering Based I-CASE Tools,
September 1994.

